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SUMMARY 
 

 

Epigenetics encompasses a series of chromatin modifications that are potentially inheritable 

and can result into a change of gene expression without involving a change in the underlying 

DNA sequence. Epigenetics is involved in several fundamental mechanisms that regulate cell 

cycle in all eukaryotes including X chromosome inactivation, gene silencing, paramutation, 

parental imprinting, chromatin position effect, plant gametogenesis, flowering time, stress 

responses and light signaling. 

Within epigenetic modifications, DNA methylation is predominant and widespread in all 

eukaryotic kingdoms and consists in a reversible reaction which transfers a methyl group on a 

cytosine. In mammals methylation occurs in CG-rich regions known as CpG islands, whereas 

in plant methylation may occurs in CG, CHG and CHH contexts, where H may be A,C or T, 

with different mechanisms. 

Depending on the location, DNA methylation may have opposite effects: in heterochromatin 

it is generally associated to transcriptional inactivity but in the transcribed region of genes, 

methylation in the CG context is associated to medium-to-high transcriptional level. 

The silencing effect of DNA methylation represents a useful defense weapon against both 

retrovirus infection and transposable element (TE) insertions: indeed such sequence elements 

generally become highly methylated as a plant response to prevent further mobilization. 

Despite this mechanism, during evolution TEs colonized eukaryotic genomes, up to represent 

75% of the total genome in some plant species. . TEs are a major factor underlying the 

tremendous intra-species genome variability that has been revealed thanks to the introduction 

of next generation sequencing (NGS) technology and the resequencing of several individuals 

of the same species. This led scientists to introduce, initially only for bacteria then for any 

organism, the concept of pan-genome, composed by a common genome shared by all the 

individuals of the species and a dispensable genome which is not essential for survival, but is 

the foundation for phenotypic variability.  

The dispensable genome consists of the entire set of structural variations (SVs) observed 

among individuals and is mainly represented by TEs. 

TE sequences are generally methylated and their methylation may spread in their flanking 

regions. Thus, when TEs accidentally insert nearby genes or regulating sequences, they may 

alter their epigenetic status creating epigenetic variants called epialleles. 
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Specific protocols of NGS, involving the use of bisulfite, which in the overall process 

converts unmethylated cytosines to thymines, allow to map all methylcytosines of a genome 

with single-base resolution. The aim of this work was to analyse the relationship between 

structural variations, mainly represented by TEs, and epigenetic variations in plants. 

Grapevine is a suitable model for this study because it is a perennial species and generally, it 

is vegetatively propagated in agriculture. This technique preserves the genome from 

recombination, thus it allows maintaining the genotypes stable across clonal generations  and 

focusing on mere epigenetic variation. 

Moreover for grapevine a highly homozygous reference genome is already available as well 

as a set of grapevine-specific TEs annotated. Three biological replicates of leaf nuclear DNA 

of the cultivar Pinot Noir, which shares one haplotype with the sequenced genome reference, 

have been sequenced and analysed. To evaluate the spreading of internal TE methylation on 

the flanking regions, we considered hemizygous TEs in order to compare the same regions on 

homologous chromosome in presence or absence of TEs. Consistently with other species, 

grapevine TEs show high methylation in their sequence in both CG and CHG context whereas 

CHH context is extremely low methylated. Internal TE methylation is generally spread on 

their flanking regions. Within TEs, retrotranspons show a stronger impact on flanking regions 

compared to DNA-transposons, with different behaviors according to the differential genomic 

distribution of TE-groups: Ty3-Gypsy usually insert in highly methylated regions of 

pericentromeric chromatin, LINEs element are frequently found in highly CG methylated 

gene bodies, Ty1-Copia display more variable locations. Generally, where not saturated, 

retrotransposon insertions provoke an increase of methylation in both CG and CHG contexts, 

supported by statistical analyses. DNA methylation is also present in transcribed regions of 

grapevine genes, in particular in the CG context. A set of about 19000 genes was utilized to 

analyze gene body methylation (GBM) in grapevine. Similarly to other species, grapevine 

GBM displays an asymmetrical bell-shape profile, in which the 5’ is much less methylated 

than 3’. Surprisingly introns appear more methylated than exons, in contrast with other 

species such as Arabidopsis, humans and honey bee. 

Grapevine introns occupy a large part of the genome (36.7%) and are quite rich in TEs that 

represent 12.4% of their sequence. The moderate TE content of introns may partially explain 

their higher methylation compared to flanking exons. However, when excluding genes 

carrying TE from the analysis, methylation in both exons and introns is reduced but still 

present, confirming that GBM methylation is independent from TEs, although their insertion 

may increase it. 
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Analysis of gene expression showed that genes located in highly methylated regions, 

especially in the CHG context, show on average a lower expression rate and furthermore their 

expression tend to be more conserved within varieties. On the contrary, when methylation 

occurs in gene bodies, transcriptional activity is not reduced and it may be even higher. 

Gene expression may also be modulated by TEs: when these are located in gene flanking 

regions, gene expression rate is significantly lower than unaffected genes, whereas genes 

whose introns are enriched in TEs display significantly higher methylation and expression 

rates. Lastly, allele-specific expression analyses indicate that hemizygous TEs may affect the 

contribution of the two alleles to the expression rate of the gene. 

Taken together these data confirm that DNA methylation occurs in grapevine with patterns 

comparable with other plant species, but with the peculiarity of highly methylated introns 

whose methylation is generally associated to moderate TE content and medium-to-high 

expression levels. 
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INTRODUCTION 
 

Epigenetics in plants 

In a modern formulation, the study of epigenetics, (from the ancient greek επί, [epì] meaning 

“above” genetics) encompasses a series of chromatin modifications that are potentially 

inheritable and can result into a change of gene expression without involving a change in the 

underlying DNA sequence.  
Epigenetic modifications may be either temporary or inheritable through cell division and 

gametogenesis and may occur both on DNA and on chromatin proteins. 

Many biological processes are modulated by epigenetic regulation, such as X chromosome 

inactivation, gene silencing, paramutation, parental imprinting and chromatin position effect. 

So far, several mechanisms that underlie epigenetic phenomena have been identified and 

studied, including: 

- Histone tail modifications 

- Changing of nucleosome positioning  

- Covalent modifications of cytosines 

- Small non-conding RNAs pathways. 

Epigenetic modifications are massive also in humans and other eukaryotic phyla. DNA is an 

extremely long molecule (up to 1.8 m in human) and thus it needs to be packed in order to fit 

in the cell nucleus. DNA packing is made possible by protein-DNA interactions; which form 

the complex called chromatin. 

During cell division, DNA reaches the highest packing order in the form of chromosomes, 

while during the rest of cell cycle, DNA sequence is relaxed in the form of chromatin, which 

is composed by euchromatin with high transcriptional activity and heterochromatin which is 

more compact and usually shows a very low transcriptional activity. Heterochromatin may be 

either constitutive or facultative. Different cells have different needs and thus require the 

expression of cell-specific genes but not others; in fact it would be extremely expensive in 

terms of energy cost for a cell to keep all the possible pathways constantly active. 

Within a cell, epigenetic modifications contribute on one hand to maintain accessible for the 

transcription machinery DNA portions carrying specific genes, on the other to condense into 

heterochromatic regions DNA portions which are not essential for the cell. 
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Histone tails post-translational modifications and 

nucleosome positioning 

Histones are alkaline proteins with high affinity for DNA, which may be packed by winding 

around them thanks to the several hydrogen bonds. DNA affinity to histones is modulated by 

post-translational modifications that occur on histone tails, such as methylation, acetylation, 

phosphorylation, citrullination, sumoylation, biotinylation, ADP-ribosilation and 

ubiquitination. Methylation and acetylation are predominant and they may compete for the 

same lysine residues. Acetylation is generally positively correlated with gene expression, 

while the actual effect of methylation depends on the residue position. Differences between 

organisms have also been observed. Moreover, up to three methyl groups may added to a 

single lysine residue and the methyl groups number may cause opposite effects on the basis of 

both residue and organism.  There are 5 different families of histones, H1/H5, H2A, H2B, H3, 

H4. Dimers of H2A, H2B, H3, and H4 form an octamer called nucleosome, where a 147 bp 

DNA stretch can bend 1.67 times. The unbent DNA between two nucleosomes is called linker 

DNA and may be long up to 80 bp. Because the linker but not the bent DNA is accessible for 

the transcription machinery, histone tail modifications and nucleosome positioning represent 

very fine epigenetic regulators of gene expression. 

Linker histones H1/H5 provide an additional packing by clipping nucleosomes together in a 

structure called “30 nm fiber”, which on its turn is bent around specific scaffold proteins both 

in the chromosomal and  heterochromatic structures. 

Histone proteins are highly conserved within eukaryotes and similar proteins are present also 

in prokaryotes. 

DNA Methylation 

DNA covalent modifications occur on cytosines, and include several reactions which, on one 

hand, do not alter cytosine biological property during replication and transcription and do not 

affect the pairing with a guanine on the complementary strand, but, on the other hand, may 

add additional epigenetics information which may contribute to the expression of a certain 

phenotype. 

So far several cytosine modifications have been detected including methylation, 

hydroxymethylation and formylation; however methylation is predominant and has been 

deeply investigated. 
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DNA methylation is a reversible enzymatic reaction, catalysed by DNA-methytransferases 

which transfer a methyl group from the substrate S-adenosylmethionine to the carbon 5 of the 

cytosine base. This reaction may be potentially reverted by demethylating enzymes. 

 

 

 

 

Cytosine methylation is widespread between organisms; in fact it is in common to both 

complex organisms and prokaryotes but it is interestingly absent in few model organisms such 

as Drosophila and Caenorhabditis elegans. Homology between bacterial and eukaryotic 

methytransferases suggests a very ancient origin and then a subsequent loss in the systems 

named above.  

The methyl group is located in the major groove of the DNA double helix and does not affect 

hydrogen bonds involved in base pairing. 

5m-cytosine may convert to thymine by spontaneous deamination, which is not repaired by 

the repair mechanism as the unmethylated cytosine that converts to uracil. Hence in the 

organism where methylation is present, there is an increase of thymine content during 

evolution. 

An in vitro demination reaction may be performed in presence of sodium bisulfite; this 

reaction is at the basis of the modern  Bisulfite Sequencing technology which allows us to 

map at single base resolution methylated and unmethylated cytosines based on which of the 

cytosines are converted to uracil and which are not. 

Depending on the organisms, DNA-methylation may occur in different contexts: in humans it 

is predominant in CG rich regions known as CpG islands in which 
5m

C may represent up to 

80% of the total cytosines; in plants 3 different contexts with different methylation 

mechanisms are known, corresponding to CG, CHG and CHH where H is any base but a G.  

Human CpG islands are usually located within few kilobases from gene transcription start site 

(TSS), and thus their methylation level may alter the expression of flanking genes.  

Figure 1 | Schema of cytosine methylation 
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Plant CG and CHG contexts are symmetrical in the Watson and Crick’s strands, while the 

CHH is asymmetrical. However only the CG context is characterized by a symmetrical 

methylation in both strands. Within plants, CG, CHG and CHH contribution to the total 

cytosines is variable as well as the methylated fraction of each context (Figure 2) 

 

DNA methylation mechanisms may be distinguished in: 

- de novo mechanism, which consists in the methylation of previously unmethylated 

cytosines. 

- maintenance mechanism, which acts during cell division and is designated to replicate the 

methylation profile of the pre-existent strand in the new one.  

Different contexts have different mechanisms for both de novo and maintenance methylation. 

 

DNA methylation in different sequence contexts 

De novo CG methylation in mammals is performed by the DNA methyltransferase class 

(Dnmt3), which binds H3 tail unmethylated at K4. The same family in plant is called 

DOMAIN REARRANGEMENT METHYLTRANSFERASE 2 (DMR2) but acts with a very 

different mechanism which involves siRNAs in a RNA-directed DNA methylation. 

DMR2 may methylate cytosines also in CHG and CHH contexts (Cao & Jacobsen, 2002). 

Figure 2 | Patterns of DNA Methylation in Plants 

Li et al. 
 2012 

Gent et al.  
2013 

Lister et al. 
 2008 

Arabidopsis Tomato Rice 

Li et al. 
 2012 

Zhong et al.  
2012 

Lister et al. 
 2008 

Distribution of methylcytosines 

                Relative to total cytosines                           Relative to total of methylcytosines          
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CG methylation, however, is also maintained during cell replication through a highly 

conserved process within eukaryotes and it is based on the DNA symmetry of CG: the 

hemimethylation binding proteins VIM (Hufr1 in human) targets 
5m

C in CG dinucleotides in 

the pre-existent DNA strand allowing DNA-methylatransferase MET1 (Dnmt3 in human) to 

methylate the complementary CG dinucleotide in the newly synthetized strand during 

replication. This is the only mechanism for the maintenance of methylation in parallel with 

replication described so far whereas other maintenance mechanisms involve de novo 

methylation of the new strand. 

 

 

The CHG methylation levels in mammals are much lower than in plants, thus different 

mechanisms are involved for its maintenance. Plants maintain high level of CHG methylation 

thanks to a self-reinforcing feed-loop of CMT3 DNA-methyltransferase whose action is 

guided by the methylation of H3K9. In humans the methylation level at CHG sites as well as 

at CHH ones is very low, and Dnmt3 seems to be involved also in its maintenance. 

Because of the asymmetric nature of CHH sites, the maintenance of CHH methylation is 

thought to happen through a de novo mechanism after cell replication. A very sophisticated de 

novo mechanism has been characterized in Arabidopsis for CHH methylation and involves the 

two plant specific RNA polymerases IV and V. Pol IV and Pol V transcription are 

independent from each other although the two enzymes are both necessary for the silencing of 

specific loci. The Pol IV transcripts originated from these loci are made double stranded by 

RDR2 (RNA-dependent RNA polymerase 2) then the resulting dsRNAs are cleaved by 

DICER-like protein 3 (DCL3) generating  short interfering RNAs (siRNAs) that are capable 

of forming functional complexes with the AGO4 (ARGONAUTE 4) effector protein. Pol V 

nascent transcripts are targeted by the siRNAs/AGO4 complex and, at the same time, the Pol 

V C-terminal domain interacts with AGO4 and serves as scaffold for the assembly of a 

Figure 3 | Maintenance of CG Methylation during DNA replication 



 

11 
 

complex that includes RDM1, an ssDNA-binding protein with a preference for methylated 

DNA (Gao et al., 2010; Law et al., 2010) and the methyltransferase DMR2. DMR2 is able to 

methylate in all the three contexts (Cao & Jacobsen, 2002), although in this specific 

mechanism only CHH methylation has been observed. 

Pol V often immunolocalizes to TE-rich loci, suggesting that this pathway may be specifically 

required to reinforce the silencing of TEs, whose CG and CHG methylation might be already 

present because of their maintenance mechanisms, by also promoting CHH (de novo) 

methylation. Depletion of Pol V does not affect CHH methylation in pericentromeric regions, 

suggesting that other mechanisms may be involved in overall CHH methylation. (Wierzbicki 

et al., 2012; Wierzbicki, Haag, & Pikaard, 2008; Wierzbicki, Ream, Haag, & Pikaard, 2009). 

 

 

In maize, CHH methylation seems to have a separate localization from that of CG and CHG 

methylation. Indeed, both CG and CHG but not CHH are highly methylated in intergenic 

heterochromatic regions, but within 1 kb from the transcription start site (TSS) of active 

genes, CHH methylation levels show a peak that is proportional to the expression rate of the 

flanking gene. These “CHH islands” may act as insulators for the heterochromatin 

propagation and protect genes from epigenetic silencing (Gent et al., 2013). 

 

Functions of DNA methylation 

 

DNA methylation is usually correlated with histone modifications, such as H3K9 

dimethylation, that condense chromatin thereby leading to a low transcriptional activity of the 

region (see Figure 5). Differential methylation between different cells may reflect their 

Figure 4 |  De novo CHH Methylation pathway (Wierzbicki et al., 2012) 
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differential needs in terms of expression of specific genes rather than others. This 

transcriptional inactivating ability of DNA methylation is also useful as a defense weapon 

against retrovirus infection. Indeed, after their integration in the host genome their sequence is 

methylated in order to prevent the transcription of their genes and the propagation of the 

infection (Wassenegger, Heimes, Riedel, & Sänger, 1994). Similarly, transposable element 

sequences are usually methylated to prevent excessive mobilization which may provoke gene 

disruption or mis-regulation. 

In contrast with the general silencing effect, high levels of methylation, exclusively in the CG 

context, were found in transcribed region of genes (gene bodies) of Arabidopsis and soybean 

and other species. In Arabidopsis roughly 1/3 of genes bodies present CG methylation and 

interestingly the highest methylation level is detected in genes with medium to high levels of 

transcription (Cokus et al., 2008; Hsieh et al., 2009; Lister et al., 2008; Tran et al., 2005; 

Zhang et al., 2006; Zilberman, Gehring, Tran, Ballinger, & Henikoff, 2007). 

GBM is particularly enriched in exons and may be involved in exon definition and splicing 

regulation (Maor et al.,  2015; Chodavarapu et al., 2010; Laurent et al., 2010). 

 

 

  

Figure 5 | Summary of epigenetic marks in euchromatin and heterochromatin (Feng & Jacobsen, 

2011) 



 

13 
 

Transposable Elements 
 

DNA methylation is generally associated to chromatin packing and thus to transcriptional 

inactivity, acting manly (but not exclusively) as a silencing phenomenon. DNA methylation, 

as well as other epigenetic modifications such as histones post-transcriptional modifications, 

may also occur as a consequence of Transposable Element (TE) insertions. 

As their name suggests, TEs are DNA sequences capable of transposing to other locations of 

the genome. They were discovered in maize in the 50s by the 1983 Nobel Prize winner 

Barbara McClintock and so far they have been found in all the eukaryotes species sequenced  

(e.g. Drosophila, Adams et al., 2000; cereals, Flavell, Rimpau, & Smith, 1977; rice 

Sequencing Project International Rice Genome, 2005 and human, Lander et al., 2001) 

TEs generally encode enzymes able to integrate the TE sequences elsewhere in the genome, 

however a large number of non-autonomous TEs has been described and generally they 

require a trans-acting enzyme produced by autonomous TEs. 

The insertion event usually produces target site duplication (TSD) externally to both TE 

termini, with different length and sequence according to the TE family. TSDs are a useful 

feature to recognize and distinguish TE insertion. 

If on one hand TE insertions may promote genetic variability on the other hand, their 

movement may dramatically affect gene expression by disrupting open reading frames or 

regulatory sequences such as promoter and enhancers. Genome reacts to TE movement by 

methylating their sequence in order to silence them and prevent further mobilization which 

may be lethal for the cell. TE-induced methylation may also be extended to TE flanking 

regions, potentially affecting the expression of neighboring genes and thus the phenotype. 

These modifications may be inherited to the offspring and represent an example of genetically 

transmitted epiallele. 

Despite the existence of mechanisms that repress their activity, TEs have been able to 

successfully colonize eukaryotic genomes so that they can represent more than 75% of the 

total genomic sequence in some plant species (Baucom et al., 2009; Eichten et al., 2012). 

Similarly to TEs, genomic retrovirus integrations are generally followed by the methylation of 

the integrated sequence in order to silence retrovirus genes transcription and stop the 

propagation of the infection (Wassenegger et al.,1994). 

According to Finnegan (1989) and Wicker et al., (2007) TEs may be divided in two principal 

classes, based on their transposition intermediate: 
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- class I elements, characterized by an RNA intermediate and a “copy and paste” mechanism; 

- class II elements, characterized by a DNA intermediate and by either “cut and paste” or 

“copy and paste” mechanism. 

Below the class, hierarchical classification proposed by Wicker et al. includes subclass, order, 

superfamily and family. 

Class I elements 

Class I elements encode a Reverse Transcriptase (RT) and thus are also known as 

retrotransposons. Their “copy and paste” transposition mechanism involving an RNA 

intermediate creates a new copy for each transposition event, hence it is not surprising that 

retroelements usually represent the largest fraction of the repetitive component in eukaryotic 

genomes. Class I includes several orders. The most abundant in the plant kingdom are LTR 

elements, while elements of the non-LTR order, LINE and SINE, are more abundant in 

mammals, including humans. 

Long Terminal Repeat (LTR) elements 

LTR retroelements are characterized by the presence of long terminal repeats (LTR) with the 

same orientation at both TE termini, flanked by a 4-6 bp TSD with a variable sequence.  

Their size covers a wide range between few kbp up to 25 kbp, each single LTR may reach 5 

kb and usually show both a 5’-TG-3’ start and a 5’-CA-3’ end. However, non-autonomous 

LTR retroelements, lacking the RT genes, may be among the shortest ones and can even 

shorter than 300 bp in some cases ( Gao et al., 2012). 

LTR retroelements sequence encodes the retrovirus-like ORFs GAG and POL. The Pol ORF 

encodes the Reverse trascriptase (RT), a DDE integrase (INT), an RNase H (RH) and an 

aspartic proteinase (AP). The presence of the GAG and POL ORFs suggests a common 

ancestor for retroelement and retroviruses (Frankel & Young, 1998; Seelamgari et al., 2004) 

In plant two main superfamilies are known: Gypsy and Copia, which differ in the order of the 

protein domains within the Pol ORF. 

Long Interspersed Nuclear Elements (LINEs) 

LINE retroelements are found in all eukaryotic kingdoms and encode RT and a nuclease 

necessary for the transposition. Despite the presence of long TSDs and frequently of a poliA / 
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A-rich tail at the 3’ end, their identification is made difficult by the lack of terminal repeats 

and by the frequent truncation at the 5’end. The truncation is probably due to a premature 

retrotranscription termination.  

The LINE order includes 5 superfamilies, but only the L1 and RTE superfamilies are present 

in plants. 

Short Interspersed Nuclear Elements (SINEs) 

SINEs are short non-autonomous elements whose length may span between 80 and 550 bp. 

Unlike other retrotransposons, they seem to be originated by an accidental retrotransposition 

of the Pol III transcripts such as tRNA, 7SL and 5S rRNA. They generally exhibit a Pol III 

promoter at the 5’ end, which  allows them to be expressed, and occasionally a polyT, A-rich, 

AT- rich or tandem repeat sequences at the 3’ end, whose origin is still unknown. Although 

they have a different origin compared to other retroelements, SINE elements may be cross-

activated by autonomous LINEs and their integration generates a TSD of variable length (5-

15bp) .  

 

Class II elements 

Class II elements, also known as DNA-transposons, encode the Transposase enzyme and use 

a DNA intermediate for transposition. On the basis of the transposition mechanism, two 

subclasses are distinguishable:  

- subclass I, characterized by a double stranded DNA intermediate and a “cut and paste” 

mechanism, 

- subclass II, characterized by a single stranded DNA intermediate and a “copy and paste” 

mechanism. 

Terminal Inverted Repeat (TIR) elements 

Subclass I DNA-TE comprise only the TIR order, whose elements are characterized by the 

presence of Terminal Inverted Repeats (TIR) of variable length which are recognized and cut 

by the transposase enzyme. 

The transposition events do not create a new copy of the TE, thus is not surprising that DNA-

TE represent a smaller fraction of the genomes than class I element. 
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However, other complex mechanisms may occasionally contribute to copy number expansion, 

such as unequal recombination, transposition during replication from a replicated to a non-

replicated (yet) locus, and excision repair in the donor site. 

TIR elements may be autonomous or not and thus their length is extremely variable. 

Non-autonomous TIR elements are generally named Miniature Inverted repeat Transposable 

Elements (MITEs). Although nom-autonomous, mobilization, MITEs may be cross-activated 

by autonomous TIR- elements. 

Several TIR superfamilies have been classified according to TIR and TSD sequence and size. 

Five of these are present in plants: Tc1-Mariner, hAT, Mutator, PIF-Harbinger and CACTA.  

Superfamily behavior is highly specific: in rice PIF/Harbinger elements often insert close to 

genes, affecting expression either positively or negatively (Naito et al., 2009), in maize 

Mutator elements are frequently found within genes (for review, see Lisch, 2002). 

Helitron elements 

The subclass II of DNA-TEs is represented in plants by the Helitron order, which encodes a 

Y2-type Tyrosine recombinase, does not display terminal repeats but frequently a TC and a 

CTRR motif and an hairpin structure at 3’ end. 

Helitron mobilization occurs through a single strand cleavage that produces a single strand 

DNA intermediate which undergoes a “copy and paste” rolling-circle mechanism and 

integrates in the genome without TSDs but frequently in a A / T motif. 

Interestingly, Helitron transposition may accidentally include gene fragments to form non 

autonomous elements, and in maize chimeric genes have been assembled by successive 

transposition events (Morgante et al., 2005). 
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Figure 6 | Summary of TE features  (Wicker et al., 2007) 
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Structural Variations in Plant 

 

Transposable Element mobilization can be a source of sequence variation among individuals 

of the same species if the new insertions have not either been eliminated by negative selection 

or genetic drift or have not gone to fixation, again as a consequence of positive selection or 

genetic drift. The extent to which TE movement contributes to sequence variation within a 

species is therefore dependent upon its timing. More ancient transposition events are much 

less likely to be polymorphic within a species than more recent ones. For decades it has been 

commonly accepted that the genome of an entire species could be represented by a single 

individual genome, and that intraspecific variability could be ascribed to single nucleotide 

polymorphisms (SNPs) and small insertions/deletions. Nowadays, thanks to next generations 

sequencing (NGS) and the reduction of sequencing time and costs, it has been possible to 

sequence several individuals of the same species and compare their genomes. This 

comparison showed in some species an unexpected intraspecific diversity and led scientists to 

introduce the concept of pan-genome, originally coined in the context of bacteria genomics; 

the pan-genome is composed by a core genome, which is shared by all the individuals, and a 

dispensable genome which is present in some individuals but not others and is not essential 

for survival (Figure 7). The dispensable genome is made up of structural variations (usually 

greater than 1kb) that together with SNPs and small insertion/deletions contribute to 

intraspecies variability. Structural variations (SVs) are often enriched in repetitive sequences 

and include genomic alteration such as insertions, deletions, duplications, inversions and 

translocations (Figure 8). TEs in higher plants are responsible for the majority of insertions 

and deletions events, but they can also accidentally be involved in erroneous recombination 

events responsible of translocations, inversion and tandem duplications. 

 

 

 

Figure 8 | Structural Variation (Hurles et al., 

2008) 

 

Figure 7 | Maize pan-genome (Morgante, De 

Paoli, & Radovic, 2007) 
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VITIS VINIFERA AS A MODEL TO 

STUDY THE RELATIONSHIP 

BETWEEN SVS AND EPIGENETIC 

VARIATION IN PLANT 

 

In this study we propose grapevine, Vitis vinifera, as a model for the investigation of the 

epigenetic impact of structural variations for a series of advantageous features. First, the 

genome of a highly homozygous grapevine plant, sequenced by the International French-

Italian public consortium, is available (Jaillon et al., 2007). The sequencing revealed a 486 

Mb genome that is occupied by TEs in at least 41.4% of its length. The relatively small 

genome size and the moderate contribution of TEs to the whole sequence make grapevine an 

affordable and manageable genomic system for the detection and analysis of differential SVs. 

Indeed, thanks to Next Generation Sequencing technology, it has been possible to re-sequence 

dozens of varieties and their comparison revealed a large number of SVs suitable for 

evaluating the impact of differential TE content on the epigenome. 

Grapevine is also a perennial plant generally reproduced by humans via vegetative 

propagation, a technique that preserves the distinct genotypes from meiotic recombination and 

genetic rearrangement. With this respect, grapevine provides the opportunity to investigate 

epigenetic determinants in a reproducible genomic environment as much as Arabidopsis and 

maize inbred lines do, with the additional advantage that immortalized heterozygous genomes 

can be analysed as well. Indeed, heterozygosity of cultivated varieties such as Pinot Noir,  the 

one investigated in the present study, allow for the investigation of genomic structural 

variation and related epigenetic features within the same individual plant, thereby reducing 

genotype-dependent effects. 

Last but not less important from an epigenetic perspective, vegetative reproduction of 

grapevine extends over generations, without the caveat of epigenetic resetting during 

gametogenesis and embryo development, the possibility of accumulation of epigenetics marks 

as a result of long-term interaction between genome and environment as well as between the 

genome and its epigenetically active repetitive component. 
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AIM OF WORK:  

Analysis of epigenomic variability in 

grapevine and its relation with 

structural variation 
 

Since the introduction of Next Generation Sequencing (NGS) and the consequent reduction of 

cost and time of DNA sequencing, it has been possible to re-sequence several individuals 

within the same species highlighting an unexpected genomic variability within the species. 

This variability not only involves SNPs but also larger DNA elements that severely impact the 

sequence structure of a genome and for this reason are often regarded as structural variations. 

Structural variations in higher plants are largely represented by TEs whose mobilization is 

generally repressed by specific pathways, including DNA methylation, that induce their 

silencing. Thanks to the implementation of the bisulfite conversion protocol combined with 

NGS, it is now possible to obtain whole genome DNA methylation maps at single-base 

resolution.  

In plant methylation may occur in the CG, CHG and CHH contexts, where H may be A, C or 

T, with three different mechanisms. Depending on locations, DNA methylation may have 

opposite effect: in heterochromatin it is generally associated to transcriptional inactivity 

whereas in the transcribed region of genes, methylation in the CG context is associated to 

medium-to-high transcriptional levels. 

In this study DNA methylation in grapevine will be analysed in relationship to gene and TE 

density using expression data that were already available in our research group. The silencing 

effect of DNA methylation represents a useful defense weapon against TE insertions: indeed 

their integrated sequence is generally highly methylated in order to prevent their transcription. 

Internal DNA methylation of TE sequences is often spread into the flanking regions and it 

may accidentally overlap with gene or regulatory regions and potentially interfere with their 

expression. An in-depth study of the major TE groups in grapevine has been carried out in 

order to evaluate both their internal methylation pattern and the potential effect on their 

flanking regions. Particular efforts have been made to investigate DNA methylation at 

hemizygous TE insertion sites, which provide a unique system to evaluate the potential 

epigenetic crosstalk between homologous chromosomes.  
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RESULTS  
 

BS sequencing statistics  

 

Genome-wide DNA methylation analysis was performed by bisulfite sequencing (BS-seq) 

through the Illumina platform using genomic DNA extracted from young leaf nuclei of the 

cultivated Pinot Noir variety.  

The analysis included three biological replicates of the VCR18 clone, provided by Vivai 

Cooperativi di Rauscedo (VCR), for which additional genomic and transcriptomic 

information was already available. Replicate 1 was analysed using a different approach for 

BS-seq library construction relative to replicate 2 and 3 as a new protocol for bisulfite 

sequencing was introduced by Illumina later on during the course of this study. The former 

strategy, based on a consolidated protocol described for the first time in Arabidopsis by 

(Lister et al., 2008)) and recently reviewed by Urich et al. (2015), involves DNA mechanical 

fragmentation and bisulfite treatment after adaptor ligation. In contrast, in the new Illumina 

protocol utilized for replicates 2 and 3, DNA is immediately treated with sodium bisulfite that 

also contributes to its fragmentation and then random priming with tailed primers followed by 

tagged adapter pairing is used as a substitute for adaptor ligation. The latter approach is more 

straightforward and supposed to prevent bisulfite conversion biases ascribed to adapter 

interference. 

BS-seq raw sequencing data were aligned to the genome sequence of the highly homozygous 

PN40024 genotype sequenced by the international French-Italian public consortium (Jaillon et 

al., 2007). Mapping was performed using the ERNE-BS5 software package (Extended 

Randomized Numerical alignEr – Bisulfite 5, see Materials and methods), an in-house-

developed aligning program suitable for efficiently mapping BS-treated reads against large 

genomes. Further development of ERNE-BS5 functionalities made the algorithm capable of 

exploiting single nucleotide polymorphism data to assign sequencing reads to specific 

haplotypes and this aspect was determinant for the choice of this tool among others available. 

Mapping efficiency ranged between 71% and 74% between replicates.  

Although the total amount of reads produced was comparable among the three replicates, 

replicates 2 and 3 showed a higher number of uniquely aligned reads to the reference genome 
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Table 1 | BS-seq sequencing statistics 

after removal of PCR duplicates. This result was consistent with the reduced number of PCR 

cycles required for the construction of those two libraries (see Materials and Methods). 

 

 

ALIGNMENT DATA 
Nugen Library Illumina Libraries 

rep1 % rep2 % rep3 % 

TOTAL READS 323694704 100.0 315302298 100.0 316758960 100.0 

ALIGNED READS 238708123 73.7 227357200 72.1 224746565 71.0 

-> UNIQUE READS 192240859 59.4 159744532 50.7 161422010 51.0 

-> DEDUPLICATED UNIQUE READS 31201395 9.6 88605783 28.1 80159607 25.3 

LAMBDA CONVERSION (%) 98.38 98.60 98.60 

MEAN C COVERAGE (≥ 4X) 30x 35x 40x 

MEAN CG COVERAGE (≥ 4X) 9x 19x 21x 

MEAN CHG COVERAGE (≥ 10X) 20x 24x 26x 

MEAN CHH COVERAGE (≥ 10X) 19x 22x 25x 

 

 

 

 

Since a greater amount of reads in both replicate 2 and 3 was available for the analysis of 

DNA methylation, and the two corresponding libraries had been prepared in parallel with the 

same protocol, we considered the possibility of merging their data in order to increase both 

the coverage and the number of cytosines suitable for epigenetic analyses. This approach was 

put in place after completing the separate analyses for each replicate and verifying the 

consistency of results. Hereafter, we will present results related to the merged data of 

replicates 2 and 3, which will be collectively indicated as “replicate 2+3”. 

Proper bisulfite conversion represents a critical prerequisite for unbiased quantification of 

DNA methylation as failure in C-to-T conversion would lead to overestimation of cytosine 

methylation. To estimate bisulfite conversion efficiency in these preparations, a spike-in of 

unmethylated lambda phage DNA has been added to each sample. Following mapping of 

sequencing reads on the lambda genome reference, C-to-T conversion rates were calculated 

for each cytosine and the global average is reported in Table 1. 

In all the three replicates, conversion efficiency was higher than 98.3% and deemed suitable 

for methylation analyses. 

Cytosine methylation may occur in three different sequence contexts: CG, CHG and CHH, 

where H is any base other than G. While symmetric contexts of the CG or CHG type are 

maintained in a methylated state and reinforced by specific pathways (Cao & Jacobsen, 2002), 

CHH contexts include any generic non-symmetric cytosine and methylation of these sites is 
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thought to be preserved by repeated de novo methylation events, which may be tissue- or 

stage-specific and rarely tracked in a multicellular organism. Indeed, assuming a 

homogeneous nucleotide distribution, among the three contexts CHH is expected to be the 

most represented in the genome because of the degeneration of its code. In most plant 

genomes investigated thus far it is poorly methylated relative to its abundance but it still 

contributes significantly to total methylcytosines. In contrast, the CG dinucleotide is much 

less common in the genome (Figure 9) but it is highly methylated (Figure 11) and is the 

biggest contributor to total methylcytosines (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

The methylation value of a certain position is given by the ratio of the reads supporting the 

methylation (which show a non–converted cytosine) to the total number of the reads covering 

this position (showing either cytosine or thymine). Hence, methylation at a position may 

range between 0 or 1, these values representing completely unmethylated or methylated states 

respectively. Considering that a single cytosine residue can be either methylated or 

unmethylated, intermediate methylation levels arise from the fact that during the sequencing 

of multicellular samples, chromosomes from several cells and tissues are sequenced all 

together. Thus, the methylation value of each cytosine does not reflect the behavior of a single 

molecule as much as the average of many molecules, and may be expressed by a fraction as a 

result of differences in methylation between homologous haplotypes, somatic variation of 

DNA methylation or both.  

When the statistical distribution of these methylation levels is considered, the three contexts 

show distinct profiles: the CG context shows a bimodal distribution with the two comparable 

modes positioned at 0 and 1; the CHG context shows an asymmetrical bimodal distribution 

where the mode located at 0 is much more frequent than the mode at 1; finally, CHH sites  

context Number of Cs fraction 

CG 11953950 0.07 

CHG 18382992 0.11 

CHH 132102485 0.81 

CG

CHG

CHH

Figure 9 | Grapevine Genomic Composition of C contexts 
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show a very tight unimodal distribution with mode at 0 and a distribution skewed toward low 

values. Therefore, the majority of cytosines, especially of the CG and CHG types, show either 

absent or complete methylation, suggesting that the largest part of the methylome is not 

haplotype- or cell-specific. However, a not negligible fraction of cytosines show an 

intermediate methylation level, suggesting the presence of regional specificities in different 

haplotypes or cells. 

The distribution of methylation levels affects the power of detecting differential methylation 

when comparing alternative conditions or haplotypes by sequencing and computational 

analysis. Depth of sequencing and in silico coverage filtering are critical parameters to 

consider for proper analysis. Ziller et al. (2014) suggests a minimum coverage of 5x when 

expecting methylation differences greater than 20% between two conditions and a minimum 

of 10× coverage if 10% methylation differences are expected. In most CG contexts expected 

differences should be close to 100% because of the strong and symmetric distribution, hence a 

4x coverage threshold is considered a good compromise to preserve sensitivity while 

detecting differential methylation, minimize errors and at the same time discard as few 

cytosines as possible. In contrast, since the majority of cytosines of both CHG and CHH sites 

is either unmethylated or lowly methylated, then the expected difference in methylation may 

be very small and a 10x coverage is recommended. Hereafter, 4x and 10x minimal coverage 

will be required in each analysis for CG and CHG/CHH sites respectively.  

Consistently with the higher number of single-match and deduplicated reads, replicates 2 and 

3 showed in all the three contexts a higher number of cytosines covered with the minimal 

required coverage , compared to replicate 1 (Figure 10). 

Moreover, replicates 2 and 3 exhibited higher methylation levels in the CG and CHG 

contexts, but not in CHH, relative to replicate 1 (Figure 11). This increase of methylation is 

not proportional and thus results into a different contribution of the three contexts to total 

methylcytosines (Figure 12b, which is a consequence of the increased number of CHG and 

CHH cytosines reaching the 10x minimal coverage in replicates 2 and 3. 

The discrepancies in the global level of DNA methylation observed between replicates 

seemed to be ascribed to the use of two different protocols and in particular to the different 

impact of PCR duplicates, which resulted into very poor coverage in the case of rep1. We 

hypothesize that the different coverage of highly methylated repetitive regions provided by 

the two protocols may have contributed to the observed differences.  
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Figure 10 | Number of cytosines reaching the minimal coverage 

Figure 12 | Genomic Composition of C contexts utilized for methylation analysis in the three 

replicates  

Figure 11 | Grapevine Distribution of methylcytosines in the three different contexts 
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All the analyses shown in this work have been performed for all the three replicates separately 

and also for the merged replicates 2+3. Figures 10-13 show that replicates 2 and 3 are highly 

similar and when merging them, the number of cytosines with a minimal coverage increase 

without affecting the estimate of their average methylation level. 

Hence hereafter only replicate 2+3 analyses will be shown in the main text whereas the 

replicate 1 will be shown in supplementary data.   
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Genome-wide DNA methylation analysis  

 

Genomic landscape of DNA methylation and gene 

expression 

 

As a repressive epigenetic mark, DNA methylation tends to be associated with 

heterochromatin. In small plant genomes with low repetitive sequence content (e.g. 

Arabidopsis thaliana) DNA methylation dominates centromeric and pericentromeric regions, 

although it may be also observed at much lower density across the chromosome arms, often in 

association with individual transposable element insertions (Lister et al., 2008). The scenario 

may be different in middle- or large-size genomes where the amount of repetitive DNA is 

higher and organized in a more complex way. The investigation of the grapevine DNA 

methylome started with a macroscopic examination of DNA methylation distribution along 

the chromosomes. All the 19 chromosomes of the genome were divided in 200 kbp windows 

and for each window the density of genes and TEs was calculated, as well as the average 

methylation level of CG, CHG and CHH contexts. G+C content in percentage was also used 

to provide information on base composition changes such as those determined by repetitive 

DNA in centromeres and pericentromeric regions. The results relative to replicates 2+3 are 

reported in a circos graph in Figure 14. At first glance, the macroscopic distribution of 
5m

C is 

generally positively correlated with TE density and negatively correlated with gene density, in 

agreement with the expected heterochromatic localization of methylated cytosines. 
5m

CG and 

5m
CHG are more abundant in heterochromatic pericentromeric regions and so are TEs, 

consistently with previous studies (Lister et al., 2008 , Cokus et al., 2008).  CHH methylation 

is generally extremely low and shows a limited increment of methylation level in 

correspondence of 
5m

CG and 
5m

CHG peaks in proximity of centromeres. Sharp transitions are 

often observed at this scale between highly heterochromatic TE-rich domains and gene-rich 

regions (see for instance chromosome 2, 15, 18, 19). However, this scenario can be hardly 

compared to the Arabidopsis landscape, where the methylome structure is shaped around the 

clear distinction between pericentromeric regions and chromosome arms (Lister et al., 2008), 

whereas the grapevine genome also exhibits patterns of moderate to high DNA methylation 

across entire chromosome arms. 
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Figure 14 | Circos graph of Grapevine Genome and Methylome. Gene density and TE density, CG 

frequency and CG, CHG CHH average methylation level are relative to 200 kbp regions. Methylation 

is expressed in the form of heat map. 

Gene density 

TE density 

CG frequency 

CHG methylation 

CG methylation 

CHH methylation 
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While the evolutionary origin of these domains remains to be clarified, one may ask whether 

such regional epigenetic patterns have an impact on the general level of gene expression at the 

coding loci involved. To address this question, the 200 kbp windows where grouped in 10 

progressive classes according to their average CG methylation level and 10 additional classes 

based on average CHG methylation level. Coding genes resulted to be distributed across a 

wide range of regional methylation but tended to be enriched in a sub-compartment of the 

genome with intermediate CG methylation (20-80%) and low CHG methylation (20-50%) 

(Figure 15b). According to the general silencing effect of DNA methylation, genes located in 

more methylated regions tend to be less expressed than those located in low and intermediate 

methylated regions.(Figure 15a). Nevertheless, gene expression seem to be marginally 

affected by regional CG methylation, possibly as a result of the confounding effect of gene 

body methylation, which has a distinct functional role, opposed to gene silencing, and will be 

discussed later on in the present study. In contrast, gene expression appeared more sensitive to 

CHG methylation, with higher and more predictable expression levels in poorly CHG-

methylated regions that are negatively correlated with TE density.  

CHH methylation is extremely low in grapevine and all the genes belong to the lowest  

methylation class, however when considering centesimal classes between 0 and 0.1, CHH 

methylation display a similar pattern to CG and CHG. 

A comparison of gene expression in leaves between two genetically close varieties such as 

Pinot Noir and Traminer (first degree relationship, Regner, Stadlbauer, Eisenheld, & Kaserer, 

2000)) showed that the fraction of differentially expressed genes is significantly higher in 

lowly methylated regions, suggesting that epigenetic relaxation could be a prerequisite for 

transcriptome differentiation in a common genetic background( Figure 15c-d). 
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Figure 15  

a) Gene expression rate on the basis of the regional methylation  

b) Number of occunences pereach class  

c) Frequency of significant differential expression between Pinot Noir and Traminer  

d) Frequency of significant differential expression between Pinot Noir and Traminer in quantile 

classes. Lower numbers indicates lower methylation classes. 

Significant differences with the DEG fraction of the whole genome are marked with * (Chi-squared 

test, p-value<0.05) 
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Methylation profile of transposable elements 

 

Although the movement of transposable elements is a source of genetic and epigenetic 

variability, which is considered crucial both for evolution and adaptation to environmental 

conditions, uncontrolled TE mobilization may produce negative effects on organism fitness. 

As a result of genomic responses to TE proliferation, TE insertion sequences tend to be highly 

methylated in an attempt by the host to prevent their transcription and mobilization. To verify 

whether DNA methylation in grapevine TE bodies recapitulates the properties observed in 

other known species such as Arabidopsis (Cokus et al., 2008), soybean (Schmitz et al., 2013) 

and maize (Emberton, Ma, Yuan, SanMiguel, & Bennetzen, 2005; Palmer et al., 2003; 

Rabinowicz et al., 1999; Whitelaw et al., 2003), a meta-analysis of the most abundant TE 

groups has been performed.  

Transposable elements represent 41.4% of the grapevine genome sequence according to an 

initial estimation (Jaillon et al., 2007). However, the TE annotation currently available was 

not accurate enough to identify full-length elements and their precise termini. Therefore, a 

new search was performed across the whole genome using Blast and Repeat masker and more 

stringent criteria, including 80% of nucleotide identity and a comparable length (between 80% 

and 125%)  with a set of 202 TE sequences obtained from RepBase (Jurka et al., 2005), 

representing a non-redundant set of Vitits vinifera transposable elements, and an internal 

database of 467 V. vinifera TEs. 

To enrich the LTR retrotransposon fraction, the tool LTR-finder was launched on the more 

recent TE annotation database. 4431 TEs fulfilling these requirements were identified and are 

reported in Figure 16. This set of TEs may not be an unbiased sample of all TEs present in the 

grapevine genome but may be biased towards the most recently inserted elements that have 

had less time to accumulate mutations and diverge from the original sequence.  

The four different TE-groups analysed (Ty1-Copia LTR-retrotransposons, Ty3-Gypsy LTR-

retrotransposons, non-LTR LINE retrotransposons, TIR DNA transposons) show differential 

enrichment in different genomic localizations: Ty3-Gypsy and TIR elements are more 

frequently located in intergenic regions, whereas LINE elements are frequently located both 

in intergenic regions and introns.Ty1-Copia show a more variable genomic localization. 

Insertions in the exonic compartment of predicted coding sequences are extremely rare, 

consistently with the expected selection against inactivating insertions, but still present. On 
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the other hand, almost one third of annotated full length TEs are located in introns, which 

represent 32% of the genomic sequences of grapevine (Jaillon et al., 2007). 

Only a single Helitron element was found using the above mentioned criteria. Since a single 

element is not suitable for a meta-analysis, it has not been taken in consideration for the 

following analyses. SINE elements instead were completely absent from both the Repbase 

and internal databases.  

  

  

 

 

 

 

 

 

 

 

 

The density distribution of TEs across the 200 kbp windows described above showed that the 

major contribution to centromeric TEs is given by Ty3-Gypsy while the other TE groups, 

including the intergenic located TIRs, did not show a preferential chromosomal distribution.  

A meta-analysis of DNA methylation was carried out among the selected TEs to estimate the 

average methylation level within the TE body as well as in the regions flanking the insertions 

up to a distance of 2500 bp.  To ameliorate TE termini annotations, TSD and terminal repeats 

Genomic localization of Transposable Elements   

Annotation total intergenic exonic intronic mixed 

Ty3-Gypsy 1412 1164 19 222 7 

Ty1-Copia 927 867 7 48 5 

LINE-1 526 209 0 316 1 

TIR 1445 1247 17 156 25 

total 4 groups  4310 3487 43 742 38 

All TEs  4431 3604 43 746 38 

Figure 16 |  Full-length TE distribution in grapevine genome in intergenic, exonic and intronic 

sequences. 
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were identified wherever possible, using information described in Wicker et al., (2007). The 

LTR-finder software (see Material and methods) was used to predict both TSD and terminal 

repeats length and positions in the LTR elements. For TIR elements a dedicated R script was 

designed for the same purpose. In addition to the three compartments (TE body and both 

flanking regions) considered for all the TE groups, terminal repeats (IRs and LTRs in TIRs 

and LTR-retrotransposons respectively) were also represented as separate compartments when 

present. In each compartment CG, CHG and CHH methylation percentiles were computed 

independently and collapsed in a TE group-specific plot.  

Consistently with previous studies that included similar analyses (e.g. in Glycine max, 

Schmitz et al., 2013), transposon bodies appeared highly methylated in both the CG and CHG 

context; CHH sites were instead extremely lowly methylated in all grapevine TEs (Figure 17). 

 

 

 

 

 

 

 

Although different TE groups showed a comparable TE body methylation profile, the patterns 

revealed in the flanking regions seemed to be group-specific and suggested different 

epigenetic characteristics for the preferred genomic targets: class I elements are frequently 

located in region with high CG methylation and variable CHG methylation (higher for Ty3-

Gypsy elements, lower for Ty1-Copia and LINE elements), while TIR elements are located in 

intermediated CG and moderate CHG methylation levels.  

The transition from the TE termini to their flanking regions revealed a fast but progressive 

decay of methylation level, hence one can speculate that this pattern may be the effect of the 

propagation of the internal methylation into TE flanking regions for a few hundred bps.  

Figure 17 | Methylation profile in Transposon bodies of Ty1-Copia, Ty3 Gypsy, LINE and TIR 

elements. Methylation is expressed in percentiles in both TE bodies and 2.500 bp flanking regions. 

Where terminal repeats are present (Yellow in LTR-RTs and Orange in TIRs) their methylation 

profile is computed independently from the rest of TE body  

CG             CHG          CHH 
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Analysis of allele specific methylation 

 

 

The analysis of the methylation profile in transposon bodies suggested the spreading of their 

associated methylation into their flanking regions. In light of the epigenetic mechanisms 

involved into TE silencing and considering in particular the leading role of heterochromatic 

small RNAs (hsmRNAs) in guiding the DNA methylation machinery toward the appropriate 

genomic targets, a question that may be raised is whether the diffusible nature of hsmRNAs 

and cofactors could offer a simple mechanism to propagate the epigenetic silencing in trans 

and in particular between homologous chromosomes, not dissimilar from what happens in the 

phenomenon known as paramutation in maize (Arteaga-Vazquez & Chandler, 2010; 

Patterson, Thorpe, & Chandler, 1993). The grapevine genomic system provides almost unique 

tools in order to clarify these aspects by comparing in the same individual plant the 

methylation profile of homologous regions and evaluating the epigenetic crosstalk between 

homologous chromosomes. Genomic sites characterized by hemizygous TE insertions allow 

for the investigation of methylation spreading in the same genetic local background in 

presence and absence of a given TE insertion.  

The choice to perform this study in Pinot Noir was motivated by the fact that this variety 

shares one haplotype with the PN40024 reference, hence by analyzing the phase of Pinot Noir 

SNPs, it has been possible to define, by subtraction, the alternative haplotype of Pinot Noir 

and then proceed with the characterization of haplotype-specific DNA methylation. 

The logics behind these analyses and the methods utilized are described below here and in the 

next chapters. In summary, this specific study involved the following steps: 

 

1) Identification of Pinot Noir-derived genomic regions in the sequenced reference 

2) Identification of Pinot Noir TE-dependent hemizygous structural variation 

3) Estimate of haplotype-specific DNA methylation at TE hemizygous loci 

4) Analysis of differential DNA methylation at TE-associated haplotypes 
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Identification of PN40024 regions derived from Pinot Noir 

 

Accidentally during the process of self-fertilization of Pinot Noir, required to obtain a highly 

homozygous individual, a cross-fertilization by the cultivar Helfesteiner (obtained from the 

cross between Pinot Noir and Schiava Grossa in 1931, (Jaillon et al., 2007)) occurred, and 

thus, only a fraction of the reference genome is derived from Pinot Noir and useful for this 

analysis. 

We had the availability of SNPs maps of both Pinot Noir and Schiava grossa obtained from 

whole genome resequencing (data not shown). These data were used to distinguish regions 

derived from the Pinot Noir cultivar (in which the presence of a haplotype shared with 

PN40024 determines a distinctive lack of homozygous SNPs between sequencing data from 

Pinot Noir and the PN40024 genome sequence), from Schiava (in which there is a lack of 

homozygous SNPs between PN40024 and Schiava) and the regions where the reference 

haplotype is shared with both varieties and thus not cannot be assigned unambiguously to 

either one (Figure 18). Hereafter, we will only consider the regions of the PN40024 reference 

derived from Pinot Noir and the regions shared by the two cultivars. As previously 

mentioned, the cultivar Pinot Noir and the PN40024 reference genome share one haplotype, 

here after called reference haplotype, while the non-shared haplotype in Pinot Noir is named 

alternative haplotype. Being the PN40024 sequence identical by descent or state to one of the 

two haplotypes present in Pinot Noir, the comparison of their genomes will reveal 

hemizygous structural variations in Pinot Noir. Only the PN40024 reference genome has been 

fully sequenced and assembled, hence two different strategies are required to find hemizygous 

SVs in the two different haplotypes. Both strategies involve the prediction of structural 

variations among the two haplotypes using bioinformatics tools and then the confirmation of 

the potential presence of the TE by sequence homology analysis. 
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Figure 18 | Circos graph of Pinot Noir and Schiava’s SNPs. frequency in 200 kbp windows 
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Identification of hemizygous structural variation in the 

Pinot Noir genome 

 

Several tools are available for structural variation predictions. After comparing many of them 

(including DELLY, GASV, Pindel), DELLY and GASV were chosen because they minimize 

both false positives and false negatives (Gabriele Magris, PhD Tesis). 

These programs were used to detect hemizygous SVs that are present in the reference 

haplotype but absent from the alternative one that correspond to heterozygous deletions in 

Pinot Noir when compared to PN40024. When aligning the sample reads on the reference, the 

insert size of the paired reads that contain the SVs will appear longer than the one expected 

based on the library insert size. Since the SVs are represented in the reference haplotype, the 

full sequence of the region involved in the SV is known and through an internal pipeline that 

includes several tools such as Blast, Blastx, Repeat Masker, LTR-finder it is possible to 

annotate the possible presence of TEs and also the type of TE involved. By combining the 

results of DELLY and GASV we found 2023 hemizygous deletions in the alternative 

haplotype (Table 2) that correspond to an equal number of genomic locations where the 

reference haplotype contains a fragment of DNA that is not present in the alternative 

haplotype. 68% of these events could be classified as full-length TEs based on the annotation 

pipeline mentioned above. 

The SVs that are present in the alternative haplotype are absent from the reference genome 

sequence and correspond to heterozygous insertions in Pinot Noir when compared to 

PN40024. Unfortunately the above mentioned tools are not efficient in detecting insertion 

events involving large SVs such as those caused by TEs and we had to utilize a different 

approach. In this particular case, the bioinformatic evidence of a hemizygous SVs present 

only in the alternative haplotype consists in a certain number of orphan reads that co-localize 

around the putative insertion point (Figure 19). An internal pipeline developed by Sara 

Pinosio (unpublished data) in our research group verifies if the non-mapping reads of each 

pair can map on a database of TE termini and thus it can associate the SV to a particular TE 

group. With this method, we found 4127 hemizygous insertions in the alternative haplotype 

that correspond to an equal number of genomic locations where the alternative haplotype 

contains a fragment of DNA that is not present in the reference haplotype (Table  2). 90% of 

these events could be classified as potential full-length TEs based on the annotation pipeline 

mentioned above. 
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A certain number of DNA elements responsible for structural variation in grapevine and 

present exclusively in the reference haplotype, could not be identified as known TEs and were 

flagged as “na*” (not annotated). Since there is no evidence of a TE being inserted, those 

sequences present solely in the reference haplotype may represent either a deletion in the 

alternative haplotype that is unrelated to TE activity or simply a falsely predicted SV. 

However in both cases, they may be used as negative controls (i.e., non-TE structural 

variants) for the analyses above described. 

Not annotated SVs in the alternative haplotype (na*), whose sequences are known only at 

their termini, may also represent the insertion of a unclassified TE in the alternative 

haplotype. Hence, they cannot be used as negative controls as they might not represent bona 

fide non-TE structural variants . Few hundreds of SVs have been classified as solo-LTR. 

These elements originate by non-homologous intramolecular recombination between the two 

LTRs of a single element, which causes the loss of the internal TE sequence and one of the 

two LTRs leaving the other LTR on the genome flanked by TSDs. (Ma, Devos, & Bennetzen, 

2004; Vitte, Panaud, & Quesneville, 2007 ) 

Hemizygous solo-LTRs generally represent hence TE insertion events followed by deletion 

caused by the intramolecular recombination event and it will be possible to investigate 

TE 

PN40024 

Pinot noir 

Alternative haplotype 

Reference haplotype 

(reference) 

(DNA-seq reads) 

Reference 
TE 

TE TE 

 Paired-end mapping  
 orphan reads mapping on TE 

termini database 

 Paired-end mapping  
  DELLY / GASV tools 
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x x 

TEs in alternative haplotype TEs in reference haplotype 

TE 

Figure 19 | Flowchart of hemizygous TE identification pipelines 
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whether their effects on the methylation of flanking regions will be similar to those observed 

for complete elements or not.  

Unfortunately solo-LTRs, in the alternative haplotype (**) are indistinguishable by full-length 

LTRs because only their extremities are known, hence they cannot not be analysed separately 

from complete elements in the following analyses. For solo-LTRs in the reference 

haplotype(**), their sequences have been blasted against the genome to verify the absence of 

a similar LTR within a 25 kb distance from their termini, in order to discard erroneous 

annotation of  full-length LTR-retrotransposons. 

Only two solo-LTR were discarded because of the presence of a similar LTR (80% of identity 

and of length) within 25 Kbs. Because of the low number of solo-LTRs belonging specifically 

to the RLC or RLX orders, all solo-LTRs have been analysed as a single group. 

 

  
  

Hemizygous TEs in the 

Reference haplotype 
  

Hemizygous TEs in the 

alternative haplotype 

Annotation   Class Frequency   Class Frequency 

Ty3-Gypsy   RLG 376   RLG 1585 

Ty1-Copia   RLC 405   RLC 848 

LINE-1   RIL 316   RIL 408 

Mutator   DTM 79   DTM 243 

hAT   DTA 72   DTA 129 

CACTA   DTC 62   DTC 97 

PIF-Harbinger   DTH 32   DTH 105 

retrovirus   RLR 2   RLR 18 

not annotated event   na* 269   na* 115 

unidentified transposon   XXX 3   XXX 8 

unidentified retrotransposon   RXX 7   RXX 19 

unidentified LTR retrotransposon   RLX 15   RLX 93 

incomplete Ty3-Gypsy    RLG_partial 88   RLG_partial 103 

incomplete Ty1-Copia    RLC_partial 5   RLC_partial 1 

unidentified solo LTR   RLX_solo_LTR** 16   RLX_solo_LTR** 0 

 solo LTR of Ty1-Copia   RLC_solo_LTR** 18   RLC_solo_LTR** 0 

 solo LTR of Ty3-Gypsy   RLG_solo_LTR** 215   RLG_solo_LTR** 0 

unidentified class II transposon   DXX 12   DXX 26 

unidentified TIR transposon   DTX 0   DTX 4 

excessive N content (>80%)   N>80% 3   N>80% 2 

Tandem Repeat content >80%   tandem_repeat 25   tandem_repeat 167 

mitochondrial DNA   mitochondrion 3   mitochondrion 3 

    total 2023   total 3974 

  
Table 2 | Summary of all hemizygous SVs identified in reference and alternative haplotype respectively 

and their annotation into TE superfamilies where present, according to Wicker et al., 2007) 
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Localization of hemizygous TEs 

 

Hemizygous TE loci specifically identified with the approaches above described (Figure19), 

recapitulate the genomic distribution observed for TEs mapped in the reference genome by 

sequence homology (Figure 16). Ty3-Gypsy elements are most frequently located in 

intergenic regions, consistently with the pericentromeric enrichment shown in Figure 21, Ty1-

Copia are frequently located in intergenic regions but also in gene bodies, LINEs are 

predominantly found in introns, TIRs are mainly found in intergenic regions, but with no 

evident preference for pericentromeric regions (Figure 14). 

 

Genomic localization of main hemizygous SV groups 

Annotation total intergenic exonic intronic mixed % 

Ty3-Gypsy 1961 1692 47 156 66 32.7 

Ty1-Copia 1253 674 71 427 81 20.9 

LINE-1 724 113 24 547 40 12.1 

TIR 861 644 31 121 65 14.4 

not annotated 269 134 16 36 83 4.5 

solo-LTR 249 223 2 17 7 4.2 

total 6 groups  4975 3480 191 1304 342 83.0 

All SVs  5997 4038 199 1370 390 100.0 

 

Figure 20 | Hemizygous SVs identified in grapevine across the 19 chromosomes. Unknown and 

random chromosomes were not considered in this analysis. 
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Figure 22 | Circos graph of TEs, gene density and of hemizygous TEs in pinot regions in the 

reference.  
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TIRs contribution to the total hemizygous TE is much lower than their contribution to the set 

of genomic TEs shown in Figure16. This discrepancy can be ascribed to the SV detection 

criteria, which were designed to accept elements longer than 1000 bp,, thereby excluding the 

fraction of small and non-autonomous elements such as MITEs. 

 

Allele-specific analysis of DNA methylation spreading 

 

Reads can be unambiguously assigned to a single haplotype as long as they carry at least one 

SNP that is heterozygous in the individual with the exception of C/T polymorphisms that may 

be confused with haplotype specific converted cytosines; hence in allele/haplotype-specific 

analyses of DNA methylation there is a general loss of information which makes a single TE 

analysis poorly informative per se. Moreover coverage is not always symmetrical in the two 

haplotypes as shown in a few specific TE examples shown in Figure 22, and thus even within 

the same 500 bp window, the contribution of cytosines in different positions may produce a 

biased result.  To overcome these limitations a meta-analysis of the main TE groups was 

performed by comparing flanking regions of the haplotype that carries the TEs with the 

homologous regions on the other haplotype that is lacking the TE. For each TE, 2500 bp 

upstream and 2500 bp downstream from the insertion point were considered. Figure 23 

displays the methylation profile of the TE-flanking regions in both the haplotype containing 

the TE and in that without the TE. Ty3-Gypsy flanking regions are usually highly methylated 

in the CG and CHG contexts both in the TE-carrying haplotype and in the one devoid of the 

TE, consistently with the frequent pericentromeric heterochromatic location shown in Figure 

21 However a moderate increase in CG methylation and a stronger increase in CHG 

methylation are visible in the TE-carrying haplotype. Ty1-Copia elements instead tend to be 

found in regions with an intermediate methylation level on average and the haplotype carrying 

the insertion shows an important increase both in CG and CHG methylation. LINEs are found 

in highly methylated CG regions which are at the same time lowly methylated in the CHG 

context. Being CG almost saturated, the increase of methylation is only appreciable in the 

CHG context. TIRs element are found mainly in intergenic regions usually with a low 

methylation level but the increase due to the TE insertion in flanking regions is weaker 

compared to the effect observed in the other TE classes. Interestingly, CG methylation profile 
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of LINE elements in the unaffected haplotype is not flat as in the other TE groups, suggesting 

that they preferentially target regions with a high but not extended CG methylation peak 

rather than wide heterochromatic regions highly methylated in both CG and CHG like Ty3-

Gypsy retrotransposons do. It should be noted that LINEs are preferentially located in introns 

and their behavior will be discussed in light of this observation in the next chapter. Taken 

together, these data suggest that when local methylation is not saturated, TE insertions 

generally induce an increase in the methylation level of both CG and CHG context.  
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LTR  Ty3-Gypsy  chr06:12109441-12119478 

LTR  Ty3-Gypsy  chr07:14062555-14068989 

LTR  Ty1-Copia  chr02:14890024-14894729 

Figure 22 | Three examples of schematic representation of both hemizygous TE bodies and 

Flanking regions (2000 bp on either side) considering 10bps windows 

Lines 1 -2) Scheme of coverage in TE and non-TE haplotype respectively 

Line 3) Schematic representation of TE body including LTRs (orange) 

Lines 4-5-6) Representation of CG, CHG and CHH methylation profile on TE-haplotype 

Lines 7-8-9) Representation of CG, CHG and CHH methylation profile on non TE-haplotype 
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Figure 23 | DNA Methylation profile of both TE bodies and hemizygous TE flanking regions. 

a) TE body methylation  profile (see Figure 16) 

b) Average CG methylation profile of TE flanking regions in bp from insertion point 

c) Average CHG methylation profile of TE flanking regions in bp from insertion point 
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The effect generally decays within 1000 bp, and is observed exclusively in the TE-containing 

allele, in Ty1-Copia, Ty3-Gypsy and TIR elements suggesting a cis but not trans effect on 

DNA methylation of flanking regions for these TEs. LINEs show high CG methylation in 

both haplotypes and their behavior will be discussed in the next chapter.  

Solo-LTRs display an internal methylation profile similar to that of Ty3-Gypsy terminal 

repeats.  However, contrary to the LTRs of full-length elements, they do not seem to spread 

methylation into their flanking regions. Indeed, when considering their flanking region 

profile, the typical symmetrical bell-shape profile in the SV-carrying haplotype is absent. 

However, the SV-carrying haplotype seems to be constitutively more methylated than the 

unaffected haplotype all over the region with no variation relative to the TE insertion point .  

Similarly, na sequences do not display spreading of methylation and, unexpectedly, they show 

a slightly higher methylation level in the SV carrying haplotype,  

Since both solo-LTR and na are present exclusively in the reference haplotype, we 

hypothesized the existence of a haplotype-dependent bias in the methylation estimates. To 

confirm this hypothesis, the methylation profiles of hemizygous TE flanking regions were re-

analysed for the major TE groups by separating those located in the reference haplotype from 

those  located in the alternative haplotype, i.e. those detected as deletions from those detected 

as insertions (Figure 24a-b). Similarly to what was observed for the solo-LTR and na profile, 

the background methylation level of the reference haplotype, irrespective of whether it carries 

the TE  (Figure 24a) or not (Figure 24b), is constitutively higher than the background 

methylation level in the alternative haplotype. This strand bias may be due to the fact that 

whereas the reference has been fully sequenced and assembled, the alternative haplotype have 

been reconstructed by replacing the nucleotides of the PN40024 reference that carry 

heterozygous SNPs in Pinot Noir. Small indels have not been utilized to discriminate the two 

haplotypes and, moreover it may be possible that not all Pinot Noir SNPs have been detected. 

Hence, there is a potential loss of alternative haplotype specific reads and consequently a bias 

on the measure of the methylation. To verify that the bias is equally distributed on the whole 

genome, 1000 5 kb regions have been analysed in both haplotypes and their values are 

reported in form of Boxplot in the figure 24c. This analysis confirms that the reference 

haplotype is constitutively more methylated than the alternative haplotype independently of 

TE presence/absence.  

To obtain a more reliable haplotype specific methylation profile, the plots of the TEs in the 

reference and alternative haplotypes were computed separately and then combined 1:1, as 

shown in the Figure 24c.  
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a)  b)  c) 

SVs in reference haplotype 
 

SVs in alternative haplotype 
 

balanced profile 

Figure 24 | Methylation profile in the two 

haplotypes. 

a) hemizygous TEs in the reference haplotype 

b) hemizygous TEs in the alternative 

haplotype 

c) Merged profile of a) and b) 

d) Methylation of 1000 5kb random regions in 

the two haplotypes 
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The CHH context has a very low methylation profile in both haplotypes and for all the TE 

classes there are no evidence of correlation with the TE presence/absence (data not shown).  

To provide statistical support to data of differential DNA methylation revealed between 

homologous haplotypes, Fisher’s Exact test, Chi-squared test and Wilcoxon Mann-Whitney 

test were performed. It should be noticed that in the four TE-groups analysed, the frequency 

of hemizygous TEs is higher in the alternative haplotype than in the reference haplotype 

(Table 2). Hence TEs are more often located in the haplotype whose methylation level is 

underestimated due to the coverage bias described above. As a result, this bias was expected 

to underestimate the degree of methylation increase observed in their flanking regions.   

TE flanking regions were divided in ten 500 bp windows, 5 on each side of the putative 

insertion sites. Figures 25c-d reports the fraction of more methylated cytosines in the 

haplotype carrying the transposable element. Then for each cytosine with a sufficient 

coverage in both haplotypes a Fisher Exact test was performed to verify the hypothesis of a 

differential methylation. Figures 25e-f reports the fraction of significantly more methylated 

cytosines in the haplotype carrying the transposable element for each window  (p-value 

<=0.01) If the null hypothesis was correct, for each window an equal distribution of more 

methylated cytosines in the two haplotypes would be expected, and consequently a fraction of 

approximately 0.5. On the contrary, the data show that at least within 500 bp from the 

insertion, the distribution of more methylated cytosines is in favor of the haplotype carrying 

the TE for both CG and CHG methylation in both class I retrostransposons and class II TIR 

DNA transposons. 

Moreover, for each window the total number of cytosines showing higher methylation in one 

haplotype with respect to the other (whose ratio is shown in Figures 25c-d) was compared 

with the null expectation of equal methylation in the two haplotypes using a chi-square test. 

Figure 25g-h displays the –log (p-value) of such test. 

Lastly, for each window of each TE the average methylation level for both CG and CHG 

context was calculated for each context independently, the list of values of the two haplotypes 

were compared trough Wilcoxon Mann-Whitney Test to test for deviations from the 

expectation of having two identical distributions of methylation levels. Figures 25e-f show the 

–log (p-value) of such test, in which significant p-values, (lower than 0.01) are above the 

horizontal black line representing a p-value=0,01. These data, consistently with the Chi-

square and Fisher tests, confirm that the haplotypes carrying the TE are significantly more 

methylated at least within 500bp from the insertion point in both class I LTR retrotransposons 

and class II TIR DNA transposons, whilst in LINEs is significant only in the CHG context. 
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Figure 25 |  See next page for the complete description  
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Beyond the meta-analysis approach, additional methods were adopted for the representation 

of DNA methylation behavior within TE flanking regions. One of these strategies sought to 

disentangle and quantify the contribution of each single hemizygous insertion to the average 

tendencies revealed by the meta-analysis. 

To minimize artefacts in the quantification of between-haplotype differential methylation 

introduced by differences in sequencing coverage, the average methylation value of a 2kb-

wide region around the insertion point of both haplotypes was considered to evaluate at 

single-TE resolution the effect of the insertion on the flanking regions. The choice to restrict 

the analysis to a 2kb window was supported by the previous observation that TE-induced 

methylation on flanking regions is generally negligible after 1000 bp on either side (Figure 2-

25). The distribution of methylation differences between the haplotype with and the one 

without the TE at each insertion site was represented by a histogram where the differences are 

sorted in classes and positive classes indicate higher levels of methylation in the TE-carrying 

haplotype. The histogram reports occurrences of insertion sites belonging to each class so that 

deviations from a symmetrical distribution are symptomatic of differential methylation 

(Figure  26-31, column a). In addition, as histograms of methylation differences do not show 

absolute methylation levels, haplotype methylation values for each individual insertion site 

Figure 25 |   

Statistical analysis of between-haplotype differential DNA methylation in the flanking regions of 

hemizygous TEs 
 

a-b) Average DNA methylation levels (red: CG; blue: CHG) in the TE flanking regions: TE-carrying 

haplotypes (dark colour) and haplotypes devoid of TEs (light colour) are represented separately (see 

also Figure 23 for details).  
 

c-d) Fraction of total Cs that are more methylated in the TE-haplotype. Values are reported for each 

500 bp bin of distance from the insertion site within a +/- 2500 bp range; c: CG context; d: CHG 

context. 
 

e-f) Fraction of total Cs that are significantly deviating from the null expectation of equal 

methylation in the two haplotypes (Fisher’s Exact Test, p-value < 0.01). Values are reported for 

each 500 bp bin of distance from the insertion site within a +/- 2500 bp range; e: CG context; f: 

CHG context. 
 

g-h) Deviation from the null expectation of equal methylation in the two haplotypes. Chi 

square Test log P values are reported for each 500 bp bin of distance from the insertion site within a 

+/- 2500 bp range; g: CG context; h: CHG context. 
 

j-k) Deviation from the null expectation of equal methylation in the two haplotypes. Wilcoxon 

Mann-Whitney Test log P values are reported for each 500 bp bin of distance from the insertion 

site; g: CG context; h: CHG context. 
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were plotted in a dotplot (Figure 2 26-31, column b), with the x and y axes representing the 

methylation levels of the TE-carrying and the unaffected haplotype, respectively. Points 

underneath the bisector line indicate higher methylation levels in the TE-haplotype. To 

provide more robust evidence, the Wilcoxon Mann-Whitney test was performed to test the 

hypothesis of a differential distribution of methylcytosines among the two haplotypes within 

the 2 kb region. The same analyses and graphical representations mentioned above were 

replicated for the subset of TEs showing a significant methylation difference according to a p-

value <=0.01 (Figures  26-31 columns b and d). 

 

 

Ty1-Copia 

In the case of hemizygous Ty1-copia insertions the histogram of methylation differences 

(Figure 26a) shows a tendency toward positive values meaning higher methylation in the TE 

haplotype, consistently with data shown in Figure 23.  

However, a considerable number of TEs exhibits a similar methylation level in the CG 

context. Figure 26c shows that when this happens the two haplotypes are often both saturated 

in methylation whereas regions showing different and not saturated CG methylation are often 

more methylated in the TE-haplotype. CHG methylation is also increased in the TE haplotype 

in most of the cases, albeit generally low in magnitude. The subset of P value-filtered 

insertion sites confirms that wherever a methylation difference is significant, the haplotype 

carrying the TE is the most methylated. By considering CG and CHG together, the increase of 

methylation in the TE-haplotype becomes more evident. Differences in CHH methylation are 

minimal and are equally distributed among the two haplotypes and thus no methylation 

increase can be associated to TE insertion. These small differences may reach significance 

because of their higher numerosity compared to CG and CHG, but are always equally 

distributed among the two haplotypes. The variable pre-existent CG level showed in the 

dotplot is consistent with the variable genomic location of Ty1-Copia elements shown in 

Figure 23, and also confirms that

Ty1-Copia insertions generally elicit an increase of methylation in both the CG and CHG 

contexts where not already saturated 
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Ty3-Gypsy 

The majority of insertion sites involving Ty3-Gypsy retrotransposons, exhibits negligible 

methylation differences between the two haplotypes in all the contexts. Considering the 

patterns observed for Ty1-copia elements, this result is particularly manifest for the CG and 

CHG contexts. As suggested by the high density of dots in the top-right corner of the dotplot 

(Figure 25c), which represent highly methylated regions in both haplotypes, the excess of 

sites with no apparent TE effect could be a consequence of the preferential pericentromeric 

CG

CHG

CHH

CG+

CHG

RLC  | Deletions + Insertions  |  2 kb 

 Distribution of meth 
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Figure 26 | Individual Ty1-Copia flanking regions analyses. Methylation is calculated over a region 

of 2kb around the insertion point in both haplotypes 

a) Distribution of the difference of methylation values between TE haplotype and non-TE haplotype 

b) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of a) 

c) Dotplot 

d) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of c) 

 

 

a)                      b)                           c)                            d)   
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and hererochromatic localization of Ty3-Gypsy elements, which would integrate in already 

methylated regions. The combination of CG and CHG contexts consolidates the result 

obtained for the two separate contexts, whereas CHH methylation, generally present at very 

low level, does not show any correlation with presence/absence of TE. 

 

 

 

LINEs 

LINE elements show a peculiar enrichment in regions that are saturated in the CG context and 

lowly methylated in the CHG context.. The majority of these elements show an increase of 

Figure 27 | Individual Ty3-Gypsy flanking regions analyses. Methylation is calculated over a region 

of 2kb around the insertion point in both haplotypes 

a) Distribution of the difference of methylation values between TE haplotype and non-TE haplotype 

b) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of  a) 

c) Dotplot 

d) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of  c) 

 

 

a)                              b)                              c)                               d)   
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CHG methylation in the TE haplotype, according to Figure 23, while the CG methylation is 

high in both haplotypes and only a small increase in methylation seems to be caused by the 

TE insertion, as shown in the Figure 26a. These data are consistent with their general intronic 

localization, which is compatible with a high level of CG methylation that does not negatively 

affect gene expression, as discussed in the next chapter. 

CHH methylation does not seem to be affected by TE-insertions, as observed for LTR-

retrotransposons. 
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Figure 28 | Individual LINE flanking regions analyses. Methylation is calculated over a region of 

2kb around the insertion point in both haplotypes 

a) Distribution of the difference of methylation values between TE haplotype and non-TE haplotype 

b) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of a) 

c) Dotplot 

d) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of c) 

 

 

a)                             b)                            c)                            d)   
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TIRs  

TIR elements, in accordance with the observed intergenic but not pericentromeric preferential 

insertion (Figures 19 and 20), show a wide range of pre-insertion methylation levels, which 

may be increased by the TE insertion if not already saturated, in particular in the CHG context 

or considering CG and CHG together. However, TIR elements show a weaker effect in terms 

of methylation increase than retrotransposons. 

 

Solo LTRs 

The set of Solo LTRs used in this analysis is mainly belonging to the Ty3-Gypsy superfamily, 

hence is not surprising that since this type of TE is mainly located in heterochromatic regions, 

both haplotypes carrying solo-LTRs show an high level of CG and CHG methylations. 

CG

CHG

CHH

CG+

CHG

DNA  | Deletions + Insertions  |  2 kb 

 Distribution of meth 

 Meth( TE ) − Meth( noTE ) 

 2k 
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Figure 29 | Individual TIRs flanking regions analyses. Methylation is calculated over a region of 

2kb around the insertion point in both haplotypes 

a) Distribution of the difference of methylation values between TE haplotype and non-TE haplotype 

b) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of a) 

c) Dotplot 

d) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of c) 
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Since only solo-LTRs present in the reference haplotype and absent from the alternative one 

were taken in exam, it has to be considered that the haplotype bias tend to amplify the read 

differences between haplotypes 

 

Taken together these data show that TE insertions are generally associated with an increase of 

methylation in their flanking regions within 1000 bp provided that the pre-existent 

methylation level is not saturated. However, different TE-groups show specific behaviours: 

Ty1-Gypsy retrotransposons are often localized in pericentromeric heterochromatic regions, 

hence their pre-existent methylation level in both CG and CHG contexts is high and the TE–

induced increase in methylation can only be revealed in non-saturated regions. LINE elements 

Figure 30 | Individual solo LTR flanking regions analyses. Methylation is calculated over a region 

of 2kb around the insertion point in both haplotypes 

a) Distribution of the difference of methylation values between TE haplotype and non-TE haplotype 

b) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of a) 

c) Dotplot 

d) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of c) 
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are mainly found in regions with a high pre-existent CG methylation and thus the increase of 

methylation in their flanking regions is restricted to the CHG context. Ty1-Copia and TIRs 

show high heterogeneity in their genomic localization, resulting into variable pre-existent 

methylation levels in the CG context in particular that will affect the effects of the TE 

insertion on methylation. No differential methylation is detectable for ”na” elements either in 

the meta-analyses of flanking regions (Figure 23) or in the single-TE analyses (Figure 31). 

Moreover the CHH behaviour emerged from the single TE-analysis of “na” SVs is 

comparable to the same analysis in the four different macro-groups of TE, providing more 

robust evidence of its negligible or undetectable role in TE-induced propagation of 

methylation in flanking regions in grapevine. 

 

a)                               b)                              c)                              d)   

 

Figure 31 | Individual NA-insertions flanking regions analyses. Methylation is calculated over a 

region of 2kb around the insertion point in both haplotypes 

a) Distribution of the difference of methylation values between TE haplotype and non-TE haplotype 

b) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of a) 

c) Dotplot 

d) Subset of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of c) 
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Features of DNA methylation in gene bodies 

 

DNA methylation is generally associated to chromatin packing and thus to transcriptional 

inactivity. However, both in plant and animals, methylation may be found in the transcribed 

regions of active genes, exclusively in the CG context  (Feng et al., 2010). Such methylation, 

called Gene Body Methylation (GBM), is not involved in gene silencing and is rather required 

for efficient transcription and splicing regulation (Maor et al., 2015). Variation in GBM does 

not seem to quantitatively affect gene expression, as in Brachypodium and rice the 

methylation level is a long-term property of conserved genes (Takuno & Gaut, 2013). 

Nevertheless, in some species GBM has been found to be positively correlated with gene 

expression (e.g. in soybean; Schmitz et al, 2013). To investigate the relationship between gene 

body methylation and gene expression in grapevine, a genome-wide meta-analysis was 

performed.  

 

 

 

In order to properly identify and compare methylation changes at transcription start and 

termination sites as well as at exon/intron boundaries, the analysis was restricted to a set of 

19896 genes where both 5’- and 3’-UTR were unambiguously annotated in the PN40024 

genome reference.  

The analysis showed that in grapevine exonic CG methylation exhibits the typical 

asymmetrical bell-like profile observed in other plant species, in which the 5’ upstream region 

is much less methylated than the 3’ downstream one (Figure 32), suggesting that the 

Figure 32 | Gene body methylation in exonic (a) and exonic and intronic (b) sequences in 

percentiles. 

 

Fig. 30 Gene body methylation in exonic (a) and exonic and intronic (b) sequences in percentiles. 
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transcription start site (TSS) is generally lowly methylated. When including the intronic 

sequences into the analysis, CG methylation levels strongly increase and also a CHG bell-like 

profile becomes visible. The distribution of methylation at CHG sites appears more 

symmetrical across the gene length than does GC methylation (Figure 32b), presumably 

because of the symmetric distribution of introns in the gene bodies. CHH methylation instead 

tends to be extremely low both in the gene bodies and in the flanking regions.  

TEs may be frequently localized in introns (Figures 16 and 20), whose methylation level may 

be affected by highly methylated TE sequences. Hence, for the investigation of gene body 

methylation as a property of the transcribed sequence per se, only exons were considered in 

some analyses. To evaluate a potential quantitative effect of GBM, genes were grouped by 

methylation classes based on the average CG methylation of the curve peak observed at the 

50
th

-65
th

 percentile interval, and their gene body methylation profile was plotted separately in 

Figure 33. 

 

Figure 33 shows that the peak of CG methylation reflects  the general magnitude of gene body 

CG methylation in each class, and hence the level of CG methylation at the peak was used as 

a key parameter summarizing the amount of gene methylation of each class. 

No evident correlation between flanking region methylation and gene body methylation is 

observable at this stage. 
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The abundance of each methylation class revealed a bimodal distribution of CG peak 

methylation (Figure 34a), setting aside a distinct group of genes with 100% methylation. 

When compared with expression data, a very limited variation in transcriptional levels was 

observed between the methylation classes, indicating that, consistent with observations made 

in other plant species, gene body CG methylation in grapevine does not preclude 

transcriptional activity and indeed on average the highest methylated genes show similar or 

even higher transcript levels than the lowest methylated ones (Figure 34b) .  

 

 

Beyond gene expression, other gene features were examined across the different methylation 

classes, namely gene length, exon number, total exon length and total intron length. 

Interestingly longer genes tend to be more methylated, as well as genes with higher number of 

exons/introns and high total intronic sequence (Figure 35). 

 

 

 

 

Figure 35 | Gene length, exon number, exon space and intron space in genes belonging to GBM 

classes 
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Figure 34 | Frequency of GBM classes (a), Expression rate of gene belonging to GBM classes (b). 

Clusters with the same letter code are not significantly different (Wilcoxon Mann-Whitney test (p-

value <0.05) 
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To better investigate this relationship, genes were grouped by exon number classes, and their 

methylation profile was plotted separately in Figure 36. As a confirmatory result, genes sorted 

by the total number of exons showed a clear correlation between exon number and the overall 

magnitude of the GBM profile. CG methylation in the introns always appeared higher than in 

the exons but, somewhat interestingly, the rate of methylation as a function of the increasing 

exon number was higher for exons than for introns. This observation suggests the bell-shape 

profile of gene body methylation may be mainly dictated by the spliced exonic component of 

the gene and only marginally affected by intron methylation. Adding on top of this 

speculation, CHG methylation, being restricted to the intronic intervals, was found to be 

invariable across gene length.  

 

The finding of highly methylated introns is surprising considering that in other species 

including Arabidopsis, human and honeybee their methylation level is always lower than their 

flanking exons, both in the CG and CHG contexts (Chodavarapu et al., 2010; Lyko et al., 

2010, Hodges et al., 2009). As mentioned previously, 36.7% of grapevine genome is occupied 

by introns that in turn are colonized by one third of total TEs mapped in the genome. 

Mapped TEs, and in particular retrotransposons, are more frequently located in the intronic 

sequence of genes belonging to higher classes of gene body methylation (Figure 37). Hence, 

higher methylation in both the CG and CHG sites of intronic sequences compared to the 
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flanking exons may be a consequence of the epigenetic silencing of TE and the spreading of 

TE methylation on their flanking regions shown in the previous chapter. Nevertheless,  exon 

and intron methylation profiles have been also computed after excluding genes containing any 

annotated TE-related fragment. Interestingly CHG methylation was almost completely 

undetected also in introns, whereas CG methylation decreases in both exons and introns. 

Moreover, in genes with high GBM, when excluding those carrying TE-annotation, exons and 

introns display a similar pattern, suggesting that intronic TEs may be responsible both for the 

CHG and the CG differential methylation, but no for the fact that grapevine introns are at least 

as methylated as exons in the CG context. 
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Figure 37 | Intronic TE annotations in genes grouped by GBM classes 

 

Fig. 35 Intronic TE annotations in genes grouped by GBM classes 

Figure 38 | Gene methylation profile of in genes grouped by exon number, including or excluding 

genes carrying TE annotations 

 

 

Fig. 36 Gene body Methylation profile of in genes grouped by exon number, excluding genes 

carrying TEs 
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Methylation in the first exon 

 

The methylation pattern of exons and introns (Figures 36 and 38) shows that exon 1 

methylation is generally extremely low, irrespective of either TE content or GBM. This 

pattern was not unexpected, since also in human the first exon is generally unmethylated in 

transcribed genes (Brenet et al., 2011; Sengupta & Smith, 1998) and its methylation has a 

stronger effect on transcription than the methylation in the promoter. 

To verify if grapevine first exons display a similar pattern, exon 1 has been analysed 

separately from the rest of the exonic sequence. Figure 39 shows that exon1 is generally 

unmethylated, suggesting that also in grapevine absence of methylation may be required for 

its transcription activity.  

The analysis of the expression rate of genes with differential exon1 methylation shows a very 

different pattern compared to gene body methylation. Indeed, genes with lower exon1 

methylation (Figure 40 and Table 3, groups a-b) are significantly more expressed than genes 

with higher methylation (Figure 40 and Table 3, group f), according to the Wilcoxon Mann 

Whitney test (p-value < 0.05) whereas for the whole gene body, higher methylation is 

associated to an higher expression rate. 
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Clusters of genes according to Wilcoxon Mann Whitney Test (p-value <0.05) 

Exon1  
methylation  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0.1 a                   

0.2   b     b           

0.3     c c  c c         

0.4       d d d d       

0.5         e           

0.6           f f f f f 

0.7             g g g g 

0.8               h h h 

0.9                 i i 

1.0          j 

 

  
Table 3 | Clusters of group of genes according to their exon1 methylations. Clusters with the same 

letter code are not significantly different according to Wilcoxon Mann-Whitney P-value <0.05. 

 

 

 

 

 

Figure 40 | Gene expression according the average methylation in exon 1.  
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Association between LINE insertions and methylation of 

gene bodies 

 

Based on the above analyses, LTR-retrotransposons and TIR DNA transposons show a clear 

cis effect by increasing the methylation of the TE-carrying haplotype through the spreading of 

methylation into the flanking regions. Trans effects, capable of propagating the epigenetic 

silencing to the homologous alleles, cannot be ruled out but for LTR and TIR elements a pre-

existing heterochromatic landscape appears to be the most simple explanation behind the 

comparable methylation levels of homologous regions surrounding a hemizygous insertion 

observed in a number of instances. The reasoning around the possible effects of LINE 

elements is similar but a few considerations may be added. First of all, the pre-insertion 

methylation profile of LTR and TIR elements is flat, whereas the LINE profile is curved, 

probably as a result of LINEs’ preferential localization in gene bodies and introns in 

particular. Indeed, Figure 32, 36 and 38 show a clear curved methylation profile for the CG 

context in gene bodies, especially when considering also introns .By extending the flanking 

region analysis up to 10 kb from the insertion point, the curve profile extinguishes within few 

kilobases, at a distance in which most of cytosines are evidently outside the majority of the 

genes, which have a median length in grapevine of about 3399 bp (Jaillon et al., 2007) (Figure 

41). 
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Figure 41 | Hemizygous LINE flanking regions  TE haplotype 
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Second, the CHG methylation increase observed exclusively in the TE haplotype supports the 

hypothesis of pre-insertion saturated methylation. Thus, LINE elements may be somehow 

attracted to specific CG-saturated but lowly methylated CHG loci. 

To further investigate the LINE behavior, methylation profiles of hemizygous LINEs have 

been sorted according to the genomic compartment in order to compare both genic and 

intergenic insertion sites Figure 42). Interestingly, LINEs located in intergenic regions show a 

pre-and post-insertional methylation state very similar to that observed for elements found 

within introns. These intergenic LINE profiles may suggest the existence of a certain number 

of non-annotated genes/pseudogenes and also support the LINE preference for insertions in 

CG-saturated but low CHG-methylated loci, which may also be intergenic. 

 

 

  

  

      All LINEs      Intergenic                  Exonic                 Intronic 

 

Figure 42 | Hemizygous LINE flanking regions in intergenic, exonic and intronic loci. 
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Intronic and Exonic Ty1-Copia insertions 

 

Figure 20 shows that hemizygous Ty1-Copia elements have very variable locations: they are 

prevalently found in intergenic regions (53%), but also in exonic (6%) and intronic (36%) 

sequences. 

Similar to intronic LINEs, intronic Ty1-Copia display a high methylation level in the CG 

context of both haplotypes and an increase in CHG methylation in the haplotype carrying the 

TE. Intergenic Ty1-Copia insert in regions with intermediate methylation in CG and low 

methylation in CHG, inducing an increase of methylation in both contexts. Interestingly, Ty1-

Copia elements may be occasionally found also in exons, which are generally lowly 

methylated in both CG and CHG contexts. The pre-existent methylation profile surrounding 

the insertion site reflects the intron-exon-intron boundaries in both CG and CHG contexts (as 

shown in Figures 36 and 38 and, as expected higher methylation is found in the haplotype 

carrying the TE. The general Ty1-Copia pattern (Figure 23 and 44a) is hence the weighted 

combination of these three location-specific patterns and the small depression of the CG 

methylation close to the insertion point in the unaffected allele can be ascribed to the 

weighted contribution of exonic Ty1-Copia insertions.  

 

Figure 44 | Hemizygous Ty1-Copia flanking regions in intergenic, exonic and intronic loci. 
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Transposable elements insertion may modulate 

gene expression 

 

In the previous chapters we have shown that DNA methylation is positively correlated with 

gene expression when occurring in the gene body (Figure 34b), and negatively correlated 

when occurring in the macroregion where the genes are located. Furthermore, DNA 

methylation occurs in TE loci and it’s often spread on TE flanking regions. 

TEs occupy a big fraction of grapevine genome (41.4%) that interacts with the genic 

compartment. Part of them are also responsible for the peculiarly large intron space of this 

genome (36.9%), which significantly contributes to the total sequence space occupied by 

genes (46.3%) (Jaillon et al., 2007). Several studies have well established that the physical 

proximity of TEs to gene sequences may affect gene expression, although it is sometimes 

difficult to distinguish genetic effects (e.g. disruption of pre-existing regulatory sequences) 

from  epigenetic effects (e.g. propagation of silencing epigenetic marks) generated by 

transposed elements. To explore TE effects on gene expression, we carried out a series of 

analyses focusing on genes physically associated with TEs. 

In the first analysis, we examined the distribution of expression levels (expressed in FPKM 

units) of genes physically associated to  full-length TEs (Figure 16) either in the introns, in 

the 2500 bp upstream regions or in the 2500bp downstream regions and we compared it with 

the distributions of genes devoid of TEs. 

The majority of TE groups does not seem to cause significant variations in terms of 

expression when inserted upstream; Ty1-Copia elements are the only group associated with a 

significant decrease of expression in this case, according to the Wilcoxon Mann-Whitney test 

(p-value <0.05). In contrast, if taken all together, TEs located downstream to a gene show a 

significant negative effect on gene expression. 

TE insertions in upstream sequences may disrupt promoters and regulatory sequences, 

provide their own promoter (thereby enhancing transcription), or cause the silencing of the 

flanking genes by spreading epigenetic marks. Hence, the fact that there are not significant 

differences in expression between genes carrying or not TEs in the upstream regions may be 

due to the compensation of positive and negative effects of TEs on the transcription. 

Conversely, the insertion of TEs in downstream regions is more often associated with lower 
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expression and we may speculate that in this compartment TEs have fewer chances to 

positively contribute to gene expression. 

Genes carrying Ty1-Copia, LINE and TIRs insertions in the introns are significantly higher 

expressed than genes devoid of TEs. As genes whose introns are populated by TEs tend to 

also present higher gene body methylation levels, this is consistent with the positive 

correlation between gene body methylation and expression (Figure 34b). 

 

 

Figure 45 | Log10 of FPKM of genes related or not to TEs. *marked boxplot are significantly 

different from unaffected genes. Red* are significantly lower expressed than unaffected genes, 

Green* are significantly more expressed than unaffected genes. 
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To further investigate the effects of TEs on gene expression we also considered genes 

associated with hemizygous TEs in order to restrict the analysis to differences in allele 

expression within the same gene and eliminate the caveats of comparing genes that present 

different expression levels per se. In our research group allele specific expression data were 

available (Eleonora Paparelli, PhD), for all the replicates of the same Pinot Noir clone taken 

in exam for methylation analyses. 

The software ALLIM (Allelic imbalance metre, (Pandey, Franssen, Futschik, & Schlötterer, 

2013), was utilized for measuring allele specific gene expression (ASE) in the three replicates. 

This tool is suitable for mapping RNA-seq data on both the reference and the alternative 

haplotype. ALLIM detected 7393 genes where polymorphisms between the two alleles could 

make the ASE analysis possible. Out of this group of genes, 6348 intersected with the set of 

genes used for the Gene body methylation analyses and 1271 were associated to a 

hemizygous SV in either 2500 bp flanking region or in the gene body. Genes devoid of SVs 

(5077) and genes associated to SVs in both haplotypes (193) were discarded.  SVs consisting 

of incomplete elements (see Table 2) were aggregated to each corresponding TE group. The 

remaining 1078 genes were distributed among the TE-groups as indicated in Table 4. 

 

Genomic localization of main groups of  hemizygous SVs 

 
Ty3-Gypsy  Ty1-Copia LINE TIR soloLTR na total 

All 160 221 241 225 6 52 1040 

up 76 61 13 85 3 11 253 

exon 4 6 0 13 0 7 35 

intron 30 96 200 40 2 7 439 

down 47 51 22 73 1 11 209 

 

 

 

 

 

To verify whether the presence of a hemizygous SVs is correlated to a significant change in 

the expression ratio of the two alleles, we used the Wilcoxon Mann Whitney test to compare 

the between-allele log2ratio in genes associated and not associated to SVs. 

In order to perform this analysis, a possible origin of bias was taken into account. Indeed, the 

reference alleles are on average more expressed than the allele belonging to the alternative 

Table 4 | Hemizygous SVs associated to genes with 2 alleles identified by ALLIM. 

RLC_partial and RLG_partial SVs are aggregated to Ty1-Copia and Ty3-Gypsy respectively. 

SVs overlapping exon-intron boundaries are considered in the exon group. 

SVs spanning over gene body and flanking regions are only considered only in “”all” 

 

Fig. 19 Hemizyous TE identified in grapevine across the 19 chromosomes. Unknown and random 

chromosomes were not considered in this analisys. 
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haplotypes (Figure 46), presumably because RNA-seq reads align more efficiently on the 

reference genome rather than on the reconstructed alternative haplotype.  

 

 

Since SVs occur in the two haplotypes with different frequency (432 in the reference 

haplotype, 646 in the alternative haplotype), the expression ratio between the TE-allele and 

the TE-devoid allele is overestimated when the TE is on the reference haplotype (40% of the 

SVs) and underestimated when the TE is carried by the alternative haplotype (60% of SVs). 

Hence, in order to perform a suitable comparisons of ASE between the set of genes associated 

with SVs and the set of control genes, devoid of SVs, the latter consisted of 40% random 

genes for which the between-allele log2ratio was calculated as reference_allele / 

alternative_allele and 60% random genes for which the between-allele log2ratio was 

calculated as alternative_allele / reference_allele (Figure 47). 

The result of this analysis indicated that alleles carrying SVs tended to show a lower log2ratio, 

indicating a reduction in the contribution of the TE-allele to the overall gene expression level. 

Focusing on single TE groups, these differences were always significant when involving Ty1-

Copia elements in both flanking regions (either upstream or downstream) and introns. For the 

case of Ty3-Gypsy superfamily they were significant only when occurring upstream and for 

TIRs only when occurring in introns or downstream. 

We cannot rule out that the significance of these tests may also be affected by the reduced 

numerosity of the set of genes taken in exam. 
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Figure 46 | Log2ratio of genes unrelated to SVs, expressed as Reference allele / alternative 

allele and vice-versa. 
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Figure 47 | Distribution of Log2ratio in SV-related and non-related genes. Significant values for 

Wilcoxon Mann-Whitney test (p-value<0.05) are marked with*, red stars indicate a lower 

log2ratio, green star a higher log2ratio. 
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DISCUSSION 
 

 

DNA methylation is an epigenetic mark widespread among eukaryotes and its contrasting 

roles in transcriptional silencing of heterochromatic regions as well as transcriptional stability 

of gene sequences has been described in both plants and mammals. 

DNA methylation cannot be directly detected through DNA sequencing as the C:::G pairing is 

not affected by cytosine methylation. However, through specific protocols that involve a 

sodium bisulfite treatment, unmethylated cytosines are converted to thymines and then by 

comparing a treated sample with an untreated reference, it is possible to obtain a full DNA 

methylome with a single-base resolution. Since a new Illumina protocol for BS-seq was 

introduced during the course of this study, replicates 2 and 3 were constructed with this new 

protocol, in which the DNA sample is immediately treated with bisulfite, which also 

contributes to its fragmentation, and then is ligated to Illumina adaptors. In contrast, in the 

traditional protocol utilized for replicate 1, the DNA sample is initially fragmented, then 

ligated to the adaptors and finally treated with bisulfite prior to amplification and sequencing. 

These protocol differences may partially explain the higher methylcytosine content estimated 

in replicates 2 and 3 than in replicate 1 (Figures 10,11,12,13) and the discrepancies in the 

distribution of methylcytosines between the three contexts CG, CHG and CHH.  Despite these 

differences, locus-specific analyses in both gene bodies and TE flanking regions revealed 

similar patterns among the three replicates and yielded the same substantial conclusions.  

The silencing effect of DNA methylation represents a useful defense against both retrovirus 

infection and TE insertions. TE sequences integrated in the genomes are generally de novo 

methylated in all contexts through the RdDM pathway in order to prevent further 

mobilization; indeed TE sequences are predicted targets of smRNAs in several plant species, 

e.g. Arabidopsis (Cokus et al., 2008),  soybean (Schmitz et al., 2013), maize (Gent et al., 

2013) and tomato (Zhong et al., 2013). 

As expected, in grapevine TE bodies are highly methylated in both CG and CHG contexts, 

consistently with previous studies in Glycine max (Schmitz et al., 2013), in Arabidopsis 

(Cokus et al., 2008), tomato (Zhong et al., 2013) and maize (Emberton et., 2005; Palmer et 

al., 2003; Rabinowicz et al., 1999; Whitelaw et al., 2003) but interestingly no significant CHH 

methylation increase is detectable in grapevine whereas in soybean it is present in both LINE 

and TIR elements, even though at low level. So far no maintenance mechanisms have been 
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characterized for CHH methylation other than repeated de novo methylation via RdDM 

(Wierzbicki et al., 2012). Methylation at these sites is prominent during the early stages of 

embryo development (Jullien et al., 2012) thus a compelling hypothesis that has been 

proposed claims that vegetative propagation by bypassing embryogenesis might preclude a 

major event of de novo CHH methylation, which indeed tends to be lower in vegetatively 

propagated relative to sexually propagated species (Robert J. Schmitz, oral presentation). 

Grapevine would not be an exception under these assumptions, which might be verified 

taking in exams TE bodies in F1 seedlings of the Pinot Noir cultivar. 

However, the CHH context is generally low methylated in all plant species so far analysed, 

e.g., Glycine max (Schmitz et al., 2013), Arabidopsis (Cokus et al., 2008), tomato (Zhong et 

al., 2013). Interestingly, in maize CHH islands, whose methylation level is much lower than 

in CG and CHG sequences, have been found nearby genes and may act as epigenetic insulator 

that protect genes by the spreading of epigenetic marks (Gent et al., 2013). 

Methylation in TE bodies is often spread into the flanking regions, but despite a similar 

internal profile among the TE groups analysed, in the flanking regions methylation patterns 

display a high variability that reflects both the different pre-existent methylation profile of the 

target loci and the specific TE behavior. To better evaluate the effect of TE insertions on their 

flanking regions, sequences as closest as possible, one carrying a TE and one unaffected must 

be taken in exam. 

Eichten et al., (2012) compared orthologous regions in two maize varieties, Mo17 and B73, in 

which TEs are uniquely present in the B73 reference but not in Mo17. A similar approach has 

been proposed for this study, with the advantage that PN40024 reference and Pinot Noir share 

the reference haplotype, thereby private PN40024 TEs must be hemizygous TEs in Pinot 

Noir. Considering hemizygous TEs, their flanking regions are compared to their homologous 

regions, in absence of TE, on the other chromosome, making these analyses not sensitive to 

environmental or developmental influences since the two haplotypes that are compared are 

observed in the same cells. Moreover, an in-house pipeline implemented in the team where 

the present study was performed allowed for the identification of hemizygous TEs uniquely 

present in the alternative haplotype. The seminal work by Eichten and coworkers showed that 

in maize DNA methylation and heterochromatic histone marks such as H3K9 dimethylation 

present in the internal TE sequence are spread on the flanking regions in some retrotransposon 

families (49 out of 144). Spreading families show higher internal CG and CHG methylation; 

in contrast, non-spreading families show higher CHH methylation.  All these spreading 

families belong to the LTR retrotransposon order, in particular to the Ty3-Gypsy superfamily, 
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and the dating of their insertion, based on LTR divergence, revealed that they are between the 

youngest families of the maize genome (< 3 million of years).  

Observations in maize are in general compatible with the retrotransposon behavior 

investigated in grapevine. Indeed, in grapevine both Ty3-Gypsy and Ty1-Copia elements 

show an increase of methylation in their flanking regions. Moreover, grapevine shows 

significant spreading of methylation also in LINE elements. Hemizygous TEs analysis in 

grapevine (Figures 23-31) shows that also in grapevine TE internal methylation is often 

spread on flanking regions, in particular in the CHG context that is generally far to be 

saturated. The strongest effect is observed in Class I retrotransposons. In particular Ty3-

Gypsy elements generally insert in pericentromeric/heterochromatic regions and thus in loci 

already highly methylated in both CG and CHG contexts prior to the insertion and thus an 

increment of DNA methylation is appreciable only where the pre-existent level is not 

saturated; LINE elements are most frequently found in introns of transcribed genes which are 

as well highly methylated but only in the CG context and for the same reason a significant 

increment is found in particular in the CHG; Ty1-Copia elements are instead found both in 

intergenic sequences and in gene bodies and they often induce a methylation increase in both 

CG and CHG contexts. However, within the Ty1-Copia superfamily a high variability in the 

methylation level of the unaffected haplotype is observed, reflecting possible location-specific 

effects. 

Unfortunately a more detailed taxonomic classification of repetitive elements is not available 

for grapevine yet and a possible future perspective may be the characterization of 

retrotransposon families according to Wicker et al., (2007) recommendations and then an 

analysis of DNA methylation based on family-specific patterns. 

In this study also class II TIR elements have been analysed. They are frequently locate in 

intergenic regions but with no preference for heterochromatic loci, similarly to Ty3-Gypsy, 

and cause a significant increase of methylation on their flanking regions, although weaker 

than retrotransposons. This may be due both to a lower internal methylation level (Figure 17) 

and a bias in the hemizygous TE calling, because on theory  they may be the effect of either a 

de novo insertion in one chromosome or an excision in the other. For what concerns Class I 

retroelements, their “copy and paste” mechanism suggests that the majority of hemizygous TE 

represents de novo insertions.  On the contrary, the “cut and paste” mechanism of Class II 

TIR elements may potentially generate two hemizygous TE loci for each transposition event, 

one corresponding to the insertion in the new locus, and the other representing its deletion in 

the previous locus. 
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No mechanisms of demethylation following a TE excision are known; hence it would not be 

surprising that the flanking regions of an excised TE showed a similar pattern to the flaking 

region of the homologous TE on the other haplotype. 

So far it has not been possible to distinguish whether an hemizygous TIR element has been 

generated by an insertion or a deletion, thereby in this work deletions involving TIR element 

may have been potentially taken in exam. This may partially explain the weaker effect of 

TIRs on the spreading of methylation in flanking regions (Figure 23 and 25). 

The moderate TE content and the interspersed pattern of TEs across grapevine genome 

represent an ideal compromise for the evaluation of TE insertion effect on nearby genes. 

For example in Arabidopsis, TEs are particularly enriched in pericentromeric region and thus 

their potential effect on nearby genes is hard to be evaluated. The maize genome is instead 

extremely enriched in TEs and TE insertion effects in their flanking regions may overlap with 

precedent insertions and rearrangement patterns increasing the noise and the possibility of 

evaluating insertion-specific effects. Despite the moderate TE content, the re-sequencing of 

dozen of grapevine varieties revealed a conspicuous number of SVs, that represent the  most 

recent transposition events and thereby the most mobile families. 

Moreover the high heterozygosity of grapevine allowed us to perform haplotype specific 

analyses with the advantage of comparing homologous loci within the same individual rather 

than inbred lines , as in Arabidopsis and maize. Spreading of heterochromatic marks that may 

alter gene expression has been well characterized also in other eukaryotic species, (e.g. 

Arabidopsis, Liu et al., 2004; Saze & Kakutani, 2007; Soppe et al., 2000), generally with a 

negative effect on transcription.  In maize, instead, specific TE insertions have been correlated 

to abiotic stress response, and contribute to the activation of several genes when inserting in 

their upstream regions by acting as local enhancers (Makarevitch et al., 2015), suggesting the 

existence of a case-by-case pattern. 

Preliminary analysis of gene expression in this study showed that genes located in highly 

methylated regions, especially in the CHG context, show lower expression on average (Figure 

15a) and furthermore their expression tends to be more conserved within varieties than the 

expression of genes located in lower methylated regions (Figure 15c-d). 

Genes with TEs located in their flaking regions generally display a lower expression rate than 

unaffected genes, whereas when they are located in introns gene expression rate is 

significantly higher (Figure 44).Furthermore, the allele-specific expression analysis shows 

that hemizygous SVs may modulate the contribution of the two alleles on gene expression 

(Figure 46). 
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 Beyond playing a prominent role in gene silencing, DNA methylation may also be 

compatible with gene transcription. Indeed, in many eukaryotic species so far sequenced, a 

conspicuous fraction of transcriptionally active gene bodies show intermediate to high levels 

of methylation, usually restricted to the CG context. Grapevine is not an exception and several 

of its gene sequences show a bell-shaped methylation profile spanning the entire transcribed 

region from the transcription start site to the transcription termination site and involving CG 

methylation but very low CHG and CHH methylation levels.  

However, CG methylation is generally absent in the first exons of transcribed genes, 

consistently with previous analyses in humans (Jain et al., 2015; Lee, Evans, Kim, Chae, & 

Kim, 2014). 

When sorting genes according to their bell-peak methylation, they distribute across a wide 

range of levels from absent to almost saturated methylation; however, the majority of genes 

show either a very low (<0.1) or a high (>0.7) average methylation. 

Recent studies in humans (Hodges et al., 2009), honeybees (Lyko et al., 2010) and 

Arabidopsis (Chodavarapu et al., 2010) showed that exons display higher methylation than 

their flanking introns. This fact, together with the higher occupancy of nucleosome in exons, 

suggests that gene body methylation may be involved in exon definition and alternative 

splicing regulation (Maor et al., 2015) Surprisingly, several independent observations made in 

this work, provide evidence for an opposite scenario in grapevine, where introns are much 

more methylated than their flanking exons both in CG and in CHG contexts (Figures 23, 25, 

28, 32, 35, 36, 37 ,38, 41,42 and 43). . 

The higher CG and CHG methylation  present in the introns (Figures 32, 36, and 38) may lead 

one to speculate that it might be the effect of highly methylated TEs, which indeed occupy 

12.4% of the grapevine intronic sequence (Jaillion  et al., 2007). To verify this hypothesis, 

gene body methylation profiles have been re-examined excluding all genes carrying TE 

annotations. In absence of TEs, methylation is globally reduced in both exons and introns. 

However, the most prominent reduction occurs in the introns and in particular in the CHG 

contexts, whose methylation drop to negligible levels. CG methylation declines as well in the 

intron albeit never below the exon methylation levels (Figure 38). Interestingly, in genes 

devoid of TEs but presenting high GBM, exon and intron methylation profiles converge 

whereas in low-GBM genes, introns remain more methylated. 

These data suggest that intronic CG methylation even in absence of TEs is at least comparable 

with the exonic methylation, and thus it cannot be totally ascribed to the frequent localization 

of TEs in grapevine introns. Moreover, introns with high CG methylation may be somehow 
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attractive for TEs, in particular LINEs, that locate prevalently in introns characterized by a 

saturated CG methylation level and low CHG methylation (Figures 16, 20 and 42). 

Despite the predominance of LTR elements within plants retrotransposons, non-LTR LINE 

elements are the major contributor of the repetitive fraction of human genome, and they are 

estimated to account for up to 400 million SV events within the human population (Xing et 

al., 2009). Somatic LINEs mobilization is associated to more than 70 human diseases, 

including cancer and neurodegenerative diseases. LINEs somatic insertion may be not casual 

and implied in early development of brain cell (Coufal et al., 2009).  

In grapevine all the identified LINE elements belong to the L1 superfamily and are found 

prevalently in introns (Figures 16 and 20). When considering hemizygous LINEs in gene 

bodies, interestingly both the TE containing and the unaffected haplotype are highly 

methylated in the CG context. This may be due either to a pre-existent high methylation level 

in the intron or to an inter-chromosomal cross-talk that may occur via smRNAs, which indeed 

have been reported to targets LINE sequences in at least one species (soybean, Schmitz et al., 

2013). However, the frequent high methylation in gene bodies, independent of TEs (Figure 

38), and the cis propagation of CHG methylation into TE flanking regions but not in the other 

haplotype suggest that the cross-talk hypothesis should be rejected.  

Preferential intronic insertion site in LINEs is evident (>75% within hemizygous TEs and 

>68% within homozygous TEs, Figures 16 and 20), hence there must be either a somehow 

positive role of LINE insertions in introns that allows this enrichment or a negative selection 

against intergenic LINE enrichment. Since intergenic DNA is frequently enriched in TEs, the 

second hypothesis appears unsustainable. Although the mechanisms that drive this intronic 

enrichment compels further investigation, the particular methylation pattern of saturated CG 

and low CHG levels that seems to be attractive for LINE insertions, represent an excellent 

starting point for future analysis. LINE family characterization and single-gene investigation 

may be helpful to provide more insight into this phenomenon. 
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MATERIALS AND METHODS 
 

Plant Material 

The samples selected are from the Pinot Noir clone VCR18, provided by Vivai Cooperativi di 

Rauscedo (http://www.vivairauscedo.com/). Each of the three replicates is a pool of genomic 

DNA, extracted from leaf nuclei of three different plants. The three groups of plants used for 

the three pools were grown in different rows . 

 

WGBS library preparation 

Replicate 1 BS-seq library was constructed with the Nugen Kit Ovation® Ultralow Methyl-

Seq Library Systems (http://www.nugen.com/products/ngs/ovation-ultralow-methyl-seq-

library-systems). Firstly 100 ng of DNA sample were fragmented by sonication with 3 cycles 

15-90 in order to enrich the sample in the fraction of 300-600 bps fragments. 

Fragmented DNA was then processed as indicated in Nugen protocol. 

In addition, gel size selection was performed after adaptors ligation step, considering the 

120bp adaptors length, a gel slice corresponding to the 400-700 bp range was excited and the 

DNA purified with the QIAquick® Gel Extraction Kit cat. nos. 28704. As indicated by 

manufactures’ guideline, bisulfite conversion was performed after Final Repair step with the 

suggested Quiagen EpiTect® Fast Bisulfite Handbook kit  #59824, lastly the library was 

amplified through 15 cycles of PCR 

Replicate 2 and 3 libraries were constructed with the Illumina TruSeq DNA Methylation Kit. 

https://support.illumina.com/downloads/truseq-dna-methylation-library-prep-guide.html  

According to this protocol, no fragmentation and gel size selection are required, hence 100 ng 

of DNA sample were immediately processed as indicated in the Illumina protocol, including 

the bisulfite conversion as a first step through the EZ DNA Methylation-Gold™ Kit 

https://www.zymoresearch.com/epigenetics/dna-methylation/bisulfite-conversion/ez-dna-

methylation-gold-kit which provides also for the fragmentation of the sample. 

The library was finally amplified through 10 cycles of PCR. 

http://www.vivairauscedo.com/
http://www.nugen.com/products/ngs/ovation-ultralow-methyl-seq-library-systems
http://www.nugen.com/products/ngs/ovation-ultralow-methyl-seq-library-systems
https://support.illumina.com/downloads/truseq-dna-methylation-library-prep-guide.html
https://www.zymoresearch.com/epigenetics/dna-methylation/bisulfite-conversion/ez-dna-methylation-gold-kit
https://www.zymoresearch.com/epigenetics/dna-methylation/bisulfite-conversion/ez-dna-methylation-gold-kit
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Sequencing 

Replicate 1 was sequenced with the Illumina HiSeq
TM

 2000 sequencer 

(http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf) whereas 

replicates 2 and 3 were sequenced with the more advanced Illumina HiSeq
TM

 2500 sequencer 

(http://www.illumina.com/systems/hiseq_2500_1500.html), in both cases according to the 

manufacturer’s instructions. 

 

Alignment of bisulfite converted reads  

BS-seq reads were aligned with the in-house developed aligning program ERNE v.1.4.5 

(http://erne.sf.net), suitable for efficiently mapping BS-treated reads. 

 

Estimation of bisulfite conversion efficiency 

To estimate bisulfite conversion efficiency a spike-in of unmethylated lambda phage DNA 

has been added to each sample.  

Fastq files of read 1 and 2 were aligned on lamba genome with erne-bs5 with the following 

command 

erne-bs5 --query1 FILE_Read1.fastq --query2 FILE_Read2.fastq --output 

OUTPUT.bam --reference GENOME.ehm --threads N 

Conversion efficiency was calculated with ns-methylation-statistics, a tool included in the in-

house developed package NGS-SUITE v1.3 (http://ngs-suite.sf.net) with the following 

command  

ns-methylation-statistics --input OUTPUT.bam --reference LAMBDA.fasta --output 

OUTPUT.stats --conversion-check  

 

Alignment of Pinot Noir reads on PN40024 reference genome 

Fastq files of read 1 and 2 were aligned on PN40024 genome with erne-bs5 with the 

following command 

http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf
http://www.illumina.com/systems/hiseq_2500_1500.html
http://erne.sf.net/
http://ngs-suite.fs.net/
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erne-bs5 --query1 FILE_Read1.fastq --query2 FILE_Read2.fastq --output 

OUTPUT.bam --reference GENOME.ehm --threads N 

Finally the methylome is produced with erne-meth with the following command 

erne-meth --fasta GENOME.fasta --input OUTPUT.bam --output-prefix OUTPUT --

annotations-erne –deduplicate 

 

Alignment of haplotype specific bisulfite converted reads  

Pinot Noir and the PN40024 reference share one haplotype, thereby to align reads on the 

alternative haplotype it’s necessary to construct its sequence in fasta format. 

In Prof. Morgante’s research team a SNP map of Pinot Noir was available (data not shown), 

hence taking advantage of GATK (https://www.broadinstitute.org/gatk/) it has been possible 

to create the alternative reference in which all the nucleotides of the reference genome 

carrying a SNP were substituted with their homologous nucleotide on the alternative 

haplotype with the following command. 

packages/sw/bio/gatk/2.1-13/GenomeAnalysisTK.jar \ 

-R /MY_reference.fasta \ 

-T FastaAlternateReferenceMaker \ 

-o /MY_alternative_reference.fasta \ 

--variant SNP_map.vcf 

With the in-house developed ns-disaplotipization from NGS-SUITE, all the paired-reads 

aligning unambiguously on one of the two haplotypes were selected and stored in separated 

files with the following command. 

ns-disaplotipization --first-bam OUTPUT_REF.bam --second-bam 

OUTPUT_ALT.bam --first-fasta GENOME_REF.fasta --second-fasta 

GENOME_ALT.fasta --bs-seq --prefix DISAPLOTIPIZATION  

For each haplotype, BAM files were aligned separately in order to create two separated 

methylomes with erne-meth for the reference and the alternative haplotypes with the 

following commands. 

https://www.broadinstitute.org/gatk/)
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erne-meth --fasta GENOME_REF.fasta --input DISAPLOTIPIZATION_REF.bam --

output-prefix OUTPUT --annotations-erne –deduplicate 

erne-meth --fasta GENOME_ALT.fasta --input DISAPLOTIPIZATION_ALT.bam --

output-prefix OUTPUT --annotations-erne –deduplicate 

 

Structural Variants Prediction  

Prediction of TEs solely present in the reference haplotype of Pinot Noir 

To detect SVs present solely in the reference haplotype, a combined approach, which includes 

DELLY (version 0.3.3), GASV (version 2.0), and an internal pipeline was utilized. 

SVs present in the reference genome and absent in the sample are called “deletions” in the 

reference whereas SVs present only in the sample are called “insertions” in the reference 

(Hurles at al., 2008, Figure 8) 

DELLY and GASV are two free tools designed to find deletions in a reference genome 

whereby insert size of paired-end reads is greater than expected. 

Being the PN40024 reference equal to one haplotype of Pinot Noir, DELLY and GASV 

deletions will thereby detect hemizygous SVs present solely in the reference haplotype. 

DELLY was launched with the default parameters, and the output file was filtered for a size 

of included in 1kb – 25 kbs range and with at least 2 paired end reads supporting the deletion 

events. Consistently with the parameters set in DELLY, GASV was launched with the option 

minClusterSize =2 which requires at least 2 paired reads for the deletions prediction and was 

filter for the same size range of DELLY. 

DELLY and GASV outputs were integrated as long as their coordinates differed for less than 

250 bp and when not coincident, DELLY coordinates were considered. 

An internal Python Script (Pinosio, Personal communication) was developed to evaluate the 

ratio between the number of reads supporting the deletion and the total number of reads 

supporting either the deletion event or the reference genotype. 

The analysis was computed on regions of 500 bp flanking both sided of SVs coordinates. 

SVs with a ratio <0.25 were considered false positives and then discarded. 

Since deletion sequence is present in the reference, an internal pipeline has been developed in 

order to annotate the potential presence of TEs in each deletion. 

This pipeline takes advantage of a grapevine specific set of 202 TEs obtained from RepBase 
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(Jurka et al., 2005), and an internal database of 467 TEs and includes the usage of Tandem 

Repeat Finder (Benson, 1999), RepeatMasker (Smit AFA, Hubley R & Green P, 

RepeatMasker Open-3.0). LTR_finder (Xu & Wang, 2007), REPET (Flutre et al., 2011) to 

provide for the annotation of the superfamilies of TE involved in the SVs, where present.  

Prediction of TEs solely present in the alternative haplotype of Pinot Noir 

Since DELLY and GASV are not efficient in detecting insertion events involving large SVs 

such as those caused by TEs, for SVs solely present in the alternative haplotype, generally 

known as insertions, an internal python script has been developed for their detection. (Sara 

Pinosio, personal communication). 

Whereby there is an insertion in the reference genome, within the paired-reads spanning the 

insertions site, only one of the two will map on the genome whereas the other will map on a 

database of TE termini (Figure 19). Database of TEs used for the insertion detection was 

enriched with the deletion set produced in the previous step. 

Reads mapping the flanking regions of each putative insertion point where assembled though 

CAP3 (Huang & Madan, 1999), creating a consensus sequences that was aligned with blastn 

(Altschul, Gish, Miller, Myers, & Lipman, 1990) on PN40024 reference genome. If the 

reconstructed consensus sequences mapped with opposite orientation and at distance lower 

than the mean sequenced library insert size, a putative insertion site was identified. Orphans 

reads were aligned with CAP3 and the consensus created was aligned with blastn on the 500 

termini of TE database (with the only exception of LINE in which the whole sequence were 

considered for the 5’ terminal because of the often truncated 5’ end) in order to annotate the 

superfamily of TE involved, where present. 

Consistently with deletions, the ratio between the number of reads supporting the insertion 

and the total number of reads supporting either the insertion event or the reference genotype 

was computed in order to discard insertions with a lower than 0.25 ratio, presumably false 

positives. Whereby insertion site prediction is not represented by a single nucleotide, the 

mean position of the interval was considered the insertion point. 

Haplotype specific homozygous TE data of both deletions and insertions were obtained from 

our group of research (Gabriele Magris, PhD thesis). 
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Genomic landscape analyses 

Genome was divided in 200 kbp regions, for each region the average methylation level of CG, 

CHG, CHH contexts have been calculated, as well as the number of genes and full-length 

TEs; the frequency of CG dinucleotides; the number of hemizygous TEs; and the frequency of 

Pinot Noir, Schiava grossa and PN40024 SNPs. 

All the analyses in this work were computed considering only Cytosines with a minimal 

coverage of at least 4xfor CG context and 10xfor the CHG and CHH contexts. 

Circos graphs 

Figures 14, 18 and 21 were produced with the Circos software (http://circos.ca/software/, 

Krzywinski et al., 2009). 

Correlation between regional methylation and gene expression 

Expression data of several Grapevine varieties were already available in Prof. Morgante’s 

team, including Pinor Noir. Genes were grouped in 10 progressive classes according to the 

average methylation level of the 200 bp window in which they locate, for both CG and CHG 

independently. 

Log10 of FPKM (Fragments Per Kilobase Of Exon Per Million Fragments Mapped) of the 

genes belonging to each class were plotted in a Boxplot trough R function boxplot() in Figure 

15a whereas the numerosity of  each class was plotted in Figure15b. 

Cuffdiff 2 (Trapnell et al., 2013) was used to calculate the log2 ratio between Pinot Noir and 

Traminer FPKM in Figure 15c. 

Significant differences between the sets of gene grouped by regional methylation class with 

the genome fraction of DEGs according to Chi-squared test (p-value <=0.05) are marked with 

a *. 

Identification of Pinot Noir derived regions in the PN40024 reference 

SNP maps of Pinot Noir, Schiava grossa and PN40024 were available in Prof. Morgante’s 

research group. 

Pinot Noir regions in the PN40024 reference were assigned where there was a lack of 

homozygous SNPs between Pinot Noir and PN40024, similarly Schiava grossa regions were 

assigned whereby there was a lack of homozygous SNPs between Schiava grossa and 

PN40024. Regions in which there is a lack of both Pinot Noir and Schiava grossa 

http://circos.ca/software/
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homozygous SNPs, are considered equal in the two varieties and then are not assignable 

unambiguously to one of the two. 

Transposon body methylation profile 

Full-length TEs were searched across the genome through Blastn and Repeat Masker using as 

a query the sets of grapevine-specific TEs previously mentioned. 

Full-length TEs were accepted whether they show at least 80% of nucleotide identity and a 

length included in the size range between 80% and 125% of the query length. 

Coordinates of LTR and TIR elements were extended of 40 bp on both termini in order to 

verify the presence of the TSDs and Terminal Repeats. For LTR elements LTR-finder (Xu & 

Wang, 2007) was used, and all elements not showing LTRs were discarded. 

For TIRs element, an internal script provided to confirm the presence of both TIRs and TSDs 

according to Wicker et al. (2007) indications. (Figure 6) 

LINE element termini don’t show repetitive sequence, their often truncated 5’ and the 

variable TSD length lead us to consider blast and repeat masker coordinates the most reliable. 

Solo-LTR termini were  predicted by Delly and Gasv. 

TE coordinates were then extended of 2500 bp in order to include a part of flanking regions in 

the analyses. LINE element regions were divided in 3 parts: upstream, LINE body and 

downstream whereas LTR and TIR element regions were divided in 5 parts (upstream, 

terminal repeat 1, TE body, terminal repeat 2, downstream) 

and their methylation percentile in all the three contexts were calculated separately. 

For each TE group data were collapsed and their methylation profiles of the three contexts 

were computed independently with the R function smoothingSpline() with the parameter 

spar=0.5 and plotted with the plot() function in the Figure 17. 
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Analysis of hemizygous TE flanking regions  

 

Individual hemizygous TE representation  

For the single TEs representation in Figure 22, only reference specific hemizygous TEs, 

whose internal sequences is available in the reference genome, were considered. 

For each TE, both TE sequences and 2000 flanking regions from each side were divided in 10 

bp windows, and for each window the mean coverage, and the mean methylation levels of the 

three contexts in both haplotypes were computed and plotted in separated lines. TE scheme 

was drawn according to LTRs coordinates predicted by LTR-Finder. 

 

Hemizygous TE methylation profile 

For each TE only flanking regions were considered and the data belonging to the TE-carrying 

or unaffected haplotype were collapsed separately. 

The R function smoothingSpline() (spar=1.0) was used to create the methylation profile of 

the two haplotypes that were plotted in the same figure, in which the 0 represents the insertion 

point. (Figure 23b-c).  

In Figure 24a-b, the methylation profile was computed in independently for reference and 

alternative haplotypes specific TEs. In Figure 24c, the average methylation profiles of 

Figures24a-b is reported. Figure 24d display the analysis of 1000 regions of 3 kb length 

chosen randomly in the genome for the two haplotypes and for the three contexts separately, 

whose average values are reported in boxplot. 

Figure 41 display the methylation patter of LINEs 10kb-flanking regions, whereas in Figures 

42 and 43 is shown the methylation pattern of LINEs and Ty1-Copia respectively in 

Intergenic, exonic and intronic regions separately according to GFF annotations (see next 

Chapter). 

 

Fisher’s Exact Test 

To provide statistical support to the methylation profile data, a Fisher’s exact test was 

performed for each Cytosins with a sufficient coverage in both haplotype, to verify the 

hypothesis of a differential methylation of a single cytosine in the two alleles. 
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Cytosines whose contexts differ in the two haplotypes because of the presence of a SNP were 

not considered.  The Fisher’s Exact test was performed with the R function fisher.test() with 

all the default parameter (including the alternative hypothesis = “two-sided”). 

The fisher.test() function requires a 2x2 input matrix as shown in the following table. 

 

 

 

 

 

Flanking regions were divided in 500 bp windows, and for each window the number of 

differentially methylated cytosines (according to a p-value <=0.01) was computed, in both the 

TE and unaffected haplotypes. 

Figure 25c-d shows the fraction of the significant more methylated Cytosines in the TE 

haplotype for each 500 bp window, whereas Figure 25 e-f shows the same fraction 

considering only cytosines with a significant differential methylation according to the Fisher 

test  

Chi-squared test 

To test whether the differential distribution of more methylated cytosines in the two 

haplotypes was significant, the Chi-Squared test was performed to verify the null hypothesis 

of a 50:50 distribution of more methylated cytosines in the two haplotypes with the R 

function chisq.test() Figure 26g-h  reports the –log( p-value) of such test. 

Wilcoxon Mann Whitney test 

Flanking regions of each TE were divided in 500 bp windows and for each window the 

average methylation level in both haplotypes and both for CG and CHG contexts was 

calculated. 

Successively, for each window and for each context, the entire list of values of all TEs of the 

two haplotype were tested with the R function wilcox.test() with the parameter 

exact=FALSE, alternative=”two-sided”. 

In the Figure 25j-k is shown the –log(p-value) of such test for each window, in order to have 

greater values than y=2 when p-value is lower than 0.01.  

 

 

allele with TE uneffected allele 

reads suppoting 
5m

C a b 

reads suppoting C c d 
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Single-TE analyses 

The average methylation value of a 2kb-wide region around the insertion point in both 

haplotypes was considered to evaluate at single-TE resolution the effect of the insertion on the 

flanking regions 

For each TE the difference of average methylation level between the TE-carrying and 

unaffected haplotype was computed for CG, CHG, CHH and CG + CHG contexts 

independently and shown in the form of histogram in the column a) of Figures 26-31 

The values of the two haplotypes were represented in a dotplot in the column c) of Figures 26-

31, with TE-carrying haplotype on the x axis and the unaffected haplotype on the y axis, in 

order to have points underneath the bisector line when higher methylation level is present in 

the TE-carrying haplotype.  

To provide statistical support to this analysis, for each hemizygous TE the Wilcoxon Mann-

Whitney test was performed with the R function wilcox.test() with the parameter 

exact=FALSE and alternative=”two-sided”, giving as input the methylation values of all the 

cytosines in the 2kb region of the two haplotype respectively 

Columns b) and d) of Figures 26-31 represent the subset of significant differences of 

methylation with a p-value<=0.01 of columns a) and c) respectively. 

 

Gene body methylation 

Gene prediction of the Grape genome database of university of Padua 

(http://genomes.cribi.unipd.it/DATA/V2/V2.1/V2.1.gff3, Vitulo et al., 2014), was utilized for 

the whole gene body analysis. 

18986 genes showing both 5’ and 3’ UTRs were selected, and 2500 bp of flanking regions on 

both sides were included in all the analyses. 

For each gene, methylation in the exons, upstream and downstream regions were expressed in 

percentiles for the three context independently, then for each context all data were collapsed 

and the methylation profile were computed with the R function smoothingSpline(). 

In Figure 32a is reported the gene body methylation profile of the exons whereas in 32b 

introns were exceptionally included. 

In order to group genes on the basis of their internal methylation, the average CG methylation 

level of the bell-peak was computed for each gene between the 50
th

 and 65
th

 percentiles. 

Genes were grouped in 10 progressive classes according to their CG methylation level at the 

http://genomes.cribi.unipd.it/DATA/V2/V2.1/V2.1.gff3
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bell-peak and the methylation profile of each class was computed with the R function 

smoothingSpline() (spar=1.0) and plotted in Figure 33. 

Figure 34a reports the frequency of each class whereas Figure 34b shows in the form of 

boxplot the log10(FPKM) of the genes belonging to each class. 

All the classes were compared trough the Wilcoxon Mann-Whitney test and a letter code  was 

assigned in order to have non-significant differences with the same letter code. 

Gene length, exon number, total exon space and total intron space were reported according to 

the methylation class respectively in Figures 35.  

Moreover, for each class the number of TE annotations obtained by an internal database was 

plotted in the Figure 37. 

Finally genes were grouped according to their exon number and the methylation profile of 

each group was computed for all exons and introns separately with the R function 

smoothingSpline() (spar=1.0) and plotted in Figure 36. 

To evaluate TE effect on GBM, the exon-intron profile was computed after excluding 

carrying TE annotation in their introns (Figure 38) 

Similarly to Figure 33a, Figure 39 reports the gene body methylation profile with the exon 1 

separated from the other exons. Figure 41 shows in the form of boxplot the log10(FPKM) of 

the genes according on their average methylation in exon 1 

A Wilcoxon Mann-Whitney test  was performed among all the 10 classes of GBM in exon1 

and the results is reported in the table 4 where same letter code correspond to non-significant 

differences. 

 

Correlation between TE presence and gene expression 

Figure 45 displays Boxplot of Log10 of FPKM of the genes associated to a TE in their intron, 

2500 bp upstream or 2500 bp downstream. Significantly differences against the set of 

unaffected genes according the Wilcoxon Mann-Whitney test are marked with *. 

 

Haplotype specific expression 

RNA-seq data were available in professor Morgante’s group (Eleonora Paparelli, PhD) for all 

the replicates taken in analysis. 
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Allim (Allelic imbalance meter, Pandey et al., 2013), was used to measure allele specific gene 

expression (ASE) in the two Pinot Noir haplotypes. 

 

 

Figure 45 show the log2 ratio of genes unrelated to SVs computed as reference_allele / 

alternative_allele and vice-versa respectively. 

In Figure 47, the log2 ratio in SV-related genes, is always calculated in the ratio SV-allele / 

unaffected allele. 

Since SVs are belonging for the 60% of the occurrences to the alternative haplotype and for 

the 40% to the reference haplotype, the log2 ratio of genes unrelated to SVs is calculated for 

the 40% of the genes, chosen randomly, as “reference_allele / alternative_allele” and in the 

remaining 60% of the genes it calculated as “alternative allele / reference allele”. 

Boxplot marked with a red * show a significant lower log2ratio of SV-genes (one-tailed 

Wilcoxon Mann-Whitney test; p-value <0.005), whereas green * indicate significant higher 

values with the same test. 
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Figure S1 | Circos graph of Grapevine Genome and Methylome (replicate 1). Gene 

density and TE density, CG frequency and CG, CHG CHH average methylation level are 

relative to 200 kbp regions. Methylation is expressed in the form of heat map. 
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Figure S2   

a) Gene expression rate on the basis of the regional methylation for CG and CHG 

respectively 

b) number of occurrences for each class  
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Figure S3 | Methylation profile of both TE bodies and hemizygous TE flanking regions. 

d) TE body methylation  profile  

e) Average CG methylation profile of TE flanking regions in bp from insertion point 

f) Average CHG methylation profile of TE flanking regions in bp from insertion point 
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a)  b)  c) 

SVs in reference haplotype 
 

SVs in alternative haplotype 
 

balanced profile 

Figure S4 | Methylation profile of hemizygous  

TEs in the two haplotypes. 

a) hemizygous TEs in the reference 

haplotype 

b) hemizygous TEs in the alternative 

haplotype 

c) Merged profile of a) and b) 

d) Methylation of 1000 3kb random regions 

in the two haplotypes 
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Figure S5 | Statistical analysis of between-haplotype differential DNA 

methylation in the flanking regions of hemizygous TEs 

 

a-b) Average DNA methylation levels (red: CG; blue: CHG) in the TE flanking 

regions: TE-carrying haplotypes (dark colour) and haplotypes devoid of TEs 

(light colour) are represented separately (see also Figure S3 for details).  

 

c-d) Fraction of total Cs that are more methylated in the TE-haplotype. Values 

are reported for each 500 bp bin of distance from the insertion site within a +/- 

2500 bp range; c: CG context; d: CHG context. 

 

e-f) Fraction of total Cs that are significantly deviating from the null expectation 

of equal methylation in the two haplotypes (Fisher’s Exact Test, p-value < 

0.01). Values are reported for each 500 bp bin of distance from the insertion site 

within a +/- 2500 bp range; e: CG context; f: CHG context. 

 

g-h) Deviation from the null expectation of equal methylation in the two 

haplotypes. Chi square Test log P values are reported for each 500 bp bin of 

distance from the insertion site within a +/- 2500 bp range; g: CG context; h: 

CHG context. 

 

j-k) Deviation from the null expectation of equal methylation in the two 

haplotypes. Wilcoxon Mann-Whitney Test log P values are reported for each 

500 bp bin of distance from the insertion site; g: CG context; h: CHG context. 
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 Dotplot of meth 

 Meth( TE ) vs Meth( noTE ) 

 2k pv<=0.01  

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

Methylation (TE−hap)

M
e
th

y
la

ti
o
n

 (
n
o
n

−
T

E
 h

a
p

)

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●

●

● ●●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

● ●●● ●●

●

●

● ●

●

●

●● ●●●

●

● ●

●

● ●

●

●●

●

●

●

●●

●

●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●●

●

●
●●

●

●●●
●●

●

●● ●

●

●
●

●

● ● ●
●

●

●

● ●

●

●●
● ●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

Methylation (TE−hap)

M
e

th
y
la

ti
o

n
 (

n
o

n
−

T
E

 h
a

p
)

● ●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

● ●
●

●●●

●

●

●

●

●●

●

●

●

●

●

● ●●● ●●● ●●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●● ●

●
● ●

●

●

●

●
●

●

●●

●

●

●● ●

●

●
●

●● ●

●●
●●

●

●●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●●● ● ●● ●●

●

●
●

●

●

●

●● ●
●

●
● ●

●●●

●

● ● ●
●●

● ●

●

● ●
●

●
●

●

● ●

●

●

●●
●
●

●

●

●

●

●

●● ●

●

●

●

● ●●
●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

Methylation (TE−hap)

M
e

th
y
la

ti
o
n

 (
n

o
n

−
T

E
 h

a
p

)

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

Methylation (TE−hap)

M
e
th

y
la

ti
o
n

 (
n
o
n

−
T

E
 h

a
p

)

Figures S6–S7 | Individual TE flanking regions analyses. Methylation is calculated over a 

region of 2kb around the insertion point in both haplotypes. a) Distribution of the 

difference of methylation values between TE haplotype and non-TE haplotype; b) Subset 

of Wilcoxon Mann-Whitney tests p-value positives (<0.01) of a); c) Dotplot ; d) Subset of 

Wilcoxon Mann-Whitney tests p-value positives (<0.01) of c) 
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Figures S8 –S9 | Individual TE flanking regions analyses. Methylation is calculated over a 

region of 2kb around the insertion point in both haplotypes. a) Distribution of the difference 

of methylation values between TE haplotype and non-TE haplotype; b) Subset of Wilcoxon 

Mann-Whitney tests p-value positives (<0.01) of a); c) Dotplot ; d) Subset of Wilcoxon 

Mann-Whitney tests p-value positives (<0.01) of c) 
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Figure S10 –S11 | Individual TE flanking regions analyses. Methylation is calculated over a 

region of 2kb around the insertion point in both haplotypes. a) Distribution of the difference 

of methylation values between TE haplotype and non-TE haplotype; b) Subset of Wilcoxon 

Mann-Whitney tests p-value positives (<0.01) of a); c) Dotplot ; d) Subset of Wilcoxon 

Mann-Whitney tests p-value positives (<0.01) of c) 
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Figure S13 | Gene body methylation classes obtained calculating the average between the 50
th
 and 

the 65
th
  in the gene body 
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Figure S14 | Frequency of GBM classes (a), Expression rate of gene belonging to GBM classes (b). 

b) clusters with the same letter code are not  significantly different (Wilcoxon Mann-Whitney test 

(p-value <0.05), Gene length (c), exon number (d),exon space€ and intron space (f) in genes 

belonging to GBM classes. 
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Figure S15 | Gene body Methylation profile of in genes grouped by exon number 
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Figure S18 | Hemizygous LINE flanking regions  

TE haplotype 

non-TE haplotype 

CG

CHG

ALL 

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e

th
y
la

ti
o

n

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e
th

y
la

ti
o

n

n=720

INTERGENIC 

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e

th
y
la

ti
o

n

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e
th

y
la

ti
o

n

n=113

EXONIC 

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e

th
y
la

ti
o

n

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e
th

y
la

ti
o

n

n=38

INTRONIC 

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e

th
y
la

ti
o

n

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e
th

y
la

ti
o

n

n=569

     All LINE                     Intergenic                       Exonic                        Intronic 

Figure S19 | Hemizygous LINE flanking regions in intergenic, exonic and intronic loci. 

TE haplotype 

non-TE haplotype 



 

112 
 

 

 

 

CG

CHG

ALL 

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e

th
y
la

ti
o

n

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e
th

y
la

ti
o

n

n=1218

INTERGENIC 

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e

th
y
la

ti
o

n

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e
th

y
la

ti
o

n

n=650

EXONIC 

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e

th
y
la

ti
o

n
−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e
th

y
la

ti
o

n

n=128

INTRONIC 

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e

th
y
la

ti
o

n

−2000 0 2000

0
.0

0
.4

0
.8

Distance from inser tion (bp)

M
e
th

y
la

ti
o

n

n=440

   All Ty1-Copia                 Intergenic                         Exonic                          Intronic 

Figure S20 | Hemizygous LINE flanking regions in intergenic, exonic and intronic loci. 
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