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1. ABSTRACT

1. ABSTRACT

The  microarray  technology  has  revolutionized  the  study of  the  complexity  in  the 

biological systems and of the biological responses to the environment. In order to define new 

scenarios and new biological pathways, the aim of this PhD thesis was the acquisition of a 

mastery in the management and analysis of microarray data, deepening the basic concepts of 

statistical analysis, to make knowledgeably choices about the test more suitable to a particular 

set  of data.  After  in-depth knowledge of  the different  phases,  the aim was to  build up a 

generic pipeline that can be used to analyze any type of microarray data. The computational  

pipeline for processing raw microarray data (images) was implemented in R, using mostly 

Bioconductor packages. Implementation aimed to define gene expression levels, to provide 

experiment quality assessment and significative statistical tests. 

During the first part of the PhD thesis my purpose was the determination of the gene function 

combining experiments of silencing with the gene expression analysis. 

Caspase-2 is a member of the cystein-protease family of enzymes, which carry out important 

roles in apoptosis  and in inflammation.  Although  CASP2 is highly conserved through the 

evolution and was the first caspase identified, several contradictory results are found in the 

literature.  Being expressed at  high level  during the neurological  development  and with a 

strong involvement in the apoptotic processes in the adult central nervous system, we decided 

to proceed with its silencing in glioblastoma cells, to evaluate the effect on gene expression. 

The  comparative  analysis  of  expression  profiles  of  silenced  cells  respect  to  the  control, 

highlighted the relation between  CASP2 and genes involved in the cholesterol metabolism. 

Previous studies have suggested for this enzyme a role in the control of intracellular level of 

this  metabolite.  Therefore,  we decided to  use data  stored in  public  databases  in  order  to 

extend the investigation,  including all  the  other  caspases  and all  the  genes  in  some way 

connected to cholesterol. Computational analysis of the correlation between expression levels 

of these different genes families, has allowed us to: i) define correlations among cholesterol 

genes and caspases and ii) perform a hierarchical clustering of the different caspases in term 

of correlational profile. The analysis was expanded to normal brain and liver tissues and a 

correlation between expression levels  of certain caspases  and aging was found in human 

brain. 

During the second part of the work, I performed gene expression profile analysis to define 
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1. ABSTRACT

signaling  pathways  and  resistance  mechanisms  elicited  after  treatment  of  chronic  B 

lymphocytic  leukemia  cells  with  a  new  class  of  ubiquitin-proteasome  system  (UPS) 

inhibitors.

Through the comparison of transcriptional profiles before and after treatments, many genes 

and relative pathways, whose expression was altered by the UPS inhibitor, were identified. 

These  genes  have  allowed  us  to  define  new  mechanisms  of  drug  action.  Furthermore, 

considering the difference in terms of responsiveness of the analyzed patients, we propose 

some genes as responsible for the differential cellular reactivity to the specific inhibitor.
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2. INTRODUCTION

2. INTRODUCTION

2.1 MICROARRAY
The microarray technique, developed in the 90s (Schena, 1995), enables the analysis 

of gene expression by monitoring at once the RNA products of thousands of genes.

Thanks to the production of high quality platforms, the creation of standardized experimental 

protocols, the construction of sophisticated devices for the recording of the intensity values 

and the development  of robust computational tools  for data management,  this  technology 

became a  technique  of  everyday use  in  biological  laboratories  (Hoheisel,  2006;  Trevino, 

2007).

Unlike traditional investigation techniques, that make use of probes labeled with fluorescent 

substances  directed  against  specific  sequences  of  DNA  anchored  to  a  solid  support, 

microarray technology overturns  this  relationship:  in  this  case the non-labeled probes  are 

fixed  on  the  same  support  and  the  labeled  sample  is  instead  in  the  liquid  phase.  The 

hybridization of all  the probes and their  respective targets occurs simultaneously and this 

produces  information  on  the  global  transcriptional  state  of  the  sample.  After  removal  of 

excess solution that did not interact with the probes, the bond between the probe and target is 

translated into a numerical value, after recording the emitted fluorescence, which is supposed 

to  be proportional to the amount of the respective transcript  present  in the sample under 

investigation.

The  microarray  analysis  provides  a  matrix  of  genes  (along  rows)  and  samples  (along 

columns). The values in the matrix are intensity measurements that are proportional to the 

mRNA quantity of each gene present in a cell.

MICROARRAY TECHNOLOGY

The  choice  of  the  material  for  the  microarray  construction  has  a  fundamental 

importance. At the beginning, DNA arrays were based on nylon membranes. Nowadays, both 

porous and non-porous materials can be selected for their construction, each of them with 

specific advantages. The non-porous ones, such as glass, are the most useful, given the low 

intrinsic fluorescence and the poor dissemination.

These features allow to create small sized spots in a very precise way, permitting the use of an 
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2. INTRODUCTION

extremely low sample quantity. Unfortunately the glass has a high affinity for dust and for the 

other contaminants present in the air and a smaller binding surface with respect to the other 

porous materials.

A recent technology makes use of glass beads to which the probes are linked before being 

spotted in a completely random way. The positions are then determined through a complex 

pseudo-sequencing  process.  The  small  bead  size  allows  for  greater  number  of  spots  per 

microarray slide and as many as 12 simultaneous sample analyses on a single platform are 

possible.

An additional microarray classification is made on the basis of the support dimensionality: 

there are 2D-microarray and 3D-microarray. In this  case each probe (specific for a single 

gene) is linked to the microchannel walls, process that allows to increase in a considerable 

way the  quantity  of  probes  used  (therefore  with  an  augmentation  of  sensitivity)  and the 

possibility to use the much more stable chemiluminescence (instead of the fluorescence).

Three techniques for microarray manufacturing exist.

In the first technique single strand cDNA molecules (length between 200 and 2000 bases) or 

pre-synthesized oligonucleotides (50-100 bases) in solution are deposited onto a solid support 

through the use of a robot. These are spotted microarray.

The second technique exploits the in-situ synthesis of 60-bases oligonucleotides through ink-

jet printing technology (Agilent): this is a very flexible method that allows the production of 

personalized array for two-dye experiments. A computer controls the printing process and the 

sequences  of  all  the  oligonucleotides  are  contained  in  a  file.  This  methodology  makes 

particularly  efficient  the  manufacturing  process  of  custom  microarray.  Another  positive 

feature is the uniformity of the spot shape and dimension.

In the third technology small oligonucleotides are directly synthesized on a silica support, 

through photolithographic techniques (Affymetrix) that make use of masks and light-reactive 

compounds with the selective activation of specific nucleotides in well-determined positions. 

The sequential use of different masks leads to the synthesis of all probes essential for the 

whole genome analysis.

The  high  cost  of  this  technology  does  not  justify  the  realization  of  custom  array.  The 

maximum oligonucleotide length allowed is 25 bases and the density reached on the spot is 

very high (over 700000 probes),  more than 10 times higher with respect to that obtained 

through other techniques.
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2. INTRODUCTION

In  order  to  represent  each  gene,  a  combination  (called  probeset)  of  11-20  different 

oligonucleotides  are  used  in  the  PM  (Perfect  Match)  form  and  likewise  in  the  MM 

(MisMatch) form, each of them interrogating a different part of the sequence of a specific 

gene.

In particular, the PM oligos are perfectly complementary to the transcribed mRNA, while the 

MM oligo are exactly like the equivalent PM except that the central-position nucleotide (the 

thirteenth) is substituted by its complementary (A↔T, C↔G) base.

The MM oligos are used to highlight the non-specific hybridization of the corresponding PM, 

which is useful to quantify weakly-expressed mRNA.

A further classification of microarray platform is based on whether one-dye or two 

dyes are used. The RNA extracted from the sample is labeled with a fluorescent molecule and 

then it incubated with the support. Different fluorescent substances can be used to hybridize 

simultaneously with two samples on the same platform. In this case the competitive binding 

between the two targets and the probes in the array is exploited. The experiment goes on with 

the scanning step and the recording of emitted signals using lights with different wave-length 

to excite the two fluorophores (red and green fluorescence: excitation at 550 nm and 640 nm, 

emission at 581 nm and 670 nm, respectively). The ratio of the signals reveals the relative 

abundance of the different mRNAs between the two samples.

In the alternative scheme (the case of the genechip Affymetrix), only a single sample is used, 

it  commonly  emits  yellow  fluorescence.  The  final  result  of  this  procedure  generates 

monochromatic 16 bits images,  the pixel intensities can range in value from 0 (black) to 

65535 (white) shades of gray.

IMAGE ANALYSIS: gridding, segmentation, intensity extraction

Gridding

The array is physically scanned to produce a digital record. After the hybridization of 

fluorescently labeled cDNA molecules to the platform, the array is stimulated with a laser and 

the emitted fluorescence is measured. Several scanner settings can be varied to improve the 

sensitivity of the resulting image, with the brightest  pixels settled just  below the level of 

saturation in order to increase the power of the analysis in the case of less bright pixels. The 

first step of the analysis is the gridding that is usually a semi- or fully automated process. It 

consists in overlaying a rectangular grid onto the pixels in a manner that isolates each spot 
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2. INTRODUCTION

within a platform, identifying spots through coordinates.

In the Affymetrix platforms, control probes located at the corners of the probe array are used 

to align a grid to delineate the probe cells.

Segmentation

The  second  step  is  the  segmentation:  every  single  pixel  has  to  be  classified  as 

foreground or background. The signal observed is a combination of the foreground and the 

background, the specific hybridization of interest and the non-specific one, respectively.

The  background  is  due  to  non-specific  bindings,  to  contamination  and  to  the  intrinsic 

fluorescence emitted from other chemicals on the glass. The classical approach performs the 

simple  subtraction  of  the  background  value  from  the  mean  or  from  the  median  of  the 

foreground intensity. A global background can be considered (global background correction), 

by subtracting the same value from all the spots in the platform. The background level is 

calculated by considering a set of negative control spots or, alternatively, the third percentile 

of the intensities can be taken as global background.

Another possibility is to consider a local background. Depending on the tool used to analyze 

the image, the areas around each spot taken as a reference for the background assessment are 

different.

In the case of high-density array, it is possible to consider wider areas (subgrids) to do this.

For the foreground evaluation, there are spatial and distributional methods. 

Fixed or adaptive segmentation: the first category tries to establish the spot shape, by defining 

a  fixed circle  with a constant  diameter,  not optimal  in the most cases,  or a circle  with a 

variable diameter or another shape that considers the real appearance of each spot.

In this case, we have a Fixed circle segmentation, Adaptive circle segmentation and Adaptive 

shape segmentation, respectively.

The second method called histogram segmentation summarizes  instead the signal  coming 

from all  pixels,  not  necessarily  connected,  that  are  over  a  treshold,  commonly  included 

between  the  5th and  the  20th percentile  of  the  signal  intensities.  After  foreground  pixels 

identification, the intensity value for the spot is usually estimated as the average of all these 

measurements.

Intensity extraction

The extraction of reliable intensities from foreground and background pixels involves 
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2. INTRODUCTION

methods to control the effects of all the possible sources of variation during the experimental 

procedures. It includes several substeps.

– Filtering

The aim of this procedure is to reduce the data variability and dimension by removing all the 

genes whose measurements are not enough accurate and by deleting genes weakly-expressed 

or with an almost constant expression (low variance of log ratio across samples).

– Summarization

This  is  the  final  stage  in  preprocessing  Affymetrix  GeneChip  data.  It  is  the  process  of 

combining the multiple probe intensities for each probeset to produce a unique expression 

value, by combining them in some manner.

– Normalization

The normalization  process  has  the  aim the  removing of  all  the  variability  sources  (bias) 

without biological origin. These contributions can be classified in this way:

i) Dye-effect: it depends on the different level of incorporation of the fluorophores used in 

two-dye  experiments.  The  Cy5  molecule  is  more  bulky  and  labile:  the  red  emission  is 

systematically less intense that the green one.

ii) Print-tip effect: it is due to the difference in term of genetic material spotted on the glass 

because of the microscopic differences in the tip conformations (used by the robot to print the 

platform).

iii) Array-effect: it can derive from the differences in the global intensities between the arrays 

that  are  linked  to  the  different  conditions  of  preparation,  extraction,  hybridization  of  the 

sample and to the scanning step.

Normalization can be carried out within each array or between arrays. The common approach 

to normalize the data is the global one. Averages of the overall expression for all genes within 

an  array  are  set  to  be  the  same  across  different  arrays.  The  amount  of  transcription  is 

essentially similar across samples and over-expressed genes and under-expressed ones are 

roughly balanced.

Normalization procedures can be divided as follow:

– Total intensity normalization: this kind of procedure assumes the same mRNA quantity for 

both samples.  A Constant K is  searched so that the two samples have the same mean or 

median.

– Normalization based on regression methods: it starts from the assumption that most of the 

genes are expressed at the same level. There are several regression techniques: 
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2. INTRODUCTION

linear regression (the coefficient of the regression line has an angular coefficient equal to 1) 

or local linear regression (LOWESS - “LOcally WEighted Scatter plot Smoothing”). In this 

case,  instead  of  having  a  single  correction  factor,  a  function  that  compensates  for  bias 

intensity dependent is used (Cleveland, 1979).

Other methods that consider only a small part of all genes exist.

We can choose the normalization procedure that uses housekeeping genes: these are genes 

that are expressed at the same level ubiquitously. They are involved in the maintenance of the 

steady-state and in the survival. Often, however, it is difficult to define which genes actually 

belong to this category. Affymetrix has inserted in its platforms a set of genes that have very 

low variability among a big set of experiments with samples coming from different tissues 

and that can be considered as real housekeeping genes.

Over the years, several algorithms have been developed to normalize the microarray data.

Currently over 50 methods are described and compared at http:// affycomp.biostat.jhsph.edu/. 

The most popular ones for affymetrix arrays are RMA e MAS5.

With Microarray Analysis Suite (MAS) 5.0, proposed by Affymetrix (Statistical Algorithms 

Description Document (2002 Affymetrix Inc.),  the chip is divided in 16 zones, for each of 

them the 2% of the lower intensities are used to calculate the local background. This value is 

subtracted from all the intensities in the region, taking into account the distance of the spot 

from the centroid of the grid. In this way, the algorithm corrects both PM and MM values, 

before using both for the assessment of the final result.

Because approximately 30% of the MM intensities are higher than the respective PM, in this 

cases an ideal mismatch is used.

MAS5  normalizes  each  array  independently  and  sequentially,  after  the  summarization 

process. The results are not log transformed.

Robust Multi-array Average (RMA) proposed by Irizarray in 2003 (Irizarry,  2003) uses a 

multi-chip model. It imposes the same empirical distribution of intensities in each array. RMA 

does not use the mismatch probes, because their intensities are often higher than the match 

probes, making them unreliable as indicators of non-specific binding. RMA values are in log2 

units,  so  they  are  not  directly  comparable  with  MAS5  normalized  data.  Nevertheless, 

normalized data are log-transformed at the end. The advantage of using this transformation is 

that the resulting data reflect the up-regulation and down-regulation values in a symmetrical 

scale. Without log conversion, ratios of down-regulated genes have their values between 1 

and 0, while up-regulated ratios can have large values.
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2. INTRODUCTION

GRAPHICAL PRESENTATION OF THE DATA

Graphic displays can help assess the success of the experiment, guide the choice of 

analysis tools, and highlight specific problems. The first and most obvious diagnostic graphic 

is the well-known image in which the scanned microarray output images of the Cy3 and Cy5 

channels  are  false-colored  green and red,  respectively,  with  yellow representing an equal 

balance  of  the  two.  Co-registration  and  overlay  of  the  two  channels  offers  a  quick 

visualization  of  the  experiment,  revealing  information  on  color  balance,  uniformity  of 

hybridization, spot uniformity, background, and artifacts such as dust or scratches.

Boxplots:  comparison of  intensity  distribution among the  arrays  of  a  dataset.  The box is 

delimited by the 3rd and the 1st quartile values. The line in the middle of the box is the 

median value. The horizontal lines connected to the box via the dash line represent the higher 

and the lower values, without considering the outliers.  Median is more robust to outliers than 

the mean.

An  alternative  way  of  representing  the  data  is  provided  by  histograms,  which  give 

information on the distribution of intensity values.

Figure 1 Boxplots and smoothed histograms of unprocessed log scale probe intensities for 6 arrays from the 
same data set.  

QUALITY ASSESSMENT OF AFFYMETRIX GENECHIP

There are several useful tools implemented to assess the quality of microarray data. A 

typical first step is to look at pseudo-images created starting from the raw probe-level data: in  

this way it is possible to identify artifacts on the array. RNA Degradation Plot gives a good 

indication of the quality of the sample that has been hybridized to the array. Because this kind 

of degradation starts at the 5’ end of the molecule and progresses to the 3’ end it can be easily 
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measured using oligonucleotide arrays, where each PM probe is numbered sequentially from 

the 5’ end of the targeted mRNA transcript. When RNA degradation is advanced, PM probe 

intensity at the 3’ end of a probeset should be higher when compared with the 5’ end one. In 

the graph, the lines have to be shifted from the original data for a clearer view, but, if there 

are no problems, the slopes remain unchanged because it is platform specific.

Figure 2 Each plot represents an microarray experiment realized on a specific platform. Plotted on the Y axis is  
mean intensity by probeset position. Intensities have been shifted from original data for a clearer view, 
but slope is unchanged.

Another quality assessment method uses the probe level model (Bolstad, 2004). According to 

this  model,  the  intensity  value  of  each  probe  depends  on  the  actual  expression  of  the 

corresponding gene in the array, the sequence of the probe and the error of measurement. This 

model uses the robust linear regression that is able to highlight whether the errors in the 

measurements are not uniformly distributed or whether several outliers are present. Based on 

this model, several quality assessment tools were constructed. Different pseudo-images can 

be created pointing out subtle artifacts that might otherwise be missed completely. 

             A           B        C

Figure 3  Chip pseudo-images based on PLM fit  make visible subtle artifacts.  Images of  A) the raw probe 
intensities (log transformed) B) weights and C) residuals.
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Two  different  plots  are  constructed  based  on  the  probe  level  model.  The  Relative  Log 

Expression (RLE) plot shows for each array and for each gene across all arrays, the deviation 

of gene expression level from the median gene expression level. The majority of genes does 

not change the mRNA quantities. Hence, the boxplot with the difference calculated between 

the estimated expression value derived from the regression and the median across arrays 

should be centered around zero with a small spread. An array with quality problems may 

show significantly different values compared to the majority of arrays, resulting in a RLE box 

with greater spread or a median that deviates from 0.

The Normalized Unscaled Standard Error (NUSE) plot portrays the chip-wise distribution of 

standard error estimates, obtained for each gene on each array. To account for the fact that 

variability differs considerably between each gene, the error estimates are standardized so that 

the median standard error across arrays is 1 for each gene.

Figure 4 RLE plot and NUSE plot for the same data set. The array with the spatial effect deviates considerably  
from the other arrays. 

DIFFERENTIALLY EXPRESSED GENES

The most common and basic question in DNA microarray experiments is  whether 

genes  appear  to  be  down-regulated  (the  expression  has  decreased)  or  up-regulated  (the 

expression has increased) between two or more groups of samples.

Assessing  the  differential  expression  of  genes  allows  a  deeper  understanding  about  the 

difference between two groups of samples when the biological functions of those genes are 

well-known. Additionally the results can suggest possible functions for genes.

A gene is considered differentially expressed if its expression value between the compared 

conditions are significantly different. The relative gene expression value also known as "fold 
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2. INTRODUCTION

change" (FC) is expressed as the logarithm of the ratio between the intensity value of the gene 

in an experimental condition and that in the reference condition. A threshold has to be fixed in 

order to distinguish up-regulated or down-regulated genes.

It is important to keep in mind that the absolute difference of expression simply quantifies the 

degree of intensity variation between the two groups, whereas it is essential to understand if 

the  observed  difference  is  significant.  One  of  the  most  used  methods  to  determine  the 

significance of differentially expressed genes between two experimental conditions is the t-

test.  It  compares  the  averages  of  the  two  groups  of  values  (normalized  by  the  standard 

deviation) in order to assess if their difference is significant, or whether it is only due to 

chance.

The bigger is the value of the t-statistics, the more significant is the difference between the 

expression in the two experimental conditions. t assumes high values when the averages are 

very  different  or  when  the  variances  of  the  two  groups  are  low,  indicating  a  very  low 

dispersion  (spread)  of  the  data.  The  latter  conditions  may  be  due  to  chance  in  case  of 

insufficient sampling.

The t-test is useful when the experimental conditions to be compared are only two. When the 

goal of a study is to compare several experimental conditions it is necessary to perform an 

analysis of variance (ANOVA) among the samples (Pavlidis, 2003). Anova is one of the most 

used methods to identify differentially expressed genes in complex experimental designs.

A multiple-testing correction such as FDR (false discovery rate) can be performed at the end 

to control the expected proportion of false positives among the declared significant results.

CLUSTERING

The values of gene expression can be used to classify conditions or gene expression 

profiles. The clustering procedure is complex. There are many different techniques to deal 

with it and also in only a few cases a unique solution is found. Nevertheless, any reasonable 

solution can help to simplify data analysis.  Depending on the way in which the data  are 

clustered  we  can  distinguish  between  hierarchical  and  non-hierarchical  clustering  and 

supervised and unsupervised clustering (Eisen,  1998;  Chipman,  2003; Gollub,  2006).  The 

hierarchical techniques allow to establish an ordered relation among clusters, while, the non-

hierarchical  procedures,  or  at  least  most  of  these,  allocate  the  expression  profiles  into  a 

predefined number of clusters, without providing information on mutual ordering relations 

among them.
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An unsupervised clustering is performed when no previous information about the samples is 

used to classify them and therefore the clustering is a consequence of data alone.

In the case of supervised clustering, instead, previous knowledge about the data is used to 

create different groups in order to make a class comparison with the extraction of a list of 

differentially expressed genes. The usage in grouping genes is based on the premise that co-

expression  is  a  result  of  co-regulation  (Do,  2008). Genes  with  an  identical  profile  of 

expression  may  represent  a  co-ordinate  response  to  a  stimulus.  In  order  to  quantify  this 

relationship, and therefore compare the expression profile of two different genes, we need to 

use an appropriate metric. This metric can be changed in relation to the features, which are 

more important to be analyzed. Among the several metrics that can be defined in the context 

of gene expression profile analysis, the two most widely used are the Euclidean distance and 

Pearson correlation coefficient. The first metric is used to select genes whit similar magnitude 

of expression; the second is generally employed   to search for genes expressed at different 

level but with the same overall profile (Dopazo, 2001).

Having  defined  a  metric,  one  of  the  most  used  hierarchical  clustering  algorithm  for 

microarray  is  UPGMA (Unweighted  Pair  Group  Method  with  Arithmetic  mean).  In  this 

method at each step two gene expression profiles and/or groups of gene expression profiles, 

which average distance is the shortest are clustered together, until no gene expression profile 

is  left.  UPGMA indeed is  just  a  particular  case of the so-called Linkage method.  In this 

method the scheme is similar to that described for UPGMA with the difference that instead of 

choosing the average distance as the distance between two clusters (Average Linkage) we can 

choose the minimum distance of each member of a cluster from each member of the other  

(Single Linkage) or the maximum distance among them (Complete Linkage). 

PCA

Clustering techniques can be used in combination with other exploratory methods that 

allow to visualize the complexity of the data in a two or three-dimensional space. PCA is able 

to select a small  number of variables that can explain the most variability of the data by 

removing the background noise from the dataset. At the end of this procedure, some principal 

components  are  identified:  weighted  combinations  of  the  original  variables  that  have 

maximum variance and that are uncorrelated with one another (Alter, 2000; Raychaudhuri, 

2000; Wall, 2001).
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2. INTRODUCTION

PUBLIC DATABASES OF GENE EXPRESSION PROFILES

Given the huge amount of data produced and the enormous utility derived from the 

opportunity to compare data coming from different experiments, several public repositories 

have  been  created  to  store  and  retrieve  datasets  of  gene  expression  profile  experiments. 

Moreover,  to  make  the  different  data  comparable,  in  2001,  a  standard  called  MIAME 

(Minimal  Information  About  a  Microarray  Experiment)  has  been  developed  in  order  to 

correctly  and  homogenously  depositing  microarray  data  (Brazma,  2001).  The  required 

information allow the right interpretation of the results and the possibility of reproducing the 

experiments.

The main public databases are Arrayexpress at the EBI – European Bioinformatics Institute 

(http://www.ebi.ac.uk/arrayexpress/)  and  GEO  at  the  NCBI  –  National  Center  of 

Biotechnology Information (http://www.ncbi.nlm.nih.gov/geo/). In addition to these databases 

that  contain  data  with different  origin,  there  are  others  that  store data  related to  specific 

sectors,  such as caArray at  the NCI – National  Cancer Institute  and Stanford Microarray 

Database.

BIOLOGICAL INTERPRETATION OF THE RESULTS

Gene Set Enrichment Analysis (GSEA) is  a computational method for interpreting 

gene  expression  data  that  determines  whether  an  a  priori  defined  set  of  genes  shows 

statistically significance, concordant differences between two biological states (Subramanian, 

2005).  All  analysis  can  be  performed  using  the  GSEA  software  available  at 

http://www.broadinstitute.org/gsea/index.jsp

DAVID is  an  integrated  biological  knowledge-base  and  analytic  tool  (available  at 

http://david.abcc.ncifcrf.gov) that allows to extract biological meaning from large gene lists 

derived from high-throughput genomic experiments (Sherman, 2007). It uses more than 40 

publicly available functional annotation sources and a novel agglomeration algorithm in order 

to  define for  each gene  some identifiers.  This  analysis  permits  to  associate  not  simply a 

biological enriched themes but also a set of gene clusters, a gene functional groups involved 

in well-defined functional pathways.
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2.2 CASPASES
Caspases (cysteinyl  aspartate proteinases) are a family of aspartate-specific cysteine 

proteases whose catalytic activity depends on the presence of a cysteine residue inside the 

highly  conserved  active  site  (pentamer  QACRG).  Caspases  act  on  their  substrate  in  a 

selective way: they recognize at least 4 contiguous amino acids in their substrate and they 

cleave the peptide bond after  the 1st residue,  which is  usually  an aspartic  acid (Alnemri, 

1996).  Cys side chain is  used as a  nucleophile  to  accomplish peptide bond hydrolysis  in 

several protease families. 

Caspases are involved in the launch and in the execution of the apoptotic process, one of the 

most well-studied forms of programmed cell death. This process is genetically controlled and 

evolutionary  conserved  because  of  its  fundamental  role  for  the  embryogenesis  and  the 

maintaining of the tissue homeostasis in the adult organism. Moreover, caspases are involved 

in  different  processes  such  as  inflammatory  responses,  proliferation  and  differentiation 

(Launay, 2005; Lamkanfi, 2007). They were discovered initially in Caenorhabditis elegans, 

the  organism  where  for  the  first  time  the  apoptotic  phenomenon  was  observed  and 

characterized during the normal development. Until now, 11 genes, coding for 11 different 

caspases, are known in humans (Li, 2008). They are widely expressed with the exception of 

caspase-14 that is limited to keratinocytes (Denecker, 2008). 

Caspases are synthesized like zymogens constituted by a small and a larger subunit  and their  

activation necessitates the proteolytic  removal of N-terminal  prodomain.  Caspases can be 

classified in two different ways: or in relation to the main function, as pro-apoptotic and pro-

inflammation enzymes or on the bases of the prodomain dimension, as initiatior and effector 

caspases.  Initiator  caspases  contain  a  long  prodomain  that  mediates  both  homotypic 

interaction forming dimers or oligomers or heterotypic interaction with additional proteins 

that  can  exhibit  both  repressive  and  activation  functions.  In  the  initiator  caspases  the 

prodomains  are  structurally  defined  domains  characterized  by  6  alpha-helices.  Two 

principally sub-types of pro-domain exist:  the CARD (CAspase Recruitment Domain) and 

the DED (Death Effector Domain) both involved in interacting with the upstream adaptor 

molecules (Figure 5). 
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Figure 5 Domain organization of caspases.

Effector caspases present a short prodomain. They perform the downstream execution steps 

of apoptosis by cleaving multiple cellular substrates and are typically processed and activated 

by upstream caspases (Jin, 2005). Over 400 different substrates are known, information about 

these can be found in a public databases (Lüthi, 2007). 

Caspases are not all equally active from the proteolytic point of view. The initiators seem to 

be  more  specific  respect  to  the  effectors,  they  are  not  able  to  cleave  many substrates  in 

addition to the precursors and the downstream caspases. Differently, effector caspases and 

caspase-3 in particular are responsible for most of the proteolytic processes occurring during 

apoptosis (Thornberry, 1998; Slee, 1999; Barnhart, 2003). 

CASPASE-2

Caspase-2, initially described as Nedd-2/Ich-1 has been identified as a protein related 

to the C. elegans cell death protein CED-3 and mammalian interleukin-1β-converting enzyme 

(caspase-1). Despite the high degree of conservation, the contribution of caspase-2 to cell 

death is still mysterious and the mechanism controlling its regulation and function is much 

less understood when compared to other regulative caspases (Vakifahmetoglu-Norberg, 2010; 

Krumschnabel, 2009).

Caspase-2 was initially identified as a neuronal expressed gene that is down-regulated during 

brain  development.  Its  mRNA level  is  much  higher  in  developing  CNS  than  in  fully 

differentiated adult brain (Kumar, 1992). It presents a CARD domain followed by the large 

(p19)  and  the  small  subunits  (p12),  separated  by  a  linker  region.  The  two  subunits  are 

generated after proteolytic processing at Asp residues. The proenzyme can undergo to auto-

processing and both subunits contribute to the formation of the catalytic site.

Two distinct caspase-2 mRNA species derived from alternative splicing encode two proteins, 

caspase-2L  and  caspase-2S.  Overexpression  of  caspase-2L  induces  cell  death,  whereas 
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overexpression of caspase-2S can antagonize cell death. Caspase-2L is the dominant isoform 

that is expressed in most tissues (Wang, 1994).  

CASP2 shows sequence homology with CASP9 and CASP1, but a specificity of cleavage 

similar  to  CASP3  and  CASP7.  Importantly  its  preference  goes  toward  a  pentapeptide 

(VDVAD/G) instead of the classical tetrapeptide (DEVD/G). In summary this protein shares 

features both with initiator and effector caspases.

Caspase-2 presents two signals for nuclear localization in the prodomain region. Mutation of 

a specific lysine residue within these NLS is sufficient to prevent the nuclear accumulation 

and to induce its accumulation into the cytoplasm (Paroni, 2002). There are evidences that in 

untreated cells, the only caspase present in the nucleus is CASP2, while after the activation of 

the  apoptotic  program  both  CASP2  and  CASP3  can  be  found  in  the  nuclear  fraction 

(Zhivotovsky, 1999). CASP2 has been also localized in the mitocondria, in the endoplasmic 

reticulum and in Golgi-like structures, although the relative data are controversial.

CASP2 activation is primed by its dimerization. Subsequently, removal of the CARD domain 

and cleavages at the linker region between the large and the small subunits can be observed, 

to generate the tetrameric form. Caspase-2 is activated by proximity-induced oligomerization 

and trans-cleavage in vitro, and ectopic overexpression is sufficient for its activation in cells. 

In fact at high concentrations, self-association and subsequent oligomerization through the 

CARD domain occurs (Baliga, 2004). 

Through its card domain, CASP2 interacts with several proteins. In response to DNA damage, 

the  PIDDosome  has  been  proposed  to  control  CASP2  activation.  The  PIDDosome  is  a 

multiproteins  complex  containing  the  PIDD,  encoded  by  a  TP53–induced  gene  and 

CRADD/RAIDD (Tinel,  2004;  Park,  2007).  The  latter  contains  one  CARD and one  DD 

domain, which respectively associate with the CARD domain of CASP2 and the DD domain 

of PIDD, respectively. PIDD may act as a switch molecule controlling the balance between 

cell  survival  and cell  death in response to DNA damage.  By increasing its  expression or 

inhibiting  its  activity,  it  is  possible  to  promote  or  to  attenuate  p53-mediated  apoptosis, 

respectively (Lin, 2000; Tinel, 2004; Baptiste-Okoh, 2008).

Both  apoptosis  and  CASP2  processing  have  been  studied  in  PIDD-deficient  mice. 

PIDDosome is not essential for DNA damage-induced cell death, but it is able to modulate 

CASP2 activity in processes leading to cell survival rather than cell death. Moreover, in cell  

types where CASP2 localization is mainly nuclear the PIDDosome is needed for its activation 

(Vakifahmetoglu, 2008; Shi, 2009). In other cells where the protein remains in the cytosol the 
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activation is independent from this complex (Vakifahmetoglu, 2006; Olsson, 2009; Manzl, 

2009).  These  results  suggest  that  there  are  other  protein  complexes  involved  in  CASP2 

activation (Manzl, 2012) (several evidences published) or in some cases, it is possible that 

this  process is due to an autoproteolytic cleavage without the requirement of any adaptor 

protein for their oligomerization (Baliga, 2003). Furthermore in PIDD-null cells, CASP2 can 

be cleaved by CASP3 or CASP7 (Manzl, 2009), while in CASP9 deficient cells apoptotic 

stimuli abolish proteolytic processing of CASP2 (Paroni, 2001; Samraj, 2007).

In summary it remains unclear whether CASP2 really requires an activation platform or it 

may dimerize,  auto-process and autoactivate in the absence of such a platform. It  is also 

possible that different mechanisms of activation may be involved in response to different 

cellular stresses.

Different mechanisms act to regulate CASP2 activity. The first is the production of PIDD-

fragment  whit  different  dimensions,  where  the  shorter  is  produced  when  cells  undergo 

apoptosis, while the longer when repair mechanisms are needed after DNA damage (Janssens, 

2005; Tinel, 2007).

Differential expression levels have been found for the two splicing variants 2L e 2S: the latter  

has a protective role against cell death probably through the formation of inactive caspase-

2L/S heterodimers at the expense of pro-apoptotic, active caspase-2L homo-dimers (Droin, 

2001). 

CASP2 can be inactivated through phosphorylation of several residues and it can undergo N-

terminal acetylation or SUMOylation (important for its subcellular localization) (Shirakura, 

2005).

Function: Casp2-deficient mice don't help to evaluate the requirement for this enzyme in the 

apoptosis  or  in  other  physiological  process.  Mice  carrying  a  null  mutation  for  caspase-2 

develop normally without severe phenotypic abnormalities (Bergeron, 1998). It is likely that 

other  caspases  compensate  for  its  deficiency.  Hence,  this  study  did  not  contributed 

significantly to clarify the biological function of this protease.

Several  studies  have  proposed  several  interaction  partners  for  CASP2,  suggesting  the 

involvement of this protease in different signaling pathway. Here, a brief summary of the 

CASP2 possible functions as hypothesized in the literature (see Krumschnabel, 2009; Fava, 

2012 and references cited therein). 

Caspase-2 was proposed to be involved in DNA damage response (Zhivotovsky, 2005) but 

the exact role is debated and controversial. Some results suggest its engagement as initiator, 
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before the release of the cytochrome c and the apoptosome formation (Guo, 2002), others 

contradict  this  idea  by  indicating  a  role  as  downstream caspase  in  genotoxic  cell  death 

(Paroni, 2001; Paroni, 2002; O'Reilly, 2002; He, 2004; Bonzon, 2006).

Caspase-2 activation after DNA damage seems to be under the control of ataxia telangiectasia 

mutated (ATM) kinase, that is able to induce its activation through the phosphorylation of 

PIDD that leads to the PIDDosome formation (Ando, 2012). CASP2 is involved also in ER 

stress: under this condition IRE1α promotes a rapid degradation of microRNAs that target its 

mRNA, causing a fast protein synthesis, contributing to the induction of apoptosis (Upton, 

2012).

Several  non-apoptotic  functions  have  been  proposed  to  be  influenced  by  caspases.  An 

increase of CASP2 activity during the cell cycle leads to a delay in the G2 phase progression 

into  M  phase  in  an  ATM-dependent  manner  (Shi,  2009).  Caspase-2  is  a  sensor  of  the 

metabolic state of the cell: the phosphorylation of Ser135 by CaMKII kinase and the opposite 

process catalyzed by PP1 are both under the metabolic control (Nutt, 2005).  Treatment of 

Xenopus  oocytes  with  glucose-6-P  activates  the  kinase  that  inhibits  CASP2.  When 

phosphorylated CASP2 is bound by 14-3-3ζ proteins and in this way maintained in an active 

state. Nutrient depletion promotes CASP2 dephosphorylation thanks to the action of PP1 and 

the release from the 14-3-3 (Nutt, 2009). Glucose-6-P acts on the interaction ability of 14-3-

3ζ proteins, controlling in a still undefined manner its acetylation state (Andersen, 2011).

CASP2 is involved in aging: loss of CASP2 induces a premature aging due to an increase of 

oxidative stress (Shalini, 2012). It is also considered a tumor suppressor (reviewed in Puccini, 

2013a and Olsson, 2014) since its absence provides some advantages in terms of oncogene-

induced transformation  (Ho, 2009; Parsons, 2013; Puccini, 2013b) even though in a tissue 

and context-specific manner (Dorstyn, 2014).

Sequence  analysis  of  a  5-kb  region  upstream of  the  first  non-coding  exon  of  caspase-2 

revealed the presence of 6 different putative binding site for the sterol regulatory element 

binding  proteins  SREBPs  (Logette,  2005).  Experiments  of  progressive  deletions  and 

mutations in these putative sites coupled with a ChIP assay, confirmed the binding of these 

TFs to the promoter region of CASP2. Using lipid-lowering drugs, such as the statins, which 

are able to trigger cholesterol depletion and a compensatory feedback mechanism that induces 

SREBP maturation,  the transcription of their  target  genes  as  well  as the level  of CASP2 

mRNA increase. Overexpression of the SREBPs result in a large increase of lipid levels; the 

simultaneous silencing of CASP2 reduces this augmentation by 50%.
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CASPASES in the Central Nervous System (CNS)

Several studies have confirmed the engagement of caspases in the apoptotic processes that 

occur in CNS (Hyman, 2012). They are involved in the normal neuronal development and in 

programmed cell death events that accompanies normal cerebral processes or the appearance 

of acute and chronic neurodegenerative diseases. The global and full activation of caspases 

leads to  apoptosis,  whereas maintaining limited and localized activations  it  is  possible  to 

control normal physiology in living neurons (Hyman, 2012). 

Apoptosis  strongly  characterized  brain  homeostasis.  Approximately  30–70%  of  newly 

generated neurons in the adult brain undergo programmed cell death within 1 month of their 

initial  production.  Neurons  undergo  apoptosis  also  in  case  of  trophic  factor  deprivation. 

Several caspases are involved in this process, both in developing and mature brain (Haviv, 

1997; Deshmukh, 1997; Li, 1998). 

Caspases have also non-apoptotic roles in CNS. They are able to regulate important neuronal 

functions,  such as axon pruning and synapse elimination,  processes that  are  the bases  of 

neuronal plasticity, essential to refine mature neuronal circuits (Williams, 2006; Li, 2012). 

Caspases are involved in normal synaptic physiology. The long-term depression (LTD), in 

which synapses become less sensitive to stimuli with a significant change in the dendrites'  

size at the spine level, can be blocked after inhibition of either caspase-3 and caspase-9 (Li, 

2010).

Not surprisingly in chronic neurological diseases, like Alzheimer's disease and other forms of 

dementia caspases can play a role. They are activated after an acute neurological injury such 

as ischaemia in a region-specific and in a time-dependent manner. Generally at early times, in 

the necrotic core, caspase-8 and caspase-1 activation can be observed whereas at later point,  

in the surrounding region the involvement of caspase-9 was reported (Benchoua, 2001).

With regard to caspase-2, it is expressed at high level during brain development but it has also 

a strong involvement in the apoptotic processes of the adult CNS. Caspase-2 has been shown 

to be required for neuronal death induced by several stimuli, including NGF (nerve growth 

factor) deprivation and Aβ (β-amyloid) (Troy, 2000).

Both  NGF deprivation and Aβ treatment  of  neurons induce caspase-2 activation  and this 

activation depends on RAIDD expression, but is independent from PIDD expression (Ribe, 

2012).
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2.3 CHRONIC LYMPHOCYTIC LEUKEMIA
In the second part of my PhD thesis I used the microarray technology to define the 

genetic elements of responsible for the responsiveness of B-cell chronic lymphoid leukemia 

(B-CLL) to a new inhibitor of the ubiquitin proteasome system (Aleo, 2006; Fontanini, 2009; 

Foti, 2009).

Leukemias  are  malignant  diseases  characterized  by  a  tumor  proliferation  of  lymphoid  or 

myeloid tissues, with the development of lymphoproliferative or myeloproliferative disorders, 

respectively. In both cases, the tissues present a decrease in differentiation and alterations in 

the mechanisms controlling programmed cell  death.  It  can occur in an acute form, if  the 

proliferation of tumor tissues affects cells unable to differentiate, or in a chronic form, when 

proliferation concerns cells able to differentiate, although not completely.

The  chronic  lymphoid  leukemia  (CLL)  is  a  chronic  lymphoproliferative  disorder 

characterized  by  the  proliferation  and  subsequent  accumulation  of  mature  lymphocytes 

inactive from the immunological point of view and not able to divide (Bertilaccio,  2010; 

Klein, 2010; Zenz, 2010) . 

Accumulation of these lymphocytes affects the primary lymphoid organs (bone marrow) and 

secondary (lymph nodes and spleen). Compared to the other type of leukemia, CLL usually 

grows slowly and many patients may not have any symptom for years. It is generally harder  

to cure than acute leukemias. In some cases, the patient has several infections in the period 

before the diagnosis (Dameshek, 1967; Twomey, 1973).

There are two different subtypes of CLL. A subtype grows very slowly and for this reason it  

may take a long time before the patient needs treatment. On the opposite the second subtype 

grows faster and is a more serious disease (Rosenwald, 2001).

CLL is the most common form of leukemia in Western countries. It is a disease typical of the 

adult life with a median age at diagnosis of about 65 years, twice as common in males. 95% 

of  CLL cases  is  derived  from  B  cells,  and  only  the  remaining  5%  by  T  lymphocytes 

(Seligmann, 1973).

The most widely used staging systems for CLL are two: the Rai staging system (Rai, 1975) 

and the Binet classification (Binet, 1981).
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Table 1 Rai and Binet staging systems for classification of CLL.

These two staging systems, although they are the most widely used in clinical practice and 

they are able to predict the clinical course of the disease in terms of survival from diagnosis,  

have limitations and not consider a number of biological parameters introduced recently that 

have now a fundamental role in the prognostic stratification of the disease and sometimes in 

the diversification of the therapeutic treatment (Döhner, 2000; Montillo, 2005; Hallek, 2008; 

Zenz; 2011).

The most important prognostic factors in CLL, in addition to the clinical stage, are markers of 

tumour load (the lymphocyte count, the lymphocyte doubling time, the serum LDH level or 

the bone marrow (BM) infiltration pattern), cellular protein expression (ZAP70 and CD38) 

and  genetic  parameters  including  immunoglobulin  heavy  chain  variable  gene  segment 

(IGHV) mutational status, genomic aberrations and individual gene mutations (Kröber, 2002).

B-cell response to antigen is mediated through the B cell receptor (BCR) in normal 

and malignant B cells.  CLL patients  can be classified based on the assessment of B cell  

receptor mutational status (Hamblin, 1999; Hamblin, 2002).

While CLL with unmutated IGHV follows an unfavorable course with rapid progression and 

earlier death, CLL with mutated IGHV often shows slow progression and long survival.

Approximately  80%  of  CLL  cases  exhibit  aberrations  in  a  few  recurrently  affected 

chromosomal regions (Stilgenbauer, 2000). The aberrations linked to short survival have a 
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higher incidence in the case of IGHV unmutated status, even if both mutated and unmutated 

present genomic alterations (Stilgenbauer, 2002).

Principal genetic alterations in CLL

Deletion 13q14 occurs in more than half of the cases, it  correlates with the best survival  

expectancy. In contrast to other recurrent aberrations, 13q14 deletions may be hetero- or (less 

commonly)  homozygous.  Studies  of  serial  samples  suggest  that  heterozygous  deletion  of 

13q14 is an early event, whereas deletion of the second copy of this region occurs at a later  

stage (Shanafelt, 2006; Stilgenbauer, 2007).

Deletions of 11q22-q23:  it affects patients (about 25%), which have a more rapid disease 

progression.  These deletions  often  lead  to  a  hemizygous  loss  of  the  ataxia  telangiectasia 

(ATM) gene in almost all cases. No homozygous 11q deletions have been described. The 

ATM is a protein kinase involved in the response to DNA damage and DNA double-strand 

breaks. ATM disruption in CLL may occur by mutation, deletion, or a combination of both 

events: mutations of the ATM gene have been shown to occur in 12% of patients with CLL 

and 30% of patients with 11q deletion (Austen, 2005; Austen, 2007).

Trisomy 12 is a frequent aberration in CLL (10–20%), resulting in an intermediate outcome.

The  molecular  genetic  defects  associated  with  these  risk  categories  are  unknown.  For 

trisomies in general,  it  is often assumed that there is a gene dosage effect of a candidate 

oncogene  on  the  additional  chromosome,  but  such  a  gene  has  yet  to  be  identified  on 

chromosome 12 (Winkler, 2005; Porpaczy, 2009).

Deletions 17p.  It is often associated with unmutated IgHV and it confers the highest risk 

(poor prognosis and refractory disease).

While  the  deletion  frequently  encompasses  most  of  short  arm  of  chromosome  17,  the 

minimally deleted region always involves 17p13, the locus of the TP53 gene.

Most  cases  (over  80%)  with  17p  deletion  show  loss  of  one  copy  and  mutation  of  the 

remaining copy. The sole TP53 mutation occurs in approximately 5% of patients (Zenz, 2008; 

Dicker, 2009; Rossi, 2009).

Patients affected by CLL are treated with chemotherapy drugs or with monoclonal antibodies 

against  surface  antigens  present  in  the  B-lymphocytes.  Taking  into  account  the  great 

heterogeneity, the prognosis is extremely variable, with a survival time between 2 and 20 

years  (Rodríguez-Vicente,  2013).  Unfortunately,  despite  by  combining  different  drug 

treatments it is possible to prolong the time free of disease, the CLL tends to relapse. The only 
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curative strategy is  the allogeneic transplantation,  used in very few cases (above all  with 

young patients), given the very high mortality rate (Dreger, 2007; Gribben, 2009).
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3. MATERIALS E METHODS

PIPELINE

Packages installation

R  is  a  free  software  environment  for  statistical  computing  and  graphics.  It  has  several 

advantages: an active user community, a constant update, an easy installation and high quality 

standards.

It  is possible to download R at  http://cran.r-project.org/. It  runs on all  common operating 

systems.

The Bioconductor project supply additional libraries to manage biological data  (Gentleman, 

2004).

To quickly install a set of the most common packages 

source("http://www.bioconductor.org/biocLite.R")

biocLite()

To install R libreries

install.packages("name_package_R”)

In the Affymetrix system, the raw image data are stored in so-called DAT files. Currently, 

Bioconductor  software  does  not  handle  the  image  data,  and  the  starting  point  for  most 

analyses are the CEL files. These are the result of processing the DAT files using Affymetrix 

software to produce estimated probe intensity values. Each CEL file contains data on the 

intensity at each probe on the GeneChip, as well as some other quantities. To import CEL file 

data into the Bioconductor system, we use the ReadAffy function contained in the library affy. 

So first it is necessary to load the library affy, and then we issue the command ReadAffy:

library(affy) 

Data <- ReadAffy()

which reads all the CEL files in the current working directory and return the probe-level data 

in an object of class AffyBatch. The function list.celfiles() can be used to show the CEL files 

that are located in the directory. 

Affymetrix  provides  probe  information  in  what  are  referred  to  as  CDF files.  These  files 

denote which probe belongs to which probeset and whether the probe is a PM or MM.

The affy package automatically load a CDF package, when the package does not exist on the 

users system, it tries to download and install it. 
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For custom arrays, makecdfenv library can be used to convert the CDF file into an R package 

that has to be installed using the R CMD INSTALL command (Dai, 2005; Ferrari, 2007).

In this case, in order to use custom CDF packages, within the AffyBatch object, the value of 

the slot cdfName has to be replaced with the custom CDF name.

Data<-ReadAffy(cdfname ="custom_CDF_name")

The pm and mm accessory functions return the PM and MM probe intensities.

The function probeNames returns a vector of probeset IDs where the ith entry corresponds to 

the ith row of the PM matrix.The functions sampleNames and geneNames access the names of 

the samples and Affymetrix probeset IDs stored in the AffyBatch object, respectively.

names_CEL<- sampleNames(Data)

names_gene<- geneNames(Data)

In order to modify and simplify sample names sub function can be used.

sampleNames(Data)<- sub("old_pattern" ,"new_pattern", 

sampleNames(Data))

Preprocessing 

Affymetrix  expression  arrays  usually  involves  three  steps:  background  adjustment, 

normalization, and summarization. 

eset <- rma(Data) 

eset <- mas5(Data)

The  expresso function provides quite general facilities for computing expression summary 

values. In particular it allows most background adjustment, normalization, and summarization 

methods to be combined. 

eset <- expresso()  

In order to record normalize data, a dataframe has to be created. The exprs function creates an 

expression matrix in which columns represent the arrays and rows the probesets.

values<- exprs(eset)

norm<-data.frame(probeid=row.names(values),values)

write.table(norm, "datix.txt",sep="\t")

Quality Assessment of Affymetrix GeneChip

Various graphical tools that can be used to facilitate the decision of whether to remove an 

array from further analysis  Exploratory data analysis has been the tool of choice for detection 

of  problematic  arrays.  The  image function can be used to  create  chip images  of  the raw 
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intensities. 

To record the image in a png file, the object has to be create before the image creation and 

than it has to be closed.

png(" ")

image(name_CELi)

dev.off()

To generate an unique image with all the arrays together, the par function can be use.

par (mfrow=c(n_row,n_column))

{for (q in 1:length(names_CEL)image(Data[,i])} 

Looking at  the distribution  of  probe intensities  across  all  arrays  at  once  can   sometimes 

demonstrate that one array is not like the others. The boxplot gives a simple summary of the 

distribution of probes. In the affy package the boxplot method is available for the AffyBatch 

class. 

Looking at histograms of the probe-level data can also reveal problems. The hist function 

creates smoothed histograms (or density estimators) of the intensities for each array. 

boxplot(Data)

hist(Data)

The RColorBrewer package is used to select a nice color palette.

install.packages("RcolorBrewer")

#Show all the colour schemes available

display.brewer.all()

scale<-colorRampPalette(brewer.pal(9,"Blues"))

(length(names_CEL))

scale<-

colorRampPalette(colors=c("color1","color2",...,"colori"))

(length(names_CEL))

To apply the color scale, input the name of your custom scale in the argument for col.

RNA degradation

3'/5' ratios for several control genes  can be used for quality assessment purposes.

We use the AffyRNAdeg function for this evaluation.

RNAdeg <- AffyRNAdeg(Data)

plotAffyRNAdeg(RNAdeg) 

A summary of the slopes can be viewed in the following way
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summaryAffyRNAdeg(RNAdeg)

Different chip types have different characteristic slopes because of the differences in probeset 

architecture.

Probe Level Model (PLM)

Numerous useful quality assessment tools can be derived from the output of the PLM fitting 

procedures.

Two different packages allow to do this evaluation.

library(oligo) 

celFiles = list.celfiles () 

raw = read.celfiles (celFiles)

plm<-fitProbeLevelModel(raw) 

show(plm)

library("affyPLM")

plm<-fitPLM(Data)

show(plm)

This library allows to obtain three different pseudo-images that highlight also subtle artifacts 

that could otherwise be missed.

image(plm,type = "weights")

image(plm,type = "resids")

image(plm,type = "sign.resids")

By using the PLM output, it is possible to use two other graphical tools.

In the RLE plot, boxes have small spread and they are centered near 0, problematic arrays 

deviate considerably from the others.

rle<-RLE(plm, las=2,cex.axis=0.6) 

The NUSE plot shows boxes centered near 1, in the case of arrays with no spatial effect.

nuse<-NUSE(plm, las=2,cex.axis=0.6) 

arrayQualityMetrics is  a  Bioconductor  package that  provides  an  exposition  of  diagnostic 

plots  for  one  or  two  colour  microarray  data  (Kauffmann,  2009). It  uses  powerful  and 

comprehensive tools and generates an automatic report, in an html format.

library(arrayQualityMetrics)

arrayQualityMetrics(expressionset = Data,outdir = "datiraw")
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By inserting do.logtransform = TRUE as option, the data are log converted, before doing the 

assessment.

Filtering

The aim of the filtering step is to discard the probesets with very low expression across the 

samples (and that provide no biological information) in order to reduce noise in data and to 

avoid  wrong  interpretations  of  the  final  results.  In  differential  analysis  for  example,  the 

number of hypothesis to test is therefore reduced (which is very useful in the multiple testing 

context).

A useful library to do this is EMA (Easy Microarray data Analysis). The function used is 

expFilter.

filter<-expFilter(eset,threshold = 3.5,p=0.01,graph = TRUE) 

In this way, it keeps only probes with at least 1 sample with an expression level higher than 

3.5. 

With the functions  dim and summary it is possible to obtain information about the result of 

this step.

An alternative approach provides for the use of genefilter package.

f1<- kOverA(1, 3.5)

ffun<- filterfun(f1) 

filter<- genefilter(exprs(eset), ffun)

The result is the same.

Here  f1  is  a  function  that  implies  “expression  measure  above  3.5  in  at  least  1  sample” 

criterion, the function ffun is the filtering function that by using genefilter is applied to the 

data.

Annotating a platform

Bioconductor provides an extensive catalog of R packages that encodes annotation resources.

From the web site is possible to download a library containing all the informations about the 

probesets in the platform. This .db package has to be installed and loaded to be opened. So 

fields of interest can be chosen, after the visualization with the ls function.

library(annotate)

library("platform_name.db")

ls("platform_name.db")
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A dataframe with all the probe informations has to be prepared and recorded in a .csv file.

ID <- featureNames(eset) 

Symbol <- getSYMBOL(ID, "platform_name.db")

Name <- as.character(lookUp(ID, "platform_name.db", 

"GENENAME")) 

Ensembl <- as.character(lookUp(ID, "platform_name.db", 

"ENSEMBL")) 

df <- data.frame(ID=ID,Symbol=Symbol, Name=Name, 

Ensembl=Ensembl)

write.table(df,"Annotation.csv",sep="\t")

In the case of Exon GeneChip, we can adopt a different strategy. The CEL file has to be read 

in an alternative way in order to create a different object. 

It allows the user to obtain summaries at the probeset level and also at the transcript level. For 

Exon arrays, there are three possible options for transcript level summarization: core, full and 

extended.

library(oligoData) 

exonCELs <- list.celfiles() 

affyExonFS <- read.celfiles(exonCELs) 

data(affyExonFS)

exonPS <- rma(affyExonFS, target = "probeset") 

exonCore <- rma(affyExonFS, target = "core") 

 

Biological  annotation  can  be  obtained  with  the  getNetAffx function.  It  will  return  an 

AnnotatedDataFrame object, which contains all the information about the platform features.

featureData(exonPS) <- getNetAffx(exonPS, "probeset") 

featureData(exonCore) <- getNetAffx(exonCore, "transcript")

In order to select only few fields, we visualize all the content available through the index, 

obtained in the following way

varLabels(featureData(exonCore))

To estract all the gene symbols

x<-pData(featureData(exonCore))[1:length(exonCore), 

"geneassignment"] 

write.table(x,"geneassignmentCore.txt",sep="\t")

For Illumina platform the annotations can be directly downloaded from the web site as .bgx 
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file. The illuminaio package is then needed to convert this in csv format.

library(illuminaio) 

A<-readBGX("file.bgx")

To extract the list of gene symbols

A1<-A[[1]] 

write.table(A1,"file.csv",sep="\t")

Differentially Expressed Genes (DEG) selection

The choice to use maanova package instead of the classical aov analysis, was motivated by 

the fact that it is a powerful tool to manage both small and large scale microarray data sets, 

also arising from sophisticate designed experiments.

The first step is the preparation of design file with a well-defined fields. One has to check 

order and names of samples to set up design matrix.

One must have an Array column (in the same order respect to the names_CEL object) and 

other three columns, containg Strain, Sample and Dye. Dye is reserved for the staining dye, 

and Sample  is  reserved to  identify  biological  replicates.  Usually  we have  to  assign each 

biological subject a unique sample number.

design.table <- data.frame(Array=row.names(pData(Data)), 

Strain = c(" ",...), Sample = c(1,...), Dye = c(1,...))

This object can be recorded as a table to be used several times.

read.madata function allows to connect the normalized data to the structure of the whole 

experiment. It reads microarray data from TAB delimited text file or matrix type R object (in 

this case the values object).

pdata <- read.madata(values, designfile=designfile)

Model fitting 

To  fit  model,  one  needs  to  specify  the  formula  that  includes  factors  affecting  the  gene 

expression among ones specified in designfile. The fitmaanova function adapts the ANOVA 

model to the microarray data. This is a time-consuming step.

fit.full.mix <- fitmaanova(pdata, formula = ~Strain+Sample, 

random = ~Sample)

or, in the cases of absence of experimental replicates, a more semplified formula

fit.full.mix <-fitmaanova(pdata,formula = ~Sample, random = 

~1)
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To test how significantly a given term or terms affect to the gene expression level, R/maanova 

calculates F-test or t-test. The classical ANOVA F-test is a generalization of the t-test that 

allows for the comparison of more than two samples. The F-test is designed to detect any 

pattern of differential expression among several conditions by comparing the variation among 

replicated samples within and between conditions.

In order to obtain all possible pairwise comparison we use the PairContrast function.

C = PairContrast(n)

where n is the number of levels in test term. 

If one is interested in specific pairwise comparisons, the contrast matrix has to be created. 

This is a matrix in which the number of columns corresponds to the number of levels and the 

rows to the comparisons that are going to be made. This is an example 

C = matrix(c(-1,1,0,0,-1,1,-1,0,1), ncol=3, byrow=T)

At this point, we use the  matest  function to perform the statistical evaluation. R/maanova 

provides permutation method to calculate the significance of each test statistics.

ftest.pair <- matest(pdata, fit.full.mix, Contrast = C, 

term="Strain", n.perm=100)

The final step is the data export through the summarytable function that provide summary of 

matest, such as pvalue for the classical F statistic (F1), for F statistic based on the James-Stein 

shrinkage estimates of the error variance (Fs) and fold-change.

summarytable(ftest.pair,outfile='summarytable.csv')

To select the DEGs both fold-change and pvalue have to be taken in account.

Paired samples

The  computation  of  the  significance  in  the  case  of  natural  pairing  of  experimental  units 

requires the use of paired t-test. The variable under examination is the difference between 

couple of values.

The starting point is a different table in which the two groups are clustered together.

even_indexes<-seq(2,length(names_CEL),2) 

odd_indexes<-seq(1,length(names_CEL),2) 

ct=A[even_indexes] 

tr=A[odd_indexes] 

B<-cbind(tr,ct)

pvalue<-apply(B, 1,function(x) 

{ t.test(x[1:length(even_indexes)], x[(length(odd_indexes)+1):

(length(even_indexes)*2)],paired=TRUE)$p.value } )
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The p-value correction for multiple testing must be finally applied:

pvalue_adj<-p.adjust(pvalue, method ="method_chosen")

Annotation insertion 

The creation of the summarizing table containing normalized data, annotations, anova results 

is done in two ways: in the case of files with the same order we can use  cbind function, 

otherwise we are obliged to use merge, selecting a common field as probeID.

Correlations and heatmap

In order to calculate the correlation between couple of genes, two different functions can be 

used.

R provides the cor function that allows to select the method with no correction for multiple 

testing. In the  psych library, with  corr.test it is possible to choose both the method and the 

adjustment.

The first step is the table reading and transposition

A<-read.table("Table.csv",header=TRUE,row.names = 1)

A<-t(A)

the computation of global correlation 

B<-cor(A,method="method_chosen”)

For a specific gene against all the others, we have to create two matrices

library(psych)

single_gene<-A[,gene_position]

single_gene_matrix<-as.matrix(single_gene)

all_genes<-A[,1:length(names_gene)]

B<-corr.test(single_gene_matrix, all_genes, 

method="method_chosen”, adjust="adjust_chosen”)

To extract the correlation values and the respective significance from the list just created

C=B[[1]] 

D=B[[4]] 

These  objects  have  to  be  transposed  before  being  inserted  in  a  dataframe  for  the  final 

recording

correlazione=t(C) 

pvalue_adj=t(D) 

gene_symbol=row.names(correlazione) 

results<-
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data.frame(gene_symbol,correlazione,pvalue_adj,stringsAsFactor

s=F) 

write.table(results,"corr_risp.csv",sep="\t")

To simplify the interpretation of  this  large amount  of  data  identifying genes  with similar 

correlation values, we have used hclust and agnes functions 

A<-t(A)

d <- dist(A,method="method_chosen")

fit <- hclust(d, method="method_chosen")

plot(fit)

library(cluster)

agn<-agnes(A,method="method_chosen",metric = "metric_chosen")

plot(agn)

Reducing the dimension of the data, it is possible to use the heatmap for the visualization. 

Three different functions exist.

library(gplots)

A_heatmap <- heatmap(A_matrix)

A_heatmap <- heatmap.2(A_matrix)

library(pheatmap)

A_matrix <- data.matrix(A)

A_heatmap <-pheatmap(A_matrix)

It is important to choose correctly the range of color to maximize the contrast. The classical 

scale for microarray is the red/green, but more options exist.

In order to make different images comparable, an absolute scale is created. Correlation values 

are between 1 and -1. The choice of the resolution value is arbitrary.

resolution=400 

dosata=greenred(resolution)

a=ceiling((min(A_matrix)+1)/2*resolution) 

b=ceiling((max(A_matrix)+1)/2*resolution)

A_heatmap <-pheatmap(A_matrix,col=dosata[a:b])
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Partial Least Square (PLS) regression

In the case that samples are characterized by different features important for instance for their 

classification, PLS can be performed. Among all the genes it is possible to select a subset that 

can be used to predict a specific characteristic based on the expression level only.

library(pls)

fitplsr <- plsr(B ~ A)

pred <- predict(fitplsr, ncomp = 2)

New responses or scores are predicted using a fitted model and a new matrix of observations.

cor<-cor(y,pred) 

plot(y,pred)

library(mixOmics)

plsr<-pls(A,B)

AWK

AWK is a programming language to analyze and to elaborate text files by organizing data in a 

table format.

It requires the definition of a condition and an action to be performed on the input data.

For instance, to extract the differentially expressed genes from the summarytable,  we can 

insert  in  the  awk command after  "if"  the selection criteria  that  has  to  be  applied on the 

columns containing fold-change and Pvalue (the column number has to be preceded by the 

simbol $) and print $0 as action to extract the entire row when the criteria are satisfied.

An example

awk 'BEGIN { FS = "\t"} ; {if (($ni< -1.5 &&  $nj<0.05) || ($ni> 

1.5 &&  $nj<0.05)){print $0} }' input.csv>output.csv

With BEGIN we specify the action to do before starting the input data reading. In this case, 

we indicate with  FS the separation field of the input file. The boolean operators "or" ( || ), 

"and" ( && ), and "not" ( ! ) are used to define the selection criteria.

Shell scripts

To make multiple selections in an automatic way, the Unix shell is used. Simple but very 

useful scripts are created to increase the speed of each step and to guarantee the correctness of 

the results.

Basic linux commands (cat, ls, grep, comm, sort, and so on) are used inside a while and for 
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loops to have a repetitive execution of a list of these.

The syntax is:

while/for [ condition ]; do list of commands; done

Graphics

One of the strengths of the R language is  the graphics.  Simple,  exploratory,  high quality 

graphics are easy to produce.

R provides different possibilities of exporting graphs in png, pdf, jpeg format with R base 

package and emf format using the devEMF library.

Graphical functions are

plot(),  boxplot(),  hist(),  barplot(),  stripchart(),  dotchart().  Two  or  more  graphs  can  be 

overlayed using add=TRUE as option.

We can insert title, texts , legend, extra-axis, points, marginal texts and lines, changing several 

graphical parameters, into a pre-existent graphic with appropriate functions to obtain the best 

result.

Not only 2D plots can be created but also three-dimensional ones (scatterplot3d package).

library(scatterplot3d)

scatterplot3d(x,y,z)

plot(x,y)

The  grid package allows to control the appearance and arrangement of graphical output. A 

well-defined graphic region is created through the viewport and pushViewport function.

Grid.rect and grid.text are used to insert a rectangle and a text in the image. The first function 

needs x and y coordinates, width, and height for specifying the locations and sizes of the 

rectangles to draw. The other one requires the text to draw as its first argument.

To set the margins of a graph in R, the par() function with the mar argument can be called.

par(mar=c(bottom,left,top,right))

With  grid.arrange  function in the gridExtra package it is possible to create multiple plots 

when more than one graphic has to be flanked in a single figure. This provides somewhat 

similar functionality to par(mfrow=c()).

A special graph is the Venn diagram. This allow to present logical relations between different 

sets.  In  the  case  of  comparisons  of  different  gene  lists,  the  Venn diagram highlights  the 

proportion of elements in common. Two libraries permit to do this.

library(gplots)

A<-read.table("tableA.csv")

36



3. MATERIALS E METHODS

B<-read.table("tableB.csv")

list<-list(A,B) 

venn(list)

library(VennDiagram)

common <- intersect(A[,1],B[,1]) 

draw.pairwise.venn(length(A[,1]),length(B[,1]),length(common))
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4. RESULTS and DISCUSSION

4.1 RESULTS OF THE FIRST PART 

The manuscript published in the peer-reviewed journal PlosONE enclosed with this thesis and 

entitled  “Transcriptomic  Analysis  Unveils  Correlations  between  Regulative  Apoptotic 

Caspases  and  Genes  of  Cholesterol”  contains  the  results  of  my  thesis  work  and  all  the 

significant figures and the biological conclusions in a much extensive form. In this paragraph, 

its subject is briefly summarized.

Although caspase-2 is the subject of many studies, its role in physiology and disease in not 

well-defined because of  controversial results. Several reviews discuss the involvement of 

caspase-2  in  different  cellular  processes  (Krumschnabel,  2009;  Vakifahmetoglu-Norberg, 

2010; Fava, 2012). 

To  identify  genes  and  pathways  under  its  influence,  its  expression  was  silenced  in  a 

glioblastoma  cell  line,  U87MG,  considering  the  suggested  roles  of  caspase-2  in  brain 

development and homeostasis.  

Glioblastomas (GBM) are among the most lethal tumors, highly recalcitrant to radiotherapies 

and chemotherapies.

After silencing only a small number of genes resulted differentially expressed: choosing a 1.5 

fold  cut-off,  24  genes  were  significantly  down-regulated  and  17  were  significantly  up-

regulated. 

Despite the limited transcriptional alterations, the results were in any case interesting. Among 

the genes up-regulated after caspase-2 silencing that could mark compensatory responses, 

LIPA, CYP51A1 and CYP1B1 are linked with cholesterol metabolism, and two others are in 

some way connected with it.

Taking into account that previous studies showed that caspase-2 is involved in the regulation 

of the levels of this metabolite, we decided to further investigate the relationship between this 

cystein-protease and cholesterol genes. 

Since complex regulative networks influence cholesterol  homeostasis  in vivo,  cell  culture 

models are not the best tool to investigate correlations of gene expression. We decided to 

expand our study by retrieving all data available in public repositories about gene expression 
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profile studies in  glioblastoma and human brain. Data coming from 13 datasets including 327 

microarrays were used to assess the relation between  CASP2 and  LIPA in glioblatoma. A 

weak but significant inverse correlation was confirmed.

To  clarify  whether  the  expression  of  other  caspases  found  correlations  with  LIPA,  we 

expanded this  analysis  to  all  caspases,  as  well  as  to  elements  of  the  molecular  platform 

involved in caspase-2 activation (CRADD/RAIDD and PIDD). Furthermore, gene expression 

profile data from 12 datasets including 293 microarrays of normal brain were recovered for 

comparison.  We  found  for  CASP2/LIPA a  good  and  significant  inverse  correlation  in 

cerebellum and a positive one in hippocampus. This result could depend on the difference of 

cholesterol genes expression between different brain areas (Segatto, 2012).

Therefore, we decided to investigate with a more comprehensive approach the correlations 

between caspase-2 and the expression of genes involved in cholesterol homeostasis. In order 

to clarify whether or not these correlations are limited to caspase-2 we extended this study to 

all caspases. 

Genes involved in cholesterol  homeostasis,  including steroidogenesis were extracted from 

Gene Ontology (GO) and integrated from literature data. In total we selected 256 genes, of 

which 166 were grouped into 5 categories:  biosynthesis,  adsorption/import,  export,  steroid 

and bile acid synthesis and transcriptional regulators. 

To understand whether our discoveries were limited to CNS or could be observed also in 

other tissues, we decided to compare variations in the expression levels of caspases and of 

cholesterol  genes  in  human  liver,  an  essential  organ  for  cholesterol  homeostasis.  Gene 

expression profiles from 5 datasets including 106 microarrays of normal human liver were 

interrogated.

Since  changes  in  the  expression  of  cholesterol  genes  are  linked  to  several 

physiological/pathological  conditions.  To  understand  the  significance  of  the  describe 

correlations,  we decided  to  interrogate  more  precisely  the  public  available  datasets  form 

human brain used in our studies. We restricted our inquiries to one dataset (GSE17612) in 

which, information about the specific brain area, the anterior prefrontal cortex (Brodmann 

area 10) and subjects age were available.
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4.2 RESULTS OF THE SECOND PART 

In the last  part  of my PhD, I  worked on microarray data with the purpose to build up a 

methodological  approach  to  define  pathways  activated  after  drug treatment  through  gene 

expression profile analysis. In the specific case as a model, in order to develop a pipeline able 

to extract information concerning the cellular response to a specific compound, I used data 

coming  form  chronic  lymphocytic  leukemia  (CLL)  cells  exposed  to  two  different 

pharmacological treatments.

Given the high frequency of relapse and the difficulties in treating this disease, many efforts 

have been done to find novel effective and save treatments for chronic lymphocytic leukemia. 

In  our  work,  CLL cells  from  patients  affected  by  this  disease,  under  treatment  at  the 

Hematology  Department  of  the  University  of  Padova,  were  treated  with  two  different 

molecules both impacting on the ubiquitin-proteasome system (UPS). Due to the importance 

of the proteasome in the regulation of different cellular functions, targeting the ubiquitin-

proteasome system has been used as a strategy for developing new treatments against cancer 

(Huang, 2009; Adams, 2004).  

Several  chemotherapeutic  drugs  induce  cell  death  through  the  activation  of  apoptotic 

programs.  By  considering  the  fact  that  chemo-resistance  is  a  consequence  of  mutational 

accumulations in genes involved in apoptosis, our group in the past focused the attention in 

the  identification  of  new  compounds  able  of  inducing  cell  death  through  alternative 

mechanisms  (Henderson,  2005). Fifty-seven  small  molecules  were  tested  in  a  screening 

(Aleo, 2006) and at the end two were selected and only one underwent further investigations 

(Foti, 2009). Both isolated compounds were UPS inhibitors, which belong to the class of non-

selective isopeptidase inhibitors.  This family of compounds is,  able to act against  several 

isopeptidases, offering advantages in terms of effectiveness on different tumors. 

UPS used in our work were bortezomib and a derivative of G5 named 2cPE.

     Figure 1. Chemical structure of G5
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Bortezomib is a novel, slow-reversible, and highly specific proteasome inhibitor, which has 

been approved for the treatment  of  multiple  myeloma and mantle cell  lymphoma (Pérez-

Galán, 2006).

G5 (Figure 1) was modified in order to optimize its use in vivo. Out from this approach a new 

molecule was generated named 2c that was next conjugated to polyethylene glycol (PEG), a 

common strategy to improve drug solubility and bioavailability (see section 5.2 of this thesis 

containing  the  recently  published  manuscript).  The  new  compound  was  named  2cPE 

(Cersosimo, 2015).

Drug treatment and evaluation of cell viability

Initially, we compared the ability of the two UPS inhibitors to trigger cell death of CLL cells 

obtained from different patients. The percentages of cell survival after treatments for both 

drugs and the principal characteristics of the patients are reported in the table 1. Overall cells 

from different patients show certain variability in the cell death response and in particular to 

2cPE treatment. These experiments were performed at the University of Padova.

Table 1. Summary of the genetic profiles of the patients, which cells were object of the study. In columns 2 and 
3  are  reported  the  percentage  of  cell  survival  after  treatment  with  2cPE  and  bortezomib.  Patients  were 
categorized based on the standard classification and a set of prognostic factors. SHM =immunoglobulin receptor  
heavy chain (IGHV) hypermutation status; FISH =  more frequent genetic aberrations; CD38 expression.

Single patient evaluation

Cells  from  the  available  patients  were  evaluated  for  the  responsiveness  to  both  UPS 

inhibitors, but since the principal aim of this study was the characterization of the response to 

2cPE  treatment,  only  a  subgroup  of  cells  incubated  with  bortezomib  underwent  the 

microarray analysis. 

The RNA was extracted and a microarray analysis was performed. I processed all the CEL 

files together, by using standard tools available within the affy package. I used a UniGene ID 
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% of cell alive after 24 hours prognostic markers standard classification

patient code 2cPE BORT SHM FISH CD38 RAI BINET
LLC122 85 41 unmut 11q- POS 0 A

LLC195 98 14 unmut 11q-; 13q- POS 2 B

LLC270 83 35 unmut 11q- POS 2 B

LLC300 12 11 unmut 13q- NEG 2

LLC305 25 23 mut normale NEG 0 A

LLC351 19 8 unmut 17q-; 13q- POS 1 A

LLC366 55 33 nv 13q-; 12+; p53 mut POS 0 A

LLC37 92 62 mut 13q- NEG 2

LLC43 32 18 mut 12+ POS 1 A

LLC4 18 19 mut nd NEG 1
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centered CDF (Chip Description file) in order to have only one intensity value per gene (Dai,  

2005).

The cells obtained from different patients exhibited a different response in particular to 2cPE. 

In  order  to  unveil  the  possible  mechanisms  of  resistance  to  treatment  each  patient  was 

considered separately. In this manner it was possible to appreciate which was the magnitude 

of the response in terms of alteration of gene expression.

Table 2. Patient  response in terms of number of genes,  which expression was changed after treatments,  as 
indicated. 

Table 2 shows that in some cases, responsiveness has a direct correlation with the number of 

genes,  which  expression  is  altered  after  treatment,  whereas  in  one  case,  the  alteration  is 

remarkable but the drug is not able to induce cell death. Hence, two mechanisms of resistance 

can be hypothesized. In the first case (patients LLC122, LLC195, LLC270) the drug is not 

able to trigger the initial response that is normal converted in the activation of specific genetic 

programs  (gene  expression  changes).  In  the  second case  (patient  LLC37)  a  block  in  the 

apoptotic responsiveness should be present at  a certain level,  after  the engagement of the 

transcriptional response.

Extraction of genes differentially responsive to drug treatments

After  the  initial,  single  patient  analysis,  next  step  was  to  identify  a  list  of  genes  which 

expression is influenced by the two compounds in a significative manner among all patients. 

The idea was to define common and specific patterns of response to the two drugs.

In  order  to  obtain  these  information,  a  set  of  differentially  expressed  genes  (DEG)  was 

extracted,  after  an accurate  no conventional  quality  assessment.  Since the data  of  treated 
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2cPE Bortezomib

FC 1.5 FC 2.0 FC 1.5 FC 2.0
LLC122 109 17 211 25
LLC195 18 4 282 50
LLC270 49 12 162 23
LLC300 535 92 - -
LLC305 2525 783 - -
LLC351 632 169 - -
LLC366 195 34 179 12
LLC37 258 71 283 71
LLC43 120 26 111 13
LLC4 1647 457 - -
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samples are linked to their respective controls, we decided to use a paired t-test instead of the 

standard  statistical  method  previously  chosen.  Therefore,  the  analysis  was  conducted  by 

taking into account that, every single alteration in gene expression has to be referred to the 

corresponding level before treatment. In both cases, for each compound used, a list of genes 

was obtained (cut off: fold change 1.5; p value 0.05).

Figure 2 shows the result of such analysis. 

For  both  down-regulated  and  up-regulated  genes,  there  is  only  a  partial  overlapping  of 

modulated genes (common pattern). Instead, the vast majority of these genes were modulated 

independently by the two compounds.

Figure 2. Venn diagram of down and up-regulated genes after 2cPE and Bortezomib treatments

Table 3. List of common down-regulated genes (Fold change > 1.5).
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Gene symbol
Bortezomib 2cPE

pvalue FC pvalue FC
ADA 0.0477 -1.6127 0.0318 -1.6760
AKAP5 0.0116 -1.6217 0.0244 -1.6535
BTLA 0.0052 -1.5515 0.0492 -1.6378
DUSP4 0.0213 -1.9980 0.0059 -2.1808
ENC1 0.0146 -1.5824 0.0170 -1.6999
FAM111B 0.0094 -1.6207 0.0200 -1.7306
GAPT 0.0079 -1.6868 0.0283 -1.7190
IL2RA 0.0189 -1.6484 0.0228 -1.7765
LILRB2 0.0318 -1.6981 0.0296 -1.6349
MS4A7 0.0400 -1.9534 0.0291 -1.6023
PVRIG 0.0041 -2.0139 0.0262 -2.3021
PYCARD 0.0223 -1.5048 0.0224 -1.6480
RGCC 0.0256 -1.5511 0.0190 -1.5693
RNASE6 0.0142 -1.6640 0.0205 -1.9681
SOWAHD 0.0158 -1.5023 0.0286 -1.7865
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Table 3. List of common up-regulated genes (Fold change > 1.5).

DAVID analysis

In order to understand pathways and cellular functions modified by the two UPS, I performed 

an over-representation analysis on each DEG list using DAVID (Sherman, 2007). Results are 

summarized in table 4 and table 5. It is evident that the two UPS inhibitors exert profoundly 

different effects on the cellular functions, possibly indicating different intracellular targets. In 

the case of 2cPE several genes linked protein misfolding, cellular stress and cell survival 

resulted  differentially  expressed.  qRT-PCR  experiments  on  selected  genes  (SQSTM1, 

HMOX1, GCLM, LCK) of  the identified pathways confirmed the regulation operated by 

2cPE (data not shown). On the contrary, after Bortezomib treatment several genes coding for 

proteasome components showed an altered expression,  as previously observed  (Mitsiades, 

2002). 

Table 4. Results of DAVID analysis of differentially expressed genes after 2cPE treatment.
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Term Count % PValue Benjamini FDR

GO:0006986~response to unfolded protein 13 8.333 1.66013E-012 2.67113E-009 2.78174E-009

GO:0010033~response to organic substance 25 16.026 3.10830E-008 1.25031E-005 5.20837E-005

GO:0006457~protein folding 13 8.333 7.73350E-008 1.77759E-005 0.000129585

GO:0042981~regulation of apoptosis 25 16.026 2.38466E-007 4.79604E-005 0.0003995807

GO:0043066~negative regulation of apoptosis 16 10.256 8.25416E-007 0.0001106684 0.001383084

Gene symbol
Bortezomib 2cPE

pvalue FC pvalue FC
BAG3 0.0086 2.1355 0.0262 4.2462
DNAJB1 0.0068 1.7294 0.0226 3.8534
DNAJB4 0.0042 1.6538 0.0186 4.4083
E2F6 0.0068 1.8537 0.0194 1.8695
GADD45A 0.0059 1.6606 0.0302 2.0034
GCLM 0.0043 1.9413 0.0142 5.0008
HSPA1A 0.0104 3.1499 0.0155 4.6622
HSPA1B 0.0102 3.2281 0.0183 6.9492
HSPA6 0.0209 1.8104 0.0315 7.6563
HSPA8 0.0159 1.6203 0.0179 1.9407
HSPH1 0.0074 1.6869 0.0203 3.2081
KEAP1 0.0064 1.5879 0.0114 1.5506
LRP8 0.0095 1.6167 0.0231 1.5270
MAFG 0.0051 1.6000 0.0188 2.1370
MIR22HG 0.0027 2.0390 0.0203 2.7014
PSMC2 0.0038 2.1857 0.0262 1.5162
PSMD14 0.0027 2.1162 0.0318 1.5110
SRXN1 0.0142 1.7259 0.0116 2.8933
ZFAND2A 0.0106 1.7024 0.0373 2.2129
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Table 5. Results of DAVID analysis of differentially expressed genes after Bortezomib treatment.

Hierarchical clustering

As subsequent analysis we decided to use the list of genes differentially expressed in response 

to the different inhibitors to investigate their  use as markers of the responsiveness to the 

compounds and of the apoptotic susceptibility. To illustrate the data in a simple manner we 

selected the hierarchical clustering.  

The initial intensities were converted into differences of expression because they are much 

more informative respect to the absolute values. 

The lists of DGE were fused and used to extract the values of single patient differences, in an 

automatic  way.  An  unsupervised  clustering  analysis  was  performed  using  bioconductor 

packages, and the results are presented as heatmap, a coloring code graph that simplify their 

interpretation.

Interestingly,  the  cluster  analysis  evidenced  that  in  the  case  of  2cPE  treatment  a  clear 

correlation between the magnitude of the expressional responses and induction of cell death is 

present. With the exclusion of patient LLC37 all patients which cells are responsive to 2cPE 

induced  apoptosis  cluster  together.  Similarly,  patients,  which  cells  are  resistant  to  2cPE 

treatment, evidence limited transcriptional changes and cluster together. As discussed above 

cells form LLC37 patient probably contain some alterations in the pro-death signaling acting 

after the initial transcriptional response elicited by 2cPE. 
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Term Count % PValue Benjamini FDR

GO:0000502~proteasome complex 14 15.730 4.31329E-018 5.26221E-016 4.96617E-015

GO:0051340~regulation of ligase activity 15 16.854 6.41469E-018 2.75832E-015 9.94011E-015

GO:0010498~proteasomal protein catabolic process 15 16.854 1.90722E-016 1.90958E-014 3.44169E-013

GO:0043085~positive regulation of catalytic activity 19 21.348 1.93518E-010 8.75925E-009 2.99873E-007

GO:0007049~cell cycle 17 19.101 2.85459E-006 7.01389E-005 0.0044233329
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Figure 3. Differences of gene expression regarding the up-regulated genes (FC > 1.5) for 2cPE and bortezomib. 
The dendrograms are based on hierarchical clustering using the average linkage method.

Correlation between 2cPE treatment responses and single patient fold change

To further characterize the transcriptional response to 2cPE treatment and to identify genes, 

which  could  be  involved  in  transducing  its  anti-proliferative  signaling,  we  thought  to 

calculate the spearman correlation between the treatment response in terms of percentage of 

cell  survival  and  the  single  patient  fold  change  of  the  differentially  modulated  genes 

(Benjamini-Hockberg was chosen as multiple test correction). 

This study was done only for 2cPE given the low number of patients treated with bortezomib. 

The gene that shows the best correlation, the top of the rank, in terms of responsiveness to 

2cPE is SH3BP5 (r -0.9879 pvalue_adj 0.0017).
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Figure 4.  Plot of differences of mRNA levels for SH3BP5 versus patient responsiveness in term of % of cell 
survival after the treatment. Linear regression and Spearman correlation (Benjamini and Hochberg correction)  
are reported.

This result is particularly interesting because this gene codifies for a natural inhibitor of an 

important pathway involved in the regulation of CLL proliferation. B-cell receptor (BCR) 

signaling pathway has a central role in the CLL pathogenesis and it represents a potential 

therapeutic target (Burger, 2013; Woyach, 2012). SH3BP5 encodes for a negative regulatory 

protein that inhibits the auto and trans-phosphorylation activity of Btk, a critical component 

of this signaling pathway (Yamadori, 1999; Mohamed, 2009).

To further discover genes which differential  expression could mark the responsiveness to 

2cPE,  a  PLS  regression  (Abdi,  2013;  Boulesteix,  2007)  was  performed  over  the  global 

profile. This kind of exploratory technique allows to select variable with predictive capability. 

Among  the  measures  obtained  through  this  analysis  some  are  more  important  for  the 

determination of the best predictors (Mehmood, 2012).

The significativity of the regression will be independently assessed in the next future.

Several DEG were discovered also through this approach. 
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Figure 5.  Plot of responsiveness in terms of % of cell survival versus the response prediction using the new 
factors called latent variables which have the best predictive power, identified after pls analysis.

After literature searching, we understood that several of these prognostic genes, up-regulated 

by 2cPE treatment are involved in the NRF2 response. This result was confirmed also by the 

GSEA analysis selecting the C3 (motif gene set), downloaded form the Molecular Signature 

Database.

NRF2 is a transcription factor activated in case of oxidative stress as a response to reactive 

oxygen species accumulation. 

In normal conditions NRF2 is constantly degraded through the proteasome. When the levels 

of  ROS  increase,  it  dissociates  from  the  regulatory  protein  KEAP1  (FC  1.5506)  with 

consequent stabilization, translocation into the nucleus and transcription of the target genes 

(Itoh, 1999). Overall the bioinformatics analysis indicates that 2cPE triggers some sort of 

oxidative stress, possibly by dumping the anti-oxidant defenses (work in progress). 
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Table 6. A subset of genes up-regulated by 2cPE

Alterations in the expression of proteasomal components 

Being both the  compounds ubiquitin-proteasome system inhibitors,  we were interested to 

know how they altered the expressions of genes encoding for proteasomal components. In 

fact, it is well known that bortezomib, triggers compensatory response marked by the up-

regulation of several proteasomal components  (Mitsiades, 2002). I used Gene Ontology to 

extract a list of genes involved in proteasome formation assembly and homeostasis. Next I 

extracted the values of global (average) fold change for this gene family. 

Results are presented in Figure 6. As expected in bortezomib treated cells the mRNA levels of 

several  genes  encoding  for  protesomal  subunits  were  up-regulated.  Surprisingly  this 

adaptation, although present also in 2cPE treated cells was less noticeable.

50

Gene symbol Gene name pvalue_adj FC
HMOX1 heme oxygenase (decycling) 1 0.0142 7.9015
TXN thioredoxin 0.0142 1.9739
NQO1 NAD(P)H dehydrogenase, quinone 1 0.0116 1.9085
TXNRD1 thioredoxin reductase 1 0.0114 2.2343
PRDX1 peroxiredoxin 1 0.0186 1.4725
GCLC glutamate-cysteine ligase, catalytic subunit 0.0203 1.6711
GCLM glutamate-cysteine ligase, modifier subunit 0.0142 5.0008
GSR glutathione reductase 0.0170 1.5147
SOD1 superoxide dismutase 1, soluble 0.0235 1.5399
KEAP1 kelch-like ECH-associated protein 1 0.0114 1.5506
MAFG v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G 0.0188 2.1370
CHOP C/EBP homologous protein 0.0469 1.8440
CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1) 0.0236 1.6544
GADD45A growth arrest and DNA-damage-inducible, alpha 0.0302 2.0034
E2F6 E2F transcription factor 6 0.0194 1.8695
SQSTM1 sequestosome 1 0.0188 1.7508
BAG3 BCL2-associated athanogene 3 0.0262 4.2462
DNAJA1 DnaJ (Hsp40) homolog, subfamily A, member 1 0.0205 2.0938
DNAJA4 DnaJ (Hsp40) homolog, subfamily A, member 4 0.0502 2.4430
DNAJB1 DnaJ (Hsp40) homolog, subfamily B, member 1 0.0226 3.8534
DNAJB4 DnaJ (Hsp40) homolog, subfamily B, member 4 0.0186 4.4083
DNAJB6 DnaJ (Hsp40) homolog, subfamily B, member 6 0.0203 1.9334
HSP90AA1 heat shock protein 90kDa alpha (cytosolic), class A member 1 0.0220 3.7442
HSP90AB1 heat shock protein 90kDa alpha (cytosolic), class B member 1 0.0258 1.7337
HSPA1A heat shock 70kDa protein 1A 0.0155 4.6622
HSPA1B heat shock 70kDa protein 1B 0.0183 6.9492
HSPA1L heat shock 70kDa protein 1-like 0.0176 2.8786
HSPA6 heat shock 70kDa protein 6 0.0315 7.6563
HSPA8 heat shock 70kDa protein 8 0.0179 1.9407
HSPD1 heat shock 60kDa protein 1 (chaperonin) 0.0378 1.8462
HSPH1 heat shock 105kDa/110kDa protein 1 0.0203 3.2081



4. RESULTS and DISCUSSION

Figure 6. Fold change of the proteosomal components after 2cPE and Bortezomib treatments.

Clustering of no-treated samples

The analysis of genes differentially expressed following 2cPE treatment evidenced (with the 

exclusion of patient LLC37) a strong correlation between the magnitude of the response and 

the apoptotic susceptibility. Hence to identify putative predictors of the drug responsiveness 

we focused the analysis on the gene expression profiles characterizing CLL from different 

patients before drug-treatmet. 

We used the agnes function in the bioconductor cluster package to clusterize samples using 

the average linkage method.

Figure 7. Hierarchical clustering of whole gene expression in CLL cells from different patients before the 2cPE 
treatment. 
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Importantly,  three patients  that  showed low sensitivity  to  2cPE treatment  cluster  together 

(Figure 7). In order to have information about which genes are much strongly responsible for 

this clustering separation, a standard t-test was performed. A the top of the rank the ATM gene 

was found (pvalue 2.9306E-005 FC -1.87). 

This  result  is  of  particular  interest,  because  all  three  patients  under  consideration  are 

characterized by the 11q deletion, which affects the ATM locus (Stankovic, 2014). 

Other  two genes,  NPAT and CUL3 lie  in the same chromosome region and they score a 

significant reduction in terms of expression in the non-responsive patients (pvalue 0.0035 FC 

-1.69 and pvalue 0.0020 FC -1.64, respectively).

A subset of genes was extracted using pvalue and fold change (mean difference of expression 

between the two clusters) as selection criteria. This gene list is now under evaluation.

ATM is a protein kinase involved in DNA damage and oxidative responses. Several studies 

suggest that loss of ATM correlates with CLL resistance to chemotherapy and poor patient 

survival (Ripollés, 2006; Austen, 2007). The combined status of ATM and p53 is predictive of 

the  response  to  chemotherapeutic  treatments  (Jiang,  2009).  Preliminary  studies  have 

confirmed the activation of ATM following 2cPE treatment in the CLL cell line MEC-1 and 

further studies have been planned to evaluate the contribution of this serin-threonin kinase to 

the apoptotic response engaged by the isopeptidase inhibitor.

52



5. ADDITIONAL WORK

5. ADDITIONAL WORK

5.1  Next-Generation  Sequencing  Analysis  of  miRNAs 

Expression in Control and FSHD Myogenesis

Previous  studies  have demonstrated the involvement  of  miRNAs in muscle  development, 

through  the  control  of  myoblast  proliferation  and differentiation.  Raffaella  Meneveri  and 

coworkers  used  next-generation  sequencing  (NGS)  to  discover  which  miRNAs  are 

specifically  expressed  during  normal  myogenesis,  in  comparison  with  a  pathological 

condition.  Specifically,  they  compared  results  obtained  from  normal  tissues  with  those 

deriving from patients affected by facioscapulohumeral muscular dystrophy (FSHD), the third 

most common myopathy, with an incidence of 1 in 14.000 in the general population.

They  obtained  two list of miRNAs modulated exclusively in the normal and in the FSHD 

muscle.  Control  myogenesis  showed the modulation of  38 miRNAs (4 down and 34 up-

regulated) whereas FSDH myogenesis dysregulated miRNAs were only 15 (4 down and 11 

up-regulated).  During  my  PhD  thesis  I  analyzed  two  different  datasets,  which  have  in 

common  the  same  differentiation  protocol  and  the  platform  to  extrapolate  a  list  of 

differentially expressed genes. TargetScan, a tool for the prediction of putative target genes, 

was used in order to define among all the differential regulated genes a set of potentially  

validated targets.
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5.2 Synthesis, Characterization, and Optimization for in Vivo  

Delivery of a Nonselective Isopeptidase Inhibitor as New 

Antineoplastic Agent

The non-selective isopeptidase inhibitor G5 has a cytotoxic activity  against different cancer 

cells. To  improve  its  activity  a  small  chemical  library  of  G5-derivatives  was  generated. 

Among all the G5-like compounds, we selected 2c, which even though less active respect to 

G5, it was selected because capable of inducing apoptosis over necrosis, and for the presence 

of  a  OH group.  This  OH  group  allowed  the  addiction  of  PEG (Polyethyleneglycole)  to 

increase 2c solubility in water. Conjugation of PEG to a low molecular weight drugs is a 

common strategy to increase the efficacy in vivo.

2c conjugated to PEG was named 2cPE and in this manner it behaves as a pro-drug. In fact 

2cPE has to be converted into an active species through the action of secreted esterases.

It was observed that not all the cancer cell lines were capable of processing the prodrug. 

Furthermore, the conditioned medium of 2cPE responsive cell lines was able to transform 

unresponsive cells into responsive ones. Hence during this thesis, I applied genes expression 

profile studies to discover the secreted esterase involved in 2cPE maturation. A list of 173 

putative esterases codified by the human genome was extracted from Gene Ontology and 

integrated through the use of HomoloGene. The enzyme capable to release the active form of 

2c must have the expression pattern reflecting the difference in term of responsiveness of the 

cell lines used to assess the efficacy of the drug: higher level in the cell line with the highest 

responsiveness and lower in the case of the cell line less responsive.

Only seven esterases satisfied the expression profile. Among these enzymes, PLA2G7 was 

taken in consideration because of the structure of the interface binding area that appeared able 

to bind molecules like 2cPE.
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6. CONCLUSIONS

The main purposes of my PhD were to get practice and skills in the analysis of data generated 

by the microarray technology and to develop a computational pipeline for this analysis. After 

a short period spent in the evaluation of freely available tools, we decided to use R to have a 

stronger  control  over  all  steps  of  the  analysis.  The applied  pipeline  has  been adapted  to 

different  special  cases  of  microarray  data,  including  in  house  generated  data  and  data 

recovered from public available databanks. When the experimental environment required it, 

the  pipeline  was  expanded  in  order  to  extract  different  information  from the  data  under 

consideration.

Several steps have been performed from the command line in order to speed up the results 

attainment and to increase their reliability and the correctness. A simple but more efficient 

script has been written to carry out many operations in sequence and AWK has been used to 

manage big files in a table format with substantial time saving. The computational tools have 

been applied  to  investigate  different  biological  questions  (the  role  of  caspase-2;  the anti-

neoplastic response elicited by UPS inhibitors and the basis of genetic diseases). 

Thanks to the analysis of different gene expression profiles I was able with this thesis:

I)  to  unveil  correlations  between cholesterol  genes,  regulative caspases and brain  

aging.

II) to propose the enzyme involved in the maturation of a pro-drug

III) to define survival pathways and resistance mechanisms engaged by a new UPS 

inhibitor.

The main goal of this thesis has been the creation of a computational service, available to all 

members  of  the  Department,  for  the  analysis  of  the  microarray data,  which is  now fully 

operative.
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7. Appendix

7. Appendix

7.1 Scripts – part 1

R

library(affy) 

library(maanova)

data<-ReadAffy()

eset <- rma(data)

design.table=data.frame(Array=row.names(pData(data)),Strain=c(

"siC2mut","siC2mut","siC2wt","siC2wt","siPGAM5","siPGAM5","

siUSP34","siUSP34"),Sample=c(1,1,2,2,3,3,4,4),Dye=c(1,1,1,1

,1,1,1,1)) 

write.table(design.table,"design.txt",sep="\t", row=F,quote=F)

datafile<-exprs(eset)

data<-data.frame(probeid=row.names(datafile),datafile)

write.table(data, "datix.txt",sep="\t",row=F,quote=F)

pdata <- read.madata(datafile, designfile="design.txt")

fit.full.mix <-fitmaanova(pdata,formula = 

~Strain+Sample,random = ~Sample) 

C = matrix(c(1,-1,0,0,1,0,-1,0,1,0,0,-1), ncol=4, byrow=T) 

ftest.pair = matest(pdata, fit.full.mix, Contrast = 

C,term="Strain", n.perm=100)

summarytable(ftest.pair,outfile='shortsummarytablepair.csv')

annot = read.delim("annot.csv") 

out= read.delim("shortsummarytablepair.csv") 

out.annot = merge(annot,out,by.x="PROBE_ID", by.y="PROBE_ID", 

all.x=T, all.y=F, sort=F) 

write.table(out.annot,"AnovaResults.txt",sep="\t", 

row=F,quote=F)

png("BoxplotNomi.png") 

boxplot(data,title="Summary of data distribution", 

col=c("2","3","4","5","6","7","8","12","20"),lwd=0.9,adj=0.

21,names=c("1","2","3","4","5","6","7","8"),cex.axis=0.8,la

s=3,cex=1)

dev.off()
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A<-read.table("datixCASP2.csv",header = TRUE, row.names = 1) 

y1 <- (A[,1] + A[,2])/2 

y2 <- (A[,3] + A[,4])/2 

s2 <- ((A[,3] - A[,4])/2)^2 

s1 <- ((A[,1] - A[,2])/2)^2 

s <- sqrt((s1 +s2)/2) 

s[s<0.08478]<-0.0847800 

summary(s) 

     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 

0.0002991 0.0476900 0.0847800 0.1091000 0.1425000 1.2220000 

d<-abs(y1-y2) 

t<-d/s 

pv<-1-pt(t,2) 

A[,5]<-pv 

colnames(A)[5]<- c("pvalue")

write.table(A,"tmp.txt",row.name=TRUE,col.name=TRUE,sep="\t")

library(affy)

data<-ReadAffy(cdfname ="HG-U133PLUS2_HS_ENTREZG")

eset <- mas5(data)

datafile<-exprs(eset) 

datax<-data.frame(probeid=row.names(datafile),datafile) 

write.table(datax, "datiBA.txt",sep="\t",row=F,quote=F)

library(devEMF) 

A<-read.table("Brain_log.csv",header=TRUE,row.names = 1) 

A<-t(A) 

B<-read.table("Gliobl_log.csv",header=TRUE,row.names = 1) 

B<-t(B) 

emf("Overlay.emf",height=7, width=16) 

boxplot(B,las = 2,outpch = NA,col="grey",at=c(2, 6, 10, 14, 

18, 22, 26, 30, 34, 38), xaxt = "n") 

ll<-data.frame(B) 

stripchart(ll,method="jitter",pch =19,cex=0.2,add = 

TRUE,vertical = TRUE,at=c(2, 6, 10, 14, 18, 22, 26, 30, 34, 

38)) 

boxplot(A,las = 2,outpch = NA,col="light blue", add=TRUE, 

at=c(1, 5, 9, 13, 17, 21, 25, 29, 33, 37)) 
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l <-data.frame(A) 

stripchart(l,method="jitter",pch =19,cex=0.2,add = 

TRUE,vertical = TRUE,at=c(1, 5, 9, 13, 17, 21, 25, 29, 33, 

37)) 

legend(2,2,c("Brain", "Glioblastoma"),pch = 21, pt.bg = 

c("light blue","grey"), pt.cex = 1.5) 

axis(1,at=c(2, 6, 10, 14, 18, 22, 26, 30, 34, 

38),labels=c("CASP1","CASP2","CASP3","CASP4","CASP5","CASP6

","CASP7","CASP8","CASP9","CASP10"), tick=FALSE) 

title(main="Caspases Expression in Brain and Glioblastoma",pch 

= 30) 

dev.off() 

A<-read.table("Brain_ages",row.names = 1) 

plot(A[,1],A[,2]) 

fit<- glm(A[,1]~A[,2]) 

co <- coef(fit) 

abline(fit)

head -1 datiBAGlioblplus2.txt >Tab_Glioblplus2.txt 

for sonda in `cat probe_geni.txt`; do 

echo $sonda 

awk -v probe=$sonda '{if ($1 == probe){print $0;}}' 

datiBAGlioblplus2.txt >>Tab_Glioblplus2.txt 

done

echo 'nome directory output?' 

read outdir 

elenco_categ_dir=categorie

mkdir $outdir 

categorie=`ls ../$elenco_categ_dir/` 

for categoria in $categorie; do 

nome_categoria=`echo $categoria | sed s/.csv//` 

echo $categoria 

for gene in `cat ../$elenco_categ_dir/$categoria`; do 

echo $gene 
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awk -v probe=$gene '{if ($1 == probe){print $0}}' 

corr_test.csv >> output_categorie/175_"$nome_categoria".csv 

done 

done

7.2 Scripts – part 2

R

library(affy)

data<-ReadAffy(cdfname ="HG-U219_HS_ENTREZG")

eset <- rma(data)

datafile<-exprs(eset) 

datax<-data.frame(probeid=row.names(datafile),datafile) 

write.table(datax, "datix.txt",sep="\t",row=F,quote=F)

#quality control

#differentially expressed genes determination

even_indexes<-seq(2,length(names_CEL),2) 

odd_indexes<-seq(1,length(names_CEL),2) 

ct=A[even_indexes] 

tr=A[odd_indexes] 

B<-cbind(tr,ct)

pvalue<-apply(B, 1,function(x) 

{ t.test(x[1:length(even_indexes)], x[(length(odd_indexes)

+1):(length(even_indexes)*2)],paired=TRUE)$p.value } )

ddd<-p.adjust(bbb, method ="fdr”)

write.table(ddd,"fdr.csv",sep="\t")

A<-read.table("SH3BP5_rips.csv",header=TRUE,row.names = 1) 

A<-t(A) 

fit<- glm(A[,2]~A[,1]) 

co <- coef(fit) 

png("SH3BP5-survival.png") 

plot(A[,1],A[,2],pch=20,main="correlation treatment response - 

single Fold Change",xlab="% of cell survival",ylab="SH3BP5 

FC") 

text(80,0.7,"spearman correlation -0.9879", col="blue") 
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text(80,0.65,"pvalue_adj 0.0017", col="blue") 

abline(fit, col="blue",lwd=2) 

dev.off()

library(cluster) 

A<-read.table("datiBA_NT_only.csv",header=TRUE,row.names = 1) 

A<-t(A) 

agn<-agnes(A,method="average",metric = "euclidean",stand = 

FALSE) 

plot(agn)

#!/bin/csh -f 

set outdir=OUT 

mkdir $outdir 

set i=1 

set in=`(ls Bortezomib*_uniq.dat)` 

while ($i <= $#in) 

set nome_paziente1=`echo $in[$i] | sed s/_uniq.dat// | sed 

s/Bortezomib_//` 

set ii=1 

set n=`(ls 2FEP*_uniq.dat)` 

while ($ii <= $#n) 

set nome_paziente2=`echo $n[$ii] | sed s/_uniq.dat// | sed 

s/2FEP_//` 

if ($nome_paziente1 == $nome_paziente2) then 

echo $i 'contro' $ii 

comm $in[$i] $n[$ii]> $outdir/"$nome_paziente1".dat 

endif 

@ ii = $ii + 1 

end 

@ i = $i + 1 

end

#!/bin/csh 

set i=1 

set in=`(ls *.csv)` 

61 



7. Appendix

while ($i <= $#in) 

set nome_paziente=`echo $in[$i] | sed s/.csv//` 

cat $in[$i] | awk '{print $2}' | grep -v NA | grep -v Symbol | 

sort | uniq > "$nome_paziente"_uniq.dat 

@ i = $i + 1 

end 

#!/bin/csh -f 

set outdir=OUT 

mkdir $outdir 

set i=1 

set in=`(ls *_uniq.dat)` 

while ($i <= $#in) 

set ii=1 

set n=`(ls *_uniq.dat)` 

while ($ii <= $#n) 

set nome_paziente=`echo $in[$i] | sed s/_uniq.dat//` 

set paziente=`echo $n[$ii] | sed s/Bortezomib_// | sed 

s/_uniq.dat//` 

echo $i 'contro' $ii 

cat $in[$i] | grep -w -o -f  $in[$i] $n[$ii]> 

$outdir/"$nome_paziente"_"$paziente".dat 

@ ii = $ii + 1 

end 

@ i = $i + 1 

end

awk '{a[$0]++}END{for(i in a){if(a[i])print i,a[i]}}'  

cat.csv>count.csv
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Abstract

Regulative circuits controlling expression of genes involved in the same biological processes are frequently interconnected.
These circuits operate to coordinate the expression of multiple genes and also to compensate dysfunctions in specific
elements of the network. Caspases are cysteine-proteases with key roles in the execution phase of apoptosis. Silencing of
caspase-2 expression in cultured glioblastoma cells allows the up-regulation of a limited number of genes, among which
some are related to cholesterol homeostasis. Lysosomal Acid Lipase A (LIPA) was up-regulated in two different cell lines in
response to caspase-2 down-regulation and cells silenced for caspase-2 exhibit reduced cholesterol staining in the lipid
droplets. We expanded this observation by large-scale analysis of mRNA expression. All caspases were analyzed in terms of
co-expression in comparison with 166 genes involved in cholesterol homeostasis. In the brain, hierarchical clustering has
revealed that the expression of regulative apoptotic caspases (CASP2, CASP8 CASP9, CASP10) and of the inflammatory
CASP1 is linked to several genes involved in cholesterol homeostasis. These correlations resulted in altered GBM
(Glioblastoma Multiforme), in particular for CASP1. We have also demonstrated that these correlations are tissue specific
being reduced (CASP9 and CASP10) or different (CASP2) in the liver. For some caspases (CASP1, CASP6 and CASP7) these
correlations could be related to brain aging.
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Introduction

Caspases were initially discovered as critical enzymes in the

control of apoptosis. Quite soon it was evident that, they can

supervise additional biological processes, such as inflammation

and differentiation [1,2]. This discovery has granted the dichot-

omy between apoptotic and non-apoptotic caspases. More

recently, it has been observed that caspases controlling apoptosis

can also play specific roles unrelated to cell death [3–5].

Caspases can be divided into initiator and effector caspases

depending on the presence of a long prodomain at their amino-

terminal region. Initiator caspases act at the apex of a proteolytic

cascade, whereas effector caspases act downstream and are

involved in the cleavage of specific cellular proteins [1].

Caspase-2, caspase-8, caspase-9, and caspase-10 are the long

prodomain caspases involved in the apoptotic process. Caspase-8

and caspase-10 have well-established roles in the engagement of

the extrinsic pathway, whereas caspase-9 is the critical enzyme for

the intrinsic/mitochondrial pathway. Caspase-8 can also play roles

unrelated to apoptosis, such as in NF-kB activation or in limiting

necroptosis and caspase-10 has been recently shown to control

autophagy [6].

Caspase-2 is still a mysterious caspase. It shows a peculiar

nuclear localization that is regulated by two different NLSs [7]. A

CARD domain, at the amino-terminal region is responsible for the

homotypic interaction with adaptor molecules. Although a

molecular platform controlling its activation has been described

[8,9], the contribution of caspase-2 to apoptosis is still debated.

Different, sometimes controversial results have been published and

multiple functions have been attributed to caspase-2.

Mice deficient for caspase-2 and for its adaptor protein RAIDD

have proved absent or only very limited defects in apoptosis [8,9].

Further studies with cells from caspase-2 2/2 mice have

indicated that caspase-2 could be considered a tumor suppressor,

since its absence can favor oncogene-mediated transformation

[10,11].

Difficulties in defining a gene function in specific biological

context could arise from the presence of regulative circuits that

compensate the experimental alteration. There are several

examples of genes down-regulated by siRNA approaches, or

through homologous recombination in mice, which have gener-

ated only minimal phenotypes [12–14].

The still obscure impact of caspase-2 on cell functions could be

masked by compensatory mechanisms engaged following its

inactivation. In this manuscript we have investigated the gene
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expression profile of human cells silenced for caspase-2 expression.

Our goal was to unveil whether perturbation of caspase-2 levels

could influence the expression of genes involved in specific cellular

functions, either as part of common regulative circuits or of

compensatory mechanisms.

Materials and Methods

Cell culture, siRNA, reagents and antibodies
U87MG and IMR90-E1A cells were grown in DMEM

supplemented with 10% FBS, penicillin (100 U/mL), glutamine

(2 mmol/L), and streptomycin (100 mg/mL) at 37uC in 5% CO2

atmosphere. RNA oligos for interference (RNAi) were purchased

from Dharmacon: CASP2 RNAi1, AAACAGCUGUUGUU-

GAGCGAA; Control1 (CASP2 mutated) RNAi, AAACAAUU-

GUUGUUGAGCGAA; or Qiagen: CASP2 RNAi2 CAUCUU-

CUGGAGAAGGACATT and a non-targeting siRNA UUCU-

CCGAACGUGUCACGU, Control2. Cells were transfected

24 hours after plating by adding the Opti-MEM medium

containing Lipofectamine 2000 (Invitrogen) plus RNAi oligos.

BSA and Filipin (Sigma), anti-LBPA [15], anti-transferrin receptor

(Tnf-R) (OKT9), anti-GM-130 (BD biosciences), anti-caspase-2

[16]. Secondary anti-mouse and anti-rabbit antibodies were Alexa

Fluor 488 and Alexa Fluor 546 conjugated (Invitrogen).

Western blotting
Proteins obtained after an SDS denaturating lysis and

sonication were transferred to a 0.2-mm-pore-sized nitrocellulose

membrane and incubated with the specific primary antibodies.

After several washes, blots were incubated with peroxidase-

conjugated goat anti-rabbit or (Euroclone Milano I) for 1 h at

room temperature. Finally, blots were developed with Super

Signal West Dura, as recommended by the vendor (Pierce).

RNA expression array and data analysis
Total RNA was isolated using RNeasy Mini kit (Qiagen). RNA

sample was labeled according to the standard one cycle

amplification and labeling protocol (Affymetrix). Labeled cRNA

was hybridized on Affymetrix GeneChip Human Gene 1.0 ST

Array. Robust Multi-Array Average (RMA) normalization was

applied [17]. Data analysis was performed using the t-test as

implemented in the R statistical package. A minimum standard

deviation was assumed corresponding to the median percentile of

all standard deviations in order to avoid fortuitously large t

statistics. Differentially expressed genes were selected based on.

1.5 fold change and P,0.05. The analysis of Gene Ontology terms

was performed using the DAVID server [18,19]. Microarray data

have been deposited in NCBI Gene Expression Omnibus (GEO)

and the GEO accession number is GSE61388.

RNA extraction and quantitative qRT-PCR (quantitative
reverse transcription polymerase chain reaction)

Cells were lysed using Tri-Reagent (Molecular Research

Center). A total of 1mg of total RNA was retrotranscribed by

using 100 U of Moloney murine leukemia virus reverse transcrip-

tase (Invitrogen). Quantitative reverse transcription-PCR (qRT-

PCR) analyses were performed using Bio-Rad CFX96 and SYBR

Green technology. The data were analyzed by use of a

comparative threshold cycle using HPRT (hypoxanthine phos-

phoribosyltransferase) and b-actin as normalizer genes. All

reactions were done in triplicate.

Immunofluorescence microscopy
Cells were fixed with 3% paraformaldehyde and permeabilized

with 0.5% Triton X-100 and blocked in PBS 3% BSA for 1 h RT.

After washes coverslips were incubated with Filipin (100mg/mL)

and relative primary antibodies for 2 hrs. After several washes

coverslips were incubated with secondary antibodies. Cells were

imaged with a Leica confocal scanner SP equipped with a 488 l
Ar laser and a 543 to 633 l HeNe laser. Cell images for

deconvolution were taken using the Leica AF6000 LX microscope.

Data preparation and analysis
29 human microarray datasets were included in this study,

totaling 726 arrays. Brain (11 datasets 293 microarrays) GBM (13

datasets 327 microarray) Liver (5 datasets 106 microarrays) were

used and in all cases. All datasets were downloaded manually from

GEO [20] and ArrayExpress databases [21]. We analyzed only

expression data obtained using the most comprehensive human

expression platform HG U133 Plus 2.0. For GBM (GSE11100;

GSE13041; GSE15824; GSE19728; GSE23806; GSE23935;

GSE29796; GSE30563; GSE32374; GSE4290; GSE7696;

GSE9171) for normal human brain (GSE5281; GSE7307;

GSE17612; GSE21935; GSE15824; E-MEXP-2351; GSE21354;

E-MEXP-2280; GSE15209; GSE7692; GSE4290) for human liver

(E-GEOD-40873; E-MTAB-950; E-GEOD-23343; E-AFMX-11;

E-MEXP-2128). We processed all the CEL files together by using

standard tools available within the affy package in R [22].

We use a UniGene ID centered CDF (Chip Description file) in

order to have only one intensity value per gene. CDFs were

downloaded from the Molecular and Behavioral Neuroscience

Institute Microarray Lab (URL:http://brainarray.mbni.med.umich.

edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.

asp) [23]. All annotation information were downloaded from the same

website. The normalization step was done with the standard MAS5.0

algorithm, described in the Statistical Algorithms Description Docu-

ment available from Affymetrix (URL: http://www.affymetrix.com/

support/technical/whitepapers/sadd_whitepaper.pdf).

We converted all microarray data to log values. We extracted

the data regarding the genes of interest in an automatic way.

Correlations among gene expression levels were calculated using

the library psych in R choosing the Pearson correlation method. p-

values were adjusted for multiple testing using Benjamini and

Hochberg’s method [24]. Genes were clustered using hierarchical

clustering using the complete linkage method according to

similarity in correlation patterns, as measured by euclidean

distance [25]. Heat maps were generated with R with positive

correlation scores (values) colored by blue while negative ones

colored by dark green. GO (Gene Ontology) annotations and

knowledge from the literature was used to create a list of genes

involved with the cholesterol metabolism. Gene expression levels

were correlated with age using the Spearman’s correlation making

minimal assumptions about the relationship between the two

diverse variables.

Results and Discussion

Gene expression profile studies in cells with down-
regulated caspase-2 expression

To identify genes and pathways under the influence of caspase-2

we silenced its expression in the glioblastoma cell line U87MG.

We selected glioblastoma cells since important apoptotic functions

have been attributed to caspase-2 in the brain and because CASP2

deficits elicit compensatory mechanisms in this tissue [26,27].

Caspase-2 deficient cells did not display overt alterations in

terms of cell proliferation, cell cycle and apoptosis (data not
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shown). Next transcriptional expression profiles of cells transfected

with caspase-2 siRNA and control siRNA were compared. We

selected a 1.5 fold cut-off and globally 24 genes were significantly

down-regulated (Table S1), whereas 17 genes were significantly

up-regulated in caspase-2 silenced cells (Fig. 1A). This number is

particularly small, since in parallel experiments after silencing of

other genes, such as USP34 or PGAM5 fluctuations in the

expression of more than 200 and 800 genes, respectively were

observed (data not shown). Microarray and immunoblot analysis

proved the effective down-regulation of CASP2 mRNA (Fig. 1A)

and protein (Fig. 1B).

Figure 1. Transcriptomic variations in cells silenced for caspase-2. A. List of the top up-regulated genes (cut-off 1.5) in U87MG cells silenced
for caspase-2 expression. B. Cellular lysates from U87MG cells transfected with the indicated siRNAs against caspase-2 or the relative control siRNAs
were generated and after immunoblot were probed with an anti-caspase-2 antibody. P62, nucleoporin was used as loading control. C. mRNA
expression levels of CYP1B1, CYP51A1 and LIPA were measured using qRT-PCR in U87MG cells transfected with the indicated siRNAs against caspase-
2 or the relative control siRNAs. Data are presented as mean 6 SD; n = 3. D. mRNA expression levels of CYP1B1, CYP51A1 and LIPA were measured
using qRT-PCR in IMR90-E1A cells transfected with siRNA1 against caspase-2 or the control siRNA. Data are presented as mean 6 SD; n = 3.
doi:10.1371/journal.pone.0110610.g001
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Next we focused our attention on the 17 genes up-regulated

after caspase-2 down-regulation, which could be entangled in

compensatory responses. Analysis of associated GO terms

indicated that these genes are involved in different biological

functions, including cell cycle control, inflammation and mem-

brane trafficking. Particularly, 3 of them: CYP51A1, CYP1B1 and

LIPA are linked to cholesterol metabolism. Since caspase-2

expression can be influenced by SREBPs and a previous study

proposed a role of caspase-2 in the control of cholesterol and

triacylgycerol levels [28,29], we investigated in more detail the

relationships between caspase-2 and cholesterol genes.

CYP51A1 and CYP1B1 are cytochrome P450 family members

involved respectively in cholesterol/sterol biosynthetic processes

and in the metabolism of a wide range of structurally diverse

substrates, including cholesterol [30,31]. LIPA encodes for the key

enzyme responsible for acidic hydrolysis of cholesteryl esters and

triglycerides delivered from lipoproteins to lysosomes [32].

Furthermore also PIK3R3 (phosphatidylinositol-3 kinase regu-

latory subunit p55c), LCN1 (tears lipocalin), other two caspase-2

influenced genes are in some relations with cholesterol and lipid

metabolism. The first is a target of SREBPs [33] and the second

can bind an assortment of lipids including cholesterol [34]. For all

these reasons we decided to study the relationships between

caspase-2 and CYP51A1, CYP1B1 and LIPA.

qRT-PCR analysis was performed to validate the microarray

experiments. The expression of CYP1B1 and LIPA was

augmented in U87MG cells silenced for caspase-2, whereas for

CYP51A1 the increase was minimal and not statistically significant

(Fig. 1C). To confirm these results we used a second siRNA

against caspase-2 (siRNA2) and a second control oligos, from a

different provider (Fig. 1B). The results were similar. CYP1B1 and

LIPA expression was augment in U87MG cells silenced for

caspase-2. We also investigated whether this up-regulation could

be observed in other cell lines. Figure 1D shows that only LIPA

induction can be observed in human fibroblasts expressing the

E1A oncogene after caspase-2 silencing. In this cell line CYP51A1

and CYP1B1 mRNA levels resulted unchanged. However LIPA

up-regulation was much more pronounced compared to U87MG

cells. These findings indicate that correlations between caspase-2

and cholesterol genes expression could vary in different cell types.

Figure 2. Cholesterol distribution in cells silenced for caspase-2 expression. A. U87MG cells were fixed and processed for
immunofluorescence. Epifluorescence microscopy followed by deconvolution analysis was used to visualize different subcellular compartments
and cholesterol distribution. With arrows indicate LDs and green arrows LDs encircled by lysosomes. Scale bar 40 mM. B. U87MG cells were transfected
with siRNA against caspase-2 or control siRNA as indicated. 48 h later cells fixed and stained with filipin to visualize the intracellular distribution of
cholesterol. Arrows point to LDs. Scale bar 30 mM. C. Quantitative analysis of LDs presence in U87MG and IMR90-E1A cells transfected with siRNA
against caspase-2 or control siRNA. Data are presented as mean 6 SD; n = 3.
doi:10.1371/journal.pone.0110610.g002

Figure 3. Analysis of LIPA and caspases expression in GBM and different areas of the CNS. A. Plot of CASP2 versus LIPA expression levels
in GBM. Linear regression is reported. B. Correlations in expression levels between LIPA and the indicated genes in GBM. C. Correlations in expression
levels between LIPA and the indicated genes in different CNS areas.
doi:10.1371/journal.pone.0110610.g003
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LIPA generates unesterified cholesterol, which can be used as

substrate for steroidogenesis or be re-esterified for storage in lipid

droplets by acyl-CoA:cholesterol acyl transferase [32]. The

increase of LIPA levels in cells with down-regulated caspase-2

might compensate a deficit in Srebp2-driven lipid synthesis/

accumulation in human cells, as previously suggested [29].

To understand whether mRNA levels of LIPA, CYP51A1 and

CYP1B1 are influenced by other caspases, we silenced caspase-8

expression in U87MG cells. We selected caspase-8 because, like

caspase-2, it is a regulative apoptotic caspase, and because it is

expressed in U87MG cells (Figure S1A). The designed siRNA

silenced caspase-8 expression (Figure S1B). When Caspase-8

expression was down-regulated only CYP1B1 mRNA levels were

clearly augmented. LIPA and CYP51A1 expression was not

significantly changed.

Analysis of intracellular cholesterol distribution in
caspase-2 silenced cells

Having evidences of the existence of a connection linking

caspase-2 to some genes of the cholesterol pathway, we compared

the subcellular distribution of cholesterol after labeling of IMR90-

E1A and U87MG cells with filipin. Fluorescence staining was

detectable in the plasma membrane (PM) and in intracellular

membrane structures (Fig 2A). As expected co-localization studies

using GM130, transferrin receptor and LBPA, as markers

respectively of, Golgi apparatus, late endosomal compartment

and endosomal/recycling compartment evidenced that cholesterol

can be detected in all these organelles. In addition, intense filipin

fluorescence staining was present in regular spherical structures

that do not co-localize with the used markers and that can be

identified as LDs (lipid droplets).

Next we compared filipin staining between caspase-2 silenced

and control cells. Remarkably, the number of LDs detectable in a

cell, as well as the percentage of cells holding them was reduced

after caspase-2 silencing (Fig. 2B). Quantitative analysis proved

that in both cell lines, the percentage of cells presenting LDs was

reduced after caspase-2 silencing (Fig. 2C). This observation

further indicates that down-regulation of caspase-2 could influence

in cholesterol homeostasis.

Correlation studies of LIPA and caspase-2 expression in
glioblastoma

Taking into account the complex regulative networks influenc-

ing cholesterol homeostasis in vivo, the use of the cell culture

models to investigate correlations between caspase-2 and choles-

terol genes expression is limiting. Hence, to further expand our

study we decided to interrogate public available gene expression

datasets of glioblastomas. In principle, if caspase-2 controls a

circuit that influence LIPA expression in cultured glioblastoma

cells the expression of these two genes should be inversely

correlated in tumors. Gene expression profiles from 13 datasets

including 327 microarrays of GBM were interrogated. Figure 3A

illustrates that in glioblastoma, mRNA levels for CASP2 and LIPA

evidence a weak, but significant inverse Pearson correlation (r -

0.2593; p-value 2.00E-00.6).

Since also caspase-8 down-regulation can influence the expres-

sion of certain cholesterol genes (Figure S1), we extended this study

to all caspases. as well as, to elements of the molecular platform

involved in caspase-2 activation (CRADD/RAIDD and PIDD)

[8,9]. With the exclusion of CASP1 mRNA, which level weakly

but positively correlates with LIPA, all the other caspases do not

evidence significant correlations with LIPA expression (Fig. 3B).

Concerning PIDD, its expression negatively correlates with LIPA

mRNA levels (r -0.3497; p-value 3.38E-014) in GBM.

Expression correlations between CASP2/LIPA and PIDD/

LIPA were also evaluated in normal tissues. A good and significant

inverse correlation was scored for both genes in cerebellum. On

the contrary, in the hippocampus and with lowest score in the

brain, a significant positive correlation only for CASP2/LIPA was

observed (Fig. 3C). Interestingly, differences in terms of expression

of cholesterol genes between different brain areas are known [35].

Expression correlations among caspases and cholesterol
genes in normal brain and in glioblastoma

Although in cultured cell lines we noted an inverse correlation

in terms of expression between CASP2 and LIPA, in vivo the

situation is heterogeneous, as suggested by the analysis of different

CNS (Central Nervous System) areas. Moreover, since silencing of

caspase-2 affects also other cholesterol genes, it is evident that

these correlations cannot be simply analyzed without taking into

account other genes involved in cholesterol homeostasis. For

example down-regulation of LIPA provoked the up-regulation of

several genes implicated in cholesterol biosynthesis, as compensa-

tory mechanism [36]. Therefore, we decided to investigate with a

more comprehensive approach the correlations between expres-

sion of caspase-2 and the expression of genes involved in

cholesterol homeostasis. We extended this study to all caspases

and we also included the normal tissues. Gene expression profile

data from 11 datasets including 293 microarrays of normal brain

were recovered from public available databases.

We first evaluated changes in the mRNA levels for the different

caspases between normal brain and GBM. Surprisingly the

mRNA levels of several caspases, both inflammatory (CASP1

and CASP4) and apoptotic (CASP3, CASP6, CASP7 and CASP8)

were significantly augmented in tumor samples (Fig. 4A).

Next, genes involved in cholesterol homeostasis, including

steroidogenesis were extracted from Gene Ontology (GO) and

integrated from literature data. In total we selected 256 genes, of

which 166 were grouped into 5 categories: biosynthesis, adsorption/
import, export, steroid and bile acid synthesis and transcriptional
regulators. The category export was subdivided into HDL (High

Density Lipoproteins), LDL (Low Density Lipoproteins) and

VLDL (Very Low Density Lipoproteins). At this point we

exploited microarray datasets to evaluate correlations in the

expression levels between caspases and cholesterol genes. Pearson

correlation between the expression level of each caspase and each

cholesterol gene was computed for human brain samples. Based

on the similarity in correlation patterns caspases and cholesterol

genes were hierarchically clustered using the complete linkage

method.

Figure 4. Co-expression analysis of caspases and cholesterol genes in human brain and GBM. A. Expression levels of the different
caspases in GBM and in the normal brains. Box plots depicted in red mark tumors whereas blue was used for normal brain. mRNA levels of CASP1,
CASP3, CASP4, CASP6, CASP7 and CASP8 were significantly augmented in tumor samples. p-value ,2.2e-16. B. Correlations of expression levels
between caspases and cholesterol genes in different brain and GBM samples in Cholesterol export, lipoproteins category. Data obtained were used to
calculate the correlation values with the Pearson method. In the heat map positive values are displayed in blue and negative in dark green. The
dendrograms displayed on the top are based on hierarchical clustering using the complete linkage method.
doi:10.1371/journal.pone.0110610.g004
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Cholesterol export, lipoproteins. The CNS produces its

own lipoprotein transport system that is distinct from the plasma

[37]. CASP1, 2, 8, 9, and 10 share correlations in terms of changes

in the mRNA levels with several genes involved in HDL

biogenesis. In particular expression of CASP2, 9 and 10 show

the highest correlations with APOD, APOM, APOE, APOA5,

PON1, CAV1, CAV3, ABCA1 and ABCG1 (Fig. 4B and Table

S2).

APOD and APOM are apolipoprotein belonging to the

lipocalin protein superfamily [38]. APOM expression is under

the influence of hormones and cytokines [39]. In apoM-deficient

mice plasma HDL are reduced by approximately 17–21% [40].

Moreover, APOM is an important carrier of shingosine-1-

phosphate (S1P), a signaling molecule controlling several processes

including inflammation [41]. APOD not only contributes to HDL

formation but can also act as antioxidant [42]. This function could

explain the up-regulation of APOD expression with aging in

human prefrontal cortex, as part of a protective circuit [38,43].

APOE is the major apolipoprotein for CNS HDL and is mainly

synthetized by astrocytes [37,44]. It is possible that ApoE-

containing lipoproteins are involved in delivering cholesterol to

neurons for growth, repair and synaptogenesis [37,45]. Fluctua-

tions in APOE mRNA could be related to repair. In fact, in

astrocytes ApoE synthesis increases dramatically after nerve injury

[46,47]. APOE and in particular the e4 allele is the major known

genetic risk factor for late-onset Alzheimer’s disease [48].

PON1 belongs to paraoxonase genes family and is secreted into

the extracellular environment where it binds HDL. This

antioxidant enzyme confers to HDL some of the anti-atherogenic

properties, such as HDL-mediated cholesterol efflux from

macrophages, and the inhibition of LDL oxidation [49].

Although in the brain their activities are less characterized,

ATP-binding cassette (ABC) transporters ABCA1 and ABCG1,

but also CAV1 and CAV3 mediate cholesterol efflux and play

important roles in the transfer of phospholipids and cholesterol to

apolipoproteins such as ApoE and ApoM [37,50].

In GBM expression correlations among constituents of HDL

and pro-apoptotic regulative CASP2, 8, 9, and 10 are still present

but reduced. In particular CASP2, 9 and 10 do not show

significant correlations with APOD, ABAC1 and CAV1 and also

in the case of ABCG1 the correlation is diminished. Instead,

another transporter, ABCG4 exhibits correlations.

In GBM, CASP1 reveals profound different correlations with

HDL genes and clusters together with CASP4, another inflam-

matory caspase, and the effector caspases. HDL genes showing

strongest correlations with CASP1 are APOL1, SOAT1, CAV1,

ABCA1 and PCTP. Interestingly, cholesterol efflux associates

more strongly with the expression of ABCG1 than of ABCA1 [51].

Cholesterol biosynthesis. Almost all the cholesterol found

in the CNS is produced from local biosynthesis [52]. Also in the

case of the category ‘‘cholesterol biosynthesis’’, correlation analysis

revealed that the regulative apoptotic caspases, with the addition

of CASP1 cluster together. In particular strong positive correla-

tions (Fig. 5 and Table S3) with mRNA levels of a group of genes

involved in cholesterol biosynthesis (LSS, CYB5R3, DHCR7,

MVK) emerged. By contrast, HMGCR the gene encoding for the

enzyme converting the 3-hydroxyl-3-methyl-glutarylCoA (HMG-

CoA) into mevalonate scores a good but negative correlation.

Since it represents the limiting step in cholesterol biosynthesis, the

implications of the correlations between certain enzymes of

cholesterol biosynthesis and regulative apoptotic caspases are

unclear at the moment. Significant correlations were not observed

for all the other caspases. Expression of CYP51A1 in the brain

achieves a strong inverse correlation compared to CASP2, CASP9

and CASP10. CYP51A1 encodes for lanosterol 14a-demethylase,

which in addition to being a key enzyme of the cholesterol

biosynthetic pathway [31] is also involved in the steroidogenesis

[53].

In GBM correlations among regulative apoptotic caspases and

genes involved in cholesterol biosynthesis are less evident. Again

CASP1 clustered with effector caspases in the absence of

significant correlation scores. Interestingly, CASP3 shows good

correlations with some genes involved in cholesterol biosynthesis

including HMGCR.

Cholesterol absorption/import. Lipoproteins produced by

astrocytes can be internalized, after binding to LDL receptor

superfamily by neurons and glia cells [37]. Also in the category of

absorption/import, analysis of the correlations at mRNA levels

resulted in two clusters where the regulative apoptotic caspases

plus CASP1 segregate from all the others. CASP2 CASP9 and

CASP10 show the strongest correlations with APLP2, LRP1,

LDLR, LRP2, LRP5, MSR1, LIPG, SCARF1, GPIHBP1, NPC2,

LAMTOR1 and LDLRAP1 (Fig. 5 and Table S4).

LDLR, LRP1, LRP2, LRP5 are all members of the low-density

lipoprotein receptors family [54]. These receptors can bind a large

number of extracellular ligands but a common ligand for all is the

ApoE protein, which mediates internalization and catabolism of

lipoprotein particles [55]. The LDLR is highest expressed in glial

cells than in neurons, on the opposite LRP1 is highest expressed in

neurons than in glia [56,57]. These observations suggest that

correlations with regulative apoptotic caspases are not limited to a

specific cell type. APLP2 an APP homologous can influence LRP1

expression and the toxicity mediated by beta-amyloid oligomers

[58]. LDLRAP1 encodes for an adaptor cytosolic protein that

interacts with and is involved in the endocytosis of LDLR. MSR1,

SCARF1 and SCARB1 are involved in the uptake of lipoproteins.

Endothelial lipase (LIPG) regulates the circulating level of HDL

[59]. It is expressed in different areas of the CNS including CA3

pyramidal cells of the hippocampus, ependymal cells in the ventral

part of the third ventricle [60]. LIPG is also expressed in brain

capillary endothelial cells, major constituents of the blood brain

barrier [61]. GPIHBP1, (glycosylphosphatidylinositol-anchored

high-density lipoprotein binding) can be considered a platform

for lipolysis [62] and it is also involved in the transport of

lipoprotein lipase (LPL) [63]. LAMTOR1 and NPC2 work

downstream to the internalization of lipoproteins. The first as

key regulator of endosome dynamics and lysosome biogenesis, the

second by removing unesterified cholesterol from late endosomes/

lysosomes [64,65].

It is evident that several genes involved in cholesterol and lipids

up-take show a coordinate expression with regulative apoptotic

caspases. High positive scores in terms of correlation among pro-

apoptotic regulative caspases and genes involved in cholesterol

internalization are in agreement with the negative score observed

in the case HMGCR [66]. In GBM, as above observed for other

categories, these correlations are less robust and CASP1 distinctly

Figure 5. Co-expression analysis of caspases and cholesterol genes in human brain and GBM. Correlations in terms of expression levels
between caspases and cholesterol genes in different brain and GBM samples, for the indicated categories. Data obtained were used to calculate the
correlation values with the Pearson method. In the heat map positive values are displayed in blue and negative in dark green. The dendrograms
displayed on the top are based on hierarchical clustering using the complete linkage method.
doi:10.1371/journal.pone.0110610.g005
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changes relationships with cholesterol genes, thus clustering with

the effector caspases.

Steroid and bile acid synthesis. This category collects

heterogeneous gene families. Nevertheless, the apoptotic regulative

caspases cluster again together, whereas CASP1 is here found

together with other inflammatory caspases and with the effector

caspases. TSPO, CYP7B1, CYP8B1 and CYP19A1 show the

highest positive correlation scores (Fig. 6 and Table S5).

Steroid biosynthesis begins with the transfer of free cholesterol

from intracellular stores into mitochondria [67]. TSPO encodes

for a translocator located on the outer mitochondrial membrane,

which binds cholesterol with high affinity and transfers it in the

inner mitochondrial membrane. TSPO activity is the rate-limiting

step in the synthesis of all steroids [68]. Interestingly, alterations in

TSPO expression has been found in various psychiatric disorders,

including social phobia, post-traumatic stress disorder, adult

separation anxiety and schizophrenia [69].

CYP7B1 catalyzes 7-hydroxylation of C19 and C21 steroids and

in the brain it is involved in the metabolism of neurosteroids and

oxysterols [70]. Defects of CYP7B1 in humans have been linked to

spastic paraplegia [71,72].

CYP8B1 is a sterol 12a–hydroxylase. In mice expression of

CYP7A1 and of CYP8B1 is integrated [73]. In the liver, circadian

signals can influence CYP7A, CYP8B, and CYP51A1 expression

[74].

CYP19A1 encodes for the cytochrome P450 aromatase an

enzyme responsible for the synthesis of all oestrogens from

androgen precursors [75]. Oestradiol synthesis in the brain

regulates several functions of the adult CNS, from neural plasticity

to injury responses [76]. Increased expression of CYP19A1 during

neurodegeneration could interfere with apoptotic pathways and to

decrease the extent of brain damage [77].

In glioblastoma the correlations affect other genes and are in

general attenuated. TSPO expression is not longer linked to

regulative caspases, whereas it shows positive correlations with

effectors and inflammatory caspases.

Transcriptional regulators. Finally, we investigated the

correlations among caspases and the expression of TFs (Tram-

scription Factors) involved in the control of cholesterol genes

expression. Figure 6 documents the results, which photocopy those

previously obtained with the other categories. Apoptotic regulative

caspases and CASP1 share similar relationships, in terms of

expression correlations, with transcriptional regulators of choles-

terol genes. SREBF1, SREBF2, PPARA and NR1H2 display the

highest score with CASP2, CASP9 and CASP10 (Figure 6 and

Table S6). In the case of SREBF2, Pearson correlation coefficients

with caspases were similar to those described for cholesterol genes

[78].

SREBF1 and SREBF2 (sterol regulatory element binding

proteins) are TFs that control cellular lipid homeostasis. SREBF1

encodes for two proteins Srebp1a and Srebp1c produced via

alternative transcription start sites. Srebp1c preferentially influ-

ences expression of fatty acid biosynthesis genes, whereas Srebp2 is

devoted to transcribe genes involved in cholesterol homeostasis,

lipoproteins import and lipids trafficking. Serbp1a can support

transcription of both SREBF1 and SREBF2 genes [79]. In this

respect it is interesting to note that only SREBF2 accomplishes a

good correlation with CASP2 in GBM.

PPARA belongs to the family of peroxisome proliferator-

activated receptors, which includes (PPARa, PPARb/d and

PPARc). These TFs function as obligate heterodimers with

retinoid-X receptors (RXRs). PPARa supervises energy homeo-

stasis by stimulating fatty acids and cholesterol breakdown and

gluconeogenesis [80–82]. PPARb/d is mainly engaged in fatty

acid oxidation. PPARc principal activity is to drive storage of

lipids, in particular by controlling adipocyte differentiation [83]. In

the brain PPARD is the most abundant and quite ubiquitously

expressed member, whereas PPARA and PPARG are expressed in

more restricted areas and cell types [84,85]. In addition to their

metabolic role, PPARs in the CNS have been implicated in the

control of neuronal differentiation, death, inflammation and

neurodegeneration [83]. In GBM expression correlation between

PPARA and regulative caspases are abrogated. On the other side a

good correlation between PPARG and CASP1 appears (Fig. 6).

NR1H2 (liver X receptor-beta) is another master TF orches-

trating the expression of genes of the cholesterol homeostasis [86].

Similarly to SREBF1, SREBF2 and PPARA correlations between

NR1H2 and CASP2, CASP9 and CASP10 are abrogated in

GBM. Interestingly, in GBM new correlations emerged between

the second nuclear hormone receptors liver X receptor alpha

(LXRalpha/NR1H3) and inflammatory caspases CASP1 and

CASP4.

In summary, the correlation among regulative apoptotic

caspases and certain cholesterol genes observed in this study

could be orchestrated by selected TFs, well-known master

regulators of cholesterol metabolism such as SREBF1, SREBF2,

PPARA and NR1H2.

Expression correlations among caspases and cholesterol
genes in the liver

To understand whether our discoveries are limited to CNS or

can be observed also in other tissues, we decided to compare

variations in the expression levels of caspases and of cholesterol

genes in human liver, an essential organ for cholesterol homeo-

stasis. Gene expression profiles from 5 datasets including 106

microarrays of normal human liver were interrogated. Figure 7

shows that correlations among cholesterol genes and expression of

regulative apoptotic caspases are less pronounced and only in

some categories: transcriptional regulators, cholesterol biosynthesis,
steroid and bile acid synthesis, these genes cluster together. In the

liver CASP7 reaches the highest scores both for positive and

negative correlations. For example CASP7 expression is strongly

inversely correlated with those of several apolipoprotein genes, but

it positively correlates with NPC1, VLDLR, SOAT1, SNX17 and

VPS4B (Table S7); which are genes involved in cholesterol up-take

and storage. It is important to note that similarly to caspase-2,

caspase-7 expression is under the influence of Srebp1/2 and of

statins [87].

CASP9 and CASP10 in terms of correlations with cholesterol

genes maintain in the liver a pattern resembling that remarked in

the brain and they cluster in almost all categories. By contrast

CASP2 exhibits a correlation pattern rather different from the

brain and it frequently clusters with CASP5. This observation

suggests that the correlations between caspase-2 and cholesterol

genes are related to a specific brain endeavor [88,89]. Remark-

Figure 6. Co-expression analysis of caspases and cholesterol genes in human brain and GBM. Correlations of expression levels between
caspases and cholesterol genes in different brain and GBM samples, for the indicated categories. Data obtained were used to calculate the correlation
values with the Pearson method. In the heat map positive values are displayed in blue and negative in dark green. The dendrograms displayed on the
top are based on hierarchical clustering using the complete linkage method.
doi:10.1371/journal.pone.0110610.g006
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ably, several reports have proposed specific biological activities for

caspase-2 in the CNS [26,89–91].

Caspases, cholesterol genes and aging
Changes in the expression of cholesterol genes in the brain are

linked to several physiological/pathological conditions including,

regeneration, plasticity, circadian rhythms, diet, degeneration,

social behavior and also the presence of several different cell

linages [37,38,43,58,69,74,77,83,92]. To understand the signifi-

cance of the described correlations, we decided to interrogate

more precisely the public available datasets used in our studies. We

restricted our inquiries to one dataset (GSE 17612) in which,

information about the specific brain area (the anterior prefrontal

cortex/Brodmann area 10) and subjects age were available. 23

microarray of normal brain met these requirements. Age

distribution is shown in figure 8A. Cholesterol and caspase genes

were ranked accordingly to the Spearman method, respect to the

age of the subjects. Figure 8B illustrates that the expression of a set

of cholesterol genes shows a good inverse correlation respect to age

(green dots) and on the opposite, the expression of a different set of

genes increases with aging (blue dots).

Among genes, which mRNAs levels are down-regulated with

aging, we have found CYP46A1 and HMGCR (Fig. 8B and 8C).

CYP46A1 encodes for the hydroxylase, which converts cholesterol

to 24S-hydroxycholesterol and provides the major route in

cholesterol excretion from the brain [93]. In the case of HMGCR

our observations are in agreement with previous results pointing to

a decline in brain cholesterol synthesis with age [43,94,95]. On the

opposite previous study reported an up-regulation of cholesterol-

24-hydroxylase mRNA in mouse brain with aging [96]. Indeed in

their studies the authors analyzed the hippocampus from day 10

up to 21 months. After an up-regulation at 3 months, a trend to

decrease in both mRNA and protein levels of CYP46A1 can be

appreciated. In humans 24S-hydroxycholesterol levels are highest

in the first decade of life and then decline with age [97].

Furthermore, also in human brain, analysis of cholesterol 24-

hydroxylase protein evidenced some reduction during aging [98].

Undoubtedly, further studies are necessary to clarify this point.

Taking into account that mice lacking 24-hydroxylase exhibit

severe learning and memory defects [99], clarification of

CYP46A1 expression during aging is of particular interest.

We have included in this analysis also the different caspases.

Figure 8C reveals that expression of inflammatory CASP1 and

also of the effector caspases CASP6 and CASP7 positively

correlates with aging.

Several studies have indicated a contribution of caspase-6 to

neurodegeneration including Alzheimer and Huntington diseases

[100–104]. A more recent report has proposed that caspase-6

activity can predict lower episodic memory ability in aged

individuals [105]. CASP1 is a key regulator of inflammation, via

the generation of IL-1b and involved in the regulation of age-

related cognitive-dysfunctions. CASP1 genetic variations have

been associated with cognitive function [106] and several data

have linked caspase-1 to brain aging [107,108]. Deficiency in

Nlrp3 inflammasome-mediated caspase-1 activity improved cog-

nitive function and motor performance in aged mice [109].

Furthermore, caspase-1 also influences in a still undetermined

manner lipid metabolism [110].

Conclusions
Our initial aim, of discovering compensatory pathways to solve

the caspase-2 mystery has led us to unveil large and shared

correlations among different caspases and cholesterol genes.

Expression correlations studies have attracted attention to uncover

new biological circuits [111,112] and dedicated methodological

tools have been developed [113,114]. We have applied hierarchi-

cal clustering of gene expression correlations to hypothesize new

functions for caspases and caspase-2 in particular. An unexpected

finding was that the regulative apoptotic caspases (CASP9 and

CASP10 in particular) share a correlation pattern with cholesterol

genes, similarly to CASP2. The reported strong correlations

among these caspases and certain cholesterol genes in a

heterogeneous tissue, such as the human brain and in a

heterogeneous population, suggest that expression of these genes

is influenced by common signaling networks linked to specific

biological processes. Hence, expression of certain cholesterol genes

and of regulative apoptotic caspases in the brain should be under

the control of the same regulative circuits. Since in GBM these

correlations are in general less prominent, it is possible that genetic

lesions, altering proliferation also impact on cholesterol homeo-

stasis. Although the contribution of cholesterol genes to GBM

development is largely unexplored, recently a survival pathway

engaged by the LDL receptor, through the EGFRvIII/PI3K/

SREBP-1 axis has been discovered [115]. This observation

suggests that oncogenic driven changes in gene expression could

revise the harmonic co-regulation of caspases and cholesterol

genes.

This scenario is well exemplified by CASP1, which evidences

the most overt changes in terms of correlations with cholesterol

genes between brain and GBM. Taking into account that its

expression is augmented in GBM, these changes could reflect the

establishment of an inflammatory microenvironment.

When the same analysis were performed using microarray data

obtained from cultured glioblastoma cells, correlations were in

general weaker and apoptotic regulative caspases clustered

separately (data not shown). This observation indicates that

complex networks of environmental signals control the expression

of these genes. Networks that cannot be easily replaced under in
vitro culture conditions. A consideration that could explain the low

number of genes, which expression is influenced by caspase-2

siRNA in cultured glioblastoma cells.

It is evident that, correlations in terms of expression could

have different biological origins/implications: from the presence

of different cell lineages in the sample, up to different neuronal

activities, different inflammatory/degenerative states, different

cognitive functions and different hormonal signaling. We are

consciousness that this complexity deserves further experimental

work. Here we have discovered that for some caspases, in a

specific brain’s area, the correlations with certain cholesterol

genes could be related to aging. In this case the correlation

could be linked to the induction of degenerative processes. In

fact, caspase signaling engaged by the ordered activation of

caspase-8 and caspase-3/7 controls microglia activation and

neurotoxicity with implications in Parkinson’s and Alzheimer’s

diseases [116].

For other caspases, including caspase-2 the reason for this

correlation is unclear at the moment. Taking into account that

Figure 7. Co-expression analysis of caspases and cholesterol genes in human liver. Correlations of expression levels between caspases and
cholesterol genes in different liver samples, for the indicated categories. Data obtained were used to calculate the correlation values with the Pearson
method. In the heat map positive values are displayed in blue and negative in dark green. The dendrograms displayed on the top are based on
hierarchical clustering using the complete linkage method.
doi:10.1371/journal.pone.0110610.g007

Caspases and Cholesterol Homeostasis

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e110610



evidences sustaining non-apoptotic roles of caspases in the CNS

are accumulating [117] several hypothesis concerning caspase-2

could be formulated. Previous studies [28], here confirmed, linking

SREBFs levels to CASP2 expression suggest a direct involvement

of this enzyme in cholesterol homeostasis. Although the mecha-

nisms need to be elucidated, our data further encourage

investigating towards this direction.

Figure 8. Analysis of cholesterol and caspase genes expression with aging in anterior prefrontal cortex. A. Bar plot displaying the age
frequencies of the samples used in the analysis. B. Dot plot of ranked correlations of the 129 genes involved in cholesterol homeostasis/
steroidogenesis and caspases respect to age. C. Dot plot of ranked correlations of genes involved in cholesterol homeostasis/steroidogenesis and
caspases that scored significant expression correlation with respect to age. We applied the Spearman method (Benjamini and Hockberg correction).
P,0.05.
doi:10.1371/journal.pone.0110610.g008
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Supporting Information

Figure S1 A. Expression profiles in U87MG cells of the

different caspases. Microarray expression data were obtained

from GSE14889 [118]. B. mRNA expression levels of CASP8

were measured using qRT-PCR in U87MG cells transfected with

siRNA against Caspase-8 or a control siRNA. Data are presented

as mean 6 SD; n = 3. C. mRNA expression levels of CYP1B1,

CYP51A1 and LIPA were measured using qRT-PCR in U87MG

cells transfected with siRNA against Caspase-8 or a control

siRNA. Data are presented as mean 6 SD; n = 3.

(JPG)

Table S1 Genes down-regulated.1.5 fold in U87MG
cells silenced for Caspase-2.
(XLS)

Table S2 Top score cholesterol genes of the subclass
cholesterol export in terms of correlations of expression
levels with regulative apoptotic caspases in human
brain. Values are shown for all caspases.

(XLS)

Table S3 Top score cholesterol genes of the subclass
cholesterol biosynthesis in terms of correlations of
expression levels with regulative apoptotic caspases in
human brain. Values are shown for all caspases.

(XLS)

Table S4 Top score cholesterol genes of the subclass
cholesterol adsorption/import in terms of correlations

of expression levels with regulative apoptotic caspases
in human brain. Values are shown for all caspases.

(XLS)

Table S5 Top score cholesterol genes of the subclass
steroid and bile acid synthesis in terms of correlations of
expression levels with regulative apoptotic caspases in
human brain. Values are shown for all caspases.

(XLS)

Table S6 Top score cholesterol genes of the subclass
transcriptional regulators in terms of correlations of
expression levels with regulative apoptotic caspases in
human brain. Values are shown for all caspases.

(XLS)

Table S7 Top score cholesterol genes in terms of
correlations of expression levels with caspase-7 in
human liver. Values are shown for all caspases.

(XLS)
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Abstract

Emerging evidence has demonstrated that miRNA sequences can regulate skeletal myogenesis by controlling the process of
myoblast proliferation and differentiation. However, at present a deep analysis of miRNA expression in control and FSHD
myoblasts during differentiation has not yet been derived. To close this gap, we used a next-generation sequencing (NGS)
approach applied to in vitro myogenesis. Furthermore, to minimize sample genetic heterogeneity and muscle-type specific
patterns of gene expression, miRNA profiling from NGS data was filtered with FC$4 (log2FC$2) and p-value,0.05, and its
validation was derived by qRT-PCR on myoblasts from seven muscle districts. In particular, control myogenesis showed the
modulation of 38 miRNAs, the majority of which (34 out 38) were up-regulated, including myomiRs (miR-1, -133a, -133b and
-206). Approximately one third of the modulated miRNAs were not previously reported to be involved in muscle
differentiation, and interestingly some of these (i.e. miR-874, -1290, -95 and -146a) were previously shown to regulate cell
proliferation and differentiation. FSHD myogenesis evidenced a reduced number of modulated miRNAs than healthy muscle
cells. The two processes shared nine miRNAs, including myomiRs, although with FC values lower in FSHD than in control
cells. In addition, FSHD cells showed the modulation of six miRNAs (miR-1268, -1268b, -1908, 4258, -4508- and -4516) not
evidenced in control cells and that therefore could be considered FSHD-specific, likewise three novel miRNAs that seem to
be specifically expressed in FSHD myotubes. These data further clarify the impact of miRNA regulation during control
myogenesis and strongly suggest that a complex dysregulation of miRNA expression characterizes FSHD, impairing two
important features of myogenesis: cell cycle and muscle development. The derived miRNA profiling could represent a novel
molecular signature for FSHD that includes diagnostic biomarkers and possibly therapeutic targets.
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Introduction

Facioscapulohumeral muscular dystrophy (FSHD) is the third

most common myopathy, with an incidence of 1 in 14.000 in the

general population. Signs of FSHD become visible in an

individual’s 20’s (men) or 30’s (women) and include loss of muscle

strength in the face, shoulders, and upper arms before eventually

attaining the abdomen, legs and feet. FSHD is transmitted as an

autosomal dominant trait and it is thought to be mainly associated

to an epigenetic alteration leading to transcriptional imbalance of

the responsible genes [1,2]. Almost all FSHD patients carry

rearrangements reducing the copy number of a 3.3 kb tandemly

repeated sequence (D4Z4) located at 4q35, and containing a

conserved open reading frame for a double homeobox gene

(DUX4). D4Z4 copy number is highly polymorphic in healthy

individuals ranging between 11 and .100copies while FSHD

patients carry fewer than 11 repeats [3]. Notably, although the

number of D4Z4 repeats seems to be a critical determinant of the

age of onset and clinical severity of FSHD, patients without D4Z4

contraction (phenotypic FSHD or FSHD2) as well as healthy

individuals with D4Z4 contraction (carrier) have been also

identified [4,5]. All these observations strongly suggests that

FSHD derives from the interplay of more complex genetic and

epigenetic events than those already described; these additional

events might take place at either 4q35 or elsewhere in the human

genome.

Recently a unifying genetic model [6] that provides the

expression of D4Z4 as a major cause of FSHD has been proposed.

Another recent paper [7] defining the epigenetic regulation of

4q35 gene expression, demonstrated that D4Z4 deletion is

associated to reduced epigenetic repression by Polycomb silencing

in FSHD patients. Furthermore, DBE-T, a chromatin associated

non-coding RNA is produced selectively in FSHD patients and it

coordinates the de-repression of 4q35 genes. However, another

study evaluating a large-scale population analysis of healthy and
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Figure 1. Study design and data analysis. A) Study design: Next-generation Sequencing (NGS) on three control and three FSHD myoblast cell
lines before and after in vitro myogenic differentiation was used in order to derive miRNA modulation in: a) control myogenesis (CN myotubes vs CN
myoblasts; arrow a); b) FSHD myogenesis (FSHD myotubes vs FSHD myoblasts; arrow b); c) FSHD myoblasts versus control myoblast (arrow c), and d)
FSHD myotubes vs control myotubes (arrow d). B) Flow chart of filtering and analysis of NGS data. NGS generated a total of 1536106 high quality
reads, that were filtered for rRNA, tRNA, snRNA, snoRNA, repeat associated RNAs and intron/exon. The filtered reads (approx. 996106 reads, an
average of 86106/sample) were analyzed to derive known miRNAs (R/Bioconductor) and novel miRNAs (mireap). Differentially expressed miRNAs
between samples were derived by log2FC§2 and p-value,0.05 parameters. The homogeneity of miRNA modulation among samples was evaluated
by cluster analysis (dChip). miRNAs were then validated by qRT-PCR. Finally, target genes were predicted for modulated miRNAs and functionally
annotated by DAVID.
doi:10.1371/journal.pone.0108411.g001
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unrelated FSHD patients reports that the genetic criteria in order

to manifest FSHD (D4Z4 contraction associated with a specific

chromosomal background 4A-161-p(A)- pathogenic haplotype)

occur in 63.7% of the analyzed FSHD patients and in 1.3% of

healthy subjects [8]. Although these data certainly represent a

major advance toward the definition of the molecular basis of

FSHD, many questions on the disease etiology remain unex-

plained. Also the reported high degree of variability of the disease,

in term of onset, progression and severity strongly suggests that

other mechanism(s) linked to the 4q subtelomere and/or to other

regions of the human genome may play a role in the disease

pathogenesis.

Various recent studies have demonstrated that both FSHD

myoblasts and myotubes are characterized by an extensive gene

expression dysregulation mainly affecting the myogenesis and

including genes linked to cell cycle control, particularly G1/S and

G2/M transitions, muscle structure, mitochondrial function,

oxidative stress response, and cholesterol biosynthesis [9,10,11].

The deciphering of the molecular basis of FSHD has been

further complicated by the finding that microRNAs (miRNAs) are

involved in both control and pathological myogenesis [12,13,14].

MiRNAs are evolutionarily conserved short non-coding RNAs

(,22 nts) that regulate the stability and/or the translational

efficiency of target mRNAs. They have a very pervasive role since

it is estimated that a single miRNA has the potential to regulate

hundreds of target genes, and therefore, .90% of all human genes

could be under miRNAs regulation [15]. MiRNAs are essential for

normal mammalian development and are involved in fine-tuning

of many biological processes, such as differentiation, proliferation

and apoptosis [16,17]. Emerging evidence has demonstrated that

miRNA sequences can regulate skeletal myogenesis by controlling

the process of myoblast proliferation and differentiation, in

particular, microRNA-1, -206 and -133a/b were defined as

myomiRNAs to emphasize their crucial role in myogenesis

[18,19]. More recently, a simultaneous microRNA/mRNA

expression profiling of healthy myogenic cells during differentia-

tion allowed to identify the involvement of miRNAs in the

regulation of various biological processes such as cell cycle,

transcription, transport, apoptosis and DNA damage [20]. Given

these assumptions it was not surprising that miRNAs dysregulation

was found to be involved in muscle dysfunctions [9,12,21].

To date, miRNA studies reported for FSHD were essentially

based on the analysis of a restricted number of known miRNA

sequences, thus not allowing the derivation of the full miRNA-

based dysregulation network. To close this gap, here we report

miRNAs expression analysis, derived by next-generation sequenc-

ing (NGS), in primary muscle cells from healthy and FSHD

subjects during differentiation.

Results

Study design and NGS general results
In order to determine the entire small non coding RNAs (,

35 nts) transcriptome in control (CN) and FSHD primary

myoblast cell lines, before and after in vitro myogenic differen-

tiation, we used next-generation sequencing (NGS). Study design

was organized to allow the comparison of small non-coding RNA

expression profiles between FSHD and CN myoblasts and

myotubes (Fig. 1A, arrows c and d respectively) and of the two

differentiation processes (Fig. 1A, arrows a and b, respectively). In

order to derive biological markers (i.e. miRNA dysregulation)

commonly manifested by different affected muscle districts, we

used two FSHD primary myoblasts cell lines deriving from

rhomboid and one from ilio-psoas muscles, and three control

myoblasts from tensor fascia lata, quadriceps and vastus interme-

dius (Table S1).

As shown in the flow chart reported in Fig. 1B, small RNA

sequencing generated a total of 1536106 high quality reads.

Mature miRNAs make up the majority of sequences in the 18 to

25 nts size range (65% average), with a clear peak at 22 nts in all

samples. The average of known miRNAs per sample was of 556,

whereas un-annotated small RNAs (new miRNA candidates) per

sample were 28.

The differential expression of known miRNAs was analyzed in

the different stages of muscle differentiation by DEseq analysis.

Furthermore, in order to assess the robustness of our approach,

some of the miRNAs identified as differentially expressed were

validated by qRT-PCR using specific TaqMan miRNA assays in

primary FSHD and healthy myoblasts. For these experiments we

employed the same cell lines used for NGS and additional ones

from different muscles, including biceps and deltoid (Table S1). As

reported in Materials and Methods, the nine control and the seven

FSHD cell lines showed a highly comparable extent of Desmin-

positive cells and of myogenic markers modulation upon

differentiation (Fig. S1). Gene targets of differentially expressed

miRNAs were predicted in both control and FSHD cellular

systems by using the TargetScan algorithm. Derived gene targets

were filtered on two independent transcriptome profiling exper-

iments carried out on control and FSHD myogenesis [9,10], and

shared targets were then functionally annotated by DAVID. Novel

miRNAs were predicted by mireap and considered as novel

candidates only if detected with a mean reads of ten in at least two

out of three samples of one or more experimental groups (CN and

FSHD myoblasts; CN and FSHD myotubes).

Modulation of miRNA expression during physiological
and FSHD myoblast differentiation

We first analyzed the data regarding physiological myogenesis

(control myotubes vs control myoblasts; Fig. 1A, arrow a). Filtered

miRNA reads (mapping to miRBase v20) from the three control

myoblasts samples and the corresponding myotubes were analyzed

for differential expression by DEseq analysis, setting the log2 Fold

Change (log2FC) at $2 and p-value,0.05. From this analysis we

evidenced that during the control myogenesis 38 miRNAs showed

a modulation in their expression, and that the great majority of

them (34 out of 38) were up-regulated (Fig. 2A and B).

The hierarchical clustering analysis clearly separated prolifer-

ating from differentiated cells independently of the muscle district

used (tensor fascia lata, quadriceps and vastus intermedius). As

expected, the muscle specific miRNAs (myomiRs) hsa-miR-1,

-133a, -133b and -206, were among the most up-regulated

(Fig. 2B and Table S3). Twenty-six miRNAs were already

reported to be involved in muscle differentiation either in human

or in mouse cells, whereas 12 miRNAs, ten up-regulated (hsa-miR-

95, -146a, -874, -1246, -1290, -3164, -4488, -208a, -944 and

-3144) and two down-regulated (hsa-miR-3934 and -3165), were

not previously known to be involved in muscle differentiation. The

full list of the miRNAs modulated during control myoblasts

differentiation with corresponding FC and p-value is reported in

Table S3.

The same analysis was carried out on FSHD myogenesis

(Fig. 1A, arrow b). As shown in Fig. 3A, the DEseq analysis

evidenced the modulation of only 15 miRNAs during pathological

muscle differentiation. Even in this case the hierarchical clustering

analysis clearly separated proliferating from differentiated cells,

independently of the muscle district (Fig. 3B). The majority of

miRNAs was up-regulated (11 out of 15), including myomiR-1 and

-206, although with a FC lower than that showed in control

MiRNA Expression in Control and FSHD Myogenesis
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myogenesis (Table S4). MyomiR-133a and -133b showed up-

regulation trend (log2FC.5) without reaching significance (p-

value = 0.33). The full list of the miRNAs modulated in FSHD

myogenesis, with corresponding FC and p-value, is reported in

Table S4. Scatter plots of the reads of modulated miRNAs (for

each control and FSHD proliferating and differentiated cell line)

are reported in Fig. S2. To further support the results obtained by

the sequencing approach, the same control and FSHD myoblast

and myotube RNAs were used to analyze the expression of

myomiRs (miR-1, miR-133a and miR-206) by qRT-PCR (Fig.

S3). In both control and FSHD myotubes, we confirmed the

general trend of myomiRs up-regulation derived by sequencing,

with the pathological samples showing a lower extent of up-

regulation than the normal ones.

Dysregulation of miRNA expression in FSHD myoblasts
and myotubes

We next performed DEseq analysis of miRNAs differentially

expressed in FSHD myoblasts and myotubes vs controls (Fig. 1,

arrows c and d). No miRNAs were found significantly dysregulated

(log2FC$2 and p-value,0.05) in FSHD versus control myoblasts

(Fig. 1, arrows c); this result was probably due to the high

variability of miRNA expression observed in myoblasts. Con-

versely, 21 miRNAs were found dysregulated in FSHD myotubes

(Table S5 and Fig. 4A), among these 12 miRNAs were up-

regulated. The hierarchical clustering analysis clearly separated

the pathological samples from the control ones and the three

analyzed samples of each group resulted homogeneous in miRNAs

dysregulation (Fig. 4B).

Figure 2. MiRNA modulation in control myogenesis. A) DEseq analysis of miRNAs differentially expressed in control myotubes vs control
myoblasts (control differentiation). MiRNAs showing a modulation with log2FC$2 and a p-value,0.05 are shown as red dots. B) Hierarchical
clustering of the 38 modulated miRNAs (34 up-regulated and 4 down-regulated) in regard to the analyzed samples. C1:MX01010MBS; C2:
MX03609MBS; C3: MX01110MBS, Control cell lines (see Table S1).
doi:10.1371/journal.pone.0108411.g002
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qRT-PCR Validation
The effective validation of deep sequencing results was

performed by the TaqMan miRNA assay on all the cell lines

listed in Table S1, including those already used for the NGS

experiment. Particularly, for myomiR-1, -133a and -206 the assay

was carried out at different time points during myogenic

differentiation (0, 3 and 7 days of differentiation) (Fig. 5A). In

control cells, the myomiRs progressively increased their expression

with the proceeding of time of differentiation, reaching the

maximum of expression at seven days, with FC values ranging

from approximately 350 folds (miR-1) to 28 folds (miR-206). In

FSHD cells myomiRs showed an up-regulation significantly lower

than that observed in controls, reaching at day seven an expression

value similar to or slightly lower than that showed by control cells

at day three. Comparable fusion indexes and expression values of

myogenic markers in healthy and FSHD myoblasts and myotubes

(see Fig. S1) support that the obtained results are not related to a

Figure 3. MiRNA modulation in FSHD myogenesis. A) DEseq analysis of miRNAs differentially expressed in FSHD myotubes vs FSHD myoblasts
(FSHD differentiation). MiRNAs showing a modulation with log2FC$2 and a p-value,0.05 are shown as red dots. B) Hierarchical clustering of the 15
modulated miRNAs (11 up-regulated and 4 down-regulated) in regard to the analyzed samples. F1:MX00409MBS; F2: MX03010MBS; F3:MX04309MBS,
FSHD cell lines (see Table S1).
doi:10.1371/journal.pone.0108411.g003

Figure 4. MiRNA dysregulation in FSHD myotubes. A) DEseq analysis of miRNAs differentially expressed in FSHD myotubes vs control
myotubes. MiRNAs showing a differential expression of log2FC$2 and a p-value,0.05 are shown as red dots. B) Hierarchical clustering of the 21
modulated miRNAs (12 up-regulated and 9 down-regulated) in regard to the analyzed samples. C1:MX01010MBS; C2: MX03609MBS; C3:
MX01110MBS, Control cell lines; F1:MX00409MBS; F2: MX03010MBS; F3:MX04309MBS, FSHD cell lines (see Table S1).
doi:10.1371/journal.pone.0108411.g004
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different extent of differentiation between control and pathological

samples.

Six additional miRNAs were evaluated for their expression by

qRT-PCR (Fig. 5B). As shown in Fig. 5 and summarized in

Table 1, the qRT-PCR assays validated about the 70% of the

analyzed NGS data. Particularly, the up-regulation of hsa-miR-

139 and hsa-miR-146b during, respectively, FSHD and control

myogenesis, and the down-regulation of hsa-miR-206 in FSHD vs

CN myotubes did not reach the statistical significance showed by

NGS results, while maintaining the same trend. On the contrary,

the up-regulation of miR-133a in FSHD myogenesis, the down-

regulation of hsa-miR-1 and hsa-miR-133a in FSHD vs CN

myotubes, and the down-regulation of hsa-miR-155 in FSHD

myogenesis already observed in the NGS analysis became

significant in the qRT-PCR analysis.

Comparison of FSHD and control myogenesis
The comparison of miRNA modulation between control and

FSHD differentiation processes is reported in Fig. 6A, where black

and striped bars identify the Fold Change of miRNAs up- and

down-regulated, respectively, in control and FSHD myogenesis.

From this comparison it was possible to derive that FSHD

differentiation lacks the modulation of 29 miRNAs, the majority of

which (27/29) was up-regulated in control differentiation (black

bars in Fig. 6A, and Fig. 6B); while six miRNAs (4 up- and 2

down-regulated) were modulated only during the FSHD differen-

tiation process (striped bars in Fig. 6A and Fig. 6B). Nine miRNAs

showed the same trend in both processes (Fig. 6A and B), but with

differences in Fold Change values. Among these, miRNAs pivotal

for the myogenic process, such as hsa-miR-1, -206 and -222, were

included. Thus, FSHD myogenesis differs from control myogenesis

for the complete (35) or partial (9) dysregulation of a total of 44

miRNAs.

Figure 5. Validation of NGS data. A) qRT-PCR analysis of myomiRs (miR-1, miR-133a and miR-206) during control and FSHD myogenesis at 0, 3
and 7 days of differentiation. B) qRT-PCR analysis of six microRNAs modulated in control and/or FSHD myogenesis. GM: growth medium; 3D: 3 days of
differentiation; 7D: 7 days of differentiation. * p-value,0.05; ** p-value,0.01; *** p-value,0.001.
doi:10.1371/journal.pone.0108411.g005
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Prediction of miRNA target genes
To understand the functional impact of miRNA dysregulation

during FSHD myogenesis we used TargetScan prediction software

to derive potentially affected targets. In order to improve target

prediction accuracy, a common approach is to combine the output

of two or more prediction algorithms, however this strategy has

been proved inefficient [20]. Therefore, we have used a single

algorithm, TargetScan, which uses many parameters to predict

target scoring without omitting miRNAs with multiple target sites

[22]. Since the binding of a miRNA to the 39 UTR of its mRNA

target predominantly act to decrease target mRNA levels [23] we

decide to essentially focalize our attention on mRNA targets

showing an opposite expression value compared to the analyzed

miRNA. Normally, this approach has been carried out on mRNA

expression profile derived by using the same cells from which the

miRNA expression profile has been derived [11,20,21]. However,

the comparison of mRNA expression profiles derived by myoblast

cell lines or biopsies from different FSHD patients and controls

clearly evidenced a certain variability in the obtained results

[5,9,10,11,24,25]. In addition, mRNA expression differences were

also found by analyzing different muscles, such as biceps and

deltoids [11]. To reduce sample variability, we filtered the

predicted mRNA targets on two chip expression data

(GSE26061 [9]; GSE26145 [10]), sharing in vitro myogenic

differentiation protocol and platform although using primary

FSHD and control cell lines different from those analyzed in this

work. Functional classes corresponding to the filtered mRNAs

were assigned by DAVID Gene Ontology Database (Table 2). As

shown in Fig. 6, control myogenesis showed the modulation of 38

miRNAs (4 down- and 34 up-regulated), whereas FSHD

myogenesis was characterized by 15 dysregulated miRNAs (4

down- and 11 up-regulated) and the lack of modulation of 29

miRNAs. Applying the rationale described above, we derived a

total of 139 and 78 down- and up-modulated mRNAs in control

myogenesis (potentially ‘‘validated’’ target, Table S6), and a total

of 37 down- and 18 up-regulated transcripts in FSHD myogenesis

(potentially ‘‘validated’’ target, Table S7). In control myogenic

differentiation, the majority of down-regulated genes belonged to

cell cycle (27 entries), DNA metabolic process (17 entries),

cytoskeleton organization (11 entries), angiogenesis (8 entries)

and signal transduction (19 entries); genes involved in cell adhesion

(9 entries), regulation of cell migration (5 entries), muscle

development (7 entries), lipid biosynthetic process (6 entries) and

response to insulin (4 entries) were found up-regulated (Table 2).

Conversely, in FSHD myogenesis genes belonging to muscle

development (3 entries) and cell adhesion (5 entries) were down-

regulated, whereas those involved in regulation of signal trans-

duction (3 entries) were up-regulated. All the identified biological

processes, except the down-regulation of cell adhesion in FSHD

samples, showed a significant p-value ranging from 3.4E-10 to

3.2E-02 (see Table 2). It is noteworthy that target genes involved

in two important biological processes of myogenesis (i.e. cell cycle

and striated muscle development) subjected to miRNA control

were, as expected, down- and up-regulated, respectively, in control

cells. In FSHD myogenesis, on the contrary, the cell cycle was not

down-regulated, and control of striated muscle development was

down-regulated. It is important to notice that this analysis did not

take into account the different FC showed by the nine miRNAs

shared by control and FSHD myogenesis.

Identification of novel miRNAs
To identify novel potential miRNAs involved in human muscle

system, the unclassified tags were further processed by mireap

(http://sourceforge.net/projects/mireap). We considered only
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tags meeting the default parameters, expressed in all experimental

groups or preferentially expressed in one or more sample groups

(i.e. proliferating vs differentiated cells, or FSHD vs control cells)

and with mean read counts per group greater than ten. By using

these criteria we identified a total of 13 novel candidate miRNA

genes. In Table S8 are reported the main features of these novel

miRNA genes, including chromosome location and genomic

organization, mfe (minimum free energy), sequence and structure

of hairpin precursor, and sequence of 5p or 3p. A summary of

these data is reported in Table 3: six miRNAs showed a

preferential expression in myoblasts (both in FSHD and control)

and four miRNAs seemed to be specific for myotubes. The

remaining three miRNAs characterized all the considered groups

(both control and FSHD myoblasts and myotubes). Among the 13

Figure 6. Comparison of miRNA modulation in control and FSHD myogenesis. A) Black and striped bars identify the Fold Change of
miRNAs modulated respectively, in control and FSHD myogenesis. Bars on the left and on the right represent, respectively, down- and up-regulated
miRNAs. *hsa-mir-208a showed infinite FC value (see Table S3). B) Venn diagram showing the number of miRNAs unique to FSHD (white) or control
(grey), and shared (light grey) by FSHD and control differentiation processes.
doi:10.1371/journal.pone.0108411.g006
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novel miRNAs, two miRNAs (namely hsa-miR-m1-3p and hsa-

miR-m13-5p) had already been detected by analyzing prostate and

breast tumor cells [26,27] and the mature hsa-mir-m9-3p showed

100% sequence similarity with hsa-mir-574 whose gene however

differs in genomic location [28].

Furthermore, it is interesting to note that no sample showed

reads generated from the D4Z4 region. This observation, derived

either by the analysis of the filtered out repeats or by the re-

mapping NGS raw data to specific D4Z4-bearing chromosome

regions such as 4q and 10q, suggests that short transcribed

sequences from D4Z4 array may have a length greater than

35 nts, the threshold used to build our libraries.

Discussion

The paper reports the first complete analysis of miRNA

modulation during in vitro differentiation in both control and

FSHD-derived myogenic cells. Myogenesis is a complex process

that includes proliferation, differentiation, and formation of

myotubes and myofibers. These molecular events are regulated

by myogenic factors and miRNAs. MiRNAs specifically expressed

in skeletal and cardiac muscles are called myomiRs, to imply their

important roles in the regulation of muscle development and

differentiation [13,19,29]. Recently miRNA dysregulation has

been reported in FSHD [9,12,21]. However, due to the

approaches used, these studies were limited for the number and

type of miRNAs that could be simultaneously investigated; in

addition they would not detect miRNAs expressed at low level and

excluded discovery of novel miRNAs. Thus, to get the whole

pattern of miRNA dysregulation in FSHD we used a next-

generation sequencing (NGS) approach. Previous work aimed at

identifying biomarkers in FSHD by the transcriptional profiling

found muscle-type specific patterns of gene expression [11].

Similarly, DUX4-fl expression was found to vary between

myotubes derived from different muscle groups [30]. Therefore,

we tailored the experimental protocol to derive FSHD and control

miRNA profiles common to different muscles. To this aim, due to

inter-individual genetic heterogeneity, from deep sequencing data

we considered only miRNA modulation with FC$4 (log2FC$2)

and p-value,0.05. Then the derived miRNA expression in both

FSHD and control myogenesis was validated by qRT-PCR in all

the available FSHD and control cell lines.

Control myogenesis showed the modulation of 38 miRNAs, the

majority of which (34 out 38) were up-regulated. The up-regulated

miRNAs included those previously identified as key regulators of

both proliferation and differentiation of myogenic cells and for this

reason called myomiRs: hsa-miR-1, -133a, -133b and -206

[19,31,32]. The obtained results are in agreement but also expand

what is known about miRNA modulation during in vitro human

myogenic differentiation. Among the modulated miRNAs, 27

were in fact already reported to be involved in muscle

differentiation either in human or in mouse cells [20,33].

Conversely, 12 miRNAs, ten up-regulated (hsa-miR-95, -146a, -

874, -1246, -1290, -3164, -4488, -208a, -944 and -3144) and two

down-regulated (hsa-miR-3934 and -3165), were not previously

detected to be differentially expressed during control myogenesis.

In comparison with a previous work [20], the reduced number of

modulated miRNAs during control myogenesis that we derived is

probably due to the choice of higher FC value (FC$4).

Furthermore, the observed up-regulation of myomiRs strongly

supports the validity of used cell lines and differentiation protocol.

Interestingly, some up-regulated miRNAs not previously reported

to be involved in muscle differentiation, were previously shown to

affect cell proliferation by targeting HDAC1 (hsa-miR-874),

impairing cytokinesis (hsa-miR-1290), inhibiting cell growth (hsa-

miR-95) and regulating differentiation of smooth muscle cells (hsa-

miR-146a) [34,35,36,37].

Control myogenesis also showed the possible involvement of

some of the novel miRNAs we derived by NGS. In this regard, six

out of the 13 identified novel miRNAs (see Table 3) seem to

characterize the proliferating status of muscle cells (myoblasts,

miR-m2-3p, -m3-3p, -m4-5p, -m7-5p, -m12-3p, and –m13-5p)

and one the differentiated status (myotubes, miR-m6-3p). Two,

hsa-miR-m1-3p, and hsa-miR-m13-5p, have been previously

identified by the NGS approach and validated in breast and

prostate cancer cells (identified respectively as hsa-miR-B19 and

hsa-novel-miR-08) [26,27]. Further experiments are thus neces-

sary to validate and determine the possible involvement in muscle

cells differentiation of these novel miRNAs.

The comparison of control and FSHD myogenesis clearly

evidenced a reduced number of modulated miRNAs in FSHD

than in control muscle cells, thus suggesting that a complex

dysregulation of miRNA expression characterizes the dystrophy.

In total, nine miRNAs were shared between the two processes and

Table 2. Functional classification of predicted target genes in control and FSHD myogenesis.

Biological processes CONTROL MYOGENESIS FSHD MYOGENESIS

Down (p-value) Up (p-value) Down (p-value) Up (p-value)

Cell cycle +(3.4E-10)

DNA metabolic process +(2.8E-06)

Cytoskeleton organization +(2.7E-03)

Angiogenesis +(1.2E-03)

Signal transduction +(8.2E-03) +(3.2E-02)

Cell migration +(6.0E-03)

Cell adhesion +(1.2E-02) +(7.4E-02)

Striated muscle development +(1.6E-02) +(5.8E-03)

Sterol biosynthetic process +(1.0E-02) +(5.0E-04)

Response to insulin +(3.4E-03)

Functional classification of predicted target genes of modulated miRNAs in control and FSHD myogenesis, filtered on GSE26061 [9] and GSE26145 [10]. For full lists of
considered miRNAs and predicted target genes refer to Tables S3, S4 and S6, S7, respectively.
doi:10.1371/journal.pone.0108411.t002
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these included myomiR-1 and -206, with FC values of up-

regulation during differentiation lower than those derived for

control cells. Moreover, qRT-PCR analysis proved that in control

cells the up-regulation of myomiRs is higher than in FSHD ones

by a FC ranging from 2.4–5.56 for hsa-miR-206 and 133a to 136
for hsa-miR-1. Furthermore, the kinetic of myomiRs up-regulation

during FSHD myogenesis strongly suggests a defect in late stages

of the differentiation process. Other differences between control

and FSHD differentiation are represented by six miRNAs (i.e. hsa-

miR-1268, -1268b, -1908, 4258, -4508- and -4516) not modulated

in control cells and that therefore could be considered FSHD-

specific, likewise three novel miRNAs (hsa-miR-m5-5p, hsa-miR-

m10-5p and hsa-miR-m11-5p) that seem to be specifically

expressed in FSHD myotubes (see Table 3). Of interest, hsa-

miR-1268 exhibited a significant differential expression during the

differentiation of pluripotent human embryonic stem cells into

embryoid bodies [38]. In summary, FSHD myogenesis differed

from control myogenesis by the loss of modulation of 29 miRNAs

(black bars in Fig. 6A, and Fig. 6B) and the acquisition of

modulation of six miRNAs, two down-regulated and four up-

regulated (striped bars in Fig. 6A, and Fig. 6B). Among the nine

miRNAs shared by the two differentiation processes (black and

striped double bars in Fig. 6A), the myomiRs showed a significant

deficit of expression in late phases of FSHD differentiation.

Moreover, the comparison of miRNA expression between control

and FSHD myoblasts or myotubes detected 21 dysregulated

miRNAs only in myotubes (12 up-regulated and 9 down-

regulated). The lack of differentially expressed miRNAs in FSHD

myoblasts may be explained both by a high variance of miRNA

expression showed by myoblasts and by the high FC used.

Some discrepancies between the data we derived and those

recently reported in a similar cellular system [21] require several

considerations. First, the methodological approach (NGS against

transcriptome profiling), and consequently the cut-off used make

the results obtained not comparable; second, both healthy and

FSHD myoblast cell lines characterized by a high percentage of

DES+ cells were induced to differentiate for three days [20] and

for seven days (herein). Lastly, our study design was set up in order

to derive a FSHD miRNA profiling possibly shared by different

muscle districts and including all the microRNAs present in

miRBase (release 20), as well as novel miRNAs. In this regard, it is

noteworthy that if we had used the microRNA panel version 1.0 (a

TaqMan low density array containing 365 miRNAs) instead of the

NGS approach, we would have only detected the modulation of

five miRNAs during differentiation of FSHD myoblasts (namely

hsa-miR-1-1, 1-2, -206, -222 and -139), instead of the fifteen

effectively found (see Table S4). Thus, as previously shown in

other cellular systems [26,27,39,40] the deep sequencing approach

allowed us to derive a more complete view of miRNA

dysregulation in FSHD.

Our data strongly suggest that, in addition to the recently

reported up-regulation in proliferating FSHD vs control cells,

which however did not result in a complete down-regulation of the

corresponding target genes [21], a defect of myomiRs expression

also characterize late stages of FSHD differentiation. In fact, the

extent of myomiRs expression in FSHD cells after seven days of

differentiation was similar to or lower than that found at three days

in control cells. Thus, besides the reported up-regulation of

myomiRs in FSHD myoblasts due to the early euchromatization

of their promoters [21] other defects could be responsible of their

down-regulation during late stages of differentiation. In this regard

it is possible to hypothesize a defect in FSHD myotubes at the

myomiRs transcriptional or post-transcriptional levels, such as a

decrease of myogenic differentiation factors controlling their

transcription (i.e. MEF2) [41], or of factors controlling their

processing. The latter hypothesis agrees with previous results

showing that FSHD myotubes are characterized by the down-

Table 3. Novel miRNAs predicted by mireap.

Name Chromosome location Mature miRNA sequence Length
Genomic
context

Expression
n.samples Other evidence

hsa-miR-m1-3p chr11:122022800–122022877 AAAAGGGGGCTGAGGTGGAGG 21 intronic 12/12 (higher
expression in
myoblasts)

PMID:21346806

hsa-miR-m2-3p chr11:125757935–125758025 AGGGGCGCGGCCCAGGAGCTCAGA 24 intronic 5/6 myoblasts no

hsa-miR-m3-3p chr13:111102986–111103008 AGCTGGGGATGGAAGCTGAAGCC 23 intronic 4/6 myoblasts no

hsa-miR-m4-5p chr14:74998697–74998789 CTGCTCTGATGTCTGGCTGAGC 22 intronic 5/6 myoblasts No

hsa-miR-m5-5p chr15:41592311–41592403 ATCATTTGGCAGGGGGTAGAGTA 23 intergenic 3/3 FSHD
myotubes

No

hsa-miR-m6-3p chr15:45493361–45493452 TTGTGGAAACAATGGTACGGCA 22 overlaps repeat/tRNA 4/6 myotubes No

hsa-miR-m7-5p chr17:8042708–8042779 GAGTTAGCGGGGAGTGATATATT 23 overlaps repeat/tRNA 4/6 myoblasts No

hsa-miR-m8-3p chr:6:28918819–28918903 TCGGGCGGGAGTGGTGGCTTTT 22 overlaps repeat/tRNA 12/12 No

hsa-miR-m9-3p chr8:79679467–79679541 TGAGTGTGTGTGTGTGAGTGTGA 23 intronic 9/12 (all groups) mature miRNA identical
to hsa-mir-574, different
genomic location
PMID:17604727

hsa-miR-m10-5p chrX:18651329–18651427 AACTTTGGAATGTGGTAGGGTA 22 intronic 3/3 FSHD
myotubes

No

hsa-miR-m11-5p chrX:40478974–40479066 ATCATTTGGCAGGGGGTAGAGTA 23 intergenic 3/3 FSHD
myotubes

No

hsa-miR-m12-3p chr13:111102941–111103018 AGCTGGGGATGGAAGCTGAAGCC 23 intronic 4/6 myoblasts No

hsa-miR-m13-5p chr20:3194751–3194835 CAAAATGATGAGGTACCTGATA 22 Intronic 6/6 myoblasts PMID:21152091

doi:10.1371/journal.pone.0108411.t003
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regulation of a gene (Dicer1) controlling the cytoplasmic matura-

tion of pre-miRNAs [10].

Our data allowed us to confirm a few miRNAs previously found

dysregulated by independent analysis of ten major skeletal muscle

disorders, including FSHD [12,42]. Among the miRNAs we

derived to be deregulated during FSHD muscle differentiation,

four miRNAs (miR-146a, -146b, -155, -222) were consistently

found up-regulated in six or more muscular disorders, including

FSHD, whereas miR-501 was found dysregulated in five muscle

diseases, but not in FSHD. Furthermore miRNA-486, a muscle

enriched miRNA, previously found significantly reduced in

patients with DMD [12], was found up-regulated in the present

study. Interestingly overexpression of this miRNA in mouse

primary myoblasts resulted in increased proliferation and thus in

altered cell-cycle kinetics [43].

In order to understand the functional outcome of miRNA

dysregulation in FSHD, the derived up- and down-regulated

target genes were functionally clustered into biological processes.

This approach when applied to healthy muscle differentiation

evidenced two important features of myogenesis: cell cycle and

muscle development. Effectively, as muscle differentiation pro-

ceeds, sustained by the up-regulation of myogenic markers (due to

the down-regulation of the corresponding miRNA regulators), the

cell proliferation program must slow down due to the up-

regulation of miRNA controlling genes involved in this process.

An opposite trend of the two biological processes was found to

characterize FSHD myogenesis. In fact, down-regulated genes

were essentially involved in the regulation of striated muscle tissue

development, and no regulation of cell cycle was observed. Thus in

FSHD cells miRNA dysregulation affects two important aspects of

differentiation leading to a defect in myogenesis. These data are in

agreement with previously reported studies [9,10,20].

By the NGS approach we derived that FSHD myogenesis is

characterized by a profound dysregulation of miRNA expression

showing the involvement of at least 38 known miRNAs, including

the myomiRs and possibly three novel miRNAs, but excluding

small RNAs previously reported to derive from the D4Z4 array

[14]. This and previous works have clearly demonstrated that

FSHD cells are characterized by a global dysregulation of mRNA,

miRNA and protein expression essentially affecting the myogenic

process [9,10,11,21,24,44].

The up-regulation of the last DUX4 gene in individual showing

a reduced numbers (#8) of D4Z4 repeats at 4q35 combined with a

specific molecular signature (4A(159/161/168) DUX4 polyade-

nylation signal (PA) haplotype) is supposed to underlie FSHD

pathophysiology [6]. However, it has been recently reported that

1.3% of healthy individuals carry the same molecular signature

and 19% of subjects affected by FSHD do not carry alleles with

eight or fewer D4Z4 repeats [8]. Furthermore, a dysregulation of

genes involved in myogenesis has been recently observed in FSHD

fetuses; importantly, the DUX4-fl pathogenic transcript was

detected in both FSHD and control samples [45], as well as in

unaffected individuals, but not in all FSHD cases [8]. These data

suggest that the molecular basis of FSHD might not be simply

based on the overexpression of the single DUX4 gene, but rather

from a cascade of dysregulation mediated by the D4Z4 array

contraction. This structural alteration, as previously shown, might

induce conformational changes in the 4q35 region itself, and

perhaps elsewhere in the human genome [46,47]. Furthermore, in

the dysregulation cascade could also play a role lncRNAs, such as

DBE-T [7].

Conclusions

By using the NGS approach, we derived the complete pattern of

miRNAs regulating in vitro control and FSHD myogenesis. In

addition to confirming previously reported FSHD-related miR-

NAs, we identified additional known and novel miRNAs that are

differentially expressed between FSHD and control myogenesis

and thus potentially contributing to the FSHD pathogenic

mechanism. In general, the comparison of control and FSHD

myogenesis reveals that the dystrophy is characterized by a

complex alteration of miRNA expression, which also includes the

significant down-regulation of myomiRs at late stages of differen-

tiation, thus essentially affecting muscle differentiation and

development.

Thus, the full range of molecular alteration(s) at the basis of

FSHD is not yet fully deciphered and the miRNA profiling we

derive could represent a novel molecular signature for FSHD that

includes diagnostic biomarkers and possibly therapeutic targets.

Materials and Methods

Cell lines
Primary FSHD and control cell lines were obtained from

Myobank-AFM (Institut de Myologie-Groupe Hospitalier Pitié-

Salpetrière, Paris) and Boston Biomedical Research Institute

(BBRI, Senator Paul D. Wellstone Muscular Dystrophy Cooper-

ative, Research Center for FSHD). Six cell lines derived from

biopsies of different healthy and FSHD muscles including vastus,

tensor fascia lata, quadriceps femoris (controls) and ilio-psoas and

rhomboid (FSHD) (Table S1) were used for deep small RNA

sequencing. In addition, to these cell lines, five control and four

FSHD cell lines from deltoid and biceps [48] (Table S1) were used

to validate deep sequencing data by qRT-PCR. FSHD primary

cell lines were derived from biopsies of mild or not affected

muscles and showed a D4Z4 array contraction ranging from 5.9 to

28 kb as determined by Southern Blot after EcoRI/BnlI digestion.

The results reported below were derived by the analysis of all the

cell lines listed in Table S1, comprising nine controls and seven

FSHD and thus including also the cells used for NGS. Control and

FSHD myoblasts were at low population doubling (from 2 to 7)

and highly comparable for the expression of the muscular marker

Desmin (96–97%) and the proliferation marker Ki67 (62–65%), as

determined by immunofluorescence (Fig. S1). Furthermore,

control and FSHD cell lines showed a comparable extent of

differentiation as demonstrated by the down-regulation of the

proliferation marker Ki67 (by immunofluorescence) and of MYF5

(by qRT-PCR), and by the up-regulation of MYOG (by qRT-

PCR), MYOD (by Western blot) and MHC (by qRT-PCR and

Western blot), as well as a comparable extent of fusion index (40–

45%) (Fig. S1). In addition, FSHD and control myoblasts and

myotubes appeared similar when analyzed by immunofluores-

cence. The cell lines used for NGS originated results in the average

comparable to those shown in Fig. S1. Cells were cultured as

described in guidelines of BBRI and Cheli et al [9].

Immunofluorescence, image acquisition and analysis
Cell immunofluorescence was performed as described [49], with

antibodies specific for Desmin (rAb, Sigma Aldrich), ki67 (rAb,

Vector) and sarcomeric myosin MHC (MF20, from Developmen-

tal Studies Hybridoma Bank). Appropriate secondary antibodies

conjugated with Alexa 488 (green, Cell Signalling) or Alexa 568

(red; Cell Signalling) were used for fluorescence detection, Nuclei

were stained with Hoechst Stain Solution (H6024, SIGMA).
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Fluorescent images were taken on confocal laser scanning

microscope (Zeiss Lsm 01, Biorad mrc 600, Biorad 1024) using

126magnification. Images showing double or triple fluorescence

were separately acquired using appropriate filters, and the

different layers were merged with ImageJ software.

For all control and FSHD cell lines used in this study, the

quantification of Desmin and ki67 positive cells has been

performed on myoblasts and myotubes. Furthermore, for all

control and FSHD cell lines, the absolute fusion index has been

calculated as the percentage of MHC-positive nuclei over total

number of nuclei after 7 days in differentiation medium.

An average value was determined by counting cells (200–300

cells/field) in at least 5 microscopic fields per sample at 126
magnification.

RNA isolation and deep sequencing
Total RNA was isolated with the mirVana miRNA isolation kit

(cat.# AM1560, Life Technologies) from myoblast cell lines

derived from 3 FSHD patients and 3 control subjects, before and

after in vitro differentiation. RNA was quantified by Nanodrop

spectrophotometer (Thermo Scientific) and its integrity was

evaluated on an Experion automated electrophoresis system

(Bio-Rad); all samples had a RNA Quality Indicator (RQI) value

$9.

20 micrograms of total RNA were used for PAGE purification

of small RNA molecules shorter than 35 nucleotides, adaptor

ligation, and small RNA library preparation. The obtained

libraries were sequenced on a HiSeq 2000 platform (Illumina) at

BGI, Hong Kong, giving approximately 12 million high quality

reads per sample (submitted to SRA database under acc. number

SRP034654).

Sequencing data analysis
MicroRNA differential expression analysis was performed using

R/Bioconductor, by following the workflow implemented in the

oneChannelGUI interface [50,51]. Briefly, adaptor sequences

were trimmed from fastq files using a specific perl script, and then

sequences were aligned to the reference human miRBase v.20

precursor dataset (www.mirbase.org) using bowtie 1.0.0. Data

were filtered for count threshold (.8 reads in 50% of samples

analyzed) and pairwise comparisons of differential miRNA

expression were performed using DEseq (log2FC§2; p-value,

0.05). Hierarchical clustering of differentially expressed miRNA

was performed with dChip (version 2010.01; https://sites.google.

com/site/dchipsoft/).

Identification of novel miRNAs
After excluding all reads that matched known small RNA classes

annotated in miRBase v.20 (known miRNAs) and Rfam (e.g.

tRNA, snRNA, snoRNA), putative novel miRNAs were predicted

using mireap (http://sourceforge.net/projects/mireap/). The

program predicts novel miRNAs from deep sequenced small

RNA libraries by taking into consideration miRNA biogenesis,

sequencing depth, and structural features (hairpin structure and

stability) to improve the sensitivity and specificity of miRNA

identification. Among predicted novel miRNAs, we considered as

plausible candidates those matching the following criteria: 1) the

detection in several samples (at least 2 out of 3 samples of one or

more experimental groups); 2) the mature miRNA had sufficient

sequence support (at least a mean of 10 reads for each

experimental group); 3) the sequence did not match to known

miRNAs in miRBase v.20.

Quantitative Real-time PCR
Quantitative RT-PCR (qRT-PCR) analysis was performed on

7900 HT Fast Real-Time PCR System (Applied Biosystems) by

TaqMan small RNA Assays to validate the miRNA sequencing

data. The miRNA specific probes were from Applied Biosystems.

150 ng RNA was reverse transcribed by TaqMan MicroRNA

Reverse Transcription Kit (cat.# 4366596; Applied Biosystems) at

16uC for 30 min, 42uC for 30 min and 85uC for 5 min. Each

amplicon was analyzed in duplicate in 96-well plates. TaqMan

small RNA Assays reactions were performed following manufac-

turer’s protocol (cat.# 4440048; Applied Biosystems). RNU48 was

used for normalization. Thermal cycling conditions for real time

PCR were 2 min at 95uC, followed by 40 cycles at 95uC for 10 s

and 60uC for 30 s. Results were analyzed using the comparative

22DDCt method. qRT-PCR experiments for MYF5, MYOG,

MHC and GAPDH gene expression analysis were performed as

described [9]. The statistical analysis was performed using a two-

tail unpaired t-test and the error bars on the graphs are referred to

standard deviation. qRT-PCR probes and primers are listed in

Table S2.

Derivation of target genes
The putative miRNAs target genes were predicted by

TargetScan Human (http://www.targetscan.org/) [52]. The

prediction tool is based on different parameters such as

complementarity to the seed region, 39 complementarity, local

AU content, position contribution and conservation in different

species [22]. Predicted target genes were then filtered on the basis

of their inverse correlation with the expression of mRNAs of two

different chip analysis on Affymetrix human exon 1.0 ST array

[9,10], using a FC$1.5 and a p-value,0.05.

Pathway and functional annotation analysis
The derived predicted target genes, inversely correlated to the

miRNAs expression, were subjected to the analysis of Gene

Ontology terms (biological processes) by DAVID (Database for

Annotation, Visualization and Integrated Discovery, v6.7) [53,54].

The target genes were mapped to the GO annotation dataset, and

the enriched biological processes were extracted using the EASE

score, a modified Fisher exact p-value.

Protein extracts and Immunoblot analysis
Cells were collected in RIPA Buffer (50 mM TrisHCl pH = 7,4,

150 mM NaCl, 0,1% SDS, 0,5% Deoxycholate Sodium, 1% NP-

40 and protease inhibitor cocktail 1X-cat.# P2714-1BTL, Sigma

MO, USA), and centrifuged 15 minutes at 13000 rpm at 4uC to

discard cellular debris. Sample preparation and Western blot

analyses were performed as described in Pisconti et al [55]. After

electrophoresis, polypeptides were electrophoretically transferred

to nitrocellulose filters (Thermo Scientific) and antigens revealed

by the respective primary Abs and the appropriate secondary Abs,

through autoradiography using enhanced chemiluminescence

(LiteAblot Plus, cat.# EMP011005, Euroclone). In Western blot

analyses, primary antibodies against MHC (MF20, from Devel-

opmental Studies Hybridoma Bank), MYOD (cat.# sc-31942,

Santa Cruz) and housekeeping gene GAPDH (cat.# G8795;

Sigma) were used.

Supporting Information

Figure S1 Characterization of control and FSHD myoblasts cell

lines. A) Example of immunostaining experiment on proliferating

and differentiated primary myoblasts (control: MX01010MBS;

FSHD: MX04309MBS). Images have been taken at confocal laser
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scanning microscope at 126 magnification. Nuclei were stained

with Hoescht (blue). Panels I–IV show localization of Desmin and

Ki67 in proliferating myoblasts; panels I–II show immunostaining

experiment using the polyclonal anti-Desmin (red); panels II–IV

show immunostaining experiment using the polyclonal anti-Ki67

(red). Panels V–VIII show co-localization of Desmin or Ki67 and

MHC on differentiated primary myoblasts: panels V–VI show

immunostaining with polyclonal anti-Desmin and monoclonal

anti-MHC (Ab-Desmin-red and Ab-MHC-green); panels VII–

VIII show immunostaining with polyclonal anti-Ki67 and

monoclonal anti-MHC (Ab-Ki67-red and Ab-MHC-green). Scale

bar = 100 mm. B) Percentage of Desmin and Ki67 positive cells in

myoblasts and myotubes after 7 days of differentiation derived

from immunostaining with appropriate antibodies (Ab-Desmin

and Ab-Ki67). Results are expressed as mean6SD of independent

experiments performed on all cell lines described in Table S1. C)

Absolute fusion index was determined at day 7 of differentiation

(D7), counting the percentage of MHC- positive nuclei over the

total number of nuclei. An average value was determined by

counting cells in at least 5 microscopic fields (200–300 cells/field).

Results are expressed as mean6SD of independent experiments

performed on all cell lines (see Table S1). *p,0.05. D) Myogenic

differentiation was evaluated by qRT-PCR analysis for MYF5,

MYOG, MHC expression. All data points were calculated in

triplicate as gene expression relative to endogenous GAPDH

expression. Data are represented as the mean6SD of independent

experiments performed on all cell lines described in Table S1.

GM: growth medium; 7D: seven days of differentiation. *p,0.05,

**p,0.01. E) Example of Western blot analysis with specific

antibodies against MYOD and MHC in control and FSHD

myoblasts at different time points during myogenic differentiation

(GM: growth medium; 3D: three days of differentiation; 7D: seven

days of differentiation). GAPDH protein level was used as an

internal loading control. Graphs show mean values 6SD obtained

from the ratio of densitometric values of protein/GAPDH bands.

Data are representative of independent experiments performed on

all cell lines described in Table S1. The Western blot in E shows a

representative experiment (control: MX01010MBS; FSHD:

MX04309MBS). *p,0.05, **p,0.01.

(TIF)

Figure S2 Scatter plots of the reads of miRNAs modulated in

control and FSHD myogenesis. C1: MX01010MBS; C2:

MX03609MBS; C3: MX01110MBS, Control cell lines;

F1:MX00409MBS; F2: MX03010MBS; F3:MX04309MBS,

FSHD cell lines (see Table S1).

(PDF)

Figure S3 Authentication of NGS data by qRT-PCR. qRT-

PCR analysis of myomiRs (miR-1, miR-133a and miR-206)

during control and FSHD myogenesis at 0 and 7 days of

differentiation on the three control and three FSHD cell lines used

in the NGS experiment (MX01010MBS; MX03609MBS;

MX01110MBS, MX00409MBS; MX03010MBS;

MX04309MBS). GM: growth medium; 7D: seven days of

differentiation. *p,0.05; **p,0.01.

(TIF)

Table S1 Primary myoblasts cell lines used in this study. Cell

lines have been obtained from Myobank-AFM Istitut de Myologie

(Paris)*and Boston Biomedical Research Institute (BBRI, Boston).

(XLSX)

Table S2 Taqman probes and primers used in qRT-PCR

experiments.

(XLSX)

Table S3 List of microRNAs modulated in control myogenesis

resulting by DEseq analysis.

(XLSX)

Table S4 List of microRNAs modulated in FSHD myogenesis

resulting by DEseq analysis.

(XLSX)

Table S5 List of microRNAs modulated in FSHD vs control

myotubes resulting by DEseq analysis.

(XLSX)

Table S6 Potentially ‘‘validated’’ targets. List of predicted target

genes of miRNAs modulated in control myogenesis, filtered on

GSE26061 [9] and GSE26145 [10].

(XLSX)

Table S7 Potentially ‘‘validated’’ targets. List of predicted target

genes of miRNAs modulated in FSHD myogenesis, filtered on

GSE26061 [9] and GSE26145 [10].

(XLSX)

Table S8 Novel miRNAs predicted by mireap.

(XLSX)
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ABSTRACT: Bis-arylidenecycloalkanones structurally related to the nonselective isopeptidase inhibitor G5 were synthesized
and tested for cytotoxic activity against glioblastoma cells. Cytotoxicities correlate well with Hammett σ constants for substituted
arylidene groups, confirming the proposed inhibition mechanism. A new inhibitor (2c) based on the 4-hydroxycyclohexanone
scaffold, which favors apoptosis over necrosis, was selected for further development. 2c inhibited representative deubiquitinases
with micromolar IC50, and its proapoptotic activity was studied on several cancer cell lines. Inhibitor 2c was conjugated to PEG
via dicarbamate and diester linkers. While the dicarbamate was inactive, the diester (2cPE) behaves like a prodrug and is
converted into the active species 2c by secreted esterase activities. Finally, 2cPE was also tested in vivo on A549 lung carcinoma
xenografts generated in mice. Intravenous treatment with 2cPE led to a significant reduction in primary tumor growth, without
appreciable toxicity to mice.

■ INTRODUCTION

Protein modification by the addition of the 8 kDa ubiquitin or
Ub-like (Ubl) proteins is a well-known and widespread post-
translation modification not limited to influencing protein
destruction but also their subcellular localization or the
assembling into multiprotein complexes.1−3 Ub and Ubl
peptides are generally ligated to proteins by the sequential
action of three enzymes: a ubiquitin-activating enzyme (E1), a
Ub-carrier enzyme (E2), and a Ub-protein ligase (E3). E3
enzymes show specificity in substrate choice and represent
critical players in several signaling pathways.3,4

Ub and Ubl linkages are reversible, and their cleavage entails
the involvement of a large family of enzymes, known as
isopeptidases. Although isopeptidases can be viewed as E3-
ligase antagonists, additional functions, such as maturation of
Ub or Ubl peptides, are under their supervision. The
isopeptidase family includes deubiquitinating enzymes
(DUBs), which in principle should be specifically devoted to
the rupture of Ub linkages, and other proteolytic enzymes,
which target additional Ubl proteins.5,6

The discovery of bortezomib7 and its approval for the
treatment of relapsed multiple myeloma and mantle cell
lymphoma has opened the field to new inhibitors targeting,
more specifically, critical enzymes of the ubiquitin−proteasome
system (UPS) and showing less adverse side effects.8,9 In this
scenario E3 ligases and DUBs/isopeptidases have gained
increasing attention as targets for drug development. These
enzymes represent good candidates to influence the function of
proteins controlling the transformed phenotype or to induce
cellular stresses, which can kill cancer cells.9−12

In the past decade several reports have described the
discovery, synthesis, and characterization of isopeptidase
inhibitors.13−23 On the basis of the specific target selectivity,
they can be divided into two classes: selective inhibitors, acting
on a specific enzyme or on a limited number of enzymes, and
nonselective isopeptidase inhibitors (N-SIIs), which in principle
can affect the activity of several isopeptidases. The two classes
offer different and complementary advantages for the develop-
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ment of new anticancer treatments. The first class guarantees
advantages in terms of selectivity when growth/survival of a
specific tumor depends on a specific isopeptidase. On the other
hand, the second class, affecting more enzymes and multiple
pathways, may offer advantages in terms of effectiveness on
different tumors. Hence, further studies to improve the
antineoplastic activities of inhibitors of both classes are of
primary importance.
A subclass of N-SIIs includes molecules characterized by the

presence of a cross-conjugated α,β-unsaturated dienone with
two sterically accessible electrophilic β-carbons13 that can act as
Michael acceptors to target nucleophiles, like the catalytic
cysteine of several isopeptidases.13−17 Recently, a molecule of
this family, RA190, has been engineered to exert specificity
against proteasome ubiquitin receptor RPN13 (Figure 1).23

Optimization of these inhibitors in terms of in vivo efficacy is
a fundamental step toward their possible use in the clinic. In
this work, starting from G5, a N-SII previously identified by us
(Figure 1),14 we performed structure−activity studies that lend
support to the proposed mechanism of inhibition and allowed
us to develop a G5 derivative optimized for in vivo
antineoplastic activity.

■ RESULTS AND DISCUSSION
Structure−Activity Studies. The effect on tumor cell

survival of two series of dienones was investigated in
glioblastoma U87MG cells, which in response to G5 enter
both apoptosis and necrosis.24 The first series (Table 1) is
based on the bis(arylidene)tetrahydrothiapyran-4-one 1,1-
dioxide scaffold of G5 with variations in the substituents on
the aromatic rings. In the second series (Table 2), the sulfone
group of the G5 scaffold is replaced by other groups, while the
4-nitro substituents on the aromatic rings are fixed.
With the exception of the fluoro derivative 1f, symmetrical

compounds 1a−i and G5 were obtained by the acid catalyzed
Knoevenagel condensation of tetrahydrothiapyran-4-one 1,1-
dioxide (Scheme 1, X = SO2) with aromatic aldehydes.25,26 An
alternative approach was adopted for the synthesis of 1f
(Scheme 1), consisting of the condensation between the
corresponding aldehyde and tetrahydrothiapyran-4-one fol-
lowed by mCPBA oxidation of the resulting sulfide 3. The
oxidation of the p-fluoro derivative 3 to the desired sulfone 1f
was accompanied by the formation of the Baeyer−Villiger

Figure 1. Cross-conjugated dienone N-SIIs RA190 and G5.

Table 1. Cytotoxicity of Bis(arylidene)tetrahydrothiapyran-
4-one 1,1-Dioxides against U87MG Glioblastoma Cells

compd R1 R1′ R2 R2′ IC50 [μM]a,b sdb

1a H H H H 5.11 1.67
1b CH3 CH3 H H 4.74 0.21
1c OH OH H H 6.73 0.15
1d OCH3 OCH3 H H 3.57 0.72
1e OPh OPh H H 2.94 0.57
1f F F H H 2.21 0.23
1g CN CN H H 1.35 0.15
1h OCH3 OCH3 NO2 NO2 1.14 0.18
1i H H NO2 NO2 0.76 0.07
1j NO2 OH H H 2.17 0.27
1k NO2 OCH3 H H 2.09 0.42
1l NO2 CH3 H H 1.39 0.34
G5 NO2 NO2 H H 0.77 0.21

aFrom cell viabilities measured with a resazurin assay, 48 h after
treatments. bExperiments were carried out in triplicate and are
presented as mean values and standard deviations (sd).

Table 2. Cytotoxicity of Nitrobenzylidene Dienones against
U87MG Glioblastoma Cells

compd X IC50 [μM]a,b sdb

2a CH2 27.5 2.0
2b CH(OCH2CH2O) 15.33 0.71
2c CHOH 4.62 1.96
2d CHCOOC2H5 2.47 0.25
2e NH 7.15 2.90
2f O 50.1 14.3
2g S 11.6 2.01
2h SO 1.79 0.81
G5 SO2 0.77 0.21

aFrom cell viabilities measured with a resazurin assay, 48 h after
treatments. bExperiments were carried out in triplicate and are
presented as mean values and standard deviations (sd).

Scheme 1. Synthesis of Symmetrical Derivatives of Series 1
and 2a

aReagents and conditions: (a) ArCHO, EtOH, aq HCl, 15−78%; (b)
ArCHO, EtOH, Ba(OH)2, 52% (for 2b); (c) mCPBA, CH2Cl2, 41−
63%.
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byproduct 4 (Scheme 1). The two products, in ratio 3:1, were
easily separated by crystallization from acetone/hexane.
Unsymmetrical compounds 1j−l were obtained as shown in

Scheme 2. Tetrahydrothiapyran-4-one was initially converted

into the monoalkylidene derivative 5 by an aldol reaction with
4-nitrobenzaldehyde followed by dehydration of the aldol.
Acid-catalyzed Knoevenagel reaction of 5 with the appropriate
aromatic aldehyde was then followed by mCPBA oxidation of
the sulfides 6j−l.
All compounds of series 2 (Table 2) are symmetrical and,

with the exception of 2h, were obtained by the Knoevenagel
condensation of the appropriate ketone and 4-nitrobenzalde-
hyde (Scheme 1). For compound 2b, containing an acid-labile
acetal group, the condensation was carried out in basic
conditions.27 Sulfoxide 2h (Table 2) was obtained by
mCPBA oxidation of the corresponding sulfide 2g. Even
under controlled conditions (1 equiv of mCPBA, 0 °C) the
reaction gave a 1:1 mixture of sulfoxide 2h and sulfone G5, but
the desired product 2h was readily purified by flash
chromatography on silica gel.

1H and 13C NMR spectroscopy showed that all compounds
of series 1 and 2 were single stereoisomers with the aryl groups
trans with respect to the carbonyl.
Data in Table 1 indicate that all the sulfones of series 1 are

active against U87MG glioblastoma cells with IC50 values in the
range 0.8−7 μM, the dinitroderivatives G5 and 1i being the
most active compounds of the series. Variations of hydro-
phobicity (log P values) and solvent accessible area are small in
this series, reflecting the limited structural changes, and no
general correlation is observed between these parameters and
citotoxicity. However, a clear correlation can be observed
between cytotoxicity and the electronic effect of the
substituents on the aromatic ring. A plot of the logarithm of
the observed IC50 against the sum of the Hammett σ constants
for the substituents on the aromatic rings28 (Figure 2) reveals
that cytotoxicity depends on the electron-withdrawing ability of
the substituents, suggesting that the cytotoxic activity is directly
related to the electrophilicity of the enone β-carbon. This is
consistent with the observation that alcohol 7, obtained by
NaBH4 reduction of G5, is devoid of cytotoxic activity and
strongly suggests that cytotoxicity may indeed result from the
alkylation of cysteine residues present in the catalytic site of
isopeptidases by the dienone moiety.13,29 Similar correlations
have been observed also for cytotoxic N-acyl-bis(arylidene)-4-

piperidones,30 and arylidenecyclohexanones,31,32 which have
been postulated to selectively react as Michael acceptors with
cellular thiols.29

Finally, the contribution of the X group was investigated in a
series of dinitro derivatives 2 (Table 2). While all compounds
in this series are cytotoxic, the presence of a polar, electron
withdrawing group in the six-membered ring appears in general
to be beneficial to achieve strong activity.

Assessment of the Dienone-Induced Apoptotic and
Necrotic Responses. In cells resistant to apoptosis, such as
mouse fibroblasts defective for Bax and Bak (Bax/Bak DKO) or
glioblastoma U87MG cells, G5 can also activate a caspase-
independent death.24,33 Although caspase-independent death
can engage different mechanisms, previous studies have
excluded the involvement of autophagy and have demonstrated
that G5 triggers a necrotic cell death.33,34 Hence, we decided to
study, on a small set of dienones and using G5 as a reference,
whether variations in the structure affect the pronecrotic and
proapoptotic activities. To this purpose, we selected derivatives
1b, 2c, and 2h and also used T98G glioblastoma cells, which
preferentially die by apoptosis in response to G5 (Figure
3).24,34

As illustrated in Figure 3A,B, the sulfoxide 2h behaves
similarly to G5 while compounds 1b and 2c show a higher
propensity to trigger apoptosis compared to G5 and 2h. In fact,
unlike the latter compounds, 1b and 2c are more effective in
killing T98G than U87MG cells, as proved by trypan blue
staining and caspase activities. Cell death in T98G cells,
induced by 1b and 2c, is characterized by a robust caspase
engagement. On the other side in U87MG cells, during cell
death induced by G5 and 2h, caspases are much less involved,
thus testifying to the existence of two different types of cell
death. The differential induction of necrosis and apoptosis in
the two cell lines was confirmed, for 2c, by using the caspase
inhibitor zVAD-fmk (Figure 3C), which was effective in
counteracting cell death only in T98G cells; similar results
were obtained with the other compounds (Supporting
Information Figure S1).
In summary, the simultaneous presence of the sulfone/

sulfoxide and nitro groups in 2h and G5 appears to promote a
necrotic response; replacement of either group, as in 2c and 1b,
lowers the necrotic activity of the N-SII and favors the
induction of apoptosis.
The ability of the compound 2c to kill preferentially through

apoptosis suggests that it could represent a better choice for in

Scheme 2. Synthesis of Unsymmetrical Derivatives of Series
1a

aReagents and conditions: (a) (i) ArCHO, NaOH, MgSO4, H2O, (ii)
HCl, EtOH 56%; (b) ArCHO, EtOH, aq HCl, 44−95%; (c) mCPBA,
CH2Cl2, 21−90%.

Figure 2. Linear correlation between U87MG glioblastoma cells
cytotoxicity (log IC50) and Hammett σ constants for compounds of
series 1 (slope of −0.39 ± 0.04; r2 = 0.8808).∑σRi is the sum of the σp
and/or σm for all the substituents on both rings.
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vivo applications, with respect to G5. Moreover, compound 2c,
possessing a reactive OH group, appears to be a good
compromise between cytotoxicity and the possibility to
introduce modifications on the core to improve the inhibitor’s
druglike properties. For these reasons 2c was selected for
further development.
Deubiquitinase Inhibition by G5 and 2c. We evaluated

the inhibitory profile of the two compounds against purified
isopeptidases using ubiquitin−AMC as a substrate. Previous
studies demonstrated that dienones are broad inhibitors,
capable of inhibiting deubiquitinases but also deSUMOylase

activities.35 Thus, we investigated G5 and 2c activities against
ubiquitin carboxy-terminal hydrolases UCHL1, UCHL5 and
the ubiquitin-specific protease USP2.
UCHL5/UCH37 is a proteasome-associated UCH, which, in

conjunction with POH1/PSMD14 and USP14, provides the
proteasome the deubiquitinase activity.3 Unlike UCHL1 and
UCHL3, UCHL5 can also process poly-ubiquitin chains, and
previous studies identified UCHL5 as a target of dienone-based
N-SIIs.16

Both G5 and 2c weakly inhibit UCHL1 (Figure 4A) but are
much less effective than other small-molecule inhibitors.36

Conversely, both compounds exhibit a more pronounced
inhibitory activity against UCHL5. G5 is considerably more
potent than 2c, as shown by the IC50 values of 13.58 μM and
42.99 μM, respectively. Thus, UCHL5 inhibition may play an
important role in eliciting the accumulation of poly-
ubiquitinated proteins in cells treated with these compounds.
When USP2 activity was analyzed, again G5 showed some

inhibitory activity (IC50 = 32.56 μM) whereas 2c was almost
inactive. This IC50 value is in agreement with previous studies
where a compound related to G5 was used.14,35

Finally, we also tested G5 and 2c inhibitory potency against
the isopeptidase USP18, which processes the Ub-like ISG15
protein and is a key regulator of the interferon response.37 Both
compounds inhibit USP18 activity, and 2c appears to be
slightly more active than G5, with IC50 of 21.20 and 33,23 μM,
respectively. The ability of 2c to inhibit USP18 was also verified
in cells by coexpressing USP18 and a fusion between ISG15
and GFP.38 When ISG15-GFP was coexpressed with USP18,
accumulation of free GFP is predominant (Figure 4B). By
contrast, in the presence of increasing concentrations of G5 or
2c, accumulation of the uncleaved ISG15-GFP chimera can be
appreciated. In the same assay, bortezomib failed in influencing
USP18-dependent cleavage of ISG15-GFP.

Analysis of 2c Proapoptotic Activity. Next, to evaluate
whether 2c shows a strong and broad spectrum of
antiproliferative activities, we measured its IC50 against several
other cancer cell lines. Data in Table 3 indicate that 2c
antiproliferative activity is indeed wide and mainly in the low
micromolar range, as already observed for U87MG and T98G
cell lines.
We then evaluated in more detail the effect of 2c on the lung

cancer cell line A549 that was later chosen for in vivo
experimentation (vide infra). Initially, we compared the
apoptotic response elicited by 2c, G5, and bortezomib to
identify the concentration ranges of the three inhibitors that
induce comparable extents of cell death (Figure 5A). We then
used these concentrations to compare the effects of the three
inhibitors on the activity of the UPS and on the accumulation
of the BH3-only protein Noxa, a sensor of endoplasmic
reticulum stress and key element of the death pathway elicited
by UPS inhibitors.14 Immunoblot analysis (Figure 5B)
demonstrated that at low concentrations bortezomib is more
effective in eliciting accumulation of poly-ubiquitinated proteins
and in stabilizing p53 with respect to 2c or G5. Interestingly,
when cell death is induced with similar intensity, accumulation
of Noxa is comparable in bortezomib and 2c treatments, thus
suggesting that ER stress is similarly evoked by the two
compounds. By contrast, high doses of G5 less efficiently
promote Noxa up-regulation, consistent with the possible
engagement of a necrotic response (Figure 5B).

Synthesis and Activity of a 2c Derivative Optimized
for in Vivo Studies. 2c, like many anticancer compounds, is

Figure 3. Apoptotic and necrotic responses induced by different
dienones in U87MG (A) and T98G cells (B). Cells were treated with
the indicated concentrations of the different compounds for 24 h.
Upper: cell death as measured by percent of trypan-blue-positive cells.
Lower: caspase activity measured with rhodamine 110 bis-(N-Z-L-
aspartyl-L-glutamyl-L-valyl-aspartic acid amide) fluorogenic substrate
(relative fluorescence units) (black, G5; gray, 2h; light gray, 1b; white,
2c). (C) Effect of caspase inhibitor zVAD-fmk on cell death induced
by 2c (percent of trypan-blue-positive cells).
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poorly soluble in aqueous solutions. A common strategy for
improving drug solubility and bioavailability consists in the
conjugation of the compound with polyethylene glycol (PEG).
Despite the intrinsic limitation of a low drug/carrier mass ratio
when used with low molecular weight drugs, polyethylene
glycol offers some advantages as a water-soluble carrier for
anticancer compounds.39−41 We thus synthesized two soluble
derivatives by conjugating 2c to monomethoxy PEG (5000 Da)
via the OH group and suitable linkers (Scheme 3).

For the synthesis of the first conjugate (9), with a
dicarbamate linker (2cPC, 2c-PEG-carbamate), 2c was
converted into the mixed carbonate 8 and then coupled with
mono-PEGylated 1,3-diaminopropane (41% overall yield).
When tested on the panel of cancer cell lines, however, this
conjugate was inactive, incapable of triggering cell death and
reducing cell proliferation (data not shown). We thus
synthesized a second derivative (11), in 57% overall yield, by
conjugating 2c with PEG through a succinate linker (Scheme
3). We reasoned that this conjugate (2cPE, 2c-PEG-ester),
containing a more reactive diester linker, could act as a prodrug,
releasing the active species 2c upon the action of cellular
hydrolases,42 and indeed, we found that 11 was active on three
of the four cell lines tested (Table 3).
In melanoma A375 and glioblastoma U87MG cells the

antiproliferative activity of 2cPE (11) is identical to that of the
parent molecule 2c (Table 3). By contrast, in A549 and, even
more so, in HT29, respectively lung and colon cancer derived
cell lines, the PEGylated molecule is less effective in
suppressing proliferation. To verify this observation, we
compared the response of A549 cells to 2cPE (11) and 2c
by scoring cell death with trypan-blue assay. Dose dependent
studies (Figure 6A) and time course analysis (Figure 6C)
confirm that 2cPE is less effective than 2c in triggering cell
death in A549 cells, an observation further corroborated by the
analysis of poly-ubiquitin accumulation, p53 stabilization, and
Noxa induction (Supporting Information Figure S2). Similar
results were obtained in HT29 cells (Supporting Information
Figure S3).
On the opposite, in A375 cells, which show similar sensitivity

to 2c and 2cPE in resazurin assay (Table 3), cell death (Figure
6B), accumulation of poly-ubiquitinated proteins, p53 stabiliza-
tion, and Noxa up-regulation (Supporting Information Figure
S2) confirm that 2cPE behaves like the active compound 2c. In
summary, in A375 cells 2c and the PEGylated derivative 2cPE
are undistinguishable as UPS inhibitors and inducers of cell
death, while A549 and HT29 cells show some resistance to the
PEGylated derivative 2cPE (11).

Activation of the 2cPE Prodrug by Secreted Esterases.
A different pattern of expression of enzymes capable of
hydrolytically releasing the active species 2c from the PEG
conjugate might explain the differential responsiveness of the

Figure 4. (A) Inhibition of ubiquitin-specific hydrolases UCHL1, UCHL5, USP2, and USP18 by G5 and 2c. (B) Immunoblot analysis showing
inhibition of USP18 in A549 cells coexpressing USP18 and the ISG15-GFP chimera. p53 levels were used to monitor the inhibition of the UPS.
Inhibitor concentrations were the following: 2c (2.5, 5, 10 μM); G5 (1, 2.5, 5 μM); bortezomib (25, 50, 100 nM). Cellular lysates were generated
after 24 h of treatment. Under these concentrations comparable % of death in A549 lung cancer cells can be observed 48 h later. (C) Quantitative
densitometric analysis of immunoblots. Data are presented as the mean of two experiments.

Table 3. Antiproliferative Activity of 2c and PEGylated
Derivative 2cPC (11) in Different Cell Lines

IC50 (μM)a

cell line 2c 11

U87MG glioblastoma 4.62 6.9
A375 melanoma 6.1 5.7
A549 lung cancer 16 22
HT29 colorectal adenocarcinoma 7.6 >100
Hep3B hepatocellular carcinoma 8.5
Mia PaCa-2 pancreatic cancer 35.2

aFrom cell viabilities measured with a resazurin assay, 48 h after
treatments.

Figure 5. (A) Inhibitor concentrations eliciting comparable death
percentage in A549 lung cancer cells after 48 h of treatment. (B)
Immunoblot analysis of extracts from A549 cells treated as in (A) and
monitored for UPS inhibition, (poly-ubiquitin and p53 accumulation)
and induction of ER stress (Noxa induction) after 24 h of treatment.
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four cell lines to 2cPE (Table 3). This hypothesis is supported
by the observation that unresponsive A549 cells become fully
responsive to 2cPE when they are grown in the presence of
A375 conditioned medium (Figure 6D), while A375 cells retain
their responsiveness to 2cPE also in the presence of A549
conditioned medium (Figure 6E). Similar results were obtained
with HT29 cells (Supporting Information Figure S3).

Accumulation of poly-ubiquitin chains, stabilization of p53,
and Noxa induction (Figure 6F) confirm that in the presence of
conditioned medium from A375 cells, the activities of 2c and
2cPE are indistinguishable, thus indicating that the prodrug is
readily converted into the active molecule by this medium.
These results indicate that the response to 2cPE (Table 3) of

different cell lines depends on their ability to secrete an esterase

Scheme 3. PEGylation of 2ca

aReagents and conditions: (a) N,N′-disuccinimidyl carbonate (75%); (b) succinic anhydride, DMAP (82%); (c) MPEG-OH, EDC, HOBT, TEA
(70%).

Figure 6. Cell death, after 48 h, as a function of concentration in A549 (A) and A375 (B) cells treated with 2.5−10 μM 2c (black bars) and 2cPE
(11) (gray bars). (C) Cell death as a function of time in A549 cells treated with 10 μM 2c (black bars) and 11 (gray bars) for 24−72 h. (D)
Response to 10 μM 2c and 2cPE (11) of A549 cells grown in normal and A375 conditioned medium. (E) Response to 10 μM 2c and 2cPE (11) of
A375 cells grown in normal and A549 conditioned medium. (F) Immunoblot analysis showing poly-ubiquitin accumulation, p53 stabilization, and
Noxa induction in A549 cells treated with 10 μM 2c (second lane) and 2cPE (11) in normal and A375 conditioned medium (third and fourth lane,
respectively). DMSO is the negative control throughout.
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activity capable of releasing 2c from the prodrug. To gain
insight into the enzymes that might be responsible for such
processing, we applied a bioinformatics analysis.
Initially, the different esterases encoded by the human

genome were extracted using GEO categories and Homo-
loGene.43 In this manner we generated a list of 173 putative
esterases. Next, to understand which secreted esterase exhibited
an expression profile compatible with the responsiveness to
2cPE, we interrogated gene expression profiles available for
A375, A549, and HT29 cells44 with our list. The expression of
the candidate esterase is expected to be high in A375, reduced
in A549 cells, and even more reduced in HT29 cells. Seven
esterases satisfied this expression profile, as illustrated in Figure
7A. Among these potential candidates, we have focused our
attention on the phospholipase A2 group 7 (encoded by the
PLA2G7 gene). This enzyme, also known as PAF-AH (platelet
activating factor acetylhydrolase), has been extensively
characterized,45 and the crystal structures of both the ligand-
free and of the paraoxon covalently inhibited enzyme are
reported.46 PLA2G7, which hydrolyzes the ester bond at the sn-
2 position of phospholipid substrates shows a canonical σ/β
hydrolase fold, and it has an interface binding area that makes it
capable of binding to the hydrophobic portions of lipoproteins
or to the internal hydrophobic region of cell membranes. The
interface is located at the end of a long hydrophobic channel
that leads to the catalytic serine and to the oxyanion hole.
Polyethylene glycol is known to activate the phospholipase
activity of the enzyme, probably by stabilizing the interface
complex between the lipase and the hydrophobic inner regions
of cell membranes.47 To verify that PLA2G7 can accept 2cPE as
a substrate, we have built a model of the tetrahedral covalent
intermediate for the hydrolysis of 2c conjugated to an ethylene
glycol dodecamer through the same succinate linker present in
2cPE. The crystal structure of the paraoxon covalently inhibited
enzyme was used as a starting point and stepwise mutated and
optimized to build the model (see Supporting Information).
The unique conformation corresponding to a stable and
productive intermediate according to the stereoelectronic
theory of Deslongchamps48,49 is reported in Figure 7B. In
this conformation, the first five units of the PEG chain lie inside
the hydrophobic channel of the enzyme, and 2c is partially
buried inside the catalytic site, which appears to be broad and
flexible enough to host this rather large structure. The two nitro
groups have a key role in stabilizing this intermediate: one of
them is found at hydrogen bond distance with the hydroxy
groups of serines 319 and 349, while the aromatic ring
establishes π-stacking interactions with phenylalanine 322 and
further hydrophobic contacts with histidine 351 (omitted for
clarity in the figure). The other nitro group is in contact with
the side chain of arginine 218. Interactions of arginine and
serine with the nitro groups of a ligand, such as those found in
this model, are well-known in antibodies and receptor
complexes.50

The model confirms that 2cPE could be a substrate for
phospholipase A2 secreted by A375 cells and thus supports the
hypothesis that lack of this enzyme, or of other esterases that
can activate the prodrug, might explain the different low
response of A549 and HT29 cell lines (Table 3). To prove the
involvement of PLA2G7 in prodrug maturation, we generated
by retroviral infection A549 cells expressing PLA2G7 isolated
from A375 cells. As control we used A549 cells expressing only
the resistance gene PURO. In the presence of PLA2G7, A549
cells dramatically increase responsiveness to the prodrug in

terms of cell death (Figure 7C). Further evidence was obtained
by incubating 2cPE in the presence of a commercially available
preparation of PLA2G7; the enzyme was able to fully hydrolyze
2cPE in phosphate buffer at room temperature, yielding 2c and
PEG5000, as indicated by mass spectrometry (see Supporting
Information p S31). Conversely, no hydrolysis was observed in
the absence of the enzyme upon the same incubation times.

2cPE Inhibits Tumor Growth in Mice. With convincing
evidence in hand that the prodrug 2cPE (11) is converted into
the active form 2c by secreted hydrolases and PLA2G7 in

Figure 7. (A) Expression profiles in A375, A549, and HT29 cells of
seven candidate esterases for the hydrolysis of 2cPE. (B) Optimized
model of the rate determining tetrahedral intermediate for hydrolysis
of 2cPE catalyzed by phospholipase A (PLA2G7). The model was
built from the crystal structure of PLA2G7 covalently inhibited by
paraoxon (PDB code 3D5E). (C) Response to 10 μM 2c and 2cPE of
A549 cells engineered to express PLA2G7 or the control gene PURO.
Trypan blue analysis was performed 48 h after treatment.
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particular, we set to analyzing whether the PEG conjugate
displays antitumor activity in vivo. To this end we selected
A549 lung cancer cells, even if these cells showed a low
response to the prodrug in culture. However, we expected that,
in animals, the prodrug should be efficiently processed by
mouse secreted 2cPE activator PLA2G7 and, possibly, other
secreted esterases.
Initial toxicity tests indicated that 2cPE is well tolerated with

transient minimal effect on the animal’s body weight up to 800
mg/kg. All treated groups showed slight (2%) body weight loss
over the course of the first week, independent from the doses.
Subsequently, the body weight of all animals steadily increased
until the end of the study with final 6−8% gain in body weight
(Supporting Information Figure S4). No gross toxicity was
observed throughout the treatment, and 2cPE did not induce
any behavioral change or grossly visible pathological changes.
A549 lung carcinoma xenografts were generated in immune-

compromised mice, and when the tumors reached the size of
0.1 cm3, 2cPE (170 mg/kg) was administered three times with
four days intervals. After 1 week from the last injection (day
15) the percentage of tumor volume inhibition (TGI) was 72%
and 78%, respectively, for subcutaneous and intravenous
treatments (Figure 8A). At the end of the experiment, the
reduction of primary tumor growth was particularly marked
(TGI = 79%) in the intravenously treated group. No significant
adverse effects were observed correlated to drug administration.

To further characterize the in vivo antitumor activity of 2cPE,
we evaluated the cellular responses in normal mouse tissues
(liver, kidney, and spleen) and in the tumor. Immunoblot
analysis of tissue extracts also confirms in vivo the up-regulation
of p53 and Noxa following 2cPE treatment (Figure 8B). This
up-regulation was much more evident in the tumor compared
to normal tissue. To exclude species-specific enrichment of the
antibody against p53, we used, in addition to DO-1 antibody,
the 421 antibody, which recognizes with similar affinity the
human and murine proteins.

■ CONCLUSIONS
Several studies have established that compounds characterized
by the presence of the 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore exhibit cytotoxic activities in vitro against
multiple cancer cell lines.29 While different cellular thiols may
in principle react with these Michael acceptors, isopeptidases, a
heterogeneous family of cysteine proteases, are important
targets for their antineoplastic activity. These inhibitors, also
called N-SIIs, can trigger both necrosis and apoptosis,
depending on the cellular context.24,33,34 In this work we
have shown that the cytotoxicity of a family of dienones
structurally related to sulfone G5 is directly correlated with the
electrophilicity of the dienone system. This provides indirect
evidence that the biological activity of these compounds is due
to their ability to act as mechanism-based inhibitors of cysteine
proteases. We have also demonstrated that by varying the
substituents on the aromatic rings and the structure of the
cyclic scaffold, it is possible to limit necrosis and to favor cell
death by apoptosis. This has led to the identification of
compound 2c, based on a 4-hydroxycyclohexanone scaffold, as
a good candidate for further development.
Analysis of the inhibitor activities has indicated that G5 is in

general a more potent inhibitor of DUBs such as UCHL1,
UCHL5, and USP2 compared to 2c. By contrast, 2c functions,
to some extent, as a better inhibitor for the deISGylase USP18.
In this scenario the dichotomy apoptosis/necrosis might reflect
different patterns of cysteine protease inhibition. Certainly, in
view of the existence of additional cellular targets, alternative
hypothesis are possible and further studies will be necessary to
clarify this point.
It has been suggested that similar N-SIIs, although

characterized by a broad spectrum of activity, can nevertheless
exhibit different preferences for certain targets.15−17,35 In this
view, the lower IC50 for proteasome-associated deubiquitinase
UCHL5 compared to other USPs, displayed by both G5 and
2c, can explain their action as UPS inhibitors,13,14,16 even if
additional mechanisms must also be taken into account.23

In this study we have also designed and synthesized the first
N-SII prodrug (2cPE) by conjugating compound 2c with PEG,
through a cleavable diester linker. This strategy has overcome
the solubility issue and has provided effective antitumoral
activity in vivo, after administration of the prodrug by
intravenous injections. From the diverse response in vitro of
different cell lines to the prodrug and by applying
bioinformatics analysis and molecular modeling, we have
identified in PLA2G7/PAF-AH a key esterase involved in
prodrug maturation. This esterase has been proposed as an
activating factor for anticancer prodrugs and delivery systems
due to its overexpression in breast, stomach, colorectal,
pancreatic, prostate, and liver cancers. Anticancer lipids have
been included in liposomes to be hydrolyzed by phospholipase
A2,51 and designed phospholipids containing PEG350 or

Figure 8. (A) Variations of A549 lung carcinoma xenografts volume in
mice following subcutaneous (sc) and intravenous (iv) treatments with
2cPE (170 mg/kg). (B) Immunoblot analysis showing up-regulation of
p53 and Noxa proteins in tissues of mice treated with 2cPE. Mice in
which the tumor mass reached the size of at least 0.5 cm3 were treated
for the first time with 170 mg/kg 2cPE, and 48 h later they were
sacrificed for the generation of tissue extracts. p53 was detected with
DO-1 and 421 antibodies, showing no significant difference.
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PEG2000 chains linked to phosphatidylethanolamine by a
carbamate linkage have proven to be substrates for the
enzyme.52 PLA2G7 is primarily produced by macrophages
and circulates in plasma in active form as a complex with LDL
and HDL.53 This pattern of expression explains why A549 cells,
which are unresponsive to 2cPE in vitro, become fully
responsive when evaluated in vivo.
The antineoplastic activity of 2cPE in vivo was accompanied

by the up-regulation of p53 and of the proapoptotic protein
Noxa. This up-regulation was more marked in tumor cells
compared to liver, spleen, and kidney. Importantly, although
proapoptotic genes were up-regulated also in normal tissues at
some extent, the animals did not show any effect of toxicity.
Both the reduced up-regulation of the apoptotic program, in
normal cells and their higher intrinsic resistance to stress, can
explain the absence of evident toxicity.
Isopeptidase inhibitors represent interesting tools in antineo-

plastic therapy. Understanding mechanisms of actions,
improving the delivery, for instance by the generation of
prodrugs through a cleavable PEGylation as described here for
the first time, and further medicinal chemistry approaches to
improve activity are efforts that need pursuing to provide
additional anticancer therapeutics.

■ EXPERIMENTAL SECTION
All biologically evaluated compounds had a purity >95% as determined
by HPLC analyses (see Supporting Information).
Chemistry: General Protocols. Melting points are uncorrected

and are given in Celsius degrees. 1H NMR and 13C NMR spectra were
recorded in CDCl3, unless otherwise stated, on Jeol EX400 (400
MHz) and Varian X500 (500 MHz) spectrometers. Chemical shifts are
given in ppm relative to tetramethylsilane. IR spectra were obtained as
Nujol mulls with a Thermo-Nicolet AVATAR 320 FT instrument.
Electron impact mass spectra were obtained on a Varian Saturn 2200
spectrometer equipped with a direct insertion probe. Electrospray
mass spectra were obtained with a Bruker Daltonics Esquire 4000
spectrometer. Flash chromatography was performed on silica gel 60
(Merck, 230−400 mesh). 4H-Thiopyran-4-one 1,1-dioxide,25 and
compounds 1a,26 2a,27 2b,27 2e30 were synthesized according to the
literature. Polyethylene glycol methyl ether (Sigma-Aldrich) and all the
PEGylated derivatives were coevaporated twice with dry dichloro-
methane and dried under vacuum immediately prior to use.
(3Z)-3-[(4-Nitrophenyl)methylene]-4H-tetrahydrothiapyran-

4-one (5). A suspension of tetrahydrothiapyran-4-one (23.2 g, 0.2
mol) and 4-nitrobenzaldehyde (15.1 g, 0.1 mol) in 100 mL of water
containing MgSO4·7H2O (14.8 g, 0.06 mol) and NaOH (5 g, 0.125
mol) was stirred at room temperature for 20 h. The solid was
collected, dried, and washed repeatedly with diethyl ether to remove
the excess tetrahydrothiapyran-4-one. The product, containing
approximately equal amounts of the aldol diastereoisomers, was
dehydrated for 1 h in refluxing ethanol (100 mL) containing conc HCl
(10 mL). The mixture was cooled to 25 °C and filtered, giving the
crude enone 5 (13.9 g, 56%); mp 105−106 °C (from ethanol). 1H
NMR: δ = 2.05 (t, 2H), 2.96 (t, 2H), 3.76 (s, 2H), 7.48 (s, 1H), 7.51
(d, 2H), 8.27 ppm (d, 2H). 13C NMR: δ = 26.0, 28.5, 41.5, 123.8,
130.3, 132.4, 137.2, 141.3, 147.6, 198.5 ppm. IR: ν = 1672 (CO),
1515 and 1344 cm−1 (NO2). MS: m/z 249 (M+ 45%), 232 (100%).
Elemental analysis calculated (%) for C12H11NO3S: C 57.8, H 4.45, N
5.62. Found: C 57.8, H 4.34, N 5.30.
General Procedure for the Synthesis of Dienones 1, 2, and 6

by the Acid-Catalyzed Knoevenagel Condensation. A solution,
or mixture, of the appropriate arylaldehyde (0.1 mol) and cyclic ketone
(0.05 mol) in 30 mL of ethanol containing 3 mL of 37% HCl was
heated at gentle reflux for 1−2 h.26 Alternatively, the reaction mixture,
in a stoppered vial, was heated at 120 °C for 20 min in a microwave
reactor. The solution was cooled in an ice bath, and the product was
collected by filtration, washed with ethanol, and dried.

(3Z,5Z)-3,5-Bis[(4-nitrophenyl)methylene]tetrahydro-4H-thi-
opyran-4-one 1,1-Dioxide (G5). 45% from tetrahydro-4H-thiopyr-
an-4-one 1,1-dioxide and 4-nitrobenzaldehyde; mp 226−230 °C (lit.54

233.5−234.5 °C). 1H NMR (DMSO-d6): δ = 4.70 (s, 4H, CH2), 7.70
(d, 4H, ArH), 7.95 (s, 2H, CH) 8.3 ppm (d, 4H, ArH). 13C NMR
(DMSO-d6): δ = 52.5, 123.8, 131.8, 130.7, 139.9, 140.8, 147.6, 184.4
ppm. IR: ν = 1677 (CO), 1513 and 1350 (NO2), 1320 and 1136
cm−1 (SO2). MS: m/z 414 (M+ 5%), 333 (100%).

(3Z,5Z)-3,5-Bis[(4-methyphenyl)methylene]tetrahydro-4H-
thiopyran-4-one 1,1-Dioxide (1b). 69% from tetrahydro-4H-
thiopyran-4-one 1,1-dioxide and p-tolualdehyde; mp 186−188 °C.
1H NMR: δ = 2.40 (s, 6H), 4.46 (s, 4H), 7.25 (d, 4H), 7.31 (d, 4H),
7.98 ppm (s, 2H). 13C NMR: δ = 21.6, 53.2, 129.8, 129.9, 125.9, 130.8,
140.7, 144.3, 186.1 ppm. IR: ν = 1664 (CO), 1333 and 1127 cm−1

(SO2). MS: m/z 352 (M+ 20%), 273 (100%).
(3Z,5Z)-3,5-Bis[(4-hydroxyphenyl)methylene]tetrahydro-4H-

thiopyran-4-one 1,1-Dioxide (1c). 23% from tetrahydro-4H-
thiopyran-4-one 1,1-dioxide and 4-hydroxybenzaldehyde; mp 244−
246 °C. 1H NMR ((CD3)2CO): δ = 3.0 (s, 2H), 4.57 (s, 4H), 6.94 (d,
4H), 7.41 (d, 4H), 7.87 ppm (s, 2H). 13C NMR ((CD3)2CO): δ =
52.8, 116.1, 132.6, 125.6, 125.8, 142.3, 159.5, 184.2 ppm. IR: ν = 3388
(OH), 1659 (CO), 1304 and 1128 cm−1 (SO2). MS: m/z 356 ([M-
2H]+ 58%).

(3Z,5Z)-3,5-Bis[(4-methoxyphenyl)methylene]tetrahydro-
4H-thiopyran-4-one 1,1-Dioxide (1d). 50% from tetrahydro-4H-
thiopyran-4-one 1,1-dioxide and p-anisaldehyde; mp 175−177 °C. 1H
NMR: δ = 3.83 (s, 6H), 4.46 (s, 4H), 6.96 (d, 4H), 7.40 (d, 4H), 7.97
ppm (s, 2H). 13C NMR: δ = 53.3, 55.5, 114.6, 131.9, 124.6, 126.2,
143.9, 161.2, 185.8 ppm. IR: ν = 1659 (CO), 1318 and 1125 cm−1

(SO2). MS: m/z 384 (M+ 75%), 88 (100%).
(3Z,5Z)-3,5-Bis[(4-phenoxyphenyl)methylene]tetrahydro-

4H-thiopyran-4-one 1,1-Dioxide (1e). 50% from tetrahydro-4H-
thiopyran-4-one 1,1-dioxide and 4-phenoxybenzaldehyde; mp 165−
168 °C. 1H NMR: δ = 4.40 (s, 4H), 7.00−7.08 (m, 8H), 7.17 (t, 2H),
7.35−7.41 (m, 8H), 7.96 ppm (s, 2H). 13C NMR: δ = 53.2, 118.3,
120.0, 124.5, 125.5, 130.1, 131.8, 128.0, 143.6, 155.8, 159.5, 186.0
ppm. IR: ν = 1666 (CO), 1308 and 1133 cm−1 (SO2). MS: m/z 443
([M − SO2]

+ 100%).
(3Z,5Z)-3,5-Bis[(4-cyanophenyl)methylene]tetrahydro-4H-

thiopyran-4-one 1,1-Dioxide (1g). 20% from tetrahydro-4H-
thiopyran-4-one 1,1-dioxide and 4-cyanobenzaldehyde; mp 260−262
°C. 1H NMR (DMSO-d6): δ = 4.69 (s, 4H), 7.93 (s, 2H), 7.72 (d,
4H), 8.00 ppm (d, 4H). 13C NMR (DMSO-d6): δ = 52.1, 111.9, 118.6,
130.2, 140.0, 130.7, 132.6, 138.1, 184.6 ppm. IR: ν = 2232 (CN), 1692
(CO), 1327 and 1123 cm−1 (SO2). MS: m/z 374 (M+ 30%), 309
(100%). Elemental analysis calculated (%) for C21H14N2O3S: C 67.4,
H 3.77, N 7.48. Found: C 67.0, H 3.81, N, 7.37.

(3Z,5Z)-3,5-Bis[(3-nitro-4-methoxyphenyl)methylene]-
tetrahydro-4H-thiopyran-4-one 1,1-Dioxide (1h). 54% from
tetrahydro-4H-thiopyran-4-one 1,1-dioxide and 3-nitro-4-methoxyben-
zaldehyde; mp 259−260 °C. 1H NMR (DMSO-d6): δ = 4.00 (s, 6H),
4.74 (s, 4H), 7.45 (s, 2H), 7.85 (s, 2H), 7.88 (d, 2H), 8.09 ppm (d,
2H). 13C NMR (DMSO-d6): δ = 51.9, 57.0, 114.7, 126.6, 136.4, 125.9,
128.1, 139.5, 152.7, 184.2 ppm. IR: ν = 1696 (CO), 1531 and 1340
(NO2), 1311 and 1131 cm−1 (SO2). MS: m/z 474 (M+ 1%), 393
(100%). Elemental analysis calculated (%) for C21H18N2O9S: C 53.16,
H 3.82, N 5.90. Found: C 52.77, H 3.80, N 5.54.

(3Z,5Z)-3,5-Bis[(3-nitrophenyl)methylene]tetrahydro-4H-thi-
opyran-4-one 1,1-Dioxide (1i). 21% from tetrahydro-4H-thiopyran-
4-one 1,1-dioxide and 3-nitrobenzaldehyde; mp 230−231 °C. 1H
NMR (DMSO-d6): δ = 4.78 (s, 4H), 7.78 (t, 2H), 7.97 (s, 2H), 7.99
(s, 2H), 8.29 (d, 2H), 8.34 ppm (d, 2H). 13C NMR (DMSO-d6): δ =
52.5, 124.7, 125.1, 130.6, 130.9, 135.6, 136.7, 140.3, 148.6, 185.5 ppm.
IR: ν = 1690 (CO), 1530 and 1350 (NO2), 1320 and 1123 cm−1

(SO2). MS: m/z 414 (M+ 10%), 333 (100%). Elemental analysis
calculated (%) for C19H14N2O7S: C 55.1, H 3.41, N 6.76, S 7.74.
Found: C 54.7, H 3.38, N 6.44, S 7.55.

(2E,6E)-2,6-Bis[(4-nitrophenyl)methylene]-4-hydroxycyclo-
hexanone (2c). 78% from 4-hydroxycyclohexanone and 4-nitro-
benzaldehyde; mp 210−213 °C. 1H NMR (DMSO-d6): δ = 2.98 (dd,
2H), 3.09 (dd, 2H)), 4.07−4.13 (m, 1H), 5.04 (d, 1H), 7.7 (s, 2H),
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7.8 (d, 4H), 8.3 ppm (d, 4H). 13C NMR (DMSO-d6): δ = 36.0, 63.0,
123.8, 131.4, 134.0, 137.1, 142.2, 147.2, 188.9 ppm. IR: ν = 3539
(OH), 1668 (CO), 1508 and 1342 cm−1 (NO2). ESI-MS: m/z 403
(MNa+), 381 (MH+). Elemental analysis calculated (%) for
C20H16N2O6: C 63.2, H 4.24, N 7.37. Found: C 62.9, H 4.19, N 7.32.
Ethyl (3E ,5E)-3,5-Bis[(4-nitrophenyl)methylene]-4-

oxocyclohexanecarboxylate (2d). 36% from ethyl 4-
oxocyclohexanecarboxylate and 4-nitrobenzaldehyde; mp 172−174
°C. 1H NMR: δ = 1.16 (t, 3H), 2.76−2.84 (m, 1H), 3.06−3.24 (m,
4H), 4.12 (q, 2H), 7.56 (d, 4H), 7.85 (s, 2H), 8.27 ppm (d, 4H). 13C
NMR: δ = 14.2, 30.5, 3961.4, 123.8, 130.9, 135.9, 136.4, 141.7, 147.5,
173.2, 187.7 ppm. IR: ν = 1723 (CO), 1673 (CO), 1512 and
1340 cm−1 (NO2). MS: m/z 436 (M+ 50%), 419 (100%).
(3E,5E)-Tetrahydro-3,5-bis[(4-nitrophenyl)methylene]-4H-

pyran-4-one (2f). 24% from tetrahydro-4H-pyran-4-one and 4-
nitrobenzaldehyde; mp 263−265 °C (lit.54 272−273 °C). 1H NMR
(DMSO-d6): δ = 4.96 (s, 4H), 7.73 (d, 4H), 7.77 (s, 2H), 8.28 ppm
(d, 4H). 13C NMR (DMSO-d6): δ = 68.2, 124.2, 132.1, 133.5, 136.8,
140.9, 148.0 ppm. IR: ν = 1682 (CO), 1514 and 1347 cm−1 (NO2).
MS: m/z 366 (M+ 10%), 349 (100%).
(3Z,5Z)-Tetrahydro-3,5-bis[(4-nitrophenyl)methylene]-4H-

thiopyran-4-one (2g). 41% from tetrahydro-4H-thiopyran-4-one
and 4-nitrobenzaldehyde; mp 220−223 °C (lit.54 224−225 °C). 1H
NMR: δ = 3.87 (s, 4H), 7.55 (d, 4H), 7.77 (s, 2H), 8.29 ppm (d, 4H).
13C NMR: δ = 30.1, 124.0, 130.6, 134.6, 136.2, 141.3, 147.7, 188.0
ppm. IR: ν = 1667 (CO), 1509 and 1342 cm−1 (NO2). MS: m/z
382 (M+, 20%).
(3Z,5Z)-Tetrahydro-3,5-bis[(4-fluorophenyl)methylene)]-4H-

tetrahydrothiapyran-4-one (3). 54% from tetrahydro-4H-thiapyr-
an-4-one and 4-fluorobenzaldehyde; mp 122−124 °C. 1H NMR: δ =
3.88 (s, 4H), 7.11−7.38 (m, 4H), 7.73 ppm (s, 2H). 13C NMR: δ =
30.0, 115.4 (d, JC−F = 22 Hz), 130.8 (d, JC−F = 3 Hz), 131.6 (d, JC−F =
8 Hz), 133.2 (d, JC−F = 1 Hz), 135.4, 162.5, (d, JC−F = 251 Hz), 188.4
ppm. IR: ν = 1662 (CO), 1510 and 1330 cm−1 (NO2). MS: m/z
328 (M+ 100%). Elemental analysis calculated (%) for C19H14F2OS: C
69.5, H 4.30. Found: C 69.3, H 4.41%.
(3Z,5Z)-3-[(4-Hydroxyphenyl)methylene]-5-[(4-nitrophenyl)-

methylene]-4H-tetrahydrothiapyran-4-one (6j). 44% from 5 and
p-hydroxybenzaldehyde; mp 178−180 °C. 1H NMR (DMSO-d6): δ =
3.93 (s, 2H), 3.98 (s, 2H), 6.85 (d, 2H), 7.42 (d, 2H), 7.56 (s, 1H),
7.61 (s, 1H), 7.73 (d, 2H), 8.25 (d, 2H), 10.0 ppm (broad, 1H). 13C
NMR (DMSO-d6): δ = 29.0, 29.6, 115.7, 123.6, 125.4, 130.8, 131.2,
131.8, 132.8, 136.9, 137.3, 141.6, 146.9, 158.9, 187.7 ppm. IR: ν =
3451 (OH), 1660 (CO), 1519 and 1347 cm−1 (NO2). MS: m/z 353
(M+ 100%).
(3Z,5Z)-3-[(4-Methoxyphenyl)methylene]-5-[(4-nitrophenyl)-

methylene]-4H-tetrahydrothiapyran-4-one (6k). 95% from 5 and
p-methoxybenzaldehyde; mp 152−154 °C. 1H NMR: δ = 3.74 (s, 2H),
3.84 (s, 3H), 3.96 (s, 2H), 6.96 (d, 2H), 7.39 (d, 2H), 7.51 (d, 2H),
7.73 (s, 1H), 7.77 (s, 1H), 8.27 ppm (d, 2H). 13C NMR: δ = 29.9,
30.4, 55.5, 114.3, 123.9, 127.5, 130.6, 131.3, 132.4, 133.1, 136.9, 138.4,,
142.0, 147.5, 160.7, 188.4 ppm. IR: ν = 1653 (CO), 1514 and 1344
(NO2). MS: m/z 367 (M+ 100%). Elemental analysis calculated (%)
for C20H17NO4S: C 65.38, H 4.66, N 3.81. Found: C 65.01, H 4.64, N
3.72.
(3Z,5Z)-3-[(4-Methylphenyl)methylene]-5-[(4-nitrophenyl)-

methylene]-4H-tetrahydrothiapyran-4-one (6l). 73% from 5 and
p-tolualdehyde; mp 139−142 °C. 1H NMR (DMSO-d6): δ = 2.32 (s,
3H), 3.95 (s, 2H), 3.98 (s, 2H), 7.26 (d, 2H), 7.42 (d, 2H), 7.58 (s,
1H) 7.61 (s, 1H), 7.75 (d, 2H), 8.25 ppm (d, 2H). 13C NMR (DMSO-
d6): δ = 21.0, 29.2, 29.5, 123.7, 129.4, 130.5, 131.3, 131.7, 132.3, 133.2,
136.1, 137.2, 138.0, 141.4, 147.0, 188.0 ppm. IR: ν = 1662 (CO),
1517 and 1344 cm−1 (NO2). MS: m/z 351 (M+ 30%), 336 (100%).
General Procedure for mCBPA Oxidations. A solution of

mCPBA (1 mmol for oxidations to sulfoxides; 2.5 mmol for oxidations
to sulfones) in CH2Cl2 (5 or 12.5 mL, respectively) was added
dropwise, at 0 °C, to a suspension of the sulfide (1 mmol) in
dichloromethane (5 mL) and stirred at 25 °C for 16 h. The mixture
was diluted with 20 mL of dichloromethane and extracted with 10%
aqueous Na2S2O5, saturated NaHCO3, and brine. The organic layer

was dried over Na2SO4, and the solvent was removed in vacuo to give
the crude product that was crystallized from ethanol.

(3Z,5Z)-Tetrahydro-3,5-bis[(4-fluorophenyl)methylene)-4H-
tetrahydrothiapyran-4-one 1,1-Dioxide (1f). Oxidation of sulfide
3 with 2 equiv of mCPBA gave a mixture of sulfone 1f and the
Baeyer−Villiger product 4 which were separated by crystallization
from acetone/hexane. 1f (41%) had mp 179−180 °C. 1H NMR: δ =
4.43 (s, 4H), 7.12−7.45 (m, 4H), 7.96 ppm (s, 2H). 13C NMR: δ =
53.1, 116.6 (d, JC−F = 22 Hz), 126.7 (d, JC−F = 1 Hz), 129.8 (d, JC−F =
3 Hz), 132.0 (d, JC−F = 9 Hz), 143.4, 163.9 (d, JC−F = 252 Hz), 186.4
ppm. IR: ν = 1664 (CO), 1333 and 1128 cm−1 (SO2). MS: m/z 360
(M+ 20%), 294 (100%). Elemental analysis calculated (%) for
C19H14F2O3S: C 63.3, H 3.92, S 8.90. Found: C 63.2, H 3.81, S
8.74. 4 (10%) had mp 176−178 °C. 1H NMR: δ = 4.27 (s, 4H), 6.89
(s, 1H), 7.07−7.14 (m, 4H), 7.53−7.72 (m, 4H), 8.05 ppm (s, 1H).
13C NMR: δ = 53.1, 55.7, 115.8, 116.13, 116.16, 116.5, 119.9, 128.0,
128.8, 137.4, 126.1, 130.5, 130.6, 131.8, 131.9, 149.7, 162.4, 165.5
ppm. IR: ν = 1721 (CO), 1315 and 1120 cm−1 (SO2). MS: m/z 376
(M+ 43%), 312 (100%). Elemental analysis calculated (%) for
C19H14F2O4S: C 60.6, H 3.72. Found: C 60.2, H 3.72.

(3Z,5Z)-3-[(4-Hydroxyphenyl)methylene]-5-[(4-nitrophenyl)-
methylene]-4H-tetrahydrothiapyran-4-one 1,1-Dioxide (1j).
60% from sulfide 7j; mp 221−224 °C. 1H NMR (DMSO-d6): δ =
4.68 (s, 4H), 6.87 (d, 2H), 7.46 (d, 2H), 7.70 (s, 1H), 7.77 (d, 2H),
7.84 (s, 1H), 8.29 (d, 2H), 10.22 ppm (broad, 1H). 13C NMR
(DMSO-d6): δ = 51.9, 52.5, 116.0, 123.8, 131.0, 133.0, 138.7, 142.9,
123.7, 124.2, 124.4, 140.4, 147.4, 159.7, 184.0 ppm. IR: ν = 3450
(OH), 1511 and 1349 (NO2), 1308 and 1121 cm−1 (SO2). MS: m/z
385 (M+ 5%), 320 (100%).

(3Z,5Z)-3-[(4-Methoxyphenyl)methylene]-5-[(4-nitrophenyl)-
methylene]-4H-tetrahydrothiapyran-4-one 1,1-Dioxide (1k).
60% from sulfide 7k; mp 158−160 °C (from acetone−hexane). 1H
NMR: δ = 3.88 (s, 3H), 4.35 (s, 2H), 4.51 (s, 2H), 6.99 (d, 2H), 7.42
(d, 2H), 7.58 (d, 2H), 7.98 (s, 1H), 8.02 (s, 1H) 8.32 ppm (d, 2H).
13C NMR: δ = 52.7, 53.7, 55.5, 114.7, 124.2, 130.2, 132.2, 140.6, 145.2,
123.5, 126.0, 130.0, 140.0, 147.0, 161.6, 185.7 ppm. IR: ν = 1663 (C
O), 1510 and 1346 (NO2), 1319 and 1126 cm−1 (SO2). MS: m/z 399
(M+ 10%), 304 (100%).

(3Z,5Z)-3-[(4-Methylphenyl)methylene]-5-[(4-nitrophenyl)-
methylene]-4H-tetrahydrothiapyran-4-one 1,1-Dioxide (1l).
90% from sulfide 7l; mp 155−158 °C. 1H NMR: δ = 2.44 (s, 3H),
4.35 (s, 2H), 4.49 (s, 2H), 7.27 (d, 2H), 7.32 (d, 2H), 7.58 (d, 2H),
7.97 (s, 1H), 8.01 (s, 1H) 8.30 ppm (d, 2H). 13C NMR: δ = 21.6, 52.8,
53.6, 124.2, 125.0, 129.9, 130.0, 130.2, 140.0, 140.8, 141.3, 145.4,
148.2, 185.8 ppm. IR: ν = 1663 (CO), 1519 and 1346 (NO2), 1326
and 1133 cm−1 (SO2). MS: m/z 383 (M+ 20%), 304 (100%).

(3Z,5Z)-Tetrahydro-3,5-bis[(4-nitrophenyl)methylene]-4H-
thiopyran-4-one 1-Oxide (2h). Oxidation of the sulfide 2g with 1
equiv of mCPBA gave a 1:1 mixture of sulfone 2G and sulfoxide 2h
that were separated by flash chromatography on silica gel with 8:2
dichloromethane/ethyl acetate as eluent, giving pure 2h (34%); mp
185−190 °C. 1H NMR: δ = 3.93 (d, 2H, J = 12 Hz), 4.21 (d, 2H, J =
12 Hz), 7.58 (d, 4H), 8.03 (s, 2H), 8.3 ppm (d, 4H). 13C NMR
(DMSO-d6): δ = 48.7, 124.3, 131.0, 131.6, 140.8, 141.4, 147.9, 187.0
ppm. IR: ν = 1676 (CO), 1506 and 1349 cm−1 (NO2). MS: m/z
398 (M+, 10%), 365 (100%). Elemental analysis calculated (%) for
C19H14N2O6S: C 57.3, H 3.54, N 7.03, S 8.05. Found: C 57.2, H 3.75,
N 7.11, S 7.92.

(3Z,5Z)-3,5-Bis[(4-nitrophenyl)methylene]-4-hydroxy-tetra-
hydro-4H-thiopyran 1,1-Dioxide (7). NaBH4 (0.016 g, 0.44 mmol)
was added in small portions at 0 °C with constant stirring to a solution
of G5 (0.15 g, 0.4 mmol) in 25 mL of a 10:1 (v/v) THF/MeOH
mixture. After 20 min the reaction was quenched by the addition of
ice-cold, saturated brine (25 mL) and the product was extracted with
diethyl ether (4 × 25 mL). The combined organic layers were washed
with brine, dried over MgSO4 and the solvent was removed under
reduced pressure, giving the alcohol 7 (90%): mp 216−220 °C. 1H
NMR ((CD3)2CO): δ = 2.84 (s, 1H), 4.24 (d, 2H), 4.26 (d, 2H), 5.22
(d, 1H), 7.21 (s, 1H), 7.69 (d, 2H), 8.28 ppm (d, 2H). 13C NMR
((CD3)2CO): δ = 51.7, 76.7, 123.8, 130.1, 128.5, 134.5, 142.4, 147.3
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ppm. IR: ν = 3399 (OH), 1517 and 1351 (NO2), 1329 and 1130 cm
−1

(SO2). Elemental analysis calculated (%) for C19H16N2O7S: C 54.80,
H 3.87, N 6.73. Found: C 55.02, H 3.99, N 6.67.
(3E,5E)-3,5-Bis[(4-nitrophenyl)methylene]-4-oxocyclohexyl

2,5-dioxo-1-pyrrolidinyl Carbonate (8). N,N′-Disuccinimidyl
carbonate (1.0 g, 3.89 mmol) was added to a solution of 2c (0.74 g,
1.95 mmol) in 20 mL of 1:1 dichloromethane/acetonitrile. Pyridine
was added until the solution became clear (1 mL), and the mixture was
stirred at 25 °C for 18 h. The solution was cooled in an ice bath, and
the mixed carbonate 8 was precipitated with diethyl ether, filtered, and
dried (75%). Mp: 172−175 °C. 1H NMR (DMSO-d6): δ = 2.71 (s,
4H), 3.30−3.40 (m, 4H), 5.31−5.38 (m, 1H), 7.79 (d, 4H), 7.85 (s,
2H), 8.27 ppm (d, 4H). 13C NMR (DMSO-d6): δ = 25.3, 32.5, 74.5,
123.6, 131.2, 133.9, 136.7, 141.3, 147.1, 151.0, 169.6, 187.1 ppm. IR: ν
= 1810 (CO), 1788 (CO), 1740 (CO), 1670 (CO), 1518
and 1347 cm−1 (NO2).
2cPC (9). N,N′-Disuccinimidyl carbonate (205 mg, 0.8 mmol) was

added to mPEG5000-OH (1.0 g, 0.2 mmol) in a mixture of dry
dichloromethane (3.5 mL), acetonitrile (1 mL), and pyridine (0.5
mL), and the solution was stirred for 18 h at 25 °C under an argon
atmosphere, cooled in an ice bath, and the crude product (mPEG-
OSu, 94%) was precipitated with diethyl ether, filtered, and
recrystallized from ethanol. 1H NMR (DMSO-d6): δ = 2.80 (s, 4H),
3.30−3.55 (m, PEG), 4.25−4.55 (m, 2H, PEG-CH2OSu). 1,3-
Diaminopropane (48 μL, 0.57 mmol) and mPEG-OSu (1.0 g, 0.19
mmol), in a minimum amount of dry dichloromethane, were stirred
for 18 h at 25 °C under an argon atmosphere. The solution was cooled
in an ice-bath, and the crude mono-PEGylated 1,3-diaminopropane
(90%) was precipitated with diethyl ether, filtered, and recrystallized
from ethanol. 1H NMR (DMSO-d6): δ = 1.48−1.54 (m, 2H, CH2),
2.94−2.99 (m, 2H), 3.30−3.55 (m, PEG + CH2), 3.98−4.04 (m, 2H,
PEG-CH2OCONH), 7.17 ppm (m, 1H, NH). Triethylamine was
added to a solution of the activated carbonate 8 (0.52 g, 1.0 mmol)
and PEGylated 1,3-diaminopropane (1.0 g, 0.2 mmol) in the minimum
amount of dry pyridine, to pH 8. The mixture was stirred for 18 h at
25 °C under an argon atmosphere and then cooled in an ice bath, and
the crude product 9 (67%) was precipitated with diethyl ether, filtered,
and recrystallized from ethanol. 1H NMR (DMSO-d6): δ = 1.35−1.38
(m, 2H), 2.77−2.83 (m, 4H), 3.20−3.70 (m, PEG), 3.97−4.01 (m,
2H), 4.97−5.03 (m, 1H), 7.02−7.09 (m, 2H), 7.74 (d, 4H), 7.77 (s,
2H), 8.30 (d, 4H).
3- { (3E , 5E ) -3 ,5 -B i s [ (p -n i t ropheny l )methy lene ] -4 -

oxocyclohexyloxycarbonyl}propionic Acid (10). Succinic anhy-
dride (2.63 g, 26.3 mmol) and DMAP (0.32 g, 2.63 mmol) were added
to a solution of alcohol 2c (1.0 g, 2.63 mmol) and pyridine (1 mL) in
25 mL of 1:1 dichloromethane/acetonitrile, and the reaction mixture
was stirred at room temperature for 16 h and then extracted with 0.1
M HCl. The solid emisuccinate (370 mg) was collected, while the
organic layer was dried over anhydrous sodium sulfate and evaporated.
The solid residue was washed with hot methanol, giving a second crop
of product 10 (664 mg). The crude emisuccinate (82% overall) was
used without further purification. Mp: 195−198 °C. 1H NMR
(DMSO-d6): δ = 2.31−2.36 (m, 4H), 3.13 (dd, 2H), 3.20−3.25 (m,
2H), 5.14−5.18 (m, 1H), 7.76 (s, 2H), 7.79 (d, 2H), 8.27 (d, 4H),
12.1 ppm (s, 1H). 13C NMR (DMSO-d6): δ = 28.8, 32.3, 35.7, 67.0,
123.6, 131.2, 135.0, 135.9, 141.5, 147.0, 171.5, 173.3, 187.0 ppm. IR: ν
= 3502 (COOH), 1734 (CO), 1710 (CO), 1668 (CO), 1517
and 1347 cm−1 (NO2). MS: m/z 480 (M+ 8%), 345 (100%).
2cPE (11). Emisuccinate 10 (0.96 g, 2 mmol), EDC (0.38 g, 2

mmol), and HOBT (0.27 g, 2 mmol) were added, in the order, to
mPEG5000-OH (1.0 g, 0.2 mmol) in a minimum amount of dry
dichloromethane. Triethylamine was added to pH 8 and the mixture
was stirred for 18 h, at 25 °C, under an argon atmosphere. The
solution was cooled in an ice bath and the crude product was
precipitated by adding diethyl ether, filtered, and recrystallized from
ethanol, giving 0.76 g of the conjugate 11 (70%). 1H NMR (DMSO-
d6): δ = 2.41 (2H), 2.50 (2H), 3.25−3.70 (m, PEG), 3.95−4.00 (m,
2H), 5.13−5.20 (m, 1H), 7.81 (d, 4H), 7.82 (s, 2H), 8.30 ppm (d,
4H).

Modeling. Calculations were carried out on a workstation
equipped with a Dual Opteron ASUS KFSN4-DRE/IKVM/IST
mother board and two AMD Opteron SixCore 2427 2.2 GHz &MB
75 W processors. The MMFF94 force field55 [as implemented in the
Spartan ’14 parallel suite (Wavefunction Inc.)] was used in all energy
minimizations. The crystallographic coordinates of the reference
covalent complex of phospholipase A2 with paraoxon46 were obtained
from the Protein Data Bank, Brookhaven National Laboratory (PDB
code 3D5E). Full details on the construction of the model for the
PLA2G7 catalyzed hydrolysis of 2cPE (11) are in the Supporting
Information.

Hydrolysis of 2cPE by PLA2G7. The enzyme (recombinant
human PLA2G7 from R&D Systems, code 5106-PL-010) was added at
a final 0.2 nM concentration to a 25 mM solution of 2cPE in
phosphate buffer, pH 7. The reaction was followed by ESI-MS on a
Bruker Esquire 400 instrument (see Supporting Information).

Biological Assays. Reagents and Antibodies. The following
reagents were used: bortezomib (LC Laboratories), DMSO (Sigma-
Aldrich), resazurin (Invitrogene), GST-UCHL5 (Ubiquigent), ISG15-
AMC (BostonBiochem), ubiquitin-AMC (Ubiquigent), zVAD-fmk
(Bachem). Primary antibodies were anti-actin (Sigma-Aldrich), anti-
ubiqutin (Covance), anti-p53 DO-1 (Santa Cruz), anti-Noxa (Merck
Millipore).

Cell Culture, Cell Death, and Caspase Activity. All cell lines
were grown in DMEM supplemented with 10% FBS, penicillin (100
U/mL), glutamine (2 mmol/L), and streptomycin (100 μg/mL) at 37
°C in 5% CO2 atmosphere. In all trypan blue exclusion assays, at least
400 cells from three independent experiments were counted. Data are
presented as mean value ± SD. A549 cells engineered to express
PLA2G7 were generated by retroviral infection using the pLPC vector
and selected for puromycin resistance. The cDNA of PLA2G7 was
obtained after retrotranscription of RNAs isolated form A375 cells and
PCR amplification using oligonucleotides covering the ORF. The
cDNA of PLA2G7 was cloned blunt/SalI. Sequencing of the PLA2G7
cDNA was performed to scrutinize for the presence of mutations. The
RT-PCR analysis confirming the expression of recombinant PLA2G7
in A549 cells is reported in the Supporting Information.

The caspase activity was evaluated using the Apo-ONE caspase-3/7
homogeneous assay (Promega). The assay includes a profluorescent
caspase-3/7 consensus substrate, rhodamine 110 bis-(N-Z-L-aspartyl-L-
glutamyl-L-valylaspartic acid amide). Cells grown in 96-well plates
were treated with the different compounds and tested for caspase
activity as recommended by the producer. Data are presented as mean
value ± sd, n = 3.

Western Blotting. Tissue and cellular extracts were generated in
Laemmli sample buffer. Before lysis, frozen small tissue fragments were
pulverized using a dedicated apparatus (TissueLyser Qiagen). Protein
extracts, after SDS−PAGE were transferred to a 0.2 μm nitrocellulose
membrane and incubated with the specific primary antibodies as
previously described.14 After washing, blots were incubated with
secondary antibody−peroxidase conjugates (Sigma). For primary
antibody stripping, blots were incubated for 30 min at 60 °C in
stripping solution (62.5 mM Tris-HCl, pH 6.8, 2% SDS, 100 mM β-
mercaptoethanol).

Isopeptidase Inhibition. In a 96-well-plate, 20 nM UCHL1, 20
nM UCHL5, fused to GST, and 40 nM His-tagged USP2 catalytic
domain or 270 nM USP18 were preincubated with G5, 2c, or control
for 30 min before substrate Ub-AMC (200 nM) addition. ISG15-AMC
(400 nM) was used as substrate for USP18. Reaction buffer was 50
mM Tris, pH 7.5, 150 mM NaCl, 0.1 mM EDTA, 1 mM DTT.
Enzymes relative activities were determined by measuring the RFU
values as average of the maximum values obtained within the initial
linear range. Enzymatic activities were determined every minute for 60
min, at 37 °C. Fluorescence values were read with an Enspire 2300
multilabel reader (excitation 380 nm, emission 460 nm). The RFU
values were normalized to 100% of activity for the isopeptidases
incubated with vehicle alone. IC50 values were calculated with
GraphPad Prism software using a nonlinear fit. Recombinant full-
length UCHL1 and USP2 catalytic domain were expressed in bacteria
and purified by affinity chromatography using GST or histidine
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binding resin, respectively. The human USP18 sequence encoding the
region 16-372 corresponding to the translated full-length protein
starting at the rare codon CUG was cloned using the Gateway system
in a baculovirus expression vector based on pVL1393 (GE
Healthcare). The recombinant protein was expressed in Sf9 insect
cells. For protein purification, cells were homogenized (Emulsiflex,
Avestin) in lysis buffer (500 mM NaCl, 10% glycerol, 0.01% Tween,
20 mM DTT, 20 μg/mL DNaseI, protease inhibitors in 50 mM Na
phosphate, pH 8.0). Cleared lysates were affinity purified on
gluthatione-Sepharose 4B (GE Healthcare) and eluted by cleavage
with HRV C3 protease. The protein was then purified on Superdex
200 10/30 GL (GE Healthcare) equilibrated in buffer (500 mM NaCl,
10% glycerol, 5 mM DTT in 50 mM Na phosphate, pH 8.0). The
eluted monomeric protein was concentrated to 3.5 mg/mL, and
aliquots were flash-frozen in liquid nitrogen. The quality assessment of
recombinant protein was performed by ESI LC/MS analysis using a
single quadrupole instrument with an electrospray ion source (1100
HPLC G1946 MSD Agilent system).
Gene Expression Studies. Microarray data sets used in this study

were downloaded manually from GEO.43a We analyzed expression
data obtained from GSE48433 (platform HG-U133_Plus_2, GPL570
array). We processed all the CEL files together by using standard tools
available within the Affy package.56 We used a UniGene ID centered
CDF (Chip Description file) in order to have only one intensity value
per gene.57 Details on microarray data processing and analysis are
reported in the Supporting Information. The list of lipases was
downloaded from Gene Ontology and integrated with HomoloGene;
only genes with direct enzymatic activity were considered, filtering out
lipases regulators and cofactors. In the end we obtained a list of 173
genes of which 159 were present in the array’s platform.
Statistical Analysis. All assays and control experiments were

carried out in triplicate. Results are expressed as the mean ± sd.
Statistical analysis was performed by Student’s t test and P values of
≤0.05 were considered statistically significant. Asterisks in the figures
indicate the following: (∗) P < 0.05; (∗∗) P < 0.01; (∗∗∗) P < 0.005.
A549 Human Lung Carcinoma Xenograft Tumors in Mice.

Six-week-old female athymic nude-foxn1nu mice (Harlan Ud Italy)
were utilized for in vivo xenograft experiments, whereas 9-week-old
female Balb/C OlaHsd mice were used for toxicity studies (Harlan Ud
Italy). Animal studies were carried out according to the guidelines
enforced in Italy (DDL 116 of Feb 21, 1992 and subsequent addenda)
and in compliance with the Guide for the Care and Use of Laboratory
Animals, Department of Health and Human Services Publication No.
86-23 (National Institutes of Health, Bethesda, MD, 1985). In vivo
xenograft tumor model was established from initial sc injection of in
vitro expanded A549 tumor cells. After tumor mass establishment,
solid mass was surgically removed, under sterile conditions, and cut
into fragments (2−3 mm), in sterile PBS. Tumor fragments obtained
from donor mice were then serially expanded or injected for
experimental purpose. Fifteen mice were implanted sc with A549
tumor fragments, obtained from donors at passage p8.
2cPE Toxicity Analysis. Animal’s body weights were recorded for

all animals three times a week from the first day of treatment. All
animals were checked daily, and eventual behavioral changes, ill health,
or mortality was recorded for each animal. On day 0, each animal was
weighed and the volume of the dose was adjusted to ensure proper
dosage in mg/kg. At the end of the experiments mice were sacrificed
and basic autopsy was performed on all mice: thoracic and abdominal
cavity was open, and all major organs were macroscopically examined.
Livers from all animals were collected and weighted.
2cPE Administration to Mice. Mice were treated iv or sc every 4

days, for three times with 170 mg/kg of 2cPE, starting from day 16
after tumor fragments injection (day 0), when tumor size was 0.1 cm3.
Each animal received one dose of 2cEP (170 mg/kg) on day 0,
another dose on day 4, and another dose on day 8. For both iv and sc,
2cPE was dissolved in PBS. Injected volume of compound solution
was 200 μL for each treatment. Control mice received PBS. Before
treatment, mice were randomly assigned to experimental groups (n = 3
with 4 mice/group). Tumor volume and body weights were recorded
for all animals beginning from the day of first treatment and then twice

or three times per week, until study termination. The percentage of
tumor growth inhibition (TGI) was calculated according to the
following equation:

= − ×
⎛
⎝⎜

⎞
⎠⎟%TGI 100

%TG, treated group
%TG, control group

100
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