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Summary

In recent years the possibility to combine nanoelectronics and biosensing has opened a
very wide and promising field of research, which holds the potential to revolutionize ana-
lytical biology and to enable pervasive diagnostics and personalized medicine. Integrated
nanoelectronic biosensor platforms based on established CMOS technology can provide
compensation and calibration hardware, programmable firmware, improved sensitivity
due to the very small dimensions, high parallelism, remarkable cost and size reduction
and, ultimately, the vast markets needed by the semiconductor industry. As is the case for
all integrated nanoelectronic sensors, reliable and affordable design is possible only if ac-
curate models are available to elucidate and quantitatively predict the signal transduction
process. However, with the exception of a few efforts, calibrated analytical and numeri-
cal models to accurately describe the response are often still lacking for most biosensor
concepts.

Animated by the will to bridge this gap, in this work we develop compact analytical
models and complex numerical simulation tools for the study of the transduction chain in
impedimetric nanoelectronic biosensors. In particular, the 3D simulator ENBIOS, entirely
developed and validated during this thesis, is a general-purpose tool that can be easily
expanded to include new physical effects or more sophisticated descriptions of electrolytes
and analytes coupled to semiconductor devices. The models point out the existence of two
relevant cut-off frequencies governing the biosensor impedimetric response, they reveal the
dependencies of biosensor response to the analyte and environmental conditions and they
disclose the existence of well-defined signatures in the impedance signal.

The analytical and numerical tools are carefully verified and then used to examine
several case studies. The first one we consider is an impedimetric nanoelectrode array
biosensor. In collaboration with Twente University, we study its response to conductive
and dielectric micro-particles under well controlled experimental conditions. We show that
the simulation results are in very good agreement with the measurements and we provide
insight on optimum detection conditions. By studying the biosensor response to small
particles, like proteins, viruses or DNA, we then confirm by simulation the advantages of
high frequency impedance spectroscopy, in particular the ability of AC signals at frequency
above electrolyte’s dielectric relaxation cut-off frequency to overcome the Debye screening
and to probe the electrolyte volume with sensitivity almost independent of the particle
position and charge and of salt concentration.

As a second notable example we consider the case of a Silicon Nanowire (SiNW) biosen-
sor. We perform measurements and simulations on SiNWs in AC regime in collaboration
with the CEA/LETI and EPFL/CLSE laboratories. We demonstrate the operation of
SiNWs in AC in particular for pH sensing applications. We finally confirm potential ad-
vantage of a SiNW biosensor working at high frequency, in order to increase the response
with respect to the DC operation.
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Sommario

Negli ultimi anni la possibilità di combinare nanoelettronica e biosensoristica ha aperto
un campo di ricerca molto vasto e promettente, che ha il potenziale di rivoluzionare la
biologia analitica e di consentire diagnostica pervasiva e medicina personalizzata. Le
piattaforme di biosensori nanoelettronici integrati sono potenzialmente in grado di fornire
compensazioni e calibrazioni hardware, firmware programmabili, una maggiore sensibilità
a causa delle ridotte dimensioni, elevato parallelismo, riduzione notevole dei costi e delle
dimensioni e i vasti mercati necessari per il settore dei semiconduttori. Come nel caso
di tutti i sensori nanoelettronici integrati, un progetto affidabile e conveniente è possibile
solo se sono disponibili modelli accurati per comprendere e prevedere quantitativamente il
processo di trasduzione del segnale. Tuttavia, con l’eccezione di alcuni pionieristici sforzi,
mancano ancora spesso modelli analitici e numerici calibrati per descrivere accuratamente
la risposta della maggior parte dei concept di biosensori.

Animati dalla volontà di colmare questa lacuna, in questo lavoro sviluppiamo modelli
analitici compatti e complessi strumenti di simulazione numerica per lo studio della catena
di trasduzione in biosensori nanoelettronici impedimetrici. In particolare, il simulatore
3D ENBIOS, interamente sviluppato e convalidato durante questa tesi, è uno strumento
generale che può essere facilmente ampliato per includere nuovi effetti fisici o descrizioni
più sofisticate di elettroliti e analiti accoppiati ai dispositivi a semiconduttore. I modelli
rilevano l’esistenza di due frequenze di taglio rilevanti che regolano la risposta impedimet-
rica del biosensore, rivelano le dipendenze della risposta del biosensore all’analita e alle
condizioni ambientali e l’esistenza di firme ben definite nel segnale di impedenza.

Gli strumenti analitici e numerici sono attentamente verificati e poi utilizzati per esam-
inare diversi casi di studio. Il primo che consideriamo è un biosensore impedimetrico a
matrice di nanoelettrodi. In collaborazione con l’Università di Twente, studiamo la sua
risposta a micro-particelle conduttive e dielettriche in condizioni sperimentali ben con-
trollate. I risultati della simulazione sono in ottimo accordo con le misure e ci forniscono
informazioni sulle condizioni di rilevamento ottimali. Studiando la risposta del biosensore
a piccole particelle, come proteine, virus o DNA, confermiamo quindi tramite simulazioni
i vantaggi della spettroscopia di impedenza ad alta frequenza, in particolare la capacità
dei segnali in AC a frequenza superiore alla frequenza di taglio di rilassamento dielettrico
dell’elettrolita di superare lo screening di Debye e di sondare il volume dell’elettrolita con
una sensibilità quasi indipendente da posizione e carica della particella e dalla concen-
trazione salina.

Come secondo esempio notevole consideriamo il caso di un biosensore a Nanofilo di
Silicio (SiNW). Eseguiamo misure e simulazioni su SiNWs in regime AC in collaborazione
con i laboratori CEA / LETI ed EPFL / CLSE. Dimostriamo il funzionamento dei SiNWs
in AC, in particolare per applicazioni di misura del pH. Infine, confermiamo i vantaggi
potenziali di un biosensore a SiNW operante in alta frequenza, al fine di aumentare
l’intensità della risposta rispetto al caso di funzionamento in DC.

2



Résumé

Au cours des dernières années, la possibilité de combiner la nanoélectronique et les bio-
capteurs a ouvert un champ très large et prometteur de la recherche, qui a le potentiel
de révolutionner la biologie analytique et pour permettre le diagnostic envahissants et la
médecine personnalisée. Plates-formes intégrées de biocapteurs nanoélectroniques peu-
vent fournir une compensation et l’étalonnage du matériel et des logiciels, une sensibilité
améliorée en raison des très petites dimensions, parallélisme élevé, le coût remarquable et
la réduction de la taille et les vastes marchés nécessaires à l’industrie des semi-conducteurs.
Comme dans le cas de tous les capteurs intégrés nanoélectroniques, la conception fiable
et abordable est possible que si des modèles précis sont disponibles pour élucider et quan-
titativement prédisent le processus de transduction du signal. Cependant, malgré les
nombreux efforts, calibré modèles analytiques et numériques pour décrire avec précision
la réponse du biocapteur sont encore souvent défaut.

Animé par la volonté de combler cette lacune, dans ce travail, nous développons
des modèles analytiques compacts et des outils complexes de simulation numérique pour
l’étude de la chaîne de transduction dans des biocapteurs nanoélectroniques impédimétriques.
En particulier, les ENBIOS simulateur 3D, entièrement développées et validées au cours
de cette thèse, est un outil polyvalent qui peut être facilement étendu pour inclure de
nouveaux effets physiques ou des descriptions plus sophistiqués d’électrolytes et analytes
couplés à des dispositifs semi-conducteurs. Les modèles soulignent l’existence de deux
fréquences de coupure pertinentes régissant le biocapteur réponse impédimétriques, ils
révèlent les dépendances de la réponse du biocapteur à l’analyte et des conditions environ-
nementales et ils révèlent la présence de signatures bien définis dans le signal d’impédance.

Les outils analytiques et numériques sont soigneusement vérifiées et ensuite utilisés
pour examiner plusieurs études de cas. La première que nous considérons est un réseau de
impédimétriques nanoélectrode biocapteur. En collaboration avec l’Université de Twente,
nous étudions sa réponse aux micro-particules conductrices et diélectriques dans des con-
ditions expérimentales bien contrôlées. Nous montrons que les résultats de simulation sont
en très bon accord avec les mesures et nous donnent un aperçu des conditions optimales
de détection. En étudiant la réponse du biocapteur à de petites particules, comme des
protéines, des virus ou de l’ADN, nous confirmons ensuite par simulation les avantages
de la spectroscopie d’impédance à haute fréquence, en particulier la capacité des signaux
de courant alternatif à une fréquence au-dessus de relaxation diélectrique de la fréquence
de coupure de l’électrolyte pour surmonter la Debye criblage et de sonder le volume de
l’électrolyte avec une sensibilité presque indépendante de la position et de la charge des
particules et de concentration en sel.

Dans un deuxième exemple notable nous considérons le cas d’une Silicon Nanowire
(SiNW) biocapteur. Nous effectuons les mesures et simulations sur SiNWs dans le régime
AC en collaboration avec le CEA / LETI et laboratoires de l’EPFL / CLSE. Nous démon-
trons le fonctionnement de SiNWs AC en particulier pour les applications de détection
pH. Nous confirmons enfin avantage potentiel d’un biocapteur SiNW travailler à haute
fréquence, afin d’augmenter la réponse à l’égard de l’opération DC.
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Chapter 1

Introduction

This work is focused on the study, modelling, simulation and characterization of nano-
electronic impedimetric biosensors. To introduce the topic, we first present an overview
of the main properties of sensors, then we focus on biosensors and finally we discuss novel
biosensor concepts that take advantage of micro- and nano-electronic technologies.

In recent years, many new applications for sensors have emerged in addition to tradi-
tional ones, for instance in the drug and food industry, in the field of security and hazard
prevention and for personalized medicine. Given the broad and still widening spectrum
of possible applications, there is the tendency, if not the need, to develop general purpose
sensor platforms, that can be easily functionalized, reconfigured or adapted to specific
applications. As demonstrated in many diversified fields by the recent developments of
semiconductor industry, the demand of general purpose reconfigurable platforms can be
satisfied on a large scale only by means of microelectronics, which in turn enables increase
of the sensitivity, miniaturization, massively parallelization and cost reduction.

Miniaturized sensors are indeed attracting increasing interest also in the scope of the
“Internet of Things” paradigm [15], as powerful enablers on the one hand of extended
sensor networks in the every-day environment, on the other hand of a plethora of new
applications and services to augment our life experience, monitor processes and make
them smarter. Example of applications for simple and cheap sensors could include the
measurement of temperature, humidity, gas toxicity or human parameters (such as blood
pressure, glucose level, temperature, etc.).

1.1 Biosensors

We now focus on biosensors, i.e. devices for the analysis of bio-material samples in order
to gain an understanding of their bio-composition, structure and function by converting a
biological response into an electrical or optical signal. Common biological sensors include
sensors for whole cells, viruses, bacteria and other micro-organisms, DNA, proteins, small
molecules and ions [16]. Examples of small molecules include glucose, lactate (a common
by-product of anaerobic metabolism), H+ ions (pH sensing), urea or neurotransmitters
such as dopamine. Although, during the past more than 50 years, numerous new sensor
designs with better and better specifications have been published and commercialized,
the need for decreasing size and cost, while still improving sensitivity, detection limit,
specificity and stability still challenges today’s scientists and engineers [17]. As an example
of successful biosensors who made it to the market, we recall miniaturized, fast, cheap,
easy-to-use and reliable glucose biosensors that already make the life more comfortable
and safe for those, who are suffering from diabetes [18]. Another very successful example

5



6 1.1. BIOSENSORS

are the IonTorrent [19] or the DNA electronics Ltd. [20] technologies for massively parallel
DNA sequencing.

The bio-sensing is invariably accomplished in the following three steps, which are
summarized below:

1. The binding of one unit of a specific target species (the analyte) to one unit of
a complementary capture species (the receptor) changes the analog state of a me-
chanical, optical or electrical variable. Because of this binding, these biosensors are
usually called “affinity based”, in the sense that the detection principle relies on the
binding between two species that are affine to each other. The target species can be
labeled with a molecular tag or fluorescence marker to facilitate optical detection
when the binding event occurs; or it can be labeled with a magnetic bead to facil-
itate electrical detection when the binding event occurs. Certain forms of sensing
do not require the use of such labels and are therefore termed label free. Label-free
sensing is more convenient than labeled sensing but performance and cost are key
determinants in measuring the pros and cons of one sensing scheme versus another.

2. The change in the mechanical, optical or electrical state is passively transduced to
yet another domain, e.g., a mechanical state change is passively transduced to an
electrical state change, or a mechanical state change is passively transduced to an
optical state change. This is accomplished in the so-called transducer device.

3. The transduced signal is then actively amplified, usually in the electrical or optical
domain, digitalized and elaborated to eliminate parasitic effects and noise.

The detection of species with high specificity (meaning that only the target species trig-
gers detection) and high sensitivity (a few molecules or units of the target species are
detectable), in a short time (a second), at physiological salt concentration (≈ 100 mM),
over a wide dynamic range in analyte concentration (e.g., fM to 0.1M) and with low-cost
hardware is overwhelmingly challenging.

Miniaturization is beneficial also in this case since, if the biosensors dimension are
comparable to those of the analytes, the interaction possibilities are increased. The inter-
face with bio-materials is however interesting not only for sensing, but also for actuation
(e.g., bidirectional interaction with neurons [21]).
The marriage between micro- and nanoelectronics and biosensors offers new opportunities
that are already common in standard semiconductor industry such as: high parallelism
and throughput, smartness, error correction, calibration and noise suppression.

1.1.1 Transducers

As outlined above, we can divide the transducers into three major classes [22], based on
the physical mechanism that is involved:

• optical detection methods;

• mass detection methods;

• electrochemical and electrical detection methods.
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1.1.1.1 Optical techniques

In optical sensors the information is gathered by the measurement of photons, more
specifically based on the measurement of absorbance, reflectance, or fluorescence emissions
that occur in the ultraviolet (UV), visible, or near-infrared (NIR) [23]. They are immune
to electro-magnetic interference, capable of performing remote sensing, and can provide
multiplexed detection within a single device by attaching different fluorescent probes to
different types of target molecules.

Generally, there are two detection protocols that can be implemented in optical biosens-
ing: fluorescence-based detection and label-free detection [24] (see Fig. 1.1). In fluorescence-
based detection, either target molecules or biorecognition molecules are labeled with flu-
orescent tags, such as dyes; the intensity of the fluorescence indicates the presence of the
target molecules and the interaction strength between target and biorecognition molecules
[24]. Fluorescence-based detection is extremely sensitive, with a detection limit at the sin-
gle molecule level. Besides this remarkable advantage, unfortunately, fluorescence based
detection suffers from numerous drawbacks compared to label-free techniques [17]. Firstly,
the chemical procedure of labeling is rather expensive, time and labor intensive. The
number of fluorophores on the molecules cannot be controlled precisely, which leads to a
fluorescence signal spread. Furthermore, the presence of these anchored tags could have
a not-negligible effect on the molecules, affecting their dynamics or the way they react to
the environment;hence, ultimately on the experimental results, as well.

In contrast, in label-free detection, target molecules are not labeled or altered, and are
detected in their natural forms [24]. This type of detection is relatively easy and cheap
to perform, and allows for quantitative and kinetic measurement of molecular interac-
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1. Introduction

With the development of enzyme electrode, Clark and Lyons
(1962) presented the first biosensor and hereby demonstrated its
huge prospects in medicine and biotechnology. With this achieve-
ment, they started a continuous and ongoing development process
within the field of biosensing (Chambers et al., 2008). Although,
during the past more than 50 years, numerous new sensor designs
with better and better properties have been published and
commercialized, the need for decreasing size and cost, but
improving sensitivity, detection limit, specificity and stability still
challenges today's scientists and engineers. Miniaturized, fast,
cheap, easy-to-use and reliable glucose biosensors already make
the life more comfortable and safe for those, who are suffering
from diabetes (Oliver et al., 2009). Beyond the biomedical applica-
tions of e.g. pregnancy, bacterial infection, cholesterol and tropo-
nin T quick tests (Holford et al., 2012; Justino et al., 2010), the new
approaches of biosensorics open up new opportunities; they are e.
g. widely used in forensic medicine (alcohol, drug, doping tests,
etc.) and industry (pharmaceuticals, water-, food quality, etc.), as
well (Alocilja and Radke, 2003; Fan et al., 2008; Klenkar and
Liedberg, 2008; Lazcka et al., 2007).

The sensitive and specific detection of biological substances of
molecular weights even less than 500 Da at a concentration of
typically less than a few pg/ml, is still not trivial today in a sample,
where numerous other molecules may also be present dissolved in
a significantly larger quantity (Cunningham, 2009). The interest in
reliable and cost-effective transducers, namely biosensors, which
are able to convert the recognition of these tiny biological entities,
i.e., targets to an amplified signal, still remains (Kozma et al.,
2013).

Today, the most sensitive biosensors are based on fluorescent,
radioactive or magnetic labeling, since following the signal pro-
duced by the label, the binding or the presence of even an
individual molecule can be detected in the observed volume or
on the studied surface (Alivisatos, 2001; Jain, 2005). Beyond this
indubitable advantage, unfortunately, they are suffering from
numerous drawbacks compared to label-free techniques. For
instance, the chemical procedure of labeling is rather expensive,
time and labor intensive. The number of fluorophores on the
molecules cannot be controlled precisely, which leads to a fluor-
escence signal bias. Furthermore, the presence of these anchored
tags could have a not-negligible effect on the molecules, thus on
the experimental results, as well (Cooper, 2002; Fan et al., 2008).
As a consequence, the label-free techniques are very important
mates of labeling ones. Moreover, they have better future per-
spectives, since they offer sensitive, specific and fast measure-
ments without the above mentioned drawbacks. By immobilizing
recognition elements and by mounting a flow-cell onto a label-free
sensor chip, quantitative, in situ and real time detection of the
target molecules or kinetic measurements of molecular interac-
tions is possible.

Regarding the competition of label-free signal transducers such
as mass-sensitive, temperature-sensitive, electrochemical and
optical biosensors, the optical methods are dominating both the
research literature and the market (Lazcka et al., 2007; O’Malley,

2008). The reason is mainly that optical methods are merging the
advantages of other label-free techniques into a cost-effective way.
The binding of the target analytes is detected in their natural form
using low-power electric field in or close to the visible range with
neither destructive nor considerable manipulative effect on the
experiment. The sampling rate and the detection limit of surface
mass density changes are outstandingly good, which allows a very
efficient real-time monitoring. In most cases, performing parallel
measurements is straightforward due to their ability of multi-
plexing for multi-parameter analysis (Cunningham, 2009). The
technological demands for the fabrication of these transducers are
relatively low and by batch manufacturing the optical elements in
a more cost-effective and more compact way, their ongoing
miniaturization leads to novel possibilities towards even lower
reagent consumption, shorter analysis time and consequently
towards point-of-care applications.

The working principle of these devices is depicted in Fig. 1 and
can briefly be summarized as follows: binding target molecules
with higher refractive index are displacing the lower refractive
index ambient (e.g. water or buffer) of the biological or biologically
derived recognition elements, such as e.g. receptors, antibodies,
aptamers, nucleic acids, enzymes or molecular imprints
(Chambers et al., 2008), which are integrated or associated with
an optical signal transducer (see the following chapters) (Turner,
2000). As a consequence, the value of this physical parameter is

Fig. 1. Schematic working principle of label-free optical biosensors. Surface
immobilized recognition elements specifically bind the sample of interest; com-
monly one or several target molecules within a complex sample. The resulting
mass adsorption and displacement of the surrounding medium results in a change
of the local refractive index at the sensor surface. This variation has a direct effect
on the physical properties of the interrogating electromagnetic wave, which can be
amplified by the optical transducer.

P. Kozma et al. / Biosensors and Bioelectronics 58 (2014) 287–307288

Fig 1.1: Schematic working principle of label-free optical biosensors taken from [17]. Surface
immobilized recognition elements specifically bind the sample of interest; commonly one or several
target molecules within a complex sample. The resulting mass adsorption and displacement of
the surrounding medium results in a change of the local refractive index at the sensor surface.
This variation has a direct effect on the physical properties of the interrogating electromagnetic
wave, which can be amplified by the optical transducer.
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tion. Additionally, some label-free detection mechanisms measure refractive index (RI)
change induced by molecular interactions, which is related to the sample concentration or
surface density, instead of total sample mass. As a result, the detection signal does not
scale down with the sample volume. This characteristic is particularly attractive when
ultrasmall (femtoliter to nanoliter) detection volume is involved and is advantageous over
fluorescence-based detection whose signal usually depends on the total number of ana-
lytes in the detection volume or on the detection surface. Despite all these differences
between fluorescence-based and label-free detection, both protocols are being widely used
in optical sensors and provide vital and complementary information regarding interac-
tions among biomolecules, which makes optical sensors more versatile than other types of
sensing technologies where only label-free detection can be implemented. By immobilizing
recognition elements and by mounting a flow-cell onto a label-free sensor chip, quantita-
tive, in situ and real time detection of the target molecules or kinetic measurements of
molecular interactions is possible with optical methods [17].
Under the cathegory of label-free optical detection, there exist a number of detection
methods, including RI detection, optical absorption detection, and Raman spectroscopic
detection. RI and absorption are the real and imaginary part of the more general com-
plex RI constant and are related to each other via the Kronig-Kramers relations [24].
Raman detection is unique in that, on one hand, like RI and absorption detection, target
molecules are not labeled; on the other hand, emitted Raman light is used for sensing,
similar to fluorescence-based detection.

Regarding the competition of label-free signal transducers such as mass-sensitive,
temperature-sensitive, electrochemical and optical biosensors, the optical methods are
dominating both the research literature and the market. The reason is mainly that opti-
cal methods are merging the advantages of other label-free techniques in a cost-effective
way [17]. The binding of the target analytes is detected in their natural form using low-
power electric field in or close to the visible range with neither destructive nor considerable
manipulative effect on the experiment. The sampling rate and the detection limit of sur-
face mass density changes are outstandingly good, which allows a very efficient real-time
monitoring. In most cases, performing parallel measurements is straightforward due to
their ability of multiplexing for multi-parameter analysis. The technological demands for
the fabrication of these transducers are relatively low and by batch manufacturing the
optical elements in a more cost-effective and more compact way, their ongoing minia-
turization leads to novel possibilities towards even lower reagent consumption, shorter
analysis time and consequently towards point-of-care applications.

1.1.1.2 Mass-sensitive techniques

Another form of transduction that has been used for biosensors is the measurement of
small changes in mass, for instance with MEMS [25]. This has been shown to capable of
very sensitive measurements [25]. The principle means of mass analysis relies on the use
of piezoelectric crystals. These crystals can be made to resonate with an electrical signal
of specific frequency. The frequency of oscillation is therefore dependent on the electrical
signal applied to the crystal as well as the crystal’s mass. Therefore, when the mass
increases due to binding of chemicals, the oscillation frequency changes and the resulting
change can be accurately measured by electrical means (e.g., with a PLL) and be used to
determine the additional mass of the crystal [25].
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1.1.1.3 Electrochemical and electrical techniques

Electrochemical and electrical techniques rely on the measurement of electrical properties,
such as a current, a voltage drop or a capacitance between electrodes placed in contact
with a solution. This family of biosensors is very vast and the biosensor concepts that we
study in this thesis fall in it. In this section we will outline the electrochemical techniques
and the ones based on FET devices, leaving to Sec. 1.3 a more detailed discussion on the
capacitive biosensors, which will be one of the major topics of this thesis.

Electrochemical detection is one possible mean of transduction that has been used
in biosensors [26]. This technique is very complementary to optical detection methods
such as fluorescence, the most sensitive of the optical techniques. Since many analytes
of interest are not strongly fluorescent and tagging a molecule with a fluorescent label is
often labor intensive, electrochemical transduction can be very useful. By combining the
sensitivity of electrochemical measurements with the selectivity provided by bioreception,
detection limits comparable to fluorescence biosensors are often achievable.
Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that
produces or consumes electrons (such enzymes are rightly called redox enzymes) [26].
Other biosensors rely on potentiometric measurements without any redox reaction implied.

A different concept relies on FET devices, as for instance the Ion Sensitive FET
(ISFET) [27] or BioFETs [28]. The transduction mechanism relies on the variation of the
FET DC conductance due to the presence of the analyte: it is therefore a charge sensing
principle. However, Debye screening (which will be thoroughly discussed throughout this
thesis) is well known to severely hamper the sensitivity [28]. So far, it has been overcome
only by lowering the salt content of the solution [29, 30]. This is however neither desirable
nor even possible in some applications, like DNA detection, since a high salt concentration
is necessary for the biomolecules to bind correctly and maintain their shape.

1.1.2 Applications

There are many potential applications of biosensors of various types [16]. The main
requirements for a biosensor approach to be valuable in terms of research and commercial
applications are the identification of a target molecule, availability of a suitable biological
recognition element, and the potential for disposable portable detection systems to be
preferred to sensitive laboratory-based techniques in some situations. Some examples are
given below:

1. Glucose monitoring in diabetes patients has been one of the historical market driver
and is now an established technology [18]

2. DNA detection and sequencing, with possible applications in DNA computing [19]

3. Environmental applications e.g. the detection of pesticides and water contaminants

4. Detection of pathogens, phage and their competitive interaction

5. Drug discovery and evaluation of biological activity of new compounds

6. Protein engineering and fabrication

Another important emerging application for biosensors is the possibility to use them to
create so called neuro-electronic interfaces, i.e. a direct communication between neural
networks and electronic circuits, for instance, for deep brain stimulation. The development
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of such a technology gave rise to the field of neuroprosthetics and is capable of revolutionize
human-computer interfaces in the next decades, not to mention the very promising results
in alleviating the most detrimental consequences of a few age diseases (e.g., Parkinson).

1.2 Sensors

A few performance metrics are of general interest to any kind of sensor [31]. These could
be further subdivided into fundamental vs. practical metrics. In particular the most
relevant fundamental figures of merit are:

• settling time, ts: it is the average time that is required for the sensor to detect a
defined value of the quantity of interest with known accuracy;

• sensitivity, S: it is the magnitude of the sensor response due to a defined value
of the analyte; it also defines the minimum variation of the analyte that can be
measured;

• dynamic range: it is the ratio between the maximum and minimum analyte quantity
that can be measured;

• selectivity : it is the capacity of the sensor to respond selectively to the analyte
and not to other parameters variation; it determines the expectation value of false
positive and false negative events.

Additionally, the most relevant practical metrics are:

• dimension: the physical dimension of the sensor can be important when designing
sensor networks or devices for operation in constricted environment (e.g. sensors
implanted in the human body);

• robustness : it is the capacity to operate for a long time, possibly in aggressive
environments (e.g. automotive applications, human body);

• power consumption: it is particularly important if the sensor is deployed in remote
environments with not-easily accessible power sources (e.g.. geological surveys, hu-
man body) or if it is powered by harvesters;

• cost : it is especially important for dense sensor networks or for disposable sensors.

For a successful sensor design all these characteristics need to be properly modelled,
studied and predicted. This makes nanoelectronic sensor design a very challenging and
multidisciplinary task.

In this thesis we focus on the study of biosensors sensitivity. This is justified by the
fact that, at present, this is on one hand the major driving force towards miniaturized
biosensors and on the other hand the area which needs the most intensive studies to be
able to fully understand the transduction mechanism, predict biosensors response to given
analytes and ultimately support the quantitative extraction of the analyte characteristics
from measurements.
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1.3 Capacitive biosensors
A new kind of biosensor has received increasing attention in recent years: it’s the so called
capacitive biosensor [32]. Unlike the electrochemical biosensors described above, this sen-
sor usually operates with an AC voltage between two electrodes at frequency sufficiently
above the electrolyte’s dielectric relaxation cut-off frequency. The absence of electrochem-
ical reactions on the electrodes surface enables the possibility for a longer operating life
and to use standard CMOS techniques and materials for manufacturing. To allow for
particle detection with adequate selectivity, a recognition layer has to be employed: in
this way a capacitive affinity biosensor can be constructed. This layer is usually referred
to as Self Assembled Monolayer (SAM).
Capacitive biosensors have a significant advantage with respect to the conventional biosen-
sors: they are label-free, i.e. no or very little sample preparation is needed prior to the
measurement. A problem, though, associated with non-labeled biosensors is non-specific
binding, as there is no descrimination between the measured signal from specific and non-
specific interactions. It is therefore important to design the SAM surface in such a way
that it ensures higher specific than non-specific binding.

Capacitive biosensors can be constructed by immobilizing recognition elements ar-
ranged in thin layers on an electrode or between two electrodes and measuring changes in
the dielectric properties when the analyte binds to the surface. Changes in capacitance
may also be induced when a large receptor molecule is displaced by a smaller analyte. If
a protein on a surface changes its conformation after binding of an analyte it might also
be detected by capacitance measurements.
Two approaches have been proposed for capacitance measurements. Either by measuring
the change in the capacitance between two metal conductors in close proximity to each
other with the recognition element immobilized between them (interdigitated electrodes),
or by measuring the capacitance at an electrode/solution interface with the recognition
elements on the surface of the working electrode.

These types of biosensors are generally built in two different ways:

• with large-area electrodes, for example using interdigitated electrodes (see for in-
stance [32, 30]), to detect collective signals of large ensembles of biomolecules: this
is the traditional approach;

• with arrays of nanoelectrodes: this innovative approach has been first presented in
[33]. In principle it enables both single or few particle detection and spatial profiling
of large objects on the same platform.

One important reason for using arrays of nanoelectrodes is that large-area sensing ele-
ments suffer from defects and imperfections in the sensing elements, including but not
limited to leakage paths in the functionalization layers. Segmenting the electrodes into
many nanoelectrodes enables identification and pruning of damaged nanoelectrodes by
statistical data analysis. Another important advantage of nanoelectrode arrays realized
with standard CMOS techniques is that the technology scaling (due to Moore’s law) natu-
rally pushes the array to a more-than-optical resolution. In optical biosensors, in contrast,
it is not straightforward to increase the resolution by decreasing the wavelength, since if
this becomes too small, for instance in the UV range, the photons might become too
energetic and damage the biological material under study. We will discuss in more detail
the nanoelectrode implementation [33] in Chap. 5.

Another distinction between different types of capacitive biosensors can be made con-
sidering the frequency range of measurements:
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• low frequency, lower than the cut-off frequency of the electrolyte fc (see Sec. 3.1.1.3),
this is the traditional approach;

• high frequency, preferentially much greater than the cut-off frequency fc: this is the
approach that will be thoroughly investigated in this thesis.

A strong motivation in favour of using high modulation frequencies is that at low fre-
quencies the signal due to particle induced admittance change is usually overwhelmed by
variations in spurious signals arising from electrochemically active species like redox-active
biomolecules, imperfect self-assembled monolayers (SAMs), etc. Therefore the usage of
high frequencies where admittance changes become purely capacitive and independent of
the electrolyte conductivity seems a promising way to overcome these undesidered effects.

1.4 Summary of the work and author’s publications
Quantitatively accurate interpretation of the signal transduction mechanisms of nanoelec-
tronic biosensors could disclose a wealth of useful information for many fields of biology
and medicine. This endeavour is not inconceivable at the state of the art, but demands
accurate and reliable models of the whole sensor signal acquisition chain, including in
particular the less known sections where distributed alterations of potentials and fields
are converted into well defined voltage (current) changes at circuit nodes (branches) re-
spectively. At present, predictive models have started to appear in the literature (for
instance [31, 34]), but modeling activities have to face a widespread scepticisms in fields
historically relying almost exclusively on experiments and empiricism. Early works fo-
cused on DC operation. Impedimetric (capacitive) biosensors gain increasing attention
on a daily basis, but general and non-empirical models for impedance spectroscopy are
still rare and not generally accepted.

It is the purpose of this thesis work to advance the state of the art in the field by
developing numerical and analytical DC and AC models and simulators of the response
of nanoelectronic biosensors to analytes. The models and simulations are instrumental
to investigate the electrostatics and the small signal response of biosensor systems to a
variety of stimuli and physical conditions. This is a very complex puzzle and my work
attempted to reveal at least some elements of the overall landscape.
We point out that in this work we do not address the problem of the diffusion of the
particles or biomolecules towards the sensor. This important aspect of biosensor response
has been thoroughly investigated in [31] and shown to be the bottleneck to achieve short
settling time. Instead we investigate in detail the effect on the response of the sensor to
the biomolecules, which we assume to have already come close to the sensor.

In particular, during my PhD thesis, I focused on the following aspects of the problem
(the corresponding references and chapters in this document are linked):

1. development of simple analytical models for the AC response of nanoelectronic
biosensors to guide intuition, set out simple design of experiment guidelines and
provide exact reference solutions for verification purposes (Ref. [1], Chap. 3) and
the extensive verification of a specific analytical model for the response of nanoelec-
trode biosensors to spherical particles (Ref. [2], Chap. 5);

2. development, validation and use of a simplified 2D numerical solver for nanoelec-
trode capacitive biosensors in DC and AC conditions to be used as an exploratory
tool to understand the physics of nanoelectrode/electrolyte system and issue with
the numerical solution of the model equations (Refs. [3, 1], Chap. 5);
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3. development of a full 3D, general purpose solver of the Poisson-Boltzmann and
Poisson-Nernst-Planck equations (ENBIOS) suited to calculate precisely the tiny
admittance changes resulting from single biomolecule/sensor interactions for nano-
electronic biosensors (Ref. [4], Chap. 4);

4. tailoring of a commercial TCAD tool (Sentaurus Device [35]) for the simulation of
nanoelectronic biosensors, and identification of the inherent limitations of such a
simplified approach to describe BioFETs (Ref. [5, 6, 7], Chap. 4);

5. development of a general purpose procedure for the efficient simulation of impedi-
metric nanoelectrode array biosensors by replacing the double layer admittance with
lumped elements (Ref. [8], Chap. 5);

6. theoretical investigation of some aspects of DNA detection (Refs. [9, 10], Chap. 5)
and of single biomolecules detection (proteins, viruses, Refs. [3, 1, 11, 4, 2], Chap.
5) by means of impedimetric measurements with nanoelectrode biosensors;

7. theoretical and experimental investigation of micro-particle detection mechanisms
and experimental proof that high frequency impedance spectroscopy with nanoelec-
trode biosensors makes possible to overcome static Debye screening limits (Ref. [12],
Chap. 5);

8. theoretical and experimental investigation of the use of Silicon Nanowire pH sensors
and biosensors operated in AC conditions (partly in [13, 14], Chap. 6).

As made apparent by the above list, the thesis work spanned from theoretical to
modeling and numerical implementation issues and from simulation to calibration and
experimental verification aspects. This wide range of activities would have not been
possible outside a network of collaborations, which included:

• CEA/LETI (Dr. Thomas Ernst), who acted as cotutor of this PhD thesis and pro-
vided nanowire samples. At CEA/LETI I got in contact with my first nanowire
sensor platform;

• NXP Semiconductors (in particular Dr. Frans Widdershoven), who has been a con-
stant reference for stimulating suggestions, and triggered our interest for biosensor
platforms and impedimetric nanoelectrode arrays;

• University of Twente (Prof. Serge Lemay, Cecilia Laborde), who developed the
micro-particle experimental techniques and provided the corresponding measure-
ments;

• EPFL/CLSE (Prof. Carlotta Guiducci, Enrico Accastelli), where I could develop
the experimental setup for AC nanowire characterization and perform the measure-
ments.



Chapter 2

Physical models

In this chapter we present DC and AC physical models, essentially based on existing
literature, to describe three types of materials routinely used in the fabrication of nano-
electronic biosensors: electrolytes, semiconductors and non-ideal dielectrics (with charges
and losses). Most of these models have been implemented in the numerical solver EN-
BIOS, which constitutes an important part of this thesis work and will be described in
Chapter 4.

Sections 2.1-2.2 report the model equations describing the basic physics. Section 2.3
describes a few second order physical effects that might occur in real systems, that were
quantitatively evaluated in order to assess the validity limits of our models.

2.1 DC models
We begin describing the models for DC conditions. In this section all the quantities with
subscript “0” will indicate DC variables. The domain of interest is denoted Ω and on its
boundary Γ we set the boundary conditions.
The boundary surfaces where we use Dirichlet boundary condition for the electric potential
are called electrodes. These can be directly related to the electrodes present in the real
system. We assume that there exists two types of electrodes:

• ideally polarizable (or floating) electrodes, where there is no DC charge transfer
(which should be provided by electrochemical reactions in the case of electrodes in
contact with the electrolyte), so that they can not sustain any DC current flow;

• Faradaic (or Ohmic) electrodes, where both charge transfer and a DC current flow
are possible.

Gold electrodes are in most instances good approximations of ideally polarizable elec-
trodes, while typical Ag/AgCl electrodes behave essentially as Faradaic electrodes [36].
We will always assume that the electrolyte is in contact only with ideally polarizable
electrodes and with one Faradaic electrode, which is called reference electrode.

2.1.1 Poisson equation

Poisson equation is the fundamental relation between electric potential and charges. For
isotropic media it takes the usual form:

∇ · (ε∇V0) = −ρ0 = − (ρf + ρnl) (2.1)

14
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where V0 is the DC electrostatic potential, ρ0 the DC volume charge density and ε the
scalar material dielectric permittivity. Denoting ΓD and ΓN respectively the surfaces
on which Dirichlet and Neumann boundary conditions are imposed, we can express the
boundary conditions as: {

V0 − VD = 0 on ΓD

ε∇V0 · n̂ = 0 on ΓN
(2.2)

where n̂ is the outward pointing unit normal on the boundary surface Γ. The charge
density is expressed as ρ0 = ρf + ρnl, where ρf is a fixed volume charge density and ρnl
denotes the mobile charge, that in general is a non linear function of the potential V0. An
example of fixed charge in the semiconductor is given by the doping, i.e. ρf = q(ND−NA)
where ND and NA are the volume densities of donor and acceptor atoms respectively. For
both electrolyte and semiconductor we can write:

ρnl =

Nsp∑
m=1

Zmqn0m (2.3)

where Nsp is the number of charged species (ions in the electrolyte, electrons and holes in
the semiconductor), q the absolute value of the electron charge, Zm and n0m the valence
and DC concentration of species m respectively. Under quasi-equilibrium conditions and
neglecting steric effects (see Sec. 2.3.2), the concentrations can be expressed as:

nm = n∞m exp

(
Zmq

kBT
(φm − V )

)
(2.4)

where n∞m is the bulk concentration in equilibrium and φm the quasi-potential of speciesm,
kB the Boltzmann’s constant and T the absolute temperature. For a suitable choice of the
reference potential we have n∞m = ni, i.e., the intrinsic concentration in the semiconductor.
Note that Eq. 2.4 is always valid, not only in DC conditions, because it is a definition of
the quasi-potential. Therefore we have dropped the subscript “0”.

Since in the electrolyte only one Faradaic electrode is present (the reference electrode),
there is no DC current flow, so that we set a constant φ0m = Vref for all ion species. Here
Vref is the potential at the reference electrode. This choice leads to recover the well known
Poisson-Boltzmann (PB) equation [36] in DC, which explicitly reads:

∇ · (ε∇V0) = −
(
ρf +

Nsp∑
m=1

Zmqn
∞
m exp

(
Zmq

kBT
(φ0m − V0)

))
(2.5)

The PB equation is indeed a widely accepted modeling framework for the simulation of
biosensors [31, 37, 38] and of biological systems in DC conditions [39, 40].

A simple way to model conductors in DC is to describe them as media with infinite
(in practice very high) permittivity [41]. This approach will be followed in this thesis as
well.

2.1.1.1 Surface charges

Surface charges can play an important role in determining the impedimetric response of
biosensors. Therefore, they have been included in the model, as described in Sec. 4.2.1.1.
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An important source of surface charges are the protonation or depronotation reactions of
amphoteric surface sites at oxide surfaces immersed in water, which lead to the build-up
of a pH dependent surface charge density σsb [C/m2]. The charge density is described by
the site-binding model [42] which in the case of SiO2 and similar oxides (featuring only
one type of surface sites) is based on the elementary reactions:

MOH
K′a−⇀↽− MO− + H+ (2.6a)

MOH+
2

K′b−⇀↽− MOH + H+ (2.6b)

where M is the metal or semiconductor of the dielectric (e.g. Si, Ta, Al or Hf). The
equilibrium constants K ′a and K ′b are defined as:

K ′a =
ν0MO n0H

ν0MOH

, K ′b =
ν0MOH n0H

ν0MOH2

(2.7)

where we have ignored the fact that activities should be used in place of concentrations.
Note that the H+ concentration n0H is a volume density [m−3], while all the ν0x terms
correspond to surface densities [m−2].
The surface sites concentrations in DC are:


ν0MO =

ν0MOH

n0Hs

K ′a

ν0MOH2 =
ν0MOH n0Hs

K ′b
NS = ν0MOH + ν0MO + ν0MOH2

=⇒



ν0MO = NS
K ′aK

′
b

n2
0Hs + n0HsK ′b +K ′aK

′
b

ν0MOH2 = NS
n2

0Hs

n2
0Hs + n0HsK ′b +K ′aK

′
b

ν0MOH = NS
n0HsK

′
b

n2
0Hs + n0HsK ′b +K ′aK

′
b

(2.8)

where NS is the total surface sites density and n0Hs the DC H+ concentration at the
surface.
The surface charge σsb = q(ν0MOH2 − ν0MO) then reads:

σsb = qNS
n2

0Hs −K ′aK ′b
n2

0Hs +K ′bn0Hs +K ′aK
′
b

(2.9)

where σsb is the site-binding surface charge [C/m2]. In the case of Si3N4 two types of
surface sites are present; assuming they are independent, the site-binding model reads
[43]:

σSi3N4
sb = qNS

n2
0Hs −K ′aK ′b

n2
0Hs +K ′bn0Hs +K ′aK

′
b

+ qNnit
n0Hs

n0Hs +K ′n
. (2.10)

The expressions derived here look different from the ones in [42, 43] since we have chosen
all SI measurement units. To obtain the classical expressions we remind that the pH is
defined as:

pH = − log10 aH = − log10

(
γH

nH
nref

)
where aH is the hydrogen activity, γH the activity coefficient, nH the hydrogen ion con-
centration and nref a reference concentration. Since we always use m−3 as a unit of
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measurement for the ion concentrations and the reference concentration is usually taken
as 1 M, we have that nref = 103NA, where NA is Avogadro’s number. We will always
assume γH = 1; so, we can write:

nH = 10−pH+3NA =⇒ 10−pH = 10−3 nH
NA

Defining then K ′a = Ka10−3NA, K ′b = Kb10−3NA and K ′n = Kn10−3NA we obtain the
classical expressions:

σsb = qNS
10−2pHs −KaKb

10−2pHs +Kb10−pHs +KaKb

σSi3N4
sb = qNS

10−2pHs −KaKb

10−2pHs +Kb10−pHs +KaKb

+ qNnit
10−pHs

10−pHs +Kn

.

We also know that:

n0Hs = n∞H exp

(
Vref − V0S

Vth

)
,

where V0S is the DC surface potential and Vth = kBT/q. We can thus transform Eqs.
2.9-2.10 in the expressions:

σsb = qNS
(n∞H )2 e

2
Vref−V0S

Vth −K ′aK ′b
(n∞H )2 e

2
Vref−V0S

Vth +K ′bn
∞
H e

Vref−V0S
Vth +K ′aK

′
b

(2.11)

σSi3N4
sb = qNS

(n∞H )2 e
2
Vref−V0S

Vth −K ′aK ′b
(n∞H )2 e

2
Vref−V0S

Vth +K ′bn
∞
H e

Vref−V0S
Vth +K ′aK

′
b

+ qNnit
n∞H e

Vref−V0S
Vth

n∞H e
Vref−V0S

Vth +K ′n
(2.12)

These transformations are needed in order to obtain parameters always expressed in SI
units, and to have a direct dependence of the surface charge on the electrostatic potential
suitable for solution with Poisson equation.

High salt concentration effects As pointed out in [44], the site-binding theory in the
form previously discussed becomes inaccurate at high salt concentration. This discrep-
ancy is clearly visible in Fig. 2.1 that compares the surface potential predicted by the
conventional site-binding model to the experimental data from [44]. The discrepancy has
been attributed to surface complexation reactions with the electrolyte chlorine ions of the
form

MOH+
2 + Cl−s

Kc−⇀↽− MOHCl− + H+
B (2.13)

where Cl−s denotes the chlorine ions at the surface and H+
B the hydrogen ions in the bulk.

Following [44], we should thus describe the dielectric/electrolyte interface of SiO2, HfO2,
Al2O3 and Ta2O5 with three coupled chemical reactions, whose dissociation constants are
given by Eqs. 2.7 and by:

Kc =
νMOHCl n

∞
H

νMOH2 n0Cls

(2.14)
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Fig 2.1: Surface potential experimental data in [44] (squares) compared to the site-binding
model (dash-dotted lines), the model of [44] (open triangles) and our TCAD implementation
(solid lines) reported in [7]. Following ref. [44], we compute ψ0 = VT,PZC − VT , where VT,PZC is
the VT for the pH of zero charge (pHPZC = −0.5 lnKa ·Kb) at very low electrolyte concentration
(10µM). Ka=Kb=10−7, Kc=3.3·10−6.

where n0Cls is the chlorine free-ions concentration at the surface and νMOHCl− is the
density of the negatively charged surface groups. The surface charge density is then given
by:

σsb = q (νMOH2 − νMO − νMOHCl) . (2.15)

Substitution of Eqs. 2.7-2.14 into Eq. 2.15 and the expression:

NS = νMO + νMOH + νMOH2 + νMOHCl , (2.16)

allows us to derive:

σsb = qNS

(
n2

0Hsn
∞
H −K ′aK ′bn∞H −Kcn0Clsn

2
0Hs

n2
0Hsn

∞
H +K ′aK

′
bn
∞
H +Kcn0Clsn2

0Hs +K ′bn0Clsn∞H

)
. (2.17)

The term n0Cls is, as usual (see Eq.
refeq:boltzmann):

n0Cls = n∞Cl exp

(
V0S − Vref

Vth

)
. (2.18)

2.1.2 Current equations

As we assume no DC current flow in the electrolyte, the equations for the DC electrical
current must be written only in the semiconductor. This can be described, at first order,
by the well-known drift-diffusion equations (also known as Nernst-Planck equations in
electro-chemistry [36]):

∂nm
∂t

+ U = − 1

Zmq
∇ · ~Jm (2.19a)

~Jm = −Zmq (Zmqµmnm∇V +Dm∇nm) (2.19b)

where U is the generation-recombination rate, ~Jm is the current density, µm the mobility
(in [m/Ns]) and Dm the diffusion coefficient of species m, respectively. We will always
assume that the Einstein relation holds, so that Dm = kBTµm.

The ~Jm expression we use looks different from the one normally employed in electro-
chemistry and semiconductor physics (see, for instance, [36]) because we have chosen to
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define the ion mobility as the ratio between the ion velocity and the applied force. This
approach is consistent with classical physics and is justified noting that many semiconduc-
tor physics and electrochemistry equations describe phenomena that do not necessarily
involve charge. An example is Einstein’s relation between diffusivity and mobility, which
can be derived imposing a thermodynamic equilibrium between mechanical force and dif-
fusion of neutral species. However, assuming the semiconductor physics’ definition of
mobility, neutral atoms would have zero mobility, while still reacting to other forces. This
dilemma is introduced in semiconductor physics, because it treats exclusively charged par-
ticles (electrons and holes) and the only source of force is the electric field. Therefore, the
notation we use gives a broader and more general view on the real physical phenomena.
Using Eq. 2.4, the expression of the current (Eq. 2.19b) becomes:

~Jm = −Z2
mq

2µmnm∇φm (2.20)

We choose n∞m = ni so that the φm are exactly the well-known quasi Fermi levels.
Therefore, the drift-diffusion equations can be written as:

U(φm, V ) +

(
∂φm
∂t
− ∂V

∂t

)
ni
Zmq

kBT
exp

(
Zmq

kBT
(φm − V )

)
= Zmqµm∇ ·

(
ni exp

(
Zmq

kBT
(φm − V )

)
∇φm

)
(2.21)

We will call Eq. 2.21 as the first formulation of the current equations.
By expanding the second term as:

U(φm, V ) +

(
∂φm
∂t
− ∂V

∂t

)
ni
Zmq

kBT
exp

(
Zmq

kBT
(φm − V )

)
= Zmqµmni exp

(
Zmq

kBT
(φm − V )

)(
Zmq

kBT
∇φm · ∇ (φm − V ) +∇2φm

)
a second formulation can be found, which reads:

Ûm(φm, V ) +

(
∂φm
∂t
− ∂V

∂t

)
ε

µmkBT
= ε

(
Zmq

kBT
∇φm · ∇ (φm − V ) +∇2φm

)
(2.22)

where we have divided the equation by:

Zmq µmni
ε

exp

(
Zmq

kBT
(φm − V )

)
in order to have the same measurements units as in Poisson equation, and:

Ûm(φm, V ) =
U(φm, V )

ni

ε

Zmq µm

1

exp

(
Zmq

kBT
(φm − V )

) .
So far we have always used the general potentials V and φm, which may have both DC and
time dependent components. The DC formulation can be easily found by substituting V
and φm with V0 and φ0m, respectively, and recognizing that all time derivatives are equal
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to zero. From now on, as a convention, we use m = 1 for the electrons and m = 2 for the
holes. According to the Shockley-Read-Hall model for the generation-recombination rate:

U(φm, V ) =
np− n2

i

τp (n+ ni) + τn (p+ ni)

= ni
e

q
kBT

(φ2−φ1) − 1

τ2

(
e
− q
kBT

(φ1−V )
+ 1
)

+ τ1

(
e

q
kBT

(φ2−V )
+ 1
)

Hence, we can write:

Û1(φm, V ) =
ε

Z1q µ1

e
Z2q
kBT

(φ2−V ) − e−
Z1q
kBT

(φ1−V )

τ2

(
e
Z1q
kBT

(φ1−V )
+ 1
)

+ τ1

(
e
Z2q
kBT

(φ2−V )
+ 1
)

Û2(φm, V ) =
ε

Z2q µ2

e
Z1q
kBT

(φ1−V ) − e−
Z2q
kBT

(φ2−V )

τ2

(
e
Z1q
kBT

(φ1−V )
+ 1
)

+ τ1

(
e
Z2q
kBT

(φ2−V )
+ 1
) .

As we expect modest recombination phenomena in our case studies, in the following we
neglect the generation-recombination term. This term has not been implemented in the
ENBIOS simulator described in Chap. 4.

2.1.3 Boundary conditions

We partition the surface Γ of the domain of interest Ω in two different ways:

Γ = ΓVD ∪ ΓVN

Γ = ΓφD ∪ ΓφN .

Here ΓVD is the part of the boundary where we impose Dirichlet conditions on the potential,
while on ΓφD there are Dirichlet conditions for the quasi-potentials. Similarly for Neumann
conditions on ΓVN and ΓφN . This segmentation is necessary since, in general, there may
be parts of the boundary where we want to impose only the electric potential (ideally
polarizable electrodes), while on others (Faradaic electrodes) we want to set also the
quasi-potential.

The boundary conditions can be written as:
V0 = V D on ΓVD
φ0m = φDm on ΓφD
ε∇V0 · n̂ = 0 on ΓVN
∇φ0m · n̂ = 0 on ΓφN

(2.23)

We can calculate explicitly φDm for the electrodes that are in contact with the semicon-
ductor. In fact, if we assume these to be Ohmic electrodes that fulfill charge neutrality
and equilibrium conditions, then:

nD1 − nD2 = ND −NA, nD1 n
D
2 = n2

i

where we have used our convention that n1 refers to electrons and n2 to holes. In terms
of quasi-potentials, these conditions imply that :

φD1 = φD2 = φF
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where φF is the Fermi potential at the contact, which equals V D for non-resistive contacts.
The potential on the semiconductor side of the electrode is:

V0I = φF +
kBT

q
asinh

(
ND −NA

2ni

)
where the suffix I stands for “internal”, denoting the first node inside the semiconductor
domain.

Note that the existence and (local) uniqueness of solutions of the drift-diffusion-Poisson
system (in the semiconductor) coupled with the Poisson-Boltzmann equation (in the elec-
trolyte) and with interface conditions between the different regions was shown in [38].

2.2 AC models
Most of the work in this thesis is devoted to modeling and simulation of impedimetric
nanobiosensors. It is thus important to develop model equations in the frequency domain
using the small-signal approximation. To this purpose, we write the quasi-potentials, φm,
and the electric potential, V , as:

φm = φ0m + <
[
φ̃m exp(jωt)

]
V = V0 + <

[
Ṽ exp(jωt)

] (2.24a)

(2.24b)

where Ṽ and φ̃m are the complex amplitudes of the AC potential and quasi-potentials.
We remind that the small-signal approximation is valid if |φ̃m|, |Ṽ | � kBT/q, i.e., the
amplitude of the electric and quasi-potentials is small enough with respect to the thermal
voltage (≈ 25 mV at room temperature). Essentially, we are assuming that all signals
are made of a DC component with in addition a small sinusoidal component. If the non-
linearities of the system are small (for instance, in our case, because the AC signal is
much lower than the thermal voltage kBT/q), every arbitrary signal can be represented as
a linear combination of sinusoids, as also shown in [45]. The amplitude of the AC signal
should also be low enough to prevent self-heating effects (see [46]), which could locally
increase the temperature. This is the case in all the biosensors implementation that we
study in this thesis (for instance the modulation voltage at the electrodes of [33] is only
a few times the thermal voltage), so that we will always neglect self-heating effects.
For the following calculations, it is useful to remind that we can always write ejωt =
x+ j

√
1− x2 with arbitrary |x| ≤ 1, so that in general:

<
[
(a+ jb)(x+ j

√
1− x2)

]
= <

[
(c+ jd)(x+ j

√
1− x2)

]
⇐⇒ a+ jb = c+ jd .

(2.25)

It is thus legitimate to solve the model equations in the domain of complex numbers Ṽ ,
φ̃m only, because, thanks to the equivalence 2.25, this then entails the validity of the
results for the quantities V and φm as given by Eq. 2.24.

In order to find general expressions for the small signal AC carrier concentrations, we

start from Eq. 2.4 and we assume that
∣∣∣φ̃m − Ṽ ∣∣∣ � kBT

Zmq
. This condition is not always

satisfied in real systems and notably for the nanocapacitor array described in Chap. 5.
In the specific case, simple techniques have been devised to account for the not-always
negligible harmonic content of the signals, as described in Sec. 3.6.
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If we approximate the exponential with its Taylor expansion to the first order:

exp

(
Zmq

kBT
(φm − V )

)
' exp

(
Zmq

kBT
(φ0m − V0)

)[
1 +

Zmq

kBT
<
[(
φ̃m − Ṽ

)
exp(jωt)

]]
(2.26)

then we can write the ion and carrier concentrations as:

nm = n0m + < [ñm exp(jωt)] (2.27)

where n0m comes from Eq. 2.4 and the small-signal concentrations ñm are:

ñm = n0m
Zmq

kBT

(
φ̃m − Ṽ

)
(2.28)

Note that in the following we will always neglect the second and higher order terms in
the small-signal components.

2.2.1 Poisson equation

To find the AC model we then start from Poisson equation:

∇ · (ε∇V ) +

[
ρf +

Nsp∑
m=1

Zmqn
∞
m exp

(
Zmq

kBT
(φm − V )

)]
= 0 (2.29)

Using Eqs. 2.24-2.26 we then have:

∇ ·
[
ε∇
(
V0 + <

(
Ṽ exp(jωt)

))]
+[

ρf +

Nsp∑
m=1

Zmqn
∞
m exp

(
Zmq

kBT
(φ0m − V0)

)(
1 +

Zmq

kBT
<
((
φ̃m − Ṽ

)
exp(jωt)

))]
= 0

Noting that the DC variables V0 and φ0m satisfy the Poisson-Boltzmann equation (Eq.
2.5), and using Eq. 2.25 we obtain the AC Poisson equation:

∇ ·
(
ε∇Ṽ

)
+

Nsp∑
m=1

Z2
mq

2

kBT
n0m

(
φ̃m − Ṽ

)
= 0 (2.30)

2.2.1.1 Surface charges

Fixed charges clearly do not contribute to the AC signals. The surface protonation/deprotonation
and complexation reactions described in Sec. 2.1.1.1, instead, could affect the low fre-
quency response in different ways. We therefore need a model to account for the site-
binding surface charge and include it into the Poisson coefficients as done in Sec. 2.1.1.1
for the DC case.

To this purpose and following the approach presented in [47], we consider the surface
reactions Eq. 2.6, assume them first order and write the reaction rates as:

dnSiO
dt

= −dnSiOH
dt

= kfanSiOH − kbanSiOnH (2.31a)
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dnSiOH2

dt
= −kfb nSiOH2 + kbbnSiOHnH (2.31b)

where the “f” and “b” suffixes denote the left-to-right (forward, dissociation) and right-
to-left (backwards, aggregation) reactions, respectively.
Recalling that σsb = qNS(nSiOH2 − nSiO), we then find:

dσsb
dt

= kbanSiOnH − kfanSiOH − kfb nSiOH2 + kbbnSiOHnH

Note also that, by definition, the equilibrium constants are:

K ′a =
kfa
kba
, K ′b =

kfb
kbb

If we now write all the concentrations with the small-signal approximation Eq. 2.27 and
we remind that the DC concentrations are in equilibrium (in the sense that they satisfy
Eq. 2.31 with null time derivatives), we derive the AC formulation of Eq. 2.31:

jωñSiO = −kba (ν0MOñH + n0H ñSiO) + kfa ñSiOH

jωñSiOH2 = −kfb ñSiOH2 + kbb (ν0MOH ñH + n0H ñSiOH) .

As a consequence:

ñSiO =
−kbaν0MOñH + kfa ñSiOH

kban0H + jω
(2.32a)

ñSiOH2 =
kbb

kfb + jω
(ν0MOH ñH + n0H ñSiOH) . (2.32b)

As ñSiOH + ñSiO + ñSiOH2 = 0, we can calculate the AC concentrations of SiO−, SiOH
and SiOH+

2 from Eqs. 2.8-2.32:

ñSiO = − ñH(kfak
b
bν0MOH + kbaν0MO(kfb + kbbn0H + jω))

kfa(kfb + jω) + (kban0H + jω)(kfb + kbbn0H + jω)

ñSiOH2 =
ñH(−kbbν0MOHjω + kba(−kbbn0Hν0MOH + ν0MO(kfb + jω)))

kfa(kfb + jω) + (kban0H + jω)(kfb + kbbn0H + jω)

ñSiOH =
kbbñH(kban0H(ν0MO + ν0MOH) + ν0MOH(kfa + jω))

kfa(kfb + jω) + (kban0H + jω)(kfb + kbbn0H + jω)

By combining expressions for the DC and AC concentrations:

n0H = n∞H exp

(
−V0 − Vref

Vth

)
ñH = n0H

φ̃H − Ṽ
Vth

where φH = Vref + <
{
φ̃He

jωt
}
, being φH the quasi-potential of the hydrogen ions, we

can finally calculate the AC site-binding charge σ̃sb = q (ñSiOH2 − ñSiO):

σ̃sb = qNS
K ′b(k

b
bn0H(kban0H + jω) +K ′ak

b
a(K

′
bk
b
b + 4kbbn0H + jω))

(K ′aK
′
b + n0H(K ′b + n0H))(K ′ak

b
a(K

′
bk
b
b + jω) + (kban0H + jω)(kbb(K

′
b + n0H) + jω))

ñH

(2.33)

where we used the expressions K ′akba = kfa , K ′bkbb = kfb to eliminate the forward reaction
rates.
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2.2.2 Current equations
The transport model is given by the drift-diffusion equations (Eq. 2.21), for both the
electrolyte and the semiconductor. Using Eqs. 2.24-2.26 we obtain:

<
(
jω
(
φ̃m − Ṽ

)
ejωt

)
ni
Zmq

kBT
exp

(
Zmq

kBT
(φ0m − V0)

)[
1 +

Zmq

kBT
<
((
φ̃m − Ṽ

)
ejωt

)]
= Zmqµm∇ ·

(
ni exp

(
Zmq

kBT
(φ0m − V0)

)[
1 +

Zmq

kBT
<
((
φ̃m − Ṽ

)
ejωt

)](
∇φ0m + <

(
∇φ̃mejωt

)))
.

By eliminating the DC components and neglecting the second order terms we find the
small-signal drift-diffusion equation:

Zmqµm∇ ·
(
n0m

(
Zmq

kBT

(
φ̃m − Ṽ

)
∇φ0m +∇φ̃m

))
− jωn0m

Zmq

kBT

(
φ̃m − Ṽ

)
= 0 (2.34)

We can simplify this equation in the electrolyte by noting that φ0m = Vref , so that
∇φ0m = 0. Hence:

Zmqµm∇ ·
(
n0m∇φ̃m

)
− jωn0m

Zmq

kBT

(
φ̃m − Ṽ

)
= 0 (2.35)

2.2.3 Boundary conditions

In order to define the boundary conditions we have first to calculate the AC current
density:

~̃J = ~̃JD +

Nsp∑
m=1

~̃Jm (2.36)

where the displacement and conduction contributions are:

~̃JD = −jωε∇Ṽ
~̃Jm = −Z2

mq
2µmn0m

(
Zmq

kBT

(
φ̃m − Ṽ

)
∇φ0m +∇φ̃m

) (2.37a)

(2.37b)

As for the boundary conditions, we use partitions of Γ similar, but not necessarily equal,
to those defined in Sec. 2.1.2. The AC boundary conditions are:

Ṽ = Ṽ D on Γ̃VD
φ̃m = φ̃Dm on Γ̃φD
ε∇Ṽ · n̂ = 0 on Γ̃VN
~̃Jm · n̂ = 0 on Γ̃φN

(2.38)

where Γ = Γ̃VD ∪ Γ̃VN = Γ̃φD ∪ Γ̃φN . Note also that Γ̃φN includes ideally polarizable electrodes
in the electrolyte and floating electrodes in the semiconductor.

2.3 Electrolyte models
In this section we discuss a few physical effects and corrections to the basic electrolyte
model, aimed at improving the description of the analyte/sensor interaction.



CHAPTER 2. PHYSICAL MODELS 25

2.3.1 Electrolyte permittivity

At the high frequency of interest for this work (up to the GHz range) the dependency of
the water permittivity εel on the frequency becomes not negligible. An accurate model
of the dependency of εel on frequency and salt concentration useful for our purposes has
been derived in [48]. The resulting expression for εel takes the form of the widely known
double time constant Debye model [48]:

εel = ε0

(
ε∞ +

εs − ε1

1 + jωτe1
+

ε1 − ε∞
1 + jωτe2

)
(2.39)

where ε0 is the vacuum permittivity. The time constants τe1 and τe2 reflect relaxation
processes of the water molecules. As discussed in [49], the first relaxation τe1 comes
directly from a Debye relaxation, which is the dielectric relaxation response of an ideal,
noninteracting population of dipoles to an alternating external electric field. In contrast,
the existence of τe2 has been so far justified only as an experimental fit [49].
Deviating from [48], however, we have not included explicitly the term with the ionic
conductivity because it is already taken into account by the Nernst-Planck equations
(see also [50]). To account for the salt concentration in the electrolyte, the parameters
in Eq. 2.39 are computed as a function of the so called practical salinity S and the
temperature T . Thus, εel = εel(S, T, ω). The practical salinity S is defined with respect
to a standard reference KCl solution. The concentration of KCl in the standard solution
can be calculated from its mass fraction w = 32.4356·10−3 as nstand = wρ/MKCl = 0.43508
M where MKCl = 0.001(39.0983 + 35.453) kg/mol is KCl molar mass and ρ = 1 kg/L
is water’s density. We can then calculate the DC conductivity of both the solution and
the reference KCl solution as σ =

∑
m Z

2
mq

2µmn0m, and then calculate the ratio between
conductivity and standard conductivity at 15◦C K15 = σ/σstand. The salinity is then
calculated using the expression S = f(K15) [51]:

S = 0.008− 0.1692K
1
2
15 + 25.3851K15 + 14.0941K

3
2
15 − 7.0261K2

15 + 2.7081K
5
2
15

Fig. 2.2 shows εel calculated with Eq. 2.39 varying temperature, salt concentration and
frequency. We have used a KCl salt, where the mobilities have been taken from [52] (see
for instance Tab. 5.4).

2.3.2 Steric effects

The Poisson-Boltzmann equation (Eq. 2.4) supposes the ions are point-like non-interacting
charges. When the ion concentrations become very large two so-called steric effects occur,
which are due to the finite ionic radius ri: 1) ri becomes comparable to the width of the
surface diffused layer and 2) the surface ion concentration is limited by ri. These steric
effects prevent the surface ion concentration to attain high values.

Two approaches are commonly used in the literature to describe these phenomena:
the first one introduces a thin dielectric layer at the interface (called Stern layer in the
classical model of the double layer) [36], while the second one modifies directly the Poisson-
Boltzmann equation [53]. In the following both approaches will be quantitatively eval-
uated and compared to each other. Since our calculations showed that surface carrier
concentrations are limited by steric effects only at the highest salt concentrations, just
the simplest of these approaches (i.e., the dielectric layer) will be used throughout the
remaining part of the thesis.
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Fig 2.2: Relative electrolyte permittivity calculated with Eq. 2.39 either in DC (left) or at a
fixed temperature of 25◦C (right) with a KCl salt.

2.3.2.1 Stern layer

We start considering the first approach to take into account steric effects, i.e. the intro-
duction of a thin dielectric compact layer of counterions next to charged interfaces with
electrolytes (Stern layer). Due to its nanoscale thickness and the high field therein, the
Stern layer has a difficult to define permittivity, which is not equal to the bulk electrolyte
permittivity. In fact, it is well known that the high electric field at the interface gives
rise to a preferential polarization of the water molecules, so that the local permittivity
is remarkably reduced [54]. There have been many attempts to describe this effect with
analyticals model, and Ref. [54] provides a comprehensive description of their physical
background. Among these, perhaps the most comprehensive is the original model, where
the relative permittivity is expressed as [54]:

εr = n2 + n0wns
p0

ε0

2 + n2

3

(coth(u)− 1/u) sinh(u)/u

2n0E cosh
(
qV0
kBT

)
+ n0w

kBT
p0γ

sinh(u)
(2.40)

where u = p0γ
kBT

E, γ = 3
2

2+n2

3
, n is the refractive index of water, n0w = 55 mol/L at 300

K, ns = 2n0 + n0w, p0 the magnitude of the dipole moment of a single water molecule
in the electrolyte solution (eventually a fitting parameter) and E the magnitude of the
electric field. Eq. 2.40 takes into account the orientation ordering of water molecules, the
excluded volume effect due to the finite size of the ions and the cavity field.
To investigate the importance of these preferential polarization effects, we have imple-
mented both a non self-consistent and a self-consistent solution of Eq. 2.40 assuming
a piece-wise constant permittivity profile in the simulation domain. In particular, we
consider a simple case with only two regions (see the sketch in Fig. 2.3): the first one
is the thin dielectric compact layer on top of the electrode, the second one is the bulk
electrolyte. In this second region the dielectric constant is obviously equal to the bulk
electrolyte permittivity, while in the compact layer the permittivity is calculated using
the following procedure.
Firstly, since the compact layer is dielectric and the system is one dimensional with no fixed
charge accumulated, the potential in the layer is a linear function of position V0 = αx+β,
where x is the direction perpendicular to the electrode: consequently the magnitude of the
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Fig 2.3: Sketch of the system (left) and effective relative permittivity of the surface compact
layer as a function of the electric field (right) for two different bulk ion concentrations calculated
solving self-consistently Eqs. 2.40-2.41 for the one-dimensional system sketched in the inset of
Fig. 2.5. The electric field corresponds to applied voltages Vtot from 1mV to 1V. The horizontal
lines show the salinity dependent bulk electrolyte permittivity calculated with the model of [54].
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Fig 2.4: Potential difference across the compact layer ∆VCL relative to the applied voltage
,Vtot, in the 1D structure sketched in the inset of Fig. 2.5 for different salt concentrations. The
permittivity in the compact layer can be constant and equal to the bulk electrolyte permittivity
or come either from a self-consistent or a non self-consistent solution of Eqs. 2.40-2.41.

electric field is constant E = |α|. We then estimate the effective potential Veff (referred
to coordinate xeff ) which satisfies the condition:

1

cosh
(
qVeff
kBT

)
+ n0w

2n0u
sinh(u)

=
1

a

∫ a

0

1

cosh
(
qV0(x)
kBT

)
+ n0w

2n0u
sinh(u)

dx (2.41)

where a is empirically set equal to the ionic radius. The average permittivity εr,eff is then
calculated by using Veff and the constant field |α| from Eq. 2.41 in Eq. 2.40 instead of
V0 and E. With this approach we derive then an average permittivity inside the Stern
layer. Fig. 2.3 shows that the effect of the water molecule preferential ordering can lead
to a remarkable decrease of the permittivity in the compact layer with respect to the bulk
value, but only for very large field values.

To investigate the practical consequences of the decrease of the surface permittivity,
Fig. 2.4 shows the potential difference across the compact layer ∆VCL relative to the total
voltage drop applied between the electrode and the bulk Vtot (see inset of Fig. 2.5) com-
puted assuming either the constant bulk electrolyte permittivity or a piecewise constant
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permittivity. At high applied voltage most of the potential drops across the compact layer
(∆VCL/Vtot tends to 1) regardless of the permittivity model. Direct comparison of the
solutions with constant permittivity (squares) to the ones calculated with Eqs. 2.40-2.41
(triangles) suggests that the value of εr,eff in the compact layer has a very limited effect
on ∆VCL, especially at low salt concentration. Moreover, we observe that there is no
appreciable difference between the self-consistent solution and the non self-consistent one
where the corrected potential profile is a-priori given by a solution with a constant per-
mittivity equal to the bulk value. The reason resides in the fact that, as we have already
noted, at high applied voltage most of the potential drop occurs anyway in the compact
layer which has always a permittivity which is much smaller than the electrolyte. This
in turn means that the exact value of this permittivity does not change appreciably the
potential profile, and therefore the non-self consistent solution is adequate enough.
The adequacy of a non self-consistent solution in describing the potential profile near the
electrode suggests the possibility to first estimate the electric field profile from a first order
simulation with a compact layer of thickness equal to the ionic radius and with a constant
permittivity equal to that of the bulk electrolyte and then refine the results by calculating
a new solution where the compact layer permittivity is given by Eqs. 2.40-2.41.

As a final remark, we note that the value of the permittivity calculated with this
method is in agreement with the standard value of capacitance per unit area of the com-
pact layer used in the literature of ≈ 20 µF/cm2 [55]. In particular, assuming a compact
layer thickness of 0.25 nm, the compact layer capacitance translates to a permittivity
εr,eff = 5.6ε0.

2.3.2.2 Modified Poisson-Boltzmann equation

We now move to the second approach to account for steric effects. Following [53], we
have modified the equation for the DC equilibrium concentration (Eq. 2.4), resulting in a
Modified Poisson-Boltzmann (MPB) equation. Considering a symmetric Z:Z electrolyte
and assuming that the ions can be treated as hard spheres with radius a, the DC concen-
trations are given by [53]:

n±0 =

n∞0 exp

(
∓Zq(V0 − Vref )

kBT

)
1− 2n∞0 a

3 + 2n∞0 a
3 cosh

(
Zq(V0 − Vref )

kBT

) . (2.42)

As evident comparing the following results to those from previous section, the implemen-
tation of steric effects via a MPB for generic non-symmetric electrolytes causes significant
complications of the equation without appreciably increasing the accuracy of the calcula-
tions compared to the use of Stern layers.
A method to include steric effects in AC calculations is presented in [56]. However, since
the saturation of the carrier concentration at the interface implies the existence of a thin
surface layer where ñm = 0, which is easily mimicked in AC simulations by introducing
the Stern layer, steric effects have been neglected in AC calculations.

To investigate steric effects, we have used the full-custom PB and MPB simulator pre-
sented in [1] to determine reference solutions for the concentration and potential profiles
of a simple one-dimensional system where one ideally polarizable electrode is in contact
with the electrolyte and the opposite Faradaic electrode is located at a distance much
larger than the Debye length and acts as a fluid gate (see the sketch in Fig. 2.3). As dis-
cussed in the previous section, a thin dielectric layer on top of the electrode is introduced
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Fig 2.5: Ion concentration (top) and potential profiles (bottom) in a 1D structure consisting of
an electrolyte with an electrode on the bottom (y = 0) and a fluid gate on the top (see inset). The
solution of the Poisson-Boltzmann equation (using the TCAD) with and without an insulating
layer with the thickness of the typical Na+ or Cl− ion radius (a = 0.25nm) is compared to the
numerical solution of Eq. 2.42. Left plots: n0 = 5 mM, Vel = 100 mV; right plots n0 = 500 mM,
Vel = 1 V.

to mimic the Stern layer [57] when solving the PB equation. Since we have just shown
that the permittivity of the Stern layer does not have a strong impact on the solution, it
is initially taken equal to the bulk electrolyte permittivity.

Fig. 2.5 compares the PB solution (triangles upward and rectangles) with Eq. 2.42
(triangles downward) in terms of ion concentration (top) and electrostatic potential (bot-
tom). Indeed it shows that the steric effects are very important at high ion concentrations
and high applied voltages (where 4

3
πa3n±0 � 1) and that the PB theory gives unphysical

results in this regime. However, we also see that the insertion of a dielectric “compact”
layer somewhat mimics the steric effects when the PB equation is used, avoiding exces-
sively large surface concentrations. The discrepancy between calculations with the PB
equation without compact layer and the other two models is especially large in close prox-
imity of the electrode. Since many impedance based biosensors operate by measuring the
capacitance between electrodes in a liquid, this aspect has to be taken in great consider-
ation in order to simulate correctly the current density at the electrodes, which gives the
capacitance. The adoption of corrective measures as the thin compact layer proposed in
this work improves appreciably the accuracy of the calculations. The plots on the left,
derived for a low concentration and a low voltage, demonstrate that in these conditions
the conventional PB theory is still appropriate without any dielectric layer and that the
insertion of the layer does not appreciably alter the solution.
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2.4 Summary
This chapter provides a general overview of the model equations to describe multi-ion
electrolyte, insulator and semiconductor materials in the DC and AC small regime. These
equations will be used extensively throughout this thesis as the starting point for the
derivation of a few analytical and numerical models.
In particular, in DC conditions (Sec. 2.1) the models are:

• dielectrics: linear Poisson equation;

• electrolyte: Poisson-Boltzmann equation;

• semiconductor: Poisson-Nernst-Planck (PNP, also known as Poisson-drift-diffusion)
equations.

In AC conditions (Sec. 2.2) the models are:

• dielectrics: linear AC Poisson equation;

• electrolyte and semiconductor: linearized Poisson-Nernst-Planck (also known as
Poisson-drift-diffusion) equations.

In both the DC and AC regimes we impose a combination of Neumann (zero outer flux)
and Dirichlet boundary conditions. The surfaces with Dirichlet boundary conditions are
called electrodes and can be of two types:

• ideally polarizable (or floating) electrodes, where there is no DC and/or AC current
flow;

• Faradaic (or Ohmic) electrodes, where a DC and/or AC current flow is possible.

For generality, we have let for instance ideally polarizable electrodes in DC to be Faradaic
in AC and viceversa.

We have also investigated a few physical mechanisms possibly responsible of local-
ized or global deviations of the electrolyte electrical properties from the relatively simple
behaviour described by the PNP model equations. Among these, the electrolyte permit-
tivity dependence on temperature, salt concentration and frequency (Sec. 2.3.1) and the
so called steric effects (i.e., the compact layer of ions that forms at charged interfaces,
Sec. 2.3.2). Careful implementation of refined model equations allowed us to identify
the range of conditions where these effects become important and to conclude that, in
many instances relevant for biosensor simulation, a simple but effective way to correct
the simple PNP equations and to alleviate substantially the impact of model inaccuracy
is to introduce a thin dielectric layer on the interfaces with the electrolyte mimicking the
compact Stern layer. We have also shown that there is no need of employing a com-
plex electric-field dependent model for the Stern layer permittivity, which could be easily
estimated a priori.



Chapter 3

Analytical models for reference systems

In this chapter we derive a few analytical models which have been used to obtain reference
solutions for the validation of a preliminary 2D numerical simulator of nanoelectrode
sensors in cylindrical coordinates [1], and of the full 3D numerical solver ENBIOS [4].
Furthermore, these solutions provide useful physical insight on the phenomena involved
in the signal transduction chain of simple systems.

3.1 1D AC cartesian electrode-electrolyte system

We start considering the 1D system sketched in Fig. 3.1, where variations occur along the
cartesian direction x only. It is composed of one electrode at x = 0 and one at x = L,
where either both electrodes are ideally polarizable, (i.e., no DC current flows through
them) or just the rightmost electrode is Faradaic (i.e. it sustains a DC ionic current via
electrochemical surface reactions). An electrolyte, a dielectric layer (for example the Stern
layer as discussed in Sec. 2.3.2 or a Self Assembled Monolayer, SAM) and a particle or
biomolecule can be optionally present between the electrodes. We typically assume that
the electrolyte is symmetric with two ion species (Nsp = 2) of unitary valence. Under
suitable approximations, realistic multi-ion electrolytes can be modelled with reasonable
accuracy as 1:1 electrolytes as discussed in Sec. 4.6.1. The SAM and the biomolecule are
modelled as ideal dielectric layers. Furthermore, we always assume that the electrodes
are both DC biased at the reference voltage Vref = 0 V; therefore, no DC bias is applied
between them, which entails V0 = 0 V and n0m = n∞m everywhere in the domain. Depend-
ing upon the bias conditions and the AC signal, electrical double layers can form at the
interface. We will study this system in the AC small signal regime.

3.1.1 Electrolyte only

If the entire system is composed only of electrolyte, the Poisson-Nernst-Planck system of
equations (Eqs. 2.30-2.35) can be written as:

−εel
q

d2Ṽ

dx2
= Z1ñ1 + Z2ñ2

jωñ1 = Z1qµ1n01
d2Ṽ

dx2
+D1

d2ñ1

dx2

jωñ2 = Z2qµ2n02
d2Ṽ

dx2
+D2

d2ñ2

dx2

(3.1)

31
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Fig 3.1: Sketch of the cartesian 1D models with and without a dielectric region between the
electrodes. The red dielectric stands for a compact layer or a SAM. The green dielectric mimics
a biomolecule floating in the electrolyte.

where Ṽ , ñ1 and ñ2 represent the complex small signal AC potential and ion concentrations
respectively. Substituting the first equation into the others and isolating the term with
the second derivatives we get:

D1
d2ñ1

dx2
=

(
Z2

1q
2

εel
µ1n01 + jω

)
ñ1 +

Z1Z2q
2

εel
µ1n01ñ2

D2
d2ñ2

dx2
=

(
Z2

2q
2

εel
µ2n02 + jω

)
ñ2 +

Z1Z2q
2

εel
µ2n02ñ1

. (3.2)

We can define a 2× 2 matrix B and cast the system of equations in the form:

d2ñ
dx2

= Bñ ⇐⇒ d2

dx2

[
ñ1

ñ2

]
=

[
a1 a2

b1 b2

] [
ñ1

ñ2

]
(3.3)

where: 

a1 =
1

D1

(
Z2

1q
2

εel
µ1n01 + jω

)
a2 =

Z1Z2q
2

εel

1

D1

µ1n01

b1 =
Z1Z2q

2

εel

1

D2

µ2n02

b2 =
1

D2

(
Z2

2q
2

εel
µ2n02 + jω

)
. (3.4)

To solve Eq. 3.3 we first need to decouple the two equations. To this end, we calculate
the eigenvalues λ1 and λ2 of B from the characteristic equation:

(λ− a1)(λ− b2)− a2b1 = λ2 − (a1 + b2)λ+ a1b2 − a2b1

∆ = (a1 + b2)2 − 4a1b2 + 4a2b1 = (a1 − b2)2 + 4a2b1 (3.5)

λ1 =
a1 + b2 +

√
∆

2
, λ2 =

a1 + b2 −
√

∆

2
. (3.6)



CHAPTER 3. ANALYTICAL MODELS FOR REFERENCE SYSTEMS 33

The eigenvectors Tl are obtained as:

BTl = λlTl =⇒ T1 =

[
1

λ1−a1
a2

]
, T2 =

[
1

λ2−a1
a2

]
.

The system is then diagonalized defining the matrices T, Λ, y:

T =

[
1 1

λ1−a1
a2

λ2−a1
a2

]
, Λ =

[
λ1 0
0 λ2

]
, y = T−1ñ . (3.7)

We get then:

d2ñ
dx2

= Bñ ⇐⇒ d2ñ
dx2

= TΛT−1ñ ⇐⇒ d2y
dx2

= Λy . (3.8)

The solution for y is now straigthforward:
d2y1

dx2
= λ1y1

d2y2

dx2
= λ2y2

=⇒
{
y1 = c1 exp (−κ1x) + d1 exp (κ1x)

y2 = c2 exp (−κ2x) + d2 exp (κ2x)
(3.9)

where we have defined κ2
1 = λ1 and κ2

2 = λ2. The expressions for ñ are:

ñ = Ty =

[
1 1

κ21−a1
a2

κ22−a1
a2

][
y1

y2

]
=

[
y1 + y2

κ21−a1
a2

y1 +
κ22−a1
a2

y2

]
which is expanded as:ñ1 = c1 exp (−κ1x) + d1 exp (κ1x) + c2 exp (−κ2x) + d2 exp (κ2x)

ñ2 =
κ2

1 − a1

a2

(c1 exp (−κ1x) + d1 exp (κ1x)) +
κ2

2 − a1

a2

(c2 exp (−κ2x) + d2 exp (κ2x))
.

(3.10)

Substitution of these expressions for ñ1 and ñ2 into Eq. 3.1 yields:

−εel
q

d2Ṽ

dx2
= Z1 [c1 exp (−κ1x) + d1 exp (κ1x) + c2 exp (−κ2x) + d2 exp (κ2x)]

+ Z2

[
κ2

1 − a1

a2

(c1 exp (−κ1x) + d1 exp (κ1x))

+
κ2

2 − a1

a2

(c2 exp (−κ2x) + d2 exp (κ2x))

]
(3.11)

and eventually allows us to write the general form of the solution Ṽ (x) as:

−εel
q
Ṽ =

1

κ2
1

(
Z1 + Z2

κ2
1 − a1

a2

)
(c1 exp (−κ1x) + d1 exp (κ1x))

+
1

κ2
2

(
Z1 + Z2

κ2
2 − a1

a2

)
(c2 exp (−κ2x) + d2 exp (κ2x)) + l1x+ l2 . (3.12)

We note that, in addition to exponentially decaying terms with two different decay lengths
1/κ1 and 1/κ2, Eq. 3.12 contains terms that are linear in x. As we will see in Sec. 3.1.1.3,
these terms play an important role especially at high frequency.
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Boundary conditions To calculate the integration constants c1, c2, d1, d2, l1 and l2
we impose the boundary conditions J̃1(0) = J̃2(0) = 0, J̃1(L) = J̃2(L) = 0 (where J̃m(x)
denotes the AC current of ion m at point x) corresponding to zero ionic current density
at the ideally polarizable electrodes and Ṽ (0) = ṼB, Ṽ (L) = ṼT . Remembering the small
signal ionic current expression (see Eq. 2.37b) written in terms of electric potential Ṽ and
concentrations ñm:

J̃m = −Z2
mq

2µmn0m
dṼ

dx
− ZmqDm

dñm
dx

(3.13)

We can then write: 

−Z1qµ1n01
dṼ

dx

∣∣∣
0
−D1

dñ1

dx

∣∣∣
0

= 0

−Z2qµ2n02
dṼ

dx

∣∣∣
0
−D2

dñ2

dx

∣∣∣
0

= 0

−Z1qµ1n01
dṼ

dx

∣∣∣
L
−D1

dñ1

dx

∣∣∣
L

= 0

−Z2qµ2n02
dṼ

dx

∣∣∣
L
−D2

dñ2

dx

∣∣∣
L

= 0

Ṽ (0) = ṼB

Ṽ (L) = ṼT

(3.14)

where

dṼ

dx
= − q

εel

[
1

κ1

(
Z1 + Z2

κ2
1 − a1

a2

)
(−c1 exp (−κ1x) + d1 exp (κ1x))

+
1

κ2

(
Z1 + Z2

κ2
2 − a1

a2

)
(−c2 exp (−κ2x) + d2 exp (κ2x)) + l1

]
(3.15)

dñ1

dx
= κ1 (−c1 exp (−κ1x) + d1 exp (κ1x)) + κ2 (−c2 exp (−κ2x) + d2 exp (κ2x)) (3.16)

dñ2

dx
=
κ2

1 − a1

a2

κ1 (−c1 exp (−κ1x) + d1 exp (κ1x))

+
κ2

2 − a1

a2

κ2 (−c2 exp (−κ2x) + d2 exp (κ2x)) (3.17)

Symmetrical electrolyte In order to reduce the complexity, we simplify the above
equations assuming that the electrolyte is 1:1 and symmetrical, that is, with equal ion
mobilities, and that, as usual, Einstein relation holds. This means Z1 = −Z2 = 1,
D1 = D2, µ1 = µ2, n01 = n02. In this section we will always make use of these assumptions.
As a consequence the elements of the B matrix in Eq. 3.7 are:

a1 =
1

D

(
q2

εel
µn0 + jω

)
a2 = − q

2

εel

1

D
µn0

b1 = a2

b2 = a1

.
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Denoting ∆ = 4a2
2 =

q4

ε2
el

4

D2
µ2n2

0, we then obtain:


κ2

1 = a1 +

√
∆

2
= a1 + |a2|

κ2
2 = a1 −

√
∆

2
= a1 − |a2|

=⇒


κ2

1 − a1

a2

=
|a2|
a2

= −1

κ2
2 − a1

a2

=
−|a2|
a2

= 1
, T =

[
1 1
−1 1

]

The expressions for the solutions become:

Ṽ = − q

εel

[
2

κ2
1

(c1 exp (−κ1x) + d1 exp (κ1x)) + l1z + l2

]
(3.18a)

ñ1 = c1 exp (−κ1x) + d1 exp (κ1x) + c2 exp (−κ2x) + d2 exp (κ2x) (3.18b)
ñ2 = − (c1 exp (−κ1x) + d1 exp (κ1x)) + (c2 exp (−κ2x) + d2 exp (κ2x)) (3.18c)

.
Straightforward but lengthy calculations (see Sec. 3.A.1 in the chapter appendix)

eventually lead to the conclusion that c2 = d2 = 0, so that the only eigenvalue left is
κ = κ1. The solutions are then expressed as:



Ṽ = − q

εel

[
2

κ2

ṼT − ṼB
β − δ − (β + δ)α

(e−κx − αeκx) + l1x+ l2

]
ñ1 =

ṼT − ṼB
β − δ − (β + δ)α

(e−κx − αeκx)

ñ2 = − ṼT − ṼB
β − δ − (β + δ)α

(e−κx − αeκx) = −ñ1

(3.19)

with the parameters:



κ2 = 2
q

kBT

q

εel
n0 + j

ω

D
α = e−κL

β =
q

εel

4

κ2

δ =
L

qµn0

vd

vd = qµn0
q

εel

2

κ
−Dκ

l1 =
εel
q

1

qµn0

vd

(
ṼT − ṼB

) α + 1

β − δ − (β + δ)α

l2 =
2

κ2

(
ṼT − ṼB

) α− 1

β − δ − (β + δ)α
− εel

q
ṼB

. (3.20)

The total current density can then be calculated knowing that:

J̃(x) =
∂ ~D

∂t
+

Nions∑
m=1

~̃Jm = −jωεel
dṼ

dx
+

Nions∑
m=1

J̃m (3.21)
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where:

J̃m = −Z2
mq

2µmn0m
dṼ

dx
− ZmqDm

dñm
dx

(3.22)

dṼ

dx
=

ṼT − ṼB
β − δ − (β + δ)α

[
q

εel

2

κ

(
e−κx + αeκx

)
−
(
q

εel

2

κ
− Dκ

qµn0

)
(α + 1)

]
(3.23)

dñ1

dx
= −κ ṼT − ṼB

β − δ − (β + δ)α

(
e−κx + αeκx

)
(3.24)

dñ2

dx
= κ

ṼT − ṼB
β − δ − (β + δ)α

(
e−κx + αeκx

)
. (3.25)

Note that, with this definition, the current is taken positive when flowing in the x direction,
that is from the left to the right electrode in Fig. 3.1. As expected since Eqs. 3.1 are
conservation equations, the currents at the electrodes are equal (J̃1 = J̃2), so that at any
position x Eq. 3.21 becomes:

J̃(x) = −jωεel
dṼ

dx
− 2q2µn0

dṼ

dx
+ 2qDκ

ṼT − ṼB
β − δ − (β + δ)α

(
e−κx + αeκx

)
=

∆Ṽ

β − δ − (β + δ)α

[ (
2q2µn0 + jωεel

)( q

εel

2

κ

(
e−κx + αeκx

)
−
(
q

εel

2

κ
− Dκ

qµn0

)
(α + 1)

)
− 2qDκ

(
e−κx + αeκx

) ]
=

∆Ṽ

β − δ − (β + δ)α

[ (
e−κx + αeκx

)(
q2µn0

q

εel

4

κ
+ jωq

2

κ
− 2qDκ

)
−
(
2q2µn0 + jωεel

)( q

εel

2

κ
− Dκ

qµn0

)
(α + 1)

]

where ∆Ṽ = ṼB − ṼT . We can easily see that:(
q2µn0

q

εel

4

κ
+ jωεel

q

εel

2

κ
− 2qDκ

)
=

1

κ

(
4q2µn0

q

εel
+ 2jωq − 2qDκ2

)
=

1

κ

(
4q2µn0

q

εel
+ 2jωq − 4qD

q

kBT

q

εel
n0 − 2qDj

ω

D

)
= 0

This means that:

J̃(x) = − ∆Ṽ

β − δ − (β + δ)α

(
2q2µn0 + jωεel

)( q

εel

2

κ
− Dκ

qµn0

)
(α + 1)

= jωεel
α + 1

β − δ − (β + δ)α

Dκ

qµn0

∆Ṽ (3.26)

This equation provides an explicit expression of the AC admittance per unit area ytot =
J̃/∆Ṽ of a slab of electrolyte. We use the symbol y and not the usual Y for the admittance
in order to point out that, in this section, we are always referring to admittances per unit
area. Since the parameters’ definition (Eq. 3.20) are rather obscure, we now first derive
an equivalent formulation of this model and then show some results obtained with it.
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3.1.1.1 Equivalent formulation

We derive an equivalent formulation of the former model, which is useful to get a physical
understanding of the phenomena. As a first step we make the substitution:

ξ := 2πfc :=
2q2µn0

εel
=

2q2Dn0

εelkBT
. (3.27)

Since the electrolyte conductivity is σel = 2q2µn0, we immediately note that ξ is the
electrolyte dielectric’s relaxation angular cut-off frequency σel/εel. Note that ξ, hence the
corresponding cut-off frequency fc = ξ/2π, is directly proportional to the salt concentra-
tion n0. It follows:

κ2 =
ξ + jω

D
, κ = ± ξ +

√
ξ2 + ω2 + jω

√
2D
√
ξ +

√
ξ2 + ω2

. (3.28)

As expected, the decay length 1/κ at ω = 0 is exactly the well-known Debye length [36]
λD:

λD =
1

κ(ω = 0)
=

√
D

ξ
=

√
εelkBT

2q2n0

. (3.29)

We can then write an alternative expression for κ by calling τ = εel/σ the electrolyte’s
relaxation time:

κ2 =
1 + jωτ

λ2
D

. (3.30)

Once again, lengthy but straightforward calculations (see Sec. 3.A.2) lead us to the
solution:

Ṽ = ṼB −
−ξ (e−κx − αeκx) + jωκ (1 + α)x+ ξ (1− α)

2ξ (1− α) + jωκL (1 + α)
∆Ṽ (3.31a)

ñ1 = −qµn0κ
2 ∆Ṽ

2ξ (1− α) + jωκL (1 + α)

(
e−κx − αeκx

)
(3.31b)

ñ2 = −ñ1 (3.31c)

J̃ = jωεel
Dκ3 (α + 1)

2ξ (1− α) + jωκL (1 + α)
∆Ṽ . (3.31d)

Eqs. 3.31 represent an exact analytical model of the response of the electrolyte to AC
small signal stimuli. In particular, Eq. 3.31d is an exact alternative formulation of Eq.
3.26.

We now rewrite the term α = ρejθ using the cartesian representation:

α = e−κL = ± ρ√
1− tan(θ)2

(1 + j tan(θ))

= ±
exp

(
−L
√

ξ+
√
ξ2+ω2

2D

)
√√√√√1− tan

L jω
√

2D
√
ξ +

√
ξ2 + ω2

2

1 + j tan

L jω
√

2D
√
ξ +

√
ξ2 + ω2
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Fig 3.2: Frequency spectra of |α| at different salt concentrations for L = 100 nm, ion mobility
µ = 3.24 × 1011 m/Ns, temperature T = 298 K and electrolyte permittivity calculated via Eq.
2.39.

From this expression and its representation in Fig. 3.2, we immediately note that the
modulus of α = exp (−κL), that is |ρ|, is much smaller than 1 at all frequencies and in
practice very close to zero, both at high and low frequency, since the distance L is in
practical cases always much larger than the Debye length λD =

√
D/ξ (see Fig. 3.2).

Assuming then a large domain compared to the Debye length λD, i.e. L/λD � 1, Eq.
3.31d simplifies to:

J̃ ' jωεel
κ

2ξ + jωκL
(ξ + jω) ∆Ṽ (3.32)

which provides a compact approximate expression of the bulk electrolyte admittance per
unit area y = J̃/∆Ṽ . The expression assumes two non-Faradaic contacts and accounts
for two AC electrical double layers. Current density spectra calculated with Eq. 3.31d are
shown in Sec. 4.5.1, when discussing the validation of the numerical solver ENBIOS (in
particular Fig. 4.7).

Results We now show some results obtained with the model of Eqs. 3.31. The param-
eters are given in Tab. 3.1, if not differently specified. The relevant parameter to describe
the build-up of space charge regions at the electrodes and the screening is the real part
of κ, which gives the attenuation of the AC concentrations in the electrolyte. We define
the real part of κ as the inverse AC screening length and denote it with 1/LS. Recalling
Eq. 3.30, its expression is:

1

LS
= < (κ) =

1

λD

√
1 +
√

1 + ω2τ 2

2
. (3.33)

Let us now go back to the more general case of a non-symmetric but still 1:1 electrolyte,
therefore letting µ1 6= µ2. Since the mobility is the only parameter that changed from the
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Parameter Symbol Value Units
System length L 200 [nm]
Mobility of Na+ µ1 3.242 · 1011 [m/Ns]
Mobility of Cl− µ2 4.937 · 1011 [m/Ns]
Temperature T 307.66 [K]

Table 3.1: Parameters used in the calculations with the 1D analytical model.
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Fig 3.3: Characteristic screening length for a NaCl-water electrolyte, calculated using either Eq.
3.33 or the exact expression Eq. 3.34 for different salt concentrations. The electrolyte parameters
are reported in Tab. 3.1 and the diffusion coefficients are calculated via the Einstein relation.

previous case, the Debye length remains unaffected. As seen at the beginning of Sec. 3.1,
there are now two characteristic parameters κ1 and κ2:

κ2
1,2 = λ−2

D

1 + jω (τ1 + τ2)±
√

1− ω2 (τ1 − τ2)2

2
(3.34)

where the + sign is used for κ1, the − for κ2, τ1 = 1/λ2
DD1 and τ2 = 1/λ2

DD2. Thus,
it is not possible to derive simple analytical expressions for the screening lengths as in
the simplified case. We note, however, that κ1 has a similar expression as κ in Eq.
3.30, but with an effective diffusivity 2/Deff = 1/D1 + 1/D2 and a small correction

factor 1 −
√

1− ω2 (τ1 − τ2)2. We can also observe that κ2 is almost purely imaginary
if the diffusion coefficients are similar. A simple, approximated, expression for the first
screening length (< (1/κ1)) can be found introducing in Eq. 3.33 the effective diffusivity
Deff defined above. We denote this approximated screening length LS,app and the exact
ones LS,1 = 1/< (κ1), LS,2 = 1/< (κ2). Fig. 3.3 shows LS,1 and LS,2 for an electrolyte made
of NaCl in water as a function of the frequency and for different salt molar concentrations
(as usual in electrochemistry).
It is interesting to note that Eq. 3.33 approximates very accurately LS,1, and that LS,1 is
always shorter than LS,2. This means that the limiting screening effect for detection is
governed by LS,1. If we now remember the definition of the electrolyte cut-off frequency
fc = ξ/2π = 1/2πτ , then we note that LS,1 decreases for f > fc, meaning that the AC
double-layer thickness becomes infinitesimal.

Having understood that the electrolyte asymmetry is not so relevant, we then go back
to the case of a symmetric electrolyte. Fig. 3.4 shows the AC concentration profile near
one of the electrodes of a system as in Fig. 3.1 for a 10 mM electrolyte at two different
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Fig 3.4: Real and imaginary part of the AC concentration of positive ions ñ1 at 1.6 MHz (left
axis) and 50 MHz (right axis). The ion concentration is 10 mM and the mobility is 3.242 · 1011

m/Ns. <(ñ1) < 0 because the electrode AC potential is positive.

frequencies together with the corresponding values of LS. The low frequency (1.6 MHz)
is in the range where LS ≈ λD while the high frequency (50 MHz) is chosen to make ωτ
sufficiently greater than 1. We can then equivalently say that the low frequency is chosen
to be sufficiently lower than fc = 23 MHz and the high frequency to be sufficiently higher
than fc.
The screening parameter LS plays for AC signals the same role as the static Debye length
in DC conditions. In fact, as the frequency increases, LS becomes shorter and the small-
signal concentrations become smaller. Consequently, the AC electric double layer becomes
thinner and the AC field penetrates into the electrolyte. This means that for increasing
frequency the concentration variations become smaller and occupy a progressively thin-
ner surface layer, until they become negligible, while the AC potential exhibits a linear
dependence on the space due to the linear and constant terms in Eq. 3.31 (see Fig. 3.5).
This in turn means that the electrolyte screening effect becomes negligible, therefore not
limiting the detection sensitivity anymore.

3.1.1.2 Double layer admittance

In this section we derive lumped element circuit models for the admittance per unit area
between the electrodes ytot = J̃/∆Ṽ , where J̃ is calculated with Eq. 3.32, that assumes
L� λD. Consistently with the 1D nature of the model, we will always use admittances,
y, capacitances, c, and conductances, g, per unit area and denote them with lower case
letters.

Parallel model The total admittance between the two ideally polarizable electrodes
can be modelled by the parallel of the bulk electrolyte capacitance (cE = εel/L) and the
series of the bulk electrolyte conductance (gE = ξεel/L) with the double layer admittances
at the two electrodes (yPDL, Fig. 3.6, left) as:

ytot =
gEy

P
DL

2gE + yPDL
+ jωcE (3.35)
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Fig 3.5: Real and imaginary parts of the normalized potential profile Ṽ /∆Ṽ near the electrode
with L = 100 nm at three different frequencies, that is, below fs, at fs and above fc, where fs
is defined in Sec. 3.9. Note the penetration of the field at high frequency.

Fig 3.6: Sketch of the equivalent circuit models for the double layer admittance: parallel and
integral models (left), series model (right).

By assuming again L� λD, we derive from Eq. 3.32:

yPDL = jωεel
κL− 2

L

ξ

ξ + jω
' jωεelκ

ξ

ξ + jω
(3.36)

Note that, as expected, the limit of yPDL for ω = 0 yields the well-know linearized double
layer capacitance [36] cDL = εel/λD.

Series model Denoting now the high frequency admittance yH = gE + jωcE, an alter-
native model is composed by the series of yH and of the double layer admittance at the
two electrodes (ySDL), Fig. 3.6:

1

ytot
=

2

ySDL
+

1

yH
(3.37)

We then derive:

ySDL = jωεelκ
ξ + jω

ξ
(3.38)

Note that again, as expected, the limit of ySDL for ω = 0 is the double layer capacitance
cDL = εel/λD.
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Fig 3.7: Double layer admittance spectra and corresponding generalized double layer capac-
itance cDL = yDL/jω calculated according to the three models in Fig. 3.6 and for a few salt
concentrations.

Integral model We also derive a third model of the double layer admittance (yIDL)
calculated by direct integration of the AC charge. Since the system contains two sym-
metrical double layers, we compute the AC EDL charge per unit area at one electrode
σ̃DL integrating the mobile charge in the bottom half domain, using Eq. 3.31:

σ̃DL =

∫ L/2

0

q(ñ1 − ñ2)dx = 2q

∫ L/2

0

ñ1dx

= −2q2µn0κ
2 ∆Ṽ

2ξ (1− α) + jωκL (1 + α)

∫ L/2

0

(
e−κx − αeκx

)
dx

' −εelκ
ξ

2ξ + jωκL
∆Ṽ (3.39)

where we have assumed again L� λD. The calculated admittance is then:

yI = −jωdσ̃DL
d∆Ṽ

= jωεelκ
ξ

2ξ + jωκL
(3.40)

Note that if we assume that the bulk electrolyte capacitance is in parallel with yI , as we
did for the parallel model, we get:

yI + jωcE = jωεel
ξκL+ 2ξ + jωκL

(2ξ + jωκL)L
' jωεelκ

ξ + jω

2ξ + jωκL
= ytot

i.e., we find the admittance ytot, as expected.
To find the double layer admittance we assume that yI is composed by the series of two
yIDL and the bulk electrolyte conductance gE. We obtain:

yIDL = −2
gEyI
yI − gE

= jωεelκ (3.41)

Once again the limit of yIDL for ω = 0 is the double layer capacitance cDL.
Fig. 3.7 compares the three different models for the double layer admittance and

capacitance cDL with the equivalent circuits of Fig. 3.6. The models are all equivalent
to each other at low frequency, as expected, where cDL increases considerably with salt
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Fig 3.8: Admittance spectra between the electrodes ytot as a function of salt concentration with
L = 100 nm.

concentration. In contrast, the models tend to diverge for f > fc, where they provide a
negligible contribution to ytot.
As a final remark, we note that the expressions 3.36 ,3.38, 3.41 for yDL are different from
each other, pointing out fact that the choice of equivalent circuits for the electrolyte region
is not unique. The existence of different models is consistent with the approximation
L � λD, which entails that the exact behaviour of YDL for ω > ξ is not so important
and leaves freedom for different choices. All the proposed models comprise at least one
element with anomalous (not rational) frequency dependence. For instance in the model
of Eq. 3.36 at high frequency the dependence of yDL is on ω

1
2 , while for Eq. 3.38 it is on

ω
5
2 and for Eq. 3.41 on ω

3
2 . This means that they cannot be represented by equivalent

circuits made of conventional linear resistors or capacitors.

3.1.1.3 Cut off frequencies

Having discussed the double layer admittance models, we can now come back to under-
stand the total admittance ytot between the electrodes calculated using Eq. 3.31. The
ion mobility in this section is µ = 3.24 × 1011 m/Ns, which is representative of common
monovalent ions like Na+, K+ and Cl− [52]. The results presented here are therefore
representative also of a real 1:1 electrolyte, as for instance KCl.

Fig. 3.8 shows the spectra of ytot varying the salt concentration with L = 100 nm. We
immediately see that, despite the complicated dependencies on ω in Eq. 3.31, the curves
in Fig. 3.8 seem fairly simple, all exhibiting two zeros (one in the origin) and one pole.

The identification of these critical frequencies is fairly simple. In fact, as evident from
Eq. 3.31, the second zero frequency is just the dielectric relaxation’s cut-off frequency
fc = ξ/2π. The pole frequency fs is, instead:

fs =
1

2π

2ξ

κL
' ξ

π

λD
L

(3.42)

where we have used the fact that, since fs < fc, κ ' λD. Note that we would have
arrived to the same result if we had used for instance the series model for the double layer
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Fig 3.9: Cut off frequencies calculated with Eqs. 3.27 (fc) and 3.42 (fs) and ion mobility
µ = 3.24× 1011 m/Ns.

admittance in Fig. 3.6b, approximating ySDL ' cDL = εel/λD and calculating:

fs =
1

2π

cDL/2 + cE
gE

, fc =
1

2π

cE
gE

. (3.43)

This fact proves the usefulness and validity of the circuit models for the double layer
admittance developed above.

Fig. 3.9 shows the cut off frequencies fs and fc calculated with Eqs. 3.27-3.42. We
immediately note the different dependence on salt concentration between fs and fc. Indeed
while fc ∝ n0, fs ∝

√
no, but as we will see in the following (for instance in Sec. 3.1.2) this

is a general property for fc but not for fs. In addition, we recognize that fs is geometry
dependent and it decreases if L increases.

Looking again at Fig. 3.8, we then easily see that for f < fs the double layer screening
is dominant and ytot is essentially given by the double layer capacitance cDL. This means
that anything that happens in the bulk electrolyte is not visible in this regime. The
admittance only reflects perturbations at the surface of the electrode. Increasing the
frequency in the range fs < f < fc we overcome the screening and begin to probe the
bulk electrolyte properties. However, we are still sensitive to the double layers and to
the electrolyte conductivity. As we will see in Chap. 5, we are also very sensitive to free
charges and in general to everything that can change the electrical properties of the space
between the electrodes. Finally, for f > fc the screening is completely overcome, the
electrical double layers disappear and we sense only the dielectric properties of the bulk
electrolyte.

3.1.1.4 Electric field

As predicted in Sec. 3.3.6 and demonstrated in Sec. 5.4, under suitable approximations

the response of a nanoelectrode biosensor is proportional to
(
Ẽ0(x)/∆Ṽ0

)2

, where x is

the position of the analyte, Ẽ0(x) the unperturbed electric field in the absence of the
analyte and ∆Ṽ the applied potential at the electrodes. In fact, introduction of analytes
in the domain perturbs the electric field and the corresponding electrostatic energy spatial
density. We are thus interested in deriving an explicit expression of the electric field. From



CHAPTER 3. ANALYTICAL MODELS FOR REFERENCE SYSTEMS 45

Eq. 3.31 we get:

Ẽ0 = −∂Ṽ
∂x

= κ
ξ (e−κz + αeκx) + jω (1 + α)

2ξ (1− α) + jωκL (1 + α)
∆Ṽ .

Therefore: (
Ẽ0(x)

∆Ṽ

)2

=

(
ξ (e−κx + αeκx) + jω (1 + α)

2ξ (1− α) + jωκL (1 + α)

)2

κ2

Assuming again L/λD � 1, so that α ' 0, we can then safely make the approximation:(
Ẽ0(x)

∆Ṽ

)2

'
(
ξ
(
e−κx + eκ(x−L)

)
+ jω

2ξ + jωκL

)2

κ2

where we have also substituted the expression for α. Similar considerations as above lead
us to say that provided the point x we are looking at is far enough from the electrodes,

we can approximate
(
Ẽ0(x)/∆Ṽ0

)2

as:(
Ẽ0

∆Ṽ

)2
∣∣∣∣∣∣
x=∞

'
(

jω

2ξ + jωκL

)2

κ2 = − ω2

4ξ2 − ω2κ2L2 + j4ξωκL
κ2

= − ω2

4ξ2 − ω2
ξ + jω

D
L2 + j4ξω

η + jω√
2D
√
η
L

ξ + jω

D

= −
ω2 (ξ + jω)

(
ξ

(
4Dξ − ω2L2 − 4ω2

√
D

2η
L

)
− jωL

(
−ω2L+ 4ξη

√
D

2η

))
ξ2

(
4Dξ − ω2L2 − 4ω2

√
D

2η
L

)2

+ ω2L2

(
−ω2L+ 4ξη

√
D

2η

)2

= −ω2

[
ξ2

(
4Dξ − ω2L2 − 4ω2

√
D

2η
L

)
+ ω2L

(
−ω2L+ 4ξη

√
D

2η

)

− j4ωξ
(
−Dξ +

√
D

2η
L
(
ω2 + ξη

))]
/ξ2

(
4Dξ − ω2L2 − 4ω2

√
D

2η
L

)2

+ ω2L2

(
−ω2L+ 4ξη

√
D

2η

)2


where the notation x = ∞ reminds that this expression is valid far from the electrodes
and, for a compact expression, we have made the substitution:

η := ξ +
√
ξ2 + ω2 (3.44)

As we will demonstrate in Sec. 5.4, the capacitive component of the biosensor response
to particles far enough from the electrodes is proportional to the factor:

χ(ω)|x=∞ = −

<
( Ẽ0

∆Ṽ

)2
∣∣∣∣∣∣
x=∞

+
ξ

ω
=

( Ẽ0

∆Ṽ

)2
∣∣∣∣∣∣
x=∞


' ω2

8Dξ3 − ω2L2 (ξ2 + ω2)− 4ξ

√
D

2η
L (2ξω2 + η (ξ2 − ω2))

ξ2

(
4Dξ − ω2L2 − 4ω2

√
D

2η
L

)2

+ ω2L2

(
−ω2L+ 4ξη

√
D

2η

)2 (3.45)
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where we have used the fact that the DC conductivity of the electrolyte is σel = ξεel. We
note also that the Debye length is λD =

√
D/ξ, which means that

√
D/η ≤ λD for every

ω. In particular we then see that
√
D/2η � L, so we can neglect terms in

√
D/2η in Eq.

3.45 and obtain:

χ(ω)|x=∞ ' ω2 8Dξ3 − ω2L2 (ξ2 + ω2)

ξ2 (4Dξ − ω2L2)2 + ω6L4
.

We attempt to identify optimum frequencies for maximum or minimum response from the
condition:

dχ

dω

∣∣∣∣
x=∞
' 32D2ξ4ω

8Dξ3 − 2ξ2L2ω2 − 3L2ω4(
ξ2 (4Dξ − ω2L2)2 + ω6L4

)2 = 0 (3.46)

which gives as solutions: ω1 = 0, ω2 =∞, and the non-trivial expression:

ω3 =

√√√√1

3

(
−ξ2 + ξ

√
ξ2 + 24D

ξ

L2

)
= ξ

√√√√1

3

(
−1 +

√
1 + 24

λ2
D

L2

)
. (3.47)

ω3 is the solution that corresponds to the peak of the response. The corresponding value
of the peak is:

χ(ω3)|x=∞ '
L4 + 24λ2

DL
√

(24λ2
D + L2) + L2

(
28λ2

D + L
√

(24λ2
D + L2)

)
8λ2

DL
2 (27λ2

D + L2)
.

Recall that the existence of a peak in the factor χ is derived assuming to be at a point x
distant from the electrodes.

We now note that, in the 1D system under study, at very high frequency:(
Ẽ0

∆Ṽ

)2
∣∣∣∣∣∣
ω=∞

=
1

L2

independent of x, so that we attempt to generalize the expression for the frequency of
maximum response in a generic system with non uniform field distribution Ẽ0:

ωP = ξ

√√√√√√1

3

−1 +

√√√√√1 + 24λ2
D

(
Ẽ0

∆Ṽ

)2
∣∣∣∣∣∣
ω=∞

 (3.48)

where Ẽ0 is the unperturbed AC field at the particle position. Eq. 3.48 provides a com-
pact expression for the frequency of peak capacitive response (which corresponds to the
optimum signal), as will be illustrated in more detail in Sec. 5.4.

3.1.2 Dielectric layer and electrolyte

Let us now consider the presence of an ideal charge-free dielectric layer of thickness a
(for instance a SAM or a compact layer) on the bottom electrode as shown in Fig. 3.1.
Laplace’s equation holds in the dielectric:

d2Ṽ

dx2
= 0 (3.49)
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The solution therein takes the form:

Ṽ = f1x+ f2 (3.50)

The solution in the electrolyte is exactly the same obtained in Sec. 3.1.1, except that ṼB
is replaced by ṼI , namely, the potential at the interface between dielectric and electrolyte.
We also suppose that the electrolyte lies in the region between a and L. We immediately
see that:

Ṽ =
ṼI − ṼB

a
x+ ṼB x ∈ [0, a]

Ṽ = − q

εel

[
2

κ2

ṼT − ṼI
β − δ − (β + δ)α

(
e−κ(x−a) − αeκ(x−a)

)
+ l1 (x− a) + l2

]
x ∈ [a, L]

(3.51)

where the parameters are given by Eq. 3.20 upon substitution of L with L− a.
To calculate ṼI we impose the continuity of the normal component of the electric induction
through the interface:

εs
dṼ

dx

∣∣∣∣∣
a−

= εel
dṼ

dx

∣∣∣∣∣
a+

=⇒ εs
ṼI − ṼB

a
= −εel

q

εel

(
ṼT − ṼI

) α + 1

β − δ − (β + δ)α

[
−2

κ
+
εel
q

1

qµn0

vd

]
where εs is the dielectric layer permittivity. Rearranging this equation we get:

ṼI =

ṼB + ṼT
α + 1

β − δ − (β + δ)α

εel
εs
a
Dκ

qµn0

1 +
α + 1

β − δ − (β + δ)α

εel
εs
a
Dκ

qµn0

(3.52)

The current is constant in each section, and we can easily calculate it in the dielectric
region:

J̃ = −jωεs
ṼI − ṼB

a
= jω

∆Ṽ

β − δ − (β + δ)α

α + 1

1

εel

qn0

kBTκ
+
a

εs

(3.53)

where again ∆Ṽ = ṼB − ṼT . We immediately note that, as expected, the admittance ytot
is the series connection of the dielectric layer admittance (jωεs/a) with the electrolyte
admittance ytot given by Eq. 3.32.
Fig. 3.10 shows the admittance ytot with two different dielectric layers, either resemblant
of a Stern layer (a) or of a SAM (b). We see that qualitatively the curves are very similar
to the case with no dielectric layer (Fig. 3.8), but the first cut-off frequency fs does not
show a simple dependence on salt concentration as in Sec. 3.1.1.3. We will analyze this
aspect in more detail in the following.

The electric field in the electrolyte is given by:

Ẽ = −dṼ
dx

= − ṼT − ṼI
β − δ − (β + δ)α

[
q

εel

2

κ

(
e−κ(x−a) + αeκ(x−a)

)
− α + 1

qµn0

vd

]
(3.54)

Appendices 3.A.3 - 3.A.4 report similar derivations for cases where the dielectric region
lies inside the electrolyte, which can represent the situation where a dielectric biomolecule
floats in the liquid, with or without the SAM or compact layer on top of the electrode.
These models, although simply 1D, constitute useful reference solutions to test the accu-
racy of numerical simulations and understand nanocapacitor response to biomolecules.
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Fig 3.10: Admittance spectra between the electrodes ytot as a function of salt concentration
with L−a = 100 nm and a dielectric layer on the left electrode either resemblent of a Stern layer
(a) or of a SAM (b).

Long system We now assume again that L− a� λD, so that α ' 0 and we can write
explicitly the system admittance per unit area ytot from Eq. 3.53:

ytot ' jωεsεelκ
ξ + jω

ξ (εelκa+ 2εs) + jωκ (εela+ εs(L− a))
(3.55)

We immediately see that the second cut-off frequency is again fc. From the denominator
of this expression, instead, we calculate the first cut-off frequency fs in this case as:

fs =
ξ

2π

εela+ 2εs/κ

εela+ εs(L− a)
(3.56)

From Fig. 3.10 we immediately see that in all cases fs � fc, so that we can again write
κ ' 1/λD and simplify the above expression as:

fs '
ξ

2π

εela+ 2εsλD
εela+ εs(L− a)

(3.57)

As noted also in Fig. 3.10, it is now evident that, when the dielectric layer is very thin
and with high permittivity (for instance if it resembles a Stern layer) ytot in this case is
very similar to the one derived from Eq. 3.32 and fs ∝

√
n0 as in Sec. 3.1.1.3. On the

other hand, if the dielectric layer is thicker and with lower permittivity (for instance if
it resembles a SAM), the double layer admittance contribution almost vanishes, since it
is in series with the dielectric layer admittance, and fs ∝ n0. These observations are
confirmed in Fig. 3.11, which also shows that at low frequency and especially at high salt
concentration most of the potential drop occurs in the dielectric layer.

3.1.3 Small-signal / differential capacitance

A technique that is well established in the characterization of MOSFETs involves the
measurement of the differential capacitance at the gate as a function of the applied bias.
In this section, we will then investigate the differential capacitance in DC for the elec-
trode/electrolyte system and compare it to the small signal AC capacitance.
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Fig 3.11: Real and imaginary parts of the normalized potential profile Ṽ /∆Ṽ near the electrode
with L = 100 nm, a = 2.5 nm and εs = 2.5ε0 at three different frequencies, that is, below fs, at
fs and above fc. Note the penetration of the field at high frequency and that at low frequency
most of the potential drop occurs in the dielectric layer.

We consider again the case made in Sec. 3.1.2 (Fig. 3.1), where a dielectric layer lies on
top of the left electrode. The Gouy-Chapman theory for a Z:Z electrolyte predicts that
the DC potential between the dielectric surface and the bulk of the electrolyte can be
expressed as [36]:

V0(x) =
2kBT

Zq
ln

(
α e

x−a
λD + 1

α e
x−a
λD − 1

)
=

4kBT

Zq
atanh

(
tanh

(
ZqVI
4kBT

)
e
−x−a
λD

)
(3.58)

where tanhu =
e2u − 1

e2u + 1
, λD =

√
εelkBT

2n∞Z2q2
is the Debye length, VI is the potential at the

dielectric/electrolyte interface and:

α =
e
ZqVI
2kBT + 1

e
ZqVI
2kBT − 1

. (3.59)

Note that, differently from our previous calculations and Fig. 3.1, in the Gouy-Chapman
model the right most electrode is Faradaic and biased at the constant reference voltage
VT = Vref ; therefore, it does not have any double layer. An alternative expression for

V0(x) can be derived noting that tanhu =
e2u − 1

e2u + 1
. The potential profile across the

dielectric is:

V0(x) = VB +
VI − VB

a
x . (3.60)

Therefore:

dV0

dx
=


−
√

8kBTn∞
εel

sinh

(
ZqV0

2kBT

)
in the electrolyte

VI − VB
a

in the dielectric
.
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The continuity of the dielectric displacement at the dielectric/electrolyte interface:

−εel
√

8kBTn∞
εel

sinh

(
ZqVI
2kBT

)
= εs

VI − VB
a

(3.61)

provides us an expression that, if solved numerically, allows us to calculate VI . The ion

concentrations are then easily found reminding that n0± = n∞ exp

(
∓ Zq

kBT
V0

)
, which

yields:

n0+ = n∞

(
α e

z−a
λD − 1

α e
z−a
λD + 1

)2

(3.62a)

n0− = n∞

(
α e

z−a
λD + 1

α e
z−a
λD − 1

)2

=
(n∞)2

n0+

(3.62b)

We can then calculate the static differential capacitance (per unit area) of the dielec-
tric/electrolyte system according to the Gouy-Chapman theory as [36]:

cDC =
dσel
dV0

=

 a

εs
+

λD

εel cosh

(
ZqVI
2kBT

)

−1

. (3.63)

For the simple case VI = 0 we have:

cDC =

(
a

εs
+
λD
εel

)−1

. (3.64)

Differential capacitance at low frequency In order to compare Eq. 3.63 with the
AC small-signal capacitance in the limit ω → 0 we have to do some calculations first. We
calculate the capacitance per unit area (cAC = ytot/jω) at zero frequency from Eq. 3.53

and remininding that κ = 1/λD, β = 2
kBT

qn0

and δ = 0 we obtain:

cAC(ω = 0) =
1

β − δ − (β + δ)α

α + 1

1

εel

qn0

kBTκ
+
a

εs

=

(
a

εs
+ 2

λD
εel

1− e−
L−a
λD

1 + e
−L−a
λD

)−1

. (3.65)

Since Eq. 3.63 is derived assuming that the reference electrode is at infinite distance, we
have to take the limit of cAC in Eq. 3.65 for L→∞, i.e. c∞AC . We obtain:

c∞AC(0) = lim
L→+∞

cAC(0) =

(
a

εs
+ 2

λD
εel

)−1

(3.66)

To compare this expression with Eq. 3.64 we remind that, since the potential difference
between the reference electrode and the counter electrode is zero in DC, only one double-
layer if formed on the SAM/electrolyte interface. On the contrary, in the AC case a double
layer on the top electrode is also present. Therefore, we define ceqAC the AC admittance in
the case with no double layer on the top electrode, which is calculated as:

ceqAC = 2

(
1

c∞AC(0)
+
a

εs

)−1

=

(
a

εs
+
λD
εel

)−1

(3.67)
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Eq. 3.67 proves that ceqAC = cDC(VB = 0), that is, the small signal model for ω → 0 is
perfectly equivalent to the DC differential theory at VB = 0, as expected.

Fig. 3.12 shows the simulated AC small signal capacitance at low frequency, the sim-
ulated DC differential capacitance and the DC differential capacitance according to the
Gouy-Chapman theory (Eq. 3.63) as a function of the applied DC voltage and of the
ion concentration. A thin dielectric Stern layer, with thickness 0.25 nm and permittivity
equal to the bulk electrolyte permittivity (εel ' 80ε0) is attached to the left electrode.
The Gouy-Chapman theory (dashed lines) is very well reproduced by the DC numerical
simulations (triangles up). The capacitance increases for increasing bias because the ex-
cess charge piles up in a progressively thinner layer at the interface as demonstrated in
Fig. 3.12. As expected the small signal and the DC differential capacitances match very
closely in all regimes, except for the case at low salt concentration and large DC bias,
likely due to small residual numerical errors or meshing problems. It has to be emphasized
in fact that, however simple it may appear, the result in Fig. 3.12 is definitely non trivial,
given the huge variation of concentrations over such a wide bias range.
As a matter of fact, it was by meas of curves and comparisons such as those in Fig. 3.12
that we became aware of subtle issues (and sometimes implementation errors) in the ac-
curate calculation of small signal currents in finite difference and finite element models.
More details at this regard are given in Sec. 4.2.1.3. This proves once more, if at all
necessary, the importance of exact analytical reference models.
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Fig 3.12: Comparison between simulations (solid lines) of the DC differential capacitance (tri-
angles up) and the AC small-signal capacitance at very low frequency (triangles down, calculated
using the transformation 3.67) and the Gouy-Chapman model of the DC differential capacitance
(dashed lines) for a system as the one in Fig. 3.1.

Two compact layers Let us consider also the case where a SAM and two compact
layers (one per electrode, both having dielectric constant εCL) are present (Fig. 3.13).
This is obviously the case when the top electrode is not Faradaic. The electrostatic
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potential in the dielectrics is then given by:

V0 =



Vs − VB
xs

z + VB z ∈ [0, xs]

VIB − Vs
xclB − xs

z + Vs z ∈ [xs, xclB]

VT − VIT
L− xclT

z + VIT z ∈ [xclT , L]

The electric field in the electrolyte is:

dV0

dx
=


−
√

8kBTn∞
εel

sinh

(
Zq(V0 − Vref )

2kBT

)
bottom region of the electrolyte√

8kBTn∞
εel

sinh

(
Zq(V0 − Vref )

2kBT

)
top region of the electrolyte

since in the bottom region V0 − Vref > 0, while in the top region V0 − Vref < 0. The
continuity of the dielectric displacement yields:

εs
Vs − VB
xs

= εCL
VIB − Vs
xclB − xs

εCL
VIB − Vs
xclB − xs

= −εel
√

8kBTn∞
εel

sinh

(
Zq(VIB − Vref )

2kBT

)
εel

√
8kBTn∞

εel
sinh

(
Zq(VIT − Vref )

2kBT

)
= εCL

VT − VIT
L− xclT

Using the first of these three equations and enforcing the symmetry of the electrolyte
double layers (that is, Vref = (VIB + VIT ) /2) we obtain:

εs
Vs − VB
xs

= −εel
√

8kBTn∞
εel

sinh

(
Zq(VIB − VIT )

4kBT

)
−εel

√
8kBTn∞

εel
sinh

(
Zq(VIB − VIT )

4kBT

)
= εCL

VT − VIT
L− xclT

(3.68)

Fig 3.13: Sketch of the electric potential across a dielectric/electrolyte system with compact
layers at the bottom and top interfaces and SAM at the bottom interface.
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The SAM surface potential is given by:

Vs = VB +
εCL
εs

xs
L− xclT

(VT − VIT ) .

From the system of equations we also get:

εs
xs

(
εCL
εs

xs
L− xclT

(VT − VIT )

)
=

εCL
xclB − xs

(
VIB − VB −

εCL
εs

xs
L− xclT

(VT − VIT )

)
⇒ (VT − VIT ) =

1

xclB − xs

(
(L− xclT ) (VIB − VB)− εCL

εs
xs (VT − VIT )

)
⇒ VIB = VB + (VT − VIT )

(xclB − xs) εs + xsεCL
(L− xclT ) εs

. (3.69)

Substituting this expression for VIB into the second equation in Eq. 3.68, we solve for VIT
to obtain:

−εel
√

8kBTn∞
εel

sinh

(
Zq(VIB − VIT )

4kBT

)
= εCL

VT − VIT
L− xclT

Alternatively, we can derive a second formulation by writing:

VIT = Vcel + (Vel − VIB)
(L− xclT ) εs

(xclB − xs) εs + xsεCL

and solve for VIB the equation:

εCL
VIB − Vs
xclB − xs

= −εel
√

8kBTn∞
εel

sinh

(
Zq(VIB − VIT )

4kBT

)
This second formulation is useful when there is no compact layer at the top (e.g., because
the contact to the fluid gate is assumed perfectly Faradaic), so that VIT = VT . Eq. 3.68
then becomes: 

εCL
VIB − Vs
xclB − xs

= −εel
√

8kBTn∞
εel

sinh

(
Zq(VIB − VT )

4kBT

)
Vs =

εs (xclB − xs)VB + εCLxsVIB
εs (xclB − xs) + εCLxs

3.1.3.1 System energy

In this section we will calculate the energy in the system. Such a calculation can be useful
to estimate at which distance from the electrode the biomolecule would preferentially be.
A more sophisticated analysis for the case of nanowire FET biosensors is reported in [58].
In the following we assume again that a particle is placed inside the system. An important
information in this case will then be if it exists a preferential position for the particle,
stemming from energetic considerations. It is thus useful at this stage to calculate the
total energy U in the system. The general expression for the energy given V and nm is
[59]:

U =

∫
Ω

[
kBT

Nions∑
m=1

nm log
nm
n∞0m

+
1

2

(
ρ0f +

Nions∑
m=1

Zmqnm

)
V

]
dΩ (3.70)
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where Ω is the domain. The Poisson-Boltzmann equation (Eq. 2.5) holds in DC regime,
so that for Vref = 0 the energy is given by:

U0 =

∫ [
kBT

Nions∑
m=1

n0m log
n0m

n∞0m
+

1

2

(
ρ0f +

Nions∑
m=1

Zmqn0m

)
V0

]
d~x

=

∫ Nions∑
m=1

n0m

[
kBT log

n0m

n∞0m
+

1

2
ZmqV0

]
d~x

= −
∫ Nions∑

m=1

Zmqn
∞
0m exp

(
−ZmqV0

kBT

)
V0

2
d~x (3.71)

In the small-signal AC case with no DC bias applied and Vref = 0 the V and nm to use
in Eq. 3.70 are:

V = <
(
Ṽ exp(jωt)

)
, nm = n∞0m

[
1 +

Zmq

kBT
<
((
φ̃m − Ṽ

)
exp(jωt)

)]
Because of the small signal approximation we can write that:

log
nm
n∞0m
' Zmq

kBT
<
((
φ̃m − Ṽ

)
exp(jωt)

)
.

Substitution in Eq. 3.70 yields:

Ũ =

∫ Nions∑
m=1

nm

[
kBT log

nm
n∞0m

+
1

2
ZmqV

]
d~x

'
∫ Nions∑

m=1

Zmqn
∞
0m

[
1 +

Zmq

kBT
<
((
φ̃m − Ṽ

)
ejωt
)] [
<
((
φ̃m − Ṽ

)
ejωt
)

+
1

2
<
(
Ṽ ejωt

)]
d~x

We now use the fact that we have a symmetric 1:1 electrolyte, so φ1 = φ2 = φ and:
Nions∑
m=1

Zmqn
∞
0m

[
<
((
φ̃m − Ṽ

)
ejωt
)

+
1

2
<
(
Ṽ ejωt

)]
= qn0<

[(
φ̃− 1

2
Ṽ

)
ejωt
]

(Z1 + Z2) = 0

This means that:

Ũ =

∫ 2∑
m=1

Z2
mq

2

kBT
n0<

((
φ̃− Ṽ

)
ejωt
)
<
[(
φ̃− 1

2
Ṽ

)
ejωt
]
d~x

= 2
q2

kBT
n0

∫
<
[(
φ̃− Ṽ

)
ejωt
]
<
[(
φ̃− 1

2
Ṽ

)
ejωt
]
d~x (3.72)

Eqs. 3.71-3.72 are in principle useful to estimate which is the position that a biomolecule
would preferentially occupy under given DC and AC excitation. Since we always work
in the AC small signal regime, in the following we concentrate on the DC energy U0,
assuming that it gives the dominant effect. Fig. 3.14 shows the energy in a 1D cartesian
system without SAM, varying the distance between the particle and the electrode for
two salt concentrations. We immediately note that there is a minimum of the energy,
indicating that, in absence of other forces (for instance, chemical adhesion forces) and
of Brownian motion, the particle would preferentially lie at a certain distance from the
electrode, which is a fraction of the Debye length (10 nm at 1 mM, 3 nm at 10 mM).
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Fig 3.14: Plots of the DC energy (Eq. 3.71) in a 1D cartesian system without SAM, varying
the distance between the particle and the electrode. The dashed horizontal lines represent the
value of the energy when the particle is very far from the electrodes. The particle has thickness
4.5 µm, can be either dielectric with relative permittivity 2.3 or conductive and does not have a
surface charge. The DC potential at the electrode is 100 mV.

3.2 1D AC cartesian electrode-electrolyte with DC bias
Until now we have assumed zero DC bias between the top and bottom electrodes. In the
following we attempt to derive an analytical model which extends previous calculations
by considering the possible presence of a DC bias. All the other assumptions remain the
same.
As will be apparent in the following, this effort has unfortunately remained incomplete
due to insurmountable technical difficulties, which prevented us to obtain a reference
analytical solution for this important case. Fortunately, we will see in Chaps. 5 - 6
that the simple model derived in Sec. 3.1 is adequate to interpret the results of our case
studies, despite the fact that in some conditions a small DC bias is applied to the system
electrodes.

To develop the calculation, we now use the Poisson-Nernst-Planck formulation with
quasi-potentials. The equations are:

ε
d2Ṽ

dx2
+
Z2q2

kBT

(
n0+

(
φ̃+ − Ṽ

)
+ n0−

(
φ̃− − Ṽ

))
= 0

Zqµ
d

dx

(
n0+

dφ̃+

dx

)
− jωn0+

Zq

kBT

(
φ̃+ − Ṽ

)
= 0

Zqµ
d

dx

(
n0−

dφ̃−
dx

)
− jωn0−

Zq

kBT

(
φ̃− − Ṽ

)
= 0

where the suffix + and − refer to the two symmetric ionic species. We can rewrite these
equations as:

ε
d2Ṽ

dx2
+
Z2q2

kBT

(
n0+

(
φ̃+ − Ṽ

)
+
n2
∞

n0+

(
φ̃− − Ṽ

))
= 0

Zqµ
d

dx

(
n0+

dφ̃+

dx

)
− jωn0+

Zq

kBT

(
φ̃+ − Ṽ

)
= 0
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Zqµ
d

dx

(
n2
∞

n0+

dφ̃−
dx

)
− jω n

2
∞

n0+

Zq

kBT

(
φ̃− − Ṽ

)
= 0

where n0+ = n∞

[(
α e

x−a
λD − 1

)
/
(
α e

x−a
λD + 1

)]2

. We rewrite the system in compact form
as:

d2Ṽ

dx2
+
κ2
D

2

(
δ(x)

(
φ̃+ − Ṽ

)
+

1

δ(x)

(
φ̃− − Ṽ

))
= 0 (3.73a)

d

dx

(
δ(x)

dφ̃+

dx

)
− κ2

ωδ(x)
(
φ̃+ − Ṽ

)
= 0 (3.73b)

d

dx

(
1

δ(x)

dφ̃−
dx

)
− κ2

ω

1

δ(x)

(
φ̃− − Ṽ

)
= 0 (3.73c)

where κ2
D =

1

λ2
D

=
2n∞Z

2q2

εkBT
, κ2

ω = j
ω

µkBT
= j

ω

D
and δ(x) =

[(
α e

x−a
λD − 1

)
/
(
α e

x−a
λD + 1

)]2

.

A possible way of solving this system of equations is reported in Sec. 3.A.5. A different
solution method, which could give results easier to analyze, is to expand the unknown
functions into spatial harmonics of the form ũ =

∫
ũκ exp (κx) dκ where ũ ∈

[
Ṽ , φ̃+, φ̃−

]
and we used the notation ũκ for the unknown function ũ in the κ-space (which is then a
function of κ and not x). We can then rewrite Eqs. 3.73 as:

κ2Ṽκ +
κ2
D

2

(
δ(x)

(
φ̃κ,+ − Ṽκ

)
+

1

δ(x)

(
φ̃κ,− − Ṽκ

))
= 0 (3.74a)

κ2φ̃κ,+ + κ η(x)φ̃κ,+ − κ2
ω

(
φ̃κ,+ − Ṽκ

)
= 0 (3.74b)

κ2φ̃κ,− − κ η(x)φ̃κ,− − κ2
ω

(
φ̃κ,− − Ṽκ

)
= 0 (3.74c)

where we have now defined:

η(x) =
1

δ(x)

dδ(x)

dx
=

4α

λD

e
x−a
λD(

α e
x−a
λD + 1

)(
α e

x−a
λD − 1

)
The matrix form of Eq. 3.74 is Au = 0, where:

u =

 Ṽφ̃+

φ̃−

 , A =

κ
2 − κ2

D

2

(
δ(x) +

1

δ(x)

)
κ2
D

2
δ(x)

κ2
D

2δ(x)
κ2
ω κ2 + κ η(x)− κ2

ω 0
κ2
ω 0 κ2 − κ η(x)− κ2

ω


Non-zero solutions of this system exist for det(A) = 0, so that we get the characteristic
equation:

κ

κ5 −
(

2κ2
ω +

κ2
D

2

(
δ +

1

δ

)
+ η2

)
κ3 +

κ4
ωδ +

κ2
D

2

(
1 + δ2

) (
κ2
ω + η2

)
δ

κ+

κ2
D

2
κ2
ω

(
δ2 − 1

)
η

δ

 = 0

This equation has in general 6 solutions which we denote κl, l ∈ [1, .., 6]. The only one
that can be easily calculated is κ1 = 0. In general, all the other solutions are functions of



CHAPTER 3. ANALYTICAL MODELS FOR REFERENCE SYSTEMS 57

x, i.e. κl = κl(x). Because the admissible values for κ are only 6 at each x, the spatial
harmonics have to be defined as:

ũ =
6∑
l=1

ũl exp (κl(x)x)

where we have simplified the notation defining ũl , ũκl . To find the constants ũl we can
first make use of Eqs. 3.74b - 3.74c and write:

φ̃l,+ = − κ2
ω

κ2
l + κlη − κ2

ω

Ṽl (3.75)

φ̃l,− = − κ2
ω

κ2
l − κlη − κ2

ω

Ṽl (3.76)

The boundary conditions:
Ṽ

dφ̃+

dx

dφ̃−
dx


0

=

ṼB0
0

 and


Ṽ

dφ̃+

dx

dφ̃−
dx


L

=

ṼT0
0



provide us the equations to close the system and to find the constants ũl. More explicitly,
if we assume the constants Ṽl to be independent of x, we have:

dφ̃+

dx
=

d

dx

(
6∑
l=1

φ̃l,+e
κl(x)x

)
=

6∑
l=1

(
dφ̃l,+
dx

eκlx + φ̃l,+

(
κl +

dκl
dx

x

)
eκlx

)

=
6∑
l=1

κ2
ωVl

κ2
l + κlη − κ2

ω

(
1

κ2
l + κlη − κ2

ω

(
(κl + η)

dκl
dx

+ κl
dη

dx

)
−
(
κl +

dκl
dx

x

))
eκlx

dφ̃−
dx

=
6∑
l=1

κ2
ωVl

κ2
l − κlη − κ2

ω

(
1

κ2
l − κlη − κ2

ω

(
(κl − η)

dκl
dx
− κl

dη

dx

)
−
(
κl +

dκl
dx

x

))
eκlx

where the boundary conditions entail:
6∑
l=1

Ṽl = ṼB

6∑
l=1

Ṽl exp (κl(L)L) = ṼT

.

3.3 AC spherical electrode-electrolyte system
1D cartesian models are extremely useful to understand the fundamentals of high fre-
quency sensor response. In particular, they allowed us to clarify the behaviour of AC
double layers and to identify the existence of two cut-off frequencies relevant to sensor
operation.
However, analytes have complex three dimensional shapes that are difficult to grasp in
cartesian coordinates. In this section we develop equations in spherical coordinates which
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describe the model systems depicted in Fig. 3.15. Such systems provide rough approxima-
tions to the capacitive nanoelectrode biosensor for the detection of spherical biomolecules,
which is the main objective of this dissertation. As we will see and discuss in more detail
in Chap. 5, spherical particles are a good approximation of a wide range of biologically-
relevant entities, such as cells, viruses and globular proteins. We will also show that the
inclusion of surface charges on the particle provides only quantitative but not qualitative
deviations to the predictions of simple analytical models (see for instance Sec. 5.4).
In particular, the first system we consider (Fig. 3.15a) is meant to mimic detection in a
constant electric field, therefore the approximation is more suited to the case when the
biomolecules are much smaller than the electrodes. This is the most relevant case in a
biosensor and, as we will see, this model represents a situation which is closer to the
nanoelectrode array. For all these reasons we will consider this model first and denote it
as 1st order model.
On the other hand, the second system (Fig. 3.15b) mimics more accurately the detection
of very large particles. Due to the approximations of the model, however, the results ob-
tained in this case are of less general applicability. We will denote it as 0th order model.
At the end of this section we show and compare results obtained with the different models
developed hereby.

We start again with a symmetrical 1:1 electrolyte, no DC bias and ideally polarizable
electrodes (as in Sec. 3.1), and solve the equations in spherical coordinates, with different
assumptions on the excitation in order to derive both a 1D in the radial coordinate and a
2D in radial and angular coordinates model. The model equations are (see also Eqs. 3.1):

−εel
q
∇2Ṽ = Z1ñ1 + Z2ñ2

jωñ1 = Z1qµ1n01∇2Ṽ +D1∇2ñ1

jωñ2 = Z2qµ2n02∇2Ṽ +D2∇2ñ2

(3.77)

Following the same procedure of Sec. 3.1 we can substitute the first equation in the other
ones to obtain: 

∇2Ṽ = − q

εel
(Z1ñ1 + Z2ñ2)

D1∇2ñ1 = Z1qµ1n01
q

εel
(Z1ñ1 + Z2ñ2) + jωñ1

D2∇2ñ2 = Z2qµ2n02
q

εel
(Z1ñ1 + Z2ñ2) + jωñ2

We decouple the equations, as previously in Sec. 3.1.1:{
∇2v1 = κ2

1v1

∇2v2 = κ2
2v2

,


κ2

1 =
a1 + b2 +

√
(a1 − b2)2 + 4a2b1

2

κ2
2 =

a1 + b2 −
√

(a1 − b2)2 + 4a2b1

2

where: 

a1 =
1

D1

(
Z2

1q
2

εel
µ1n01 + jω

)
=
ξ1 + jω

D1

a2 =
Z1Z2q

2

εel

1

D1

µ1n01 =
ξ12

D1

b1 =
Z1Z2q

2

εel

1

D2

µ2n02 =
ξ21

D2

b2 =
1

D2

(
Z2

2q
2

εel
µ2n02 + jω

)
=
ξ2 + jω

D2
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(a) 1st order (b) 0th order

Fig 3.15: Sketches of the 1st and 0th order spherical models. In the 1st order model the
approximation of two plane parallel electrodes at R� rp is highlighted.

If we assume a symmetric electrolyte with Z1 = −Z2 = 1, D1 = D2 = D, µ1 = µ2 = µ,
n01 = n02 = n0 we find:

a1 =
ξ1 + jω

D

a2 = −ξ1

D
b1 = a2

b2 = a1

=⇒


κ2

1 = a1 + |a2| =
ξ + jω

D

κ2
2 = a1 − |a2| =

jω

D

with the usual definition where ξ = 2q2µn0/εel = σel/εel is the electrolyte’s dielectric
relaxation cut-off frequency.

Alternatively, and consistently with Eqs. 2.30-2.35, we can start from Eqs. 3.77 in the
potential and quasi-potentials and, using the same parameters as before, we obtain:

∇2Ṽ = −
(
ξ1

D1

(
φ̃1 − Ṽ

)
+

ξ2

D2

(
φ̃2 − Ṽ

))
∇2φ̃1 =

jω

D1

(
φ̃1 − Ṽ

)
∇2φ̃2 =

jω

D2

(
φ̃2 − Ṽ

) (3.78)

We can then write the system as:

∇2Ũ = BŨ ⇐⇒ ∇2

 Ṽφ̃1

φ̃2

 =


ξ1

D1

+
ξ2

D2

− ξ1

D1

− ξ2

D2

− jω
D1

jω

D1

0

− jω
D2

0
jω

D2


 Ṽφ̃1

φ̃2

 (3.79)

As in Sec. 3.1, in order to diagonalize this equation we have to find the transformation T,
which is the matrix of the eigenvectors, such that Ũ = Tv, where v are the diagonalized
unknown functions. The eigenvalues κ2 are the solution of the characteristic equation:(

κ2 − ξ1

D1

− ξ2

D2

)(
κ2 − jω

D1

)(
κ2 − jω

D2

)
−
(
ξ1

D1

)
jω

D1

(
κ2 − jω

D2

)
−
(
ξ2

D2

)(
κ2 − jω

D1

)
jω

D2

= 0 (3.80)
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For the symmetric electrolyte this yields:

κ2
1 =

ξ + jω

D
, κ2

2 =
jω

D
, κ2

3 = 0 (3.81)

or, being τ = 1/ξ the electrolyte relaxation time and λD the Debye length:

κ2
1 =

1 + jωτ

λ2
D

, κ2
2 =

jωτ

λ2
D

, κ2
3 = 0 (3.82)

with the eigenvectors Tl:

BTl = κ2
lTl =⇒ T1 =

−
ξ

jω
1
1

 , T2 =

 0
−1
1

 , T3 =

1
1
1


The system is then diagonalized by defining the matrices:

T =

−
ξ

jω
0 1

1 −1 1
1 1 1

 , Λ =

κ2
1 0 0

0 κ2
2 0

0 0 κ2
3

 . (3.83)

We finally have to solve the decoupled equations:

∇2vl = κ2
l vl (3.84)

where the vl are the components of vector v.
This second formulation is more convenient for the solution of the system of equations,

so we will use it throughout this section.

3.3.1 1st order model - electrolyte only

Assuming no variation along the angular component ϕ (the planar one, see Fig. 3.15b),
we have:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
=

∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

1

r2 tan θ

∂

∂θ
.

Eq. 3.84 takes the form:

1

r2

∂

∂r

(
r2∂vl
∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂vl
∂θ

)
= κ2

l vl

where the κl (l = 1..3) come from Eq. 3.81. Using the separation of variables vl(r, θ) =
Rl(r)Θl(θ), dividing by RlΘl and multiplying by r2 we obtain:

r2∂
2Rl

∂r2
+ 2r

∂Rl

∂r
− κ2

l r
2Rl = α2

lRl

∂2Θl

∂θ2
+

1

tan θ

∂Θl

∂θ
= −α2

l Θl
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where αl is an integration parameter. The solution is given in terms of spherical Bessel
functions (jn, yn) and Legendre polynomials (Pn, Qn) of order n:Rl = c′l y(−1−

√
1+4α2

l

)
/2

(−jκlr) + d′l j(−1−
√

1+4α2
l

)
/2

(−jκlr)
Θl = elP(−1+

√
1+4α2

l

)
/2

(cos θ) + flQ(−1+
√

1+4α2
l

)
/2

(cos θ)

where c′l, d′l, el and fl are integration constants. We assume in the following that the
angular part is given by Θl = cos θ, which means that α2

l = 2 and fl = 0. This is the lowest
order choice which gives a non-trivial solution. In particular, the potential distribution
around r = 0 resembles the one due to two infinite parallel conducting plates. Thus, we
have:

vl =
(
c′l y−2(−jκlr) + d′l j−2(−jκlr)

)
cos θ

=

(
cl exp (κlr)

(
1

κlr
− 1

κ2
l r

2

)
+ dl exp (−κlr)

(
1

κlr
+

1

κ2
l r

2

))
cos θ

where cl = (jc′l − d′l)/2, dl = (jc′l + d′l)/2 and we substituted the explicit expression of
y−2(−jκlr) and j−2(−jκlr). Since r = 0 is part of the domain of interest, we have to set
d′l = 0 or equivalently cl = dl for a non-diverging solution. In the end:

yl = c′l y−2(−jκlr) cos θ = cl

(
exp (κlr)

(
1

κlr
− 1

κ2
l r

2

)
+ exp (−κlr)

(
1

κlr
+

1

κ2
l r

2

))
cos θ

Note that for κ3 = 0:

y3 =
(
c3r

j
2(j−

√
−1−4α2) + d3r

j
2(j+

√
−1−4α2)

)
cos θ =

(
c3r +

d3

r2

)
cos θ

Since r = 0 is part of the domain of interest, we deduce d3 = 0. As in the 1D cartesian
model (Sec. 3.1), the eigenvalue κ3 corresponds to the solution of the linear Laplace
equation, as would be the case if the system was made of a dielectric instead of the
electrolyte. This represents a long-range solution in the absence of electrical double layers
or, equivalently, the solution in the high frequency limit.
Using Eq. 3.83, we can then write the solution as:

Ṽ (r, θ) =

(
− ξ

jω
c′1 y−2(−jκ1r) + c3r

)
cos θ (3.85a)

φ̃1(r, θ) =
(
c′1 y−2(−jκ1r)− c′2 y−2(−jκ2r) + c3r

)
cos θ (3.85b)

φ̃2(r, θ) =
(
c′1 y−2(−jκ1r) + c′2 y−2(−jκ2r) + c3r

)
cos θ (3.85c)

Boundary conditions We assume Neumann boundary conditions on the current on
the entire border, because of the ideally polarizable electrodes, and to have a Dirichlet
boundary condition on the voltage Ṽ (R, θ) = Ṽ0 cos θ where R is the radius of the domain.
Considering Fig. 3.15 again, it is clear that such boundary condition mimics for r � R the
presence of two equipotential plates above and below the spherical domain. Remembering
the ionic current expression 2.37b:

~̃Jm = −Z2
mq

2µmn0m∇φ̃m (3.86)
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we can then write:


−Z2

1q
2µ1n01∇φ̃1

∣∣∣
R,θ
· r̂ = 0

−Z2
2q

2µ2n02∇φ̃2

∣∣∣
R,θ
· r̂ = 0

Ṽ (R, θ) = Ṽ0 cos θ

. (3.87)

The calculations of the integration constants are reported in Sec. 3.A.6 in the chapter
appendix. Since the constant c′2 vanishes, we define κ = κ1. So in the end we obtain:

Ṽ (r, θ) =

(
2ξ

ω
c′1 y−2(−jκr) + c3r

)
cos θ (3.88a)

φ̃1(r, θ) =

(
2

j
c′1 y−2(−jκr) + c3r

)
cos θ (3.88b)

φ̃2(r, θ) =

(
2

j
c′1 y−2(−jκr) + c3r

)
cos θ = φ̃1 (3.88c)

which can be alternatively put in the form:

Ṽ (r, θ) =

(
−ξc1

jω

(
exp (κr)

(
1

κr
− 1

κ2r2

)
+ exp (−κr)

(
1

κr
+

1

κ2r2

))
+ c3r

)
cos θ

φ̃1(r, θ) =

(
c1

(
exp (κr)

(
1

κr
− 1

κ2r2

)
+ exp (−κr)

(
1

κr
+

1

κ2r2

))
+ c3r

)
cos θ

φ̃2(r, θ) = φ̃1

(3.89a)

(3.89b)

(3.89c)

The potential profiles computed according to Eq. 3.89 are reported in Fig. 3.16. We
immediately see that the potential profiles are very similar to the ones reported in Fig.
3.5 for the cartesian system and that a linear term in r independent of κ exists also in
this case.
The electric field is:

~̃E(r, θ) = −∇Ṽ = −
(

2ξ

ω
c1

∂y−2(−jκr)
∂r

+ c3

)
cos θ r̂ +

(
2ξ

ω
c1 y−2(−jκr) + c3r

)
sin θ

r
θ̂

=

(
2ξ

jω
c1
−2κr cosh(κr) + (2 + κ2r2) sinh(κr)

κ2r3
− c3

)
cos θ r̂

−
(

2ξ

jω
c1
κr cosh(κr)− sinh(κr)

κ2r3
− c3

)
sin θ θ̂

whereas current density is given by:

~̃J = jωεel
~̃E −

Nions∑
m=1

Z2
mq

2µmn0m∇φ̃m . (3.90)
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Fig 3.16: Real and imaginary parts of the normalized potential profile Ṽ /Ṽ0 computed by
means of Eq. 3.89 along r with θ = 0 and R = 100 nm at three different frequencies, that is,
below fs, at fs and above fc. Note the penetration of the field at high frequency. The potential
profiles are very similar to the ones in Fig. 3.5.

Because of the boundary conditions, we know that the ionic current density on the border
is zero; therefore, the contact current is given only by displacement current:

Ĩ = −
∫

~̃J(R, θ) · r̂dSr = −jωεel
∫

~̃E · r̂ dSr = −jωεel
∫ 2π

0

dφ

∫ π/2

0

dθ ~̃E(R, θ) · r̂ R2 sin θ

= −2πR2jωεel

(
2ξ

jω
c1
−2κR cosh(κR) + (2 + κ2R2) sinh(κR)

κ2R3
− c3

)∫ π/2

0

cos θ sin θ dθ

= −πR2jωεel

(
2ξ

jω
c1
−2κR cosh(κR) + (2 + κ2R2) sinh(κR)

κ2R3
− c3

)
= πRjωεel

−2κR cosh(κR) + (2 + κ2R2) sinh(κR)

κR(ξ − 2jω) cosh(κR) + (−ξ + (2 + κ2R2) jω) sinh(κR)
(ξ + jω) Ṽ0

where dSr denotes the surface element in direction r̂ and we have integrated on the half
bottom sphere to have the current on one contact. Note also that we added a − sign,
which is necessary to have an inner orientation for the current on the electrode. This
expression can be rewritten in terms of exponential functions by multiplying numerator
and denominator by exp(−ρ0) where ρ0 = κR:

Ĩ = πRjωεel
−2ρ0 (1 + exp(−2ρ0)) +

(
2 + ρ2

0

)
(1− exp(−2ρ0))

ρ0(ξ − 2jω) (1 + exp(−2ρ0)) +
(
−ξ +

(
2 + ρ2

0

)
jω
)

(1− exp(−2ρ0))
(ξ + jω) Ṽ0

(3.91)

The current Ĩ will be shown in Sec. 3.3.5. Eq. 3.91 provides an explicit expression for the
admittance Y = Ĩ/Ṽ0 of the system.

Case |κR| � 1 Since, as usual, the screening length 1/κ is typically much thinner than
the typical dimension of the system, we can approximate Eq. 3.91 for |κR| = |ρ0| � 1,
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and then write:

c′1 ' −2ω exp(−ρ0)
ρ0

ξ + ρ0jω
Ṽ0

c3 '
jω

R

ρ0

ξ + ρ0jω
Ṽ0

In this way:

Ṽ '
(
−j2ξ exp(−ρ0)y−2(−jρ) +

jω

R
r

)
ρ0

ξ + ρ0jω
Ṽ0 cos θ

=

(
ξ

(
exp (ρ− ρ0)

(
1

κr
− 1

κ2r2

)
+ exp (−ρ− ρ0)

(
1

κr
+

1

κ2r2

))
+ c3r

)
cos θ

φ̃1 = φ̃2 '
(
−2ω exp(−ρ0)y−2(−jρ) +

jω

R
r

)
ρ0

ξ + ρ0jω
Ṽ0 cos θ

=

(
c1

(
exp (κr)

(
1

κr
− 1

κ2r2

)
+ exp (−κr)

(
1

κr
+

1

κ2r2

))
+ c3r

)
cos θ

The current is then:

Ĩ ' πRjωεel
−2ρ0 + 2 + ρ2

0

ρ0(ξ − 2jω)− ξ + (2 + ρ2
0) jω

(ξ + jω) Ṽ0

' πRjωεel
ρ0

ξ + ρ0jω
(ξ + jω) Ṽ0 (3.92)

3.3.2 1st order model with particle

We now assume that the region 0 < r < rp is dielectric with complex permittivity εp =
εp− jσp/ω: this region represents a particle or biomolecule. Now we cannot disregard the
solution with j−2 in the electrolyte, since the point r = 0 is not part of the domain and
therefore the solution cannot diverge. Since we use the complex permittivity, it can be
either dielectric or conductive or of intermediate physical properties. As a result:

yl =
(
c′l y−2(−jκlr) + d′l j−2(−jκlr)

)
cos θ

=

(
cl exp (κlr)

(
1

κlr
− 1

κ2
l r

2

)
+ dl exp (−κlr)

(
1

κlr
+

1

κ2
l r

2

))
cos θ

This means that the solution in the electrolyte is:

Ṽ =

(
− ξ

jω

(
c1 exp (κ1r)

(
1

κ1r
− 1

κ2
1r

2

)
+ d1 exp (−κ1r)

(
1

κ1r
+

1

κ2
1r

2

))
+ c3r +

d3

r2

)
cos θ

(3.93a)

φ̃1 =

(
c1 exp (κ1r)

(
1

κ1r
− 1

κ2
1r

2

)
+ d1 exp (−κ1r)

(
1

κ1r
+

1

κ2
1r

2

)

− c2 exp (κ2r)

(
1

κ2r
− 1

κ2
2r

2

)
− d2 exp (−κ2r)

(
1

κ2r
+

1

κ2
2r

2

)
+ c3r +

d3

r2

)
cos θ (3.93b)

φ̃2 =

(
c1 exp (κ1r)

(
1

κ1r
− 1

κ2
1r

2

)
+ d1 exp (−κ1r)

(
1

κ1r
+

1

κ2
1r

2

)

+ c2 exp (κ2r)

(
1

κ2r
− 1

κ2
2r

2

)
+ d2 exp (−κ2r)

(
1

κ2r
+

1

κ2
2r

2

)
+ c3r +

d3

r2

)
cos θ (3.93c)
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whereas inside the particle the solution is:

Ṽ =

(
e1r +

f1

r2

)
cos θ = e1r cos θ (3.94)

because the point r = 0 is part of the domain, and thus f1 = 0. The gradients of the quasi
potentials are:

∇φ̃1 · r̂ =

(
c1 exp (κ1r)

2 + κ1r (−2 + κ1r)

κ2
1r

3
+ d1 exp(−κ1r)

−2− κ1r (2 + κ1r)

κ2
1r

3

− c2 exp (κ2r)
2 + κ2r (−2 + κ2r)

κ2
2r

3
− d2 exp(−κ2r)

−2− κ2r (2 + κ2r)

κ2
2r

3
+ c3 − 2

d3

r3

)
cos θ

∇φ̃2 · r̂ =

(
c1 exp (κ1r)

2 + κ1r (−2 + κ1r)

κ2
1r

3
+ d1 exp(−κ1r)

−2− κ1r (2 + κ1r)

κ2
1r

3

+ c2 exp (κ2r)
2 + κ2r (−2 + κ2r)

κ2
2r

3
+ d2 exp(−κ2r)

−2− κ2r (2 + κ2r)

κ2
2r

3
+ c3 − 2

d3

r3

)
cos θ

and the boundary conditions are:
−Z2

1q
2µ1n01∇φ̃1

∣∣∣
R,θ
· r̂ = 0

−Z2
2q

2µ2n02∇φ̃2

∣∣∣
R,θ
· r̂ = 0

Ṽ (R, θ) = Ṽ0 cos θ

(3.95)

Subtracting the first two equations immediately tells us that c2 = d2 = 0. The system of
equations is closed by adding the continuity conditions:

Ṽ (r+
p , θ) = Ṽ (r−p , θ)

εel
dṼ

dr

∣∣∣∣∣
r+p

= εp
dṼ

dr

∣∣∣∣∣
r−p

−Z2
1q

2µ1n01∇φ̃1

∣∣∣
rp,θ
· r̂ = 0

where we used the fact that φ̃1 = φ̃2, so that the additional equation for φ̃2 would be
redundant. By solving these equations we derive the constants, as reported in Sec. 3.A.7.

The electric field in the electrolyte is:

~̃E = −∇Ṽ = −∇
(
− ξ

jω

(
c1 exp (κr)

(
1

κr
− 1

κ2r2

)
+ d1 exp (−κr)

(
1

κr
+

1

κ2r2

))
+ c3r +

d3

r2

)
cos θ

=

(
c1
ξ

jω
exp (κ1r)

2 + κ1r (−2 + κ1r)

κ2
1r

3
+ d1

ξ

jω
exp(−κ1r)

−2− κ1r (2 + κ1r)

κ2
1r

3
− c3 + 2

d3

r3

)
cos θ r̂

+

(
ξ

jω

(
c1 exp (κ1r)

(
1

κ1r
− 1

κ2
1r

2

)
+ d1 exp (−κ1r)

(
1

κ1r
+

1

κ2
1r

2

))
− c3r −

d3

r2

)
sin θ θ̂ .

The current on the half bottom sphere is equal to:

Ĩ = −
∫

~̃J(R, θ) · r̂dSr = −jωεel
∫

~̃E · r̂ dSr = −jωεel
∫ 2π

0
dφ

∫ π/2

0
dθ ~̃E(R, θ) · r̂ R2 sin θ

= −πR2jωεel

(
c1
ξ

jω
exp (κR)

2 + κR (−2 + κR)

κ2R3
+ d1

ξ

jω
exp(−κR)

−2− κR (2 + κR)

κ2R3
− c3 + 2

d3

R3

)
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By setting ρ = κr, so that ρp = κrp and ρ0 = κR and assuming that the system dimensions
are large on the scale of 1/κ (so that |ρ0| � 1) we obtain:

Ĩ = −πRεel
(
c1ξ exp (ρ0)

2 + ρ0 (−2 + ρ0)

ρ2
0

+ d1ξ exp(−ρ0)
−2− ρ0 (2 + ρ0)

ρ2
0

− c3jωR + 2jω
d3

R2

)

' −πRεel
(
c1ξ exp (ρ0)− d1ξ exp(−ρ0)− c3jωR + 2jω

d3

R2

)
(3.96)

Large particle We assume now that also the particle or biomolecule is very large on
the scale of 1/κ, so that |ρp| � 1. The constants take the form reported in Sec. 3.A.7.

If we further assume that ρ0 ≈ ρp, which implies c1 exp (ρ0)→ 0 and that the particle
is at large distance from the electrodes, we can then simplify the expression of the current
(see Sec. 3.A.7). Morevoer, if we also assume that the domain is much larger than the
particle’s volume then R3 � r3

p and:

Ĩ ' πRω2εel
ρ0

ξ + ρ0jω
ρp

2 (εp + εel) ξ + (εp + 2εel)jω

(εp + 2εel)ρpjω + 2(εp + εelρp)ξ
Ṽ0 (3.97)

We can now consider two limiting cases. In the first one, representative of dielectric
particles, |εp| � εel, so that:

Ĩ ' πRω2εel
ρ0

ξ + ρ0jω
ρp

ξ + jω

ρpjω + (εp/εel + ρp)ξ
Ṽ0 (3.98)

The second one, representative of conductive particles, |εp| ' σp/ω � εel, so that:

Ĩ ' πRω2εel
ρ0

ξ + ρ0jω
ρp

2ξ + jω

ρpjω + 2ξ
Ṽ0 (3.99)

The admittance Y = Ĩ/Ṽ0 calculated according to the above equations is shown in Sec.
3.3.5. By subtracting Eq. 3.92 to Eq. 3.97 we can then derive the admittance (hence, the
capacitance) change due to the introduction of a biomolecule in the system. = [∆Y/ω]
represents the useful signal of nanoelectrode biosensors as those described in Chap. 5.

3.3.3 0th order model - electrolyte only

The system considered so far has the advantage of describing in a simple but realistic way
the response of a capacitive biosensor to particles that are much smaller than the device
dimensions. However, if the particle dimensions are larger than the electrodes, this model
may be inadequate, since by construction it assumes that the entire surface of the particle
interacts with the electrodes.
For this reason, in this section we derive an alternative model with spherical symmetry
but for a slightly different geometry, as shown in Fig. 3.15b. It consists of an electrode of
(large) radius Ro and a smaller electrode of radius Ri, both ideally polarizable and with
the centers at r = 0, and an electrolyte in between. This configuration resembles the
physical system studied in cartesian coordinates in Sec. 3.1.
The solution is given by Eqs. 3.84 above, namely:Rl = c′l y(−1−

√
1+4α2)/2(−jκir) + d′l j(−1−

√
1+4α2)/2(−jκir)

Θl = elP(−1+
√

1+4α2)/2(cos θ) + flQ(−1+
√

1+4α2)/2(cos θ)
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Differently from the previous section, here we assume invariance with respect to θ, so that
α = 0. The solutions represent a 0-th order model, preserve perfectly the radial symmetry
and read:

vl = c′l y−1(−jκlr) + d′i j−1(−jκlr) =
cl exp (κlr) + dl exp (−κlr)

κlr
, κl 6= 0

v3 = c3 +
d3

r
, κ3 = 0

where cl = (jd′l + c′l)/2, dl = (jd′l − c′l)/2. The potential and ion quasi-potentials are:

Ṽ = − ξ

jω
v1 + v3 = − ξ

jω

c1 exp (κ1r) + d1 exp (−κ1r)

κ1r
+ c3 +

d3

r

φ̃1 = v1 − v2 + v3 =
c1 exp (κ1r) + d1 exp (−κ1r)

κ1r
− c2 exp (κ2r) + d2 exp (−κ2r)

κ2r
+ c3 +

d3

r

φ̃2 = v1 + v2 + v3 =
c1 exp (κ1r) + d1 exp (−κ1r)

κ1r
+
c2 exp (κ2r) + d2 exp (−κ2r)

κ2r
+ c3 +

d3

r

Note that the solution includes terms exponentially decaying with r and terms with lower
spatial decay as 1/r.
The gradients are then:

∇Ṽ =

[
− ξ

jω

(
c1 exp (κ1r)

κ1r − 1

κ1r2
− d1 exp (−κ1r)

κ1r + 1

κ1r2

)
− d3

r2

]
r̂

∇φ̃1 =

[
c1 exp (κ1r)

κ1r − 1

κ1r2
− d1 exp (−κ1r)

κ1r + 1

κ1r2
− c2 exp (κ2r)

κ2r − 1

κ2r2

+ d2 exp (−κ2r)
κ2r + 1

κ2r2
− d3

r2

]
r̂

∇φ̃2 =

[
c1 exp (κ1r)

κ1r − 1

κ1r2
− d1 exp (−κ1r)

κ1r + 1

κ1r2
+ c2 exp (κ2r)

κ2r − 1

κ2r2

− d2 exp (−κ2r)
κ2r + 1

κ2r2
− d3

r2

]
r̂ .

The boundary conditions are:

−Z2
1q

2µ1n01∇φ̃1

∣∣∣
Ri,θ
· r̂ = 0

−Z2
2q

2µ2n02∇φ̃2

∣∣∣
Ri,θ
· r̂ = 0

−Z2
1q

2µ1n01∇φ̃1

∣∣∣
Ro,θ
· r̂ = 0

−Z2
2q

2µ2n02∇φ̃2

∣∣∣
Ro,θ
· r̂ = 0

Ṽ (Ri) = Ṽ0

Ṽ (Ro) = 0

(3.100)

Solving this system of equations yields the coefficients, which are reported in Sec. 3.A.8.
Because of the boundary conditions, we know that the ionic current density on the border
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Fig 3.17: Real and imaginary parts of the normalized potential profile Ṽ /Ṽ0 along r with
Ri = 75 nm and Ro = Ri + 100 nm at three different frequencies, that is, below fs, at fs
and above fc. Note the penetration of the field at high frequency. The potential profiles are
qualitatively similar to the ones in Figs. 3.5 - 3.16.

is zero; therefore, the contact current is given only by displacement current:

Ĩ =

∫
~̃J(Ri, θ) · r̂dSr = jωεel

∫
~̃E · r̂ dSr = jωεel

∫ 2π

0

dφ

∫ π

0

dθ ~̃E(Ri, θ) · r̂ R2
i sin θ

= −2πR2
i jωεel

[
− ξ

jω

(
c1 exp (κRi)

κRi − 1

κR2
i

− d1 exp (−κRi)
κRi + 1

κR2
i

)
− d3

R2
i

]
=
(

2πRiRoṼ0εel
(
−(1 + ρi)(−1 + ρo) + α2(−1 + ρi)(1 + ρo)

)
jω(ξ + jω)

)
/(

Riξ
(
1 + α2(−1 + ρi) + ρi − 4αρo

)
+Ro

(
−1 + ρo + α2(1 + ρo)

)
(ξ + jω)

+Ri

(
1 + ρi − (2 + ρi)ρo + ρ2

o + α2(−1 + ρi − ρo)(1 + ρo)
)
jω

)
where we have defined ρi = κRi, ρo = κRo and α = exp(ρi − ρo).

The potential profiles in the system are reported in Fig. 3.17 with Ri = 75 nm and
Ro = Ri + 100 nm. We note similar behaviours as in Figs. 3.5 - 3.16, but in this case the
high frequency profile is dependent on 1/r and not on r.

Large radius inner electrode If the inner electrode has a large radius (ρi = κRi � 1),
but still much smaller than the outer electrode (ρi � ρo, α → 0), then we can further
simplify the solution as shown in Sec. 3.A.8.
The current is then expressed as:

Ĩ = 2πR2
i jωεel

[
− ξ

jω

(
c1 exp (κRi)

κRi − 1

κR2
i

− d1 exp (−κRi)
κRi + 1

κR2
i

)
− d3

R2
i

]
' 2πR2

i jωεel

[
− ξ

jω

(
ρojω

(
e−ρoρi − e−2ρoρo

)
− ρojω

(
e−ρoρi − ρo

))
+
Rojω

(
−ρiρo + e−2ρoρiρo

)
Ri

]
Ṽ0

η

' −2πR2
i jωεel

[
ξρ2
o +

Roρiρo
Ri

jω

]
Ṽ0

η
= −2πRijωεel

ρi
ξ + ρijω

(ξ + jω) Ṽ0 (3.101)
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3.3.4 0th order model with particle

We now assume that the region rp < r < rP is dielectric with complex permittivity
εp = εp − jσp/ω, as depicted in Fig. 3.15. This approximation mimics a physical system
where the dimension of the particle are larger than the electrodes dimensions. To some
extent this is the case we will examine experimentally in Sec. 5.3, where we show the
response of a 75 nm radius electrode to a particle with diameter ≥ 5 µm. Following this
approximation, we can say that in the electrolyte regions it still holds that:

Ṽ = − ξ

jω

c1i exp (κr) + d1i exp (−κr)
κr

+ c3i +
d3i

r
(3.102)

φ̃ =
c1i exp (κr) + d1i exp (−κr)

κr
+ c3i +

d3i

r
(3.103)

where the subscript i indicates that the constants refer to the inner electrolyte region.
The potential inside the region occupied by the particle is:

Ṽ = e+
f

r
. (3.104)

The boundary and continuity conditions are:

∇φ̃
∣∣∣
Ri
· r̂ = 0

∇φ̃
∣∣∣
Ro
· r̂ = 0

∇φ̃
∣∣∣
rp
· r̂ = 0

∇φ̃
∣∣∣
rP
· r̂ = 0

Ṽ (Ri) = Ṽ0

Ṽ (Ro) = 0

,



Ṽ (r+
p ) = Ṽ (r−p )

Ṽ (r+
P ) = Ṽ (r−P )

εp
dṼ

dr

∣∣∣∣∣
r+p

= εel
dṼ

dr

∣∣∣∣∣
r−p

εel
dṼ

dr

∣∣∣∣∣
r+P

= εp
dṼ

dr

∣∣∣∣∣
r−P

(3.105)

The above equations allow us to compute the constants, which are reported in Sec. 3.A.9
of the chapter appendix.

The current is then:

Ĩ =

∫
~̃J(Ri, θ) · r̂dSr = jωε

∫
~̃E · r̂ dSr = jωε

∫ 2π

0

dφ

∫ π

0

dθ ~̃E(Ri, θ) · r̂ R2
i sin θ

= 2πrprPRoεpεeljω(ξ + jω)2
(
(−1 + ρp)(1 + ρi)− (1 + ρp)(−1 + ρi)α

2
i

)(
(1 + ρP )(−1 + ρo)− (−1 + ρP )(1 + ρo)α

2
o

)
Ṽ0/η (3.106)

where η is defined in Sec. 3.A.9.

3.3.5 Admittance and sensor response

Based on the potential profile versus distance as a function of frequency and salt con-
centration, we now elucidate the operating principle behind high-frequency impedance
spectroscopy. To this purpose, Fig. 3.18 (left plot) reports the magnitude of the small
signal potential as a function of distance from the electrode for two cases:

1. No particle (blue curves).

2. One dielectric particle (red curves) located beyond the Debye screening length (50
nm distance from the electrode, which corresponds to 17 Debye lengths at 10 mM).
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Fig 3.18: Magnitude of the AC potential (left) and electric field (right) in absence (blue) and
presence (red) of the dielectric particle normalized to their value at the electrode in absence of
the particle as a function of the radial distance from the electrode d and at different frequency.
The particle has rp = 100 nm; the salt concentration is 10 mM.

The plot shows the potential along the vertical line (symmetry axis) of the particle, taking
the electrode as origin. Three frequencies are considered: below fs (solid lines), between
fs and fc (dashed lines), and above fc (dash-dotted lines).
We see the following:

1. At low frequency, the AC potential decays rapidly with distance from the electrode,
the decay length being essentially the same Debye length that rules the space de-
pendence of the total DC potential. The particle lies in a quasi-neutral region of
essentially zero AC electric field and its presence has no influence on the AC field at
the electrode, which is proportional to the slope of the AC potential versus distance
curve at zero distance. In particular, the AC electric field is independent of whether
or not a particle is present (solid blue and red lines are indistinguishable).

2. At 100 kHz the AC potential is perturbed but the AC electric field at the surface,
hence the AC charge on the electrode, stays essentially the same. Therefore the
presence of the particle will still be not measurable at the electrode.

3. At high frequency the AC potential varies more slowly with distance, and the per-
turbation introduced by the particle propagates back to the electrode surface. The
surface AC electric field and the charge on the electrode are therefore affected. Since
the sensor measures this charge, the particle becomes visible at this frequency.

These graphs elucidate the basic operating principle of AC detection. Experimental
evidence of this interpretation is provided in Sec. 5.3. To complete the physical picture and
relate it to the expected signal amplitude, the right plot of Fig. 3.18 shows the magnitude
of the AC electric field normalized to the surface value in the unperturbed case E(0) for
all cases above. Each curve for the perturbed case is normalized to the corresponding
unperturbed surface field value. So the difference between perturbed and unperturbed
cases is representative of the relative amplitude of the measured signal. The legend reports
the normalization values E(0). We see that the surface AC field is much larger at low
or intermediate frequency but the relative change due to the particle is larger at high
frequency than at low frequency (almost 0% at 1 kHz, 4% at 100 kHz, 40% at 50 MHz).
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Those results point out that a large relative signal is obtained in the neighbourhood of a
smaller AC field (hence surface charge) value.

In this section we compare the admittance Y = Ĩ/Ṽ0 and the admittance variations
due to the introduction of a particle ∆Y for the AC spherical models presented in Secs.
3.3.1 - 3.3.4.
Assuming large electrodes, the expression of Y in the absence of particle is, in the two
models (see Eqs. 3.92-3.101):

Y0 = 2πRijωεel
ρi

ξ + ρijω
(ξ + jω) 0th order model (3.107)

Y1 =
π

2
Rjωεel

ρ0

ξ + ρ0jω
(ξ + jω) 1st order model . (3.108)

The two expressions are very similar, except for the pre-factor and the substitution of
Ri with R. Viewing the admittance as a transfer function between voltage and current,
we usually observe the behaviour shown in Fig. 3.19. Consistently with Sec. 3.1.1.3, we
then conclude that the admittance transfer function has 2 zeros and 1 pole. The zeros
are easily found and they are, as in Sec. 3.1.1.3:

ωz1 = 0, ωz2 = ξ

As in Sec. 3.1.1.3, we assume that the pole frequency fs � ξ/2π and we can write that:

fs0 =
1

2π

λD
Ri

, fs1 =
1

2π

λD
R
.

These expressions are conceptually similar but underline the geometry dependence of fs.
If we use a parallel model for the admittance we can write that Y = G + jωC, so that
the effective capacitance is C = ={Y }/ω:

C0 = 2πRiεel<
{

ρi
ξ + ρijω

(ξ + jω)

}
(3.109)

C1 =
π

2
Rεel<

{
ρ0

ξ + ρ0jω
(ξ + jω)

}
(3.110)

In nanoelectrode biosensors, as we discuss in more detail in Sec. 3.6 and Chap. 5, the
capacitance is typically measured via a charge pump cycle, i.e. repeatedly charging and
discharging the nanoelectrode. In these conditions the imaginary part of the admittance
can be rather inaccurate in representing the measured capacitance. Since in the real
detector the capacitance is extracted from the integral of the total charge, it appears
legitimate to calculate an effective capacitance Ceff = |Y |/ω from the modulus of the
charge at the electrode, thus accounting for both the real and imaginary part of the
current. We thus obtain:

Ceff
0 = 2πRiεel

∣∣∣∣ ρi
ξ + ρijω

(ξ + jω)

∣∣∣∣ (3.111)

Ceff
1 =

π

2
Rεel

∣∣∣∣ ρ0

ξ + ρ0jω
(ξ + jω)

∣∣∣∣ (3.112)

Fig. 3.20 shows the capacitance calculated for the two models starting from the same
data of Fig. 3.19 and with the parameters given in Tab. 3.2. Note that the capacitance is
not constant in frequency, and therefore cannot be modelled by a unique linear capacitor.
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Moreover, the frequency of the zero is equal to ξ in the case of Ceff , while it is always
lower than ξ in the case of C and it has a weaker dependence on salt concentration. These
markable differences represent clear signatures of the two models that should be easier to
identify experimentally than a quantitative difference in the absolute capacitance value.

Parameter Symbol Value Units
Inner electrode radius (0th order) Ri 75 [nm]
Outer electrode radius (0th order) Ro rP + 500 [nm]
Particle radius (1st order) rp 4.5 [µm]
Ion mobility µ1 3.242 · 1011 [m/Ns]
Temperature T 298 [K]
Electrolyte permittivity εel Eq. 2.39 [F/m]
Particle permittivity (dielectric) εp 2.6ε0 [F/m]
Particle permittivity (conductive) εp 6.9ε0 [F/m]
Particle conductivity (conductive) σp 6.3× 107 [S/m]

Table 3.2: Parameters used in the calculation of the admittance in the AC spherical models
(unless otherwise stated).
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Fig 3.19: Magnitude of the electrode admittance according to the two spherical models.
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Fig 3.20: Small signal and effective capacitance in the two spherical models in absence of
particles. Note the differenct concentration of the C and Ceff upper zero frequency.
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Fig 3.21: Change in capacitance due to a particle at 50 MHz. In the 0th order model the
distance is rp −Ri, while in the 1st order model it is ∆r = R− rp.

We always calculate the change in capacitance as the difference between the case
without particles and the case with it: ∆C = C0 − Cp. For the sake of comparison, we
have chosen a spherical particle of 4.5 µm radius for the 1st order model, and a spherical
shell particle with this same volume for the 0th order model. Figs. 3.21 and 3.22 show
that the ∆C predicted by the two models are fairly different and feature quite different
dependencies on the particle distance from the electrode defined as rp−Ri in the 0th order
model and R−rp in the 1st order one. It is interesting to note that the ∆C and ∆Ceff for
conductive particles exhibit sharp dips that reflect a sign change. The frequency where
the dip occurs is different for ∆C and ∆Ceff .

In order to understand the physical origin of the sign changes in Fig. 3.22 we make use
of the 1st order model. Fig. 3.23 shows the real part of the electric field lines in absence
(a-c) or presence either of a dielectric (d-f) or conductive (g-i) particle. The perturbed
path of the field lines around the particle surface denotes the formation of an electrical
double layer with limited thickness at 10 mM (plots b, e, h). The borders of the EDLs
are easily recognizable by looking at the points where the electric field lines are sharply
deviated. If the concentration is reduced at constant low frequency, the EDL of the par-
ticle interacts with that of the outer electrode (plots a, d, g) whereas if the frequency is
increased at constant concentration (plots c, f, i) all EDLs disappear and we retain the
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Fig 3.22: Change in capacitance due to the introduction of a particle at different distances from
the electrode. In the 0th order model rp −Ri = 10 nm, while in the 1st order one ∆r = 10 nm.

electrostatic limit, as expected. We immediately see that, since the dielectric particle has
a lower permittivity with respect to the electrolyte, it always repels the field lines, both
at low and high frequency.
On the contrary, the conductive particle shows a more complicated behaviour. In par-
ticular, when the double layer on the electrode and on the particle do not overlap (Fig.
3.23h, the Debye length ' 3 nm is much smaller than R − rp), the electric field lines
are repelled similarly to the case of the dielectric particle. On the other hand, at high
frequency the field lines are attracted by the particle. This explains why there is no sign
change in ∆C for dielectric particles in Fig. 3.22 and why instead sign changes appear in
∆C for conductive particles. It can be shown that the sign change unavoidably shows up
in multi-domain media where materials with variable or different complex conductivity,
EDLs or SAM are present.

3.3.6 General model for the admittance change due to particles

We now present the derivation and verification of an improved version of the analytical
model presented in [33] for the admittance change (∆Y ) induced by spherical dielectric
(colloidal) particles at ideally polarizable electrodes that explicitly takes into account ionic
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Fig 3.23: Real part of the electric field lines calculated with the 1st order spherical model in
absence (a-c) or presence either of a dielectric (d-f) or conductive (g-i) particle. R = 200 nm,
rp = 100 nm. εb denotes the permittivity in the particle volume.

diffusion currents.
In order to derive the model we start considering again the system of Sec. 3.3.1 (Fig. 3.15),
i.e. an empty electrolyte region and a spherical coordinate system with no variation along
the planar angular component ϕ and a dependence on the vertical angular component of
the type cos θ. However, differently from Sec. 3.3.1, we now assume that the outer shell
is made of a Faradaic electrode which is kept at a potential equal to Ṽb cos θ and where
φ̃1(R) = φ̃2(R) = Ṽ (R), and the region is filled with a symmetric electrolyte. As shown
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in Sec. 3.A.10, the derived solution is given again by Eqs. 3.89 but with the constants:

c3 =
Ṽb
R
, c1 = 0, d1 = 0 (3.113)

We then consider a case similar to the one of Sec. 3.3.2, where a dielectric particle with
permittivity εp (i.e., an ion-free spherical inner region of radius rp) is introduced in the
electrolyte and therefore is surrounded by a concentric outer region of radius R � rp,
while the outer shell is again a Faradaic electrode. In general the dielectric constants can
be complex, where the imaginary parts account for possible electronic conduction and/or
relaxation losses in the materials, as necessary to describe conducting particles like gold
nanoparticles. The solutions are given by Eqs. 3.93-3.94. In these conditions and in
absence of the particle, the radial component of the complex electric field Ẽ0 is constant
over the region which will be occupied by the particle (Ẽ0 = −Ṽb/R). Since the field
is uniform, we can express the change in the conjugate complex power induced by the
introduction of the particle in the system as:

∆S∗ = S∗with − S∗w/out = f(ω)(σel + jωεel)Ωp|Ẽ0|2 (3.114)

where σel = 2q2µn0 is the electrolyte conductivity, Ωp = 4πr3
p/3 the particle volume and

f(ω) = −3

2

1+κrp
2+2κrp+κ2r2p

+ εel
εp

+ ωτel(
εel
εp
− 1)

1+κrp
2+2κrp+κ2r2p

+ εel
εp

+ ωτel(
εel
εp

+ 1
2
)

(3.115)

is a complex function of frequency that depends slightly on the particle radius rp and
the electrolyte and particle conductivities and permittivities. In the expression above
κ = (1 + jωτel)

1/2/λD, τel = 1/ξel = εel/σel. The complete derivation of this expression is
shown in Sec. 3.A.10. We can then interpret the change in conjugate complex power as
due to a change in the nanoelectrode admittance. By defining Ṽ0 the total voltage drop
between the electrodes (Ṽ0=2Ṽb in this case) we have: ∆S∗ = Ṽ0

∗
∆I = ∆Y |Ṽ0|2, so that

∆Y would be proportional to |Ẽ0|2/|Ṽ0|2.
For generalization to non-uniform fields generated, for instance, by multi-domain re-

gions (e.g. a working electrode covered with the electrical double layer, Stern layer or a
self-assembled monolayer) the |Ẽ0|2 factor in Eq. 3.114 is replaced by the square of the (in
general complex) unperturbed electric field at the particle position Ẽ0

2
. In this general

case, the admittance variation due to the insertion of a nanoparticle in the electrolyte can
thus be expressed as:

∆Y = ∆G+ ω∆C = f(ω) (σel + jωεel)Ωp

(
Ẽ0

Ṽ0

)2

(3.116)

which represents the analytical model we were looking for. Eq. 3.116 generalizes a sim-
ilar expression presented in [33] but extends it considerably by accounting for the ionic
diffusion currents, which were instead neglected in [33]. Eq. 3.116 predicts that for small
particles (rp � R) the nanoelectrode response should be proportional to the electrolyte
complex conductivity, to the particle volume, and to the squared unperturbed electric
field at the particle location. In Sec. 5.4 we will validate Eq. 3.116 by means of extensive
two-dimensional numerical simulations.
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3.4 1D semiconductor resistor

The 3D simulator ENBIOS (see Chap. 4) has been designed as a general purpose platform
for the analysis of electrolyte/insulator/semiconductor (EIS) systems. It is therefore useful
to examine simple solutions also for the semiconductor regions. In particular, here we
assume a 1D semiconductor resistor where both the DC electrostatic potential and the
DC electron and hole quasi-potentials are linear, so that the carrier concentrations are
constant throughout the system. The equations for the small signal AC regime are:

ε
d2Ṽ

dx2
+

Nsp∑
m=1

Z2
mq

2

kBT
n0m

(
φ̃m − Ṽ

)
= 0

Zmqµm
d

dx

(
n0m

(
Zmq

kBT

(
φ̃m − Ṽ

) dφ0m

dx
+
dφ̃m
dx

))
− jωn0m

Zmq

kBT

(
φ̃m − Ṽ

)
= 0

wherem now denotes the free carriers (electrons and holes). Using the fact that dφ0m/dx =
V0/L (where V0 is the DC bias and L the resistor length) and that the concentrations are
constant (we call n0n the electron and n0p the DC hole concentration), we can then write:

ε
d2Ṽ

dx2
+

q2

kBT

(
n0n

(
φ̃n − Ṽ

)
+ n0p

(
φ̃p − Ṽ

))
= 0

− qµnn0n
d

dx

(
− q

kBT

(
φ̃n − Ṽ

) V0

L
+
dφ̃n
dx

)
+ jωn0n

q

kBT

(
φ̃n − Ṽ

)
= 0

qµpn0p
d

dx

(
q

kBT

(
φ̃p − Ṽ

) V0

L
+
dφ̃p
dx

)
− jωn0p

q

kBT

(
φ̃p − Ṽ

)
= 0

So finally:

d2Ṽ

dx2
+

q2

εkBT

(
n0n

(
φ̃n − Ṽ

)
+ n0p

(
φ̃p − Ṽ

))
= 0

d2φ̃n
dx2

− V0

L

q

kBT

(
dφ̃n
dx
− dṼ

dx

)
− jω

µnkBT

(
φ̃n − Ṽ

)
= 0

d2φ̃p
dx2

+
V0

L

q

kBT

(
dφ̃p
dx
− dṼ

dx

)
− jω

µpkBT

(
φ̃p − Ṽ

)
= 0

In practice, however, it will always be true that either n0n � n0p or n0n � n0p, so that we
can neglect the contribution of the minority carrier. We then denote n0 the DC majority
carrier concentration, Z its valence and µ its mobility.
We also define the symbols κ2

D = Z2q2n0/εkBT , κ2
ω = jω/µkBT , Vth = kBT/Zq and

v0 = V0/Vth.
We choose here to deal with this system of equations by expanding the unknowns into

spatial harmonics ũ =
∫
ũκ exp (κx) dκ, as in Sec. 3.2. In this way we get the system of

equations: κ
2Ṽκ + κ2

D

(
φ̃κ − Ṽκ

)
= 0

κ2φ̃κ + 2κLκ
(
φ̃κ − Ṽκ

)
− κ2

ω

(
φ̃κ − Ṽκ

)
= 0

(3.117)
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where κL = v0/2L. We can write Eqs. 3.117 in a matrix form as Au = 0, where:

u =

[
Ṽκ
φ̃κ

]
, A =

[
κ2 − κ2

D κ2
D

−2κLκ+ κ2
ω κ2 + 2κLκ− κ2

ω

]
In order to find non-zero solutions we have to set det(A) = 0, a condition that gives us
the characteristic equation:

κ2
(
κ2 + 2κLκ− κ2

D − κ2
ω

)
= 0

The 4 solutions, which we denote κl, are:

κ1,2 = 0, κ3 = −κL + κs, κ4 = −κL − κs
where κs =

√
κ2
L + κ2

D + κ2
ω. The general solution is then:

ũ = ũ1 + ũ2x+
4∑
l=3

ũl exp (κlx)

where once again we use the simplified the notation where ũl , ũκl . To find the Ṽl and
φ̃l we have to substitute the eigenvalues in Eq. 3.117a, so that:

κ2
D

(
φ̃1,2 − Ṽ1,2

)
= 0 ⇐⇒ φ̃1,2 = Ṽ1,2

κ2
3Ṽ3 + κ2

D

(
φ̃3 − Ṽ3

)
= 0 ⇐⇒ φ̃3 = −κ

2
ω + 2κL (κL − κs)

κ2
D

Ṽ3

κ2
4Ṽ4 + κ2

D

(
φ̃4 − Ṽ4

)
= 0 ⇐⇒ φ̃4 = −κ

2
ω + 2κL (κL + κs)

κ2
D

Ṽ4

We now calculate the integration constants applying two different systems of boundary
conditions. In the first case we assume that the contacts are ohmic both in DC and AC,
so that we retrieve the simple 1D semiconductor resistor. In the second case we assume
that the contacts are ideally polarizable in AC, so that AC double layers on the electrodes
are formed. This latter case does not describe a physical situation in real semiconductors,
but it provides a useful reference calculation for the validation of the numerical solver.
Remembering that the carrier current density J̃c is given by Eq. 2.37b, we can write
(neglecting the minority carrier contribution):

J̃c = −Z2q2µn0

(
Zq

kBT

V0

L

(
φ̃− Ṽ

)
+∇φ̃

)
(3.118)

3.4.1 Resistor in AC small signal regime

The boundary conditions for the resistor case are:

Ṽ (0) = φ̃(0) = 0, Ṽ (L) = φ̃(L) = Ṽ0

The calculation of the integration constants is reported in Sec. 3.A.11 in the chapter
appendix. The potential and quasi-potentials are then, as expected:

Ṽ = φ̃ =
Ṽ0

L
x . (3.119)

We can also calculate the current density in the resistor:

J̃ = −jωεdṼ
dx

+ J̃c = − Ṽ0

L

(
q2µn0 + jωε

)
(3.120)
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3.4.2 Capacitor in AC small signal regime

The boundary conditions are:

Ṽ (0) = 0, Ṽ (L) = Ṽ0, J̃c(0) = 0, J̃c(L) = 0

where the last two equations correspond to the hypothesis of ideally polarizable electrodes.
The integration constants for this case are reported in Sec. 3.A.11.
The current density is easily calculated as:

J̃ = −jωεdṼ
dx

+ J̃c = −
(
Z2q2µn0 + jωε

)
Ṽ2

= −e
ZqV0
2kBT

η

−1 + e

√
Z2q2(4kBTn0L

2+V 2
0 ε)µ+4kBTL

2εjω

k2
B
T2εµ

 (jω)2

k3
BT

3εµ3

(
Z2q2µn0 + jωε

)2
Ṽ0

(3.121)

3.5 1D AC Electrolyte/Insulator/Semiconductor sys-
tem

We will now study the system sketched in Fig. 3.24 which is often referred to as the EIS
system. We assume a flat-band condition in DC, i.e. V0 = 0 everywhere, so that the
ion and carrier concentrations n0m are constant. We apply an AC small-signal potential
ṼB at the semiconductor electrode while the contact to the electrolyte is grounded and,
furthermore, it acts as an AC reference electrode (i.e., it is a Faradaic contact). We
consider the symmetric 1:1 electrolyte, with the parameters ξel = 2q2µeln0el/εel and κ2

el =
(ξel + jω)/Del (compare with Eqs. 3.31 in Sec. 3.1.1). The equations are then:

electrolyte:



d2Ṽ

dx2
= − ξel

2Del

(
φ̃1 + φ̃2 − 2Ṽ

)
d2φ̃1

dx2
=

jω

Del

(
φ̃1 − Ṽ

)
d2φ̃2

dx2
=

jω

Del

(
φ̃2 − Ṽ

)

Electrolyte)

Semicond)

Oxide)

Fig 3.24: Sketch of the domain.
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oxide:
d2Ṽ

dx2
= 0

semiconductor:



d2Ṽ

dx2
+

q2

εskBT

(
n0n

(
φ̃n − Ṽ

)
+ n0p

(
φ̃p − Ṽ

))
= 0

d2φ̃n
dx2

− dφ0n

dx

q

kBT

(
dφ̃n
dx
− dṼ

dx

)
− jω

µnkBT

(
φ̃n − Ṽ

)
= 0

d2φ̃p
dx2

+
dφ0p

dx

q

kBT

(
dφ̃p
dx
− dṼ

dx

)
− jω

µpkBT

(
φ̃p − Ṽ

)
= 0

We immediately note that, as in all previous case studies, φ̃1 = φ̃2 = φ̃ in the electrolyte.
We also assume that the semiconductor is n-type with doping ND, so that we can write
(because of the zero DC bias condition) n0n = ND, n0p = n2

i /ND ' 0 and neglect the
minority carrier contribution in Poisson equation. The zero DC bias condition also implies

that
dφ0n

dx
=
dφ0p

dx
= 0 and we do not need to calculate the equations for φ̃p, so we can

simplify the notation by dropping the suffix “n” and obtain the simplified equations as
follows:

electrolyte:


d2Ṽ

dx2
= − ξel

Del

(
φ̃− Ṽ

)
d2φ̃

dx2
=

jω

Del

(
φ̃− Ṽ

) (3.122a)

oxide:
d2Ṽ

dx2
= 0 (3.122b)

semiconductor:


d2Ṽ

dx2
= − ξn

Dn

(
φ̃− Ṽ

)
d2φ̃

dx2
=
jω

Dn

(
φ̃− Ṽ

) (3.122c)

where the semiconductor cut-off frequency is ξn = q2µnND/εs. We immediately see that
the equations in the electrolyte and in the semiconductor are formally equivalent, so that
the general solution of this former case applies to the latter as well.
The general solution (Eqs. 3.18a-3.18b) is not expressed in terms of quasi-potentials, but
we can easily derive it in the form of the unknown vector

[
Ṽ φ̃

]T
. Based on Eq. 3.122c,

the system matrix and the eigenvalues are:

A =

 ξ

D
− ξ

D

−jω
D

jω

D

 =⇒ det
(
κ2I−A

)
= 0 ⇔

(
κ2 − ξ

D

)(
κ2 − jω

D

)
− jωξ

D2
= 0

which provides the usual solutions, κ2 = 0 and κ2 = (ξ + jω)/D. We will simply denote
the latter as κ2 in the following. The transformation matrix T is:

T =

1 1

1 −jω
ξ


and the general solution is:

Ṽ = l1x+ l2 + c1 exp (−κx) + d1 exp (κx) (3.123a)

φ̃ = l1x+ l2 −
jω

ξ
(c1 exp (−κx) + d1 exp (κx)) (3.123b)
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where l1, l2, c2, d1 are constants. In the end, we can then write the general solutions in
the three regions as:

electrolyte:

Ṽ = l1ex+ l2e + c1e exp (−κelx) + d1e exp (κelx)

φ̃ = l1ex+ l2e −
jω

ξel
(c1e exp (−κelx) + d1e exp (κelx))

(3.124a)

oxide: Ṽ = l1ox+ l2o (3.124b)

semiconductor:

Ṽ = l1sx+ l2s + c1s exp (−κnx) + d1s exp (κnx)

φ̃ = l1sx+ l2s −
jω

ξn
(c1s exp (−κnx) + d1s exp (κnx))

(3.124c)

We now need to set the boundary conditions. To this purpose, we denote Ṽos the
potential at x = 0 (the oxide/semiconductor interface) and Ṽeo the potential at x = tox
(the electrolyte/oxide interface). The boundary conditions are:

electrolyte:


Ṽ (Lel + tox) = 0

φ̃(Lel + tox) = 0

Ṽ (tox) = Ṽeo

J̃⊥m

∣∣∣
tox

= 0

, semiconductor:


Ṽ (0) = Ṽos

J̃⊥m

∣∣∣
0

= 0

Ṽ (−Ls) = ṼB

φ̃(−Ls) = ṼB

(3.125)

We remind that the ionic and electronic currents are proportional to ∇φ̃ to say that:

J̃⊥m = 0 ⇐⇒ dφ̃

dx
= 0

In the electrolyte then, the following system of equations holds:

l1e(Lel + tox) + l2e + c1e exp (−κel(Lel + tox)) + d1e exp (κel(Lel + tox)) = 0

l1e(Lel + tox) + l2e −
jω

ξel
(c1e exp (−κel(Lel + tox)) + d1e exp (κel(Lel + tox))) = 0

l1etox + l2e + c1e exp (−κeltox) + d1e exp (κeltox) = Ṽeo

l1e −
jω

ξel
κel (−c1e exp (−κeltox) + d1e exp (κeltox)) = 0

The solution of this system with boundary conditions (3.125) is:

Ṽ =
κel (1 + αel) jω (Lel + tox − x) + ξel

(
eκel(tox−x) − eκel(x−(2Lel+tox))

)
(1− αel) ξel + κelLel (1 + αel) jω

Ṽeo (3.126a)

φ̃ =
κel (1 + αel) jω (Lel + tox − x)− jω

(
eκel(tox−x) − eκel(x−(2Lel+tox))

)
(1− αel) ξel + κelLel (1 + αel) jω

Ṽeo (3.126b)

where αel = exp (−2κelLel).
The solution in the oxide is straightforward:

Ṽ =
Ṽeo − Ṽos

tox
x+ Ṽos (3.127)

whereas in the semiconductor we have:

l2s + c1s + d1s = Ṽos

l1s −
jω

ξn
κn (−c1s + d1s) = 0

−l1sLs + l2s + c1s exp (κnLs) + d1s exp (−κnLs) = ṼB

−l1sLs + l2s −
jω

ξn
(c1s exp (κnLs) + d1s exp (−κnLs)) = ṼB
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which yields (αn = exp (−2κnLs)):

Ṽ =
ṼB(1− αn)ξn + κn(−ṼBx+ Ṽos(Ls + x))(1 + αn)jω − ξn

(
eκnx − e−κn(2Ls+x)

) (
ṼB − Ṽos

)
(1− αn)ξn + κnLs(1 + αn)jω

(3.128a)

φ̃ =
ṼB(1− αn)ξn + κn(−ṼBx+ Ṽos(Ls + x))(1 + αn)jω + jω

(
eκnx − e−κn(2Ls+x)

) (
ṼB − Ṽos

)
(1− αn)ξn + κnLs(1 + αn)jω

.

(3.128b)

To complete the model, we need to find the values of Ṽeo and Ṽos. This is achieved
by imposing the continuity of the dielectric displacement on the electrolyte/oxide and
oxide/semiconductor interfaces:

εel
dṼ

dx

∣∣∣∣∣
t+ox

= εox
dṼ

dx

∣∣∣∣∣
t−ox

εox
dṼ

dx

∣∣∣∣∣
0+

= εs
dṼ

dx

∣∣∣∣∣
0−

Solving explicitly this system of equations yields:

Ṽeo = − coxcs
c2
ox − (cox + cel) (cox + cs)

ṼB

Ṽos = − cs (cox + cel)

c2
ox − (cox + cel) (cox + cs)

ṼB

where:

yox = jω
εox
tox

(3.129a)

yel = jωεel
κel(1 + αel)(ξel + jω)

(1− αel) ξel + κelLel (1 + αel) jω
(3.129b)

ys = jωεs
κn(1 + αn)(ξn + jω)

(1− αn)ξn + κnLs(1 + αn)jω
(3.129c)

As we will shortly see, ys and yel are the admittances per unit area of the semiconductor
and the electrolyte respectively. The total admittance is then, as expected:

ytot = jω
εox

ṼB

dṼ

dx

∣∣∣∣∣
ox

= jωεox
Ṽeo − Ṽos
toxṼel

= −yox
ysyel

y2
ox − (yox + yel) (yox + ys)

=

[
1

yox
+

1

ys
+

1

yel

]−1

(3.130)

Alternatively we can write:

Ṽeo =
ytot
yel

ṼB, Ṽos = ytot

(
1

yel
+

1

yox

)
ṼB .

This expression emphasizes once more the fact that, as expected, the admittance of the
EIS system is calculated as the series connection of the admittances of the three regions.
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(b) n = 1024 m−3

Fig 3.25: Admittance per unit area ytot in the EIS model varying doping and salt concentration
with tox = 5 nm.

The similarity with the simple electrolyte system suggests that both the semiconductor
and electrolyte regions should be described by equivalent anomalous circuits as those in
Fig. 3.6.

Fig. 3.25 shows the admittance ytot spectra varying the doping concentration and with
the parameters in Tab. 3.3. We immediately note that, even in the case with the lower
doping concentration, ytot exhibits a very similar behaviour to the case in Sec. 3.1.2.
Neglecting the cut-off frequencies due to relaxation processes in the semiconductor, we
can then find again two cut-off frequencies fs and fc, which both depend linearly on the
salt concentration (as evident looking at the phase plots in Fig. 3.25). In the following
we will find an approximate way to calculate these frequencies.

Long system If the dimensions of the system satisfy the conditions Lel � 1/< (κel)
and Ls � 1/< (κn), we can assume that αel ' αn ' 0, as in Sec. 3.1.1.1. We can then
simplify the expressions (3.126-3.128b) as:

electrolyte:


Ṽ =

κeljω (Lel + tox − x) + ξel
(
eκel(tox−x) − eκel(x−(2Lel+tox))

)
ξel + κelLeljω

Ṽeo

φ̃ =
κeljω (Lel + tox − x)− jω

(
eκel(tox−x) − eκel(x−(2Lel+tox))

)
ξel + κelLeljω

Ṽeo

Parameter Symbol Value Units
Semiconductor length Ls 600 [nm]
Insulator thickness tox 5 [nm]
Electrolyte length Le tox − 100 [nm]
Electron mobility µn 8.73 · 1017 [m/Ns]
Ion mobility µel 4.75 · 1011 [m/Ns]
Temperature T 298 [K]
Semiconductor permittivity εs 12.4ε0 [F/m]
Insulator permittivity εp 3.9ε0 [F/m]
Electrolyte permittivity εel Eq. 2.39 [F/m]

Table 3.3: Parameters used in the calculations of the EIS model (unless otherwise stated).
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oxide: Ṽ =
Ṽeo − Ṽos

tox
x+ Ṽos

semiconductor:


Ṽ =

ṼBξn + κn(−ṼBx+ Ṽos(Ls + x))jω − ξn
(
eκnx − e−κn(2Ls+x)

) (
ṼB − Ṽos

)
ξn + κnLsjω

φ̃ =
ṼBξn + κn(−ṼBx+ Ṽos(Ls + x))jω + jω

(
eκnx − e−κn(2Ls+x)

) (
ṼB − Ṽos

)
ξn + κnLsjω

The parameters are:

yel = jωεel
κel(ξel + jω)

ξel + κelLeljω
, ys = jωεs

κn(ξn + jω)

ξn + κnLsjω
.

We can therefore find an explicit expression for ytot, using Eq. 3.130:

ytot =
jωεoxεelεsκelκn(ξel + jω)(ξn + jω)

εsκn(ξn + jω) (εelκeltox(ξel + jω) + εox(ξel + κelLeljω)) + εoxεelκel(ξel + jω)(ξn + κnLsjω)
(3.131)

From this expression we can immediately see that the second cut-off frequency is again
fc = ξel/2π, as in all the models presented in this chapter. We can then conclude that fc in
capacitive biosensors is indeed a physical property of the electrolyte and does not depend
on the geometry or on other materials. On the other hand, fs is heavily dependent on
geometry, and in this case it comes from the denominator of Eq. 3.131. As evident from
Fig. 3.25, it depends linearly on the salt concentration. This is an important difference
with the results from Sec. 3.1.1.3, where fs was found to depend on

√
n0.

Fig. 3.26 shows the potential profiles in the system near the insulator interfaces. We
immediately note that at low frequency there is little potential drop in the electrolyte,
especially at high salt concentration. When the frequency increases, also the potential
drop in the electrolyte increases.

We can also calculate the ion and carrier concentrations, noting that:

ñ =
Zq

kBT
ND

(
φ̃− Ṽ

)
Therefore, the electron concentration in the semiconductor is:

ñn = − q

kBT
ND

(
eκnx − e−κn(2Ls+x)

) ytot
jωεsκn

ṼB (3.132)

3.6 Switching capacitance
In all the calculations we have made so far, and also in the ones we will do using the
numerical solver ENBIOS, the AC problem is solved in the small signal approximation.
Accurate capacitance measurements most often rely on CBCM digital techniques, where
the capacitance is extracted by the average charge/discharge current per cycle and square
waveforms are used [60]. This is indeed the case for the biosensor in [33]. Therefore, if
we want to apply our results to the system presented in [33], some further considerations
need to be made. Since in [33] the capacitance is measured via a charge-pump circuit,
the capacitance calculated in the harmonic domain with a small signal approximation
may not be adequate. To address this problem, we then need to estimate a switching
capacitance Csw, as the one measured by the actual device. The material in this section
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Fig 3.26: Potential profiles in the EIS model with tox = 5 nm and doping concentration n = 1024

m−3.

is derived from a personal communication of Frans Widdershoven.
To this purpose, we assume that the reading circuit is made of two ideal switches SU and
SD (see Fig. 3.27) and that the nanoelectrode is modelled by a parasitic capacitance in
parallel with a circuit model for the electrolyte that resembles the series model for the
double layer admittance developed in Sec. 3.1.1.2. We however assume that the series
capacitance Cs, which comprises the double layer capacitance and the optional contribu-
tion due to surface dielectric layers (such as a SAM), is a regular constant capacitance.
The resulting charge pumped from the charge node at potential VDD to the discharge
node at potential 0 is then a measure for the capacitance Csw free of anomalous frequency
dependencies as those highlighted in Sec. 3.1.1.2 or of non-linear effects. If the nanoelec-
trode was a pure capacitor with capacitance Cs, it could be determined by measuring the
average charge pumping current I flowing into the charge node:

I = fp (Cs + Cp)VDD (3.133)

where fp = 1/T is the switching frequency, T the switching period and VDD the supply
voltage. To avoid a short circuit path between the charge and discharge nodes the switches

Cs

Fig 3.27: Circuit model for the calculation of the switching capacitance Csw.
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should never be on simultaneously. We then define as duty-cycle the ratio d between the
time when SU is on (which is assumed equal to the time when SD is on) divided by the
period T . In the case of Fig. 3.27, where the switches are open for T/4 each, d = 25%.
Assuming for the nanoelectrode the model in Fig. 3.27, we can then calculate the charge
Qp transferred from the charge node to the discharge node during one period T (see Sec.
3.A.12). We then define the charge pump efficiency factor γ as:

γ =
Qp

(Cs + Cp)VDD

= 1− pbpa
e1 (1− e3 (e4 + (1− e4) pbpa)) + e3 (1− e1 (e2 + (1− e2) pbpa))

1− e3 (e4 + (1− e4) pbpa) e1 (e2 + (1− e2) pbpa)
(3.134)

The switching capacitance is then calculated as:

Csw = γ(Cs + Cp) (3.135)

Assuming a 50% duty cycle we obtain:

Csw =

(
1− pbpa

2e1

1 + e1

)
(Cs + Cp) (3.136)

e1 = exp

(
− 1

2τafp

)
, pa =

Cs
Cs + CE

With a 25% duty cycle instead:

Csw =

(
1− pbpa

2e1

1 + e1 (e2 + (1− e2) pbpa)

)
(Cs + Cp) (3.137)

pa =
Cs

Cs + CE
pb =

Cs
Cs + Cp

τa = RE (Cs + CE) τb = RE

(
CsCp
Cs + Cp

+ CE

)
e1 = e3 = exp

(
− 1

4τafp

)
e2 = e4 = exp

(
− 1

4τbfp

)
A thorough comparison of Ceff and Csw in the case study of the nanoelectrode array
of [33] is presented in Sec. 5.3. We anticipate here that, in all cases considered, the
difference between the predictions obtained considering Ceff or Csw are very small. This
means that, although Ceff is easily determined from simple AC small signal calculations,
it is an accurate metric for the purpose of comparison with the experiments as will be
done in Sec. 5.3.

Note that both Ceff and Csw stem from a linear model of the system, which neglects
non linearities, possible existing because of excessively large signals. It also neglects
dielectric heating in water, which may be a relevant effect and was studied in [46]. We
believe that in our system the non-linearities and heating effects would be not so relevant
since the modulation voltage of the nanoelectrode platform [33] that will be discussed
in this thesis is on the order of 100 mV, which is just a few times the thermal voltage
kBT/q. In addition, the nanoelectrodes size is much smaller than the size of the heaters
in [46], so that only a very small current (and therefore power consumption) flows into
the electrolyte. Such a small localized heating can be easily and quickly compensated by
the big thermal bath made of the electrolyte solution.
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Parameter Symbol Expression

Debye screening length λD =

√
εelkBT

2q2n0

Angular cut-off frequency ξ =
2q2µn0

εel
=
σel
εel

=
1

τ
= 2πfc

First cut-off frequency (1D cartesian) fs ' ξ

π

λD
L

AC inverse screening length κ =

√
ξ + jω

D
=

1

λD

√
1 + jωτ

Double layer admittance yDL ∝ jωεelκ

Table 3.4: Summary of the most relevant electrolyte parameters derived in the AC models of
Secs. 3.1-3.3.

3.7 Summary

The first part of this chapter reports the derivation of original analytical models for the
AC small signal regime in electrode/dielectric/electrolyte systems either in 1D cartesian
(3.1) or 1D and 2D spherical (3.3) coordinates. The electrodes are always assumed ideally
polarizable, which is a desirable property for impedimetric sensors sometimes difficult to
achieve in real systems. In all cases we have shown the formation of the Electrical Double
Layer (EDL) at the electrodes at low frequency. The EDL prevents the electric field to
penetrate into the bulk of the system, thus hampering the ability of the electrode to probe
analytes at large distance. We have also shown that a first cut-off frequency fs exists,
above which the electric field begins to penetrate into the electrolyte, and that above a
second cut-off frequency fc the EDLs disappear and the response of the system is purely
dielectric. We have noted that fs is geometry dependent, while fc is not since it solely
depends on the electrolyte conductive and dielectric properties.
As we will show in the following chapters, despite the simplifications made in the deriva-
tion of these models, some relevant parameters (summarized in Tab. 3.4) have a general
applicability regardless of the system geometry (cartesian or 1D or 2D spherical). Among
these, the most important ones are the AC screening length κ, the first cut off frequency
fs, the angular dielectric’s relaxation cut-off frequency ξ = 2πfc and the double layer
admittance yDL.

Having in mind our general objective to develop a complete simulation platform for
miniaturized integrated biosensors, we have also derived models for both DC and AC
regimes in a 1D semiconductor uniform resistor (Sec. 3.4). These will be useful for the
validation of the full 3D numerical biosensor simulator ENBIOS, whose realization con-
stitutes an important part of this thesis work (see Chap. 4).

We also derived an AC model for an Electrolyte/Oxide/Semiconductor (EOS) capaci-
tor, see Sec. 3.5 and verified that, as expected, the model for the semiconductor admittance
is very similar to the electrolyte admittance.

Comparing the predictions from all the models above, we have concluded that the elec-
trolyte dielectric relaxation cut-off frequency fc is a general property of all the considered
systems, regardless of geometry and properties of the electrodes surface. In contrast, we
have seen that the first cut-off frequency fs is heavily dependent not only on the geome-
try but also on the physical details of the electrodes surface compared to the electrolyte
properties. In real biosensor systems this could be an issue, since on the electrodes surface
electrochemical phenomena and deviations from simple theory may occur, leading to a
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not well-controlled behaviour in the frequency range between fs and fc.
Finally, in Sec. 3.6 we have examined the relation between the admittance calculated

in the AC small signal regime and the capacitance measured with a switching capacitor
circuit. As we will see in Sec. 5.3, this is relevant for the comparison with experiments
performed on the nanoelectrode array system described in Sec. 5.2.
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3.A Appendices

3.A.1 1D cartesian model with electrolyte only - integration con-
stants

Starting from Eqs. 3.18, we can rewrite the system of boundary conditions:

q2

εel
µn0

[
2

κ1

(−c1 + d1) + l1

]
−Dκ1 (−c1 + d1)−Dκ2 (−c2 + d2) = 0

− q
2

εel
µn0

[
2

κ1

(−c1 + d1) + l1

]
−Dκ1 (c1 − d1)−Dκ2 (−c2 + d2) = 0

q2

εel
µn0

[
2

κ1

(−c1 exp (−κ1L) + d1 exp (κ1L)) + l1

]
−Dκ1 (−c1 exp (−κ1L)

+d1 exp (κ1L))−Dκ2 (−c2 exp (−κ2L) + d2 exp (κ2L)) = 0

− q
2

εel
µn0

[
2

κ1

(−c1 exp (−κ1L) + d1 exp (κ1L)) + l1

]
−Dκ1 (c1 exp (−κ1L)

−d1 exp (κ1L))−Dκ2 (−c2 exp (−κ2L) + d2 exp (κ2L)) = 0

− q

εel

[
2

κ2
1

(c1 + d1) + l2

]
= ṼB

− q

εel

[
2

κ2
1

(c1 exp (−κ1L) + d1 exp (κ1L)) + l1L+ l2

]
= ṼT

Summing the first and the second equation we get:

−2Dκ2 (−c2 + d2) = 0 =⇒ c2 = d2 (3.138)

Then, summing the third and the fourth equation and using the above equation:

−2Dκ2 (− exp (−κ2L) + exp (κ2L)) c2 = 0 =⇒ c2 = d2 = 0 (3.139)

We see that κ2 does not show up in the equations, so that we can denote κ1 = κ. The
system then simplifies to:

q2

εel
µn0

[
2

κ
(−c1 + d1) + l1

]
+Dκ (c1 − d1) = 0

q2

εel
µn0

[
2

κ
(−c1 exp (−κL) + d1 exp (κL)) + l1

]
+Dκ (c1 exp (−κL)− d1 exp (κL)) = 0

− q

εel

[
2

κ2
(c1 + d1) + l2

]
= ṼB

− q

εel

[
2

κ2
(c1 exp (−κL) + d1 exp (κL)) + l1L+ l2

]
= ṼT

(3.140)

Subtracting the first from the second expression yields to:

(1− exp (−κL))

(
q2

εel
µn0

2

κ
−Dκ

)
c1

+ (exp (κL)− 1)

(
q2

εel
µn0

2

κ
−Dκ

)
d1 = 0 (3.141)

=⇒ c1 = −d1

α
, α =

1− exp (−κL)

exp (κL)− 1
= exp (−κL) (3.142)
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Then from the first equation of system 3.140:(
1

α
+ 1

)(
q2

εel
µn0

2

κ
−Dκ

)
d1 +

q2

εel
µn0l1 = 0

=⇒ l1 = − 1

q2

εel
µn0

vd

(
1

α
+ 1

)
d1, vd =

q2

εel
µn0

2

κ
−Dκ . (3.143)

Subtracting the third from the fourth equation of system 3.140:

−
[
q

εel

2

κ2

(
− 1

α
(exp (−κL)− 1) + (exp (κL)− 1)

)
− L

qµn0

vd

(
1

α
+ 1

)]
d1 = ṼT − ṼB

=⇒ d1 = −α ṼT − ṼB
β − δ − (β + δ)α

, β =
q

εel

4

κ2
, δ =

L

qµn0

vd (3.144)

Finally from the third equation of 3.140 we get:

− q

εel

[
2

κ2

ṼT − ṼB
β − δ − (β + δ)α

(1− α) + l2

]
= ṼB (3.145)

=⇒ l2 =
2

κ2
(α− 1)

ṼT − ṼB
β − δ − (β + δ)α

− εel
q
ṼB

3.A.2 1D cartesian model with electrolyte only - derivation of the
equivalent formulation

Starting from Eqs. 3.20 - 3.27, we see that:

vd = qµn0
q

εel

ξ

κ
−Dκ =

ξ

κ
−Dκ

qµn0β = qµn0
q

εel

4

κ2
= 2

ξ

κ2

qµn0δ = qµn0
L

qµn0

vd = L

(
ξ

κ
−Dκ

)
,

which implies that:

qµn0 (β − δ − (β + δ)α) = 2
ξ

κ2
− L

(
ξ

κ
−Dκ

)
−
(

2
ξ

κ2
+ L

(
ξ

κ
−Dκ

))
α

= 2
ξ

κ2
(1− α)− L

(
ξ

κ
−Dκ

)
(1 + α) .

We can then rewrite the expression for the potential as:

Ṽ =
q

εel

2

κ2

∆Ṽ

β − δ − (β + δ)α

(
e−κx − αeκx

)
+

vd
qµn0

∆Ṽ
1 + α

β − δ − (β + δ)α
x

− q

εel

2

κ2
∆Ṽ

1− α
β − δ − (β + δ)α

+ ṼB

= ξ
∆Ṽ

2ξ (1− α)− L (ξκ−Dκ3) (1 + α)

(
e−κx − αeκx

)
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+
(
ξκ−Dκ3

)
∆Ṽ

1 + α

2ξ (1− α)− L (ξκ−Dκ3) (1 + α)
x

− ξ∆Ṽ 1− α
2ξ (1− α)− L (ξκ−Dκ3) (1 + α)

+ ṼB

= ξ
∆Ṽ

2ξ (1− α) + jωκL (1 + α)

(
e−κx − αeκx

)
− jωκ∆Ṽ

1 + α

2ξ (1− α) + jωκL (1 + α)
x

− ξ∆Ṽ 1− α
2ξ (1− α) + jωκL (1 + α)

+ ṼB .

3.A.3 1D cartesian model with a dielectric region inside the elec-
trolyte

Let us now focus on the case where a dielectric region of permittivity εd (which can
represent for instance a biomolecule) is introduced inside the electrolyte region. We
solution in the system where the dielectric region lies inside the interval [xd, xD], which
is a subdomain of the region [0, L], that is 0 ≤ xd ≤ xD ≤ L.
We denote Ṽd = Ṽ (xd), ṼD = Ṽ (xD) and see from Eq. 3.51 that the potential has the
expression:

Ṽ =



− q

εel

[
2

κ2

Ṽd − ṼB
β − δB − (β + δB)αB

(e−κx − αBeκx) + l1Bx+ l2B

]
x ∈ [0, xd]

ṼD − Ṽd
xD − xd

(x− xd) + Ṽd x ∈ [xd, xD]

− q

εel

[
2

κ2

ṼT − ṼD
β − δT − (β + δT )αT

(
e−κ(x−xD) − αT eκ(x−xD)

)
+ l1T (x− xD) + l2T

]
x ∈ [xD, L]

(3.146)

where:



αB = e−κxd

αT = e−κ(L−xD)

δB =
xd
qµn0

vd

δT =
L− xD
qµn0

vd

l1B =
εel
q

1

qµn0

vd

(
Ṽd − ṼB

) αB + 1

β − δB − (β + δB)αB

l1T =
εel
q

1

qµn0

vd

(
ṼT − ṼD

) αT + 1

β − δT − (β + δT )αT

l2B =
2

κ2

(
Ṽd − ṼB

) αB − 1

β − δB − (β + δB)αB
− εel

q
ṼB

l2T =
2

κ2

(
ṼT − ṼD

) αT − 1

β − δT − (β + δT )αT
− εel

q
ṼD
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The continuity of the normal component of the electric induction through the interface
provides the following boundary conditions:

εel
dṼ

dx

∣∣∣∣∣
x−d

= εd
dṼ

dx

∣∣∣∣∣
x+d

and εd
dṼ

dx

∣∣∣∣∣
x−D

= εel
dṼ

dx

∣∣∣∣∣
x+D

From the first equation we get:

−q
[
−2

κ

Ṽd − ṼB
β − δB − (β + δB)αB

(αB + 1) + l1B

]
= εd

ṼD − Ṽd
xD − xd

=⇒ αB + 1

β − δB − (β + δB)αB

(
Ṽd − ṼB

) εel
qµn0

Dκ = εd
ṼD − Ṽd
xD − xd

, (3.147)

and from the second:

εd
ṼD − Ṽd
xD − xd

= −q
[
−2

κ

ṼT − ṼD
β − δT − (β + δT )αT

(1 + αT ) + l1T

]

=⇒ εd
ṼD − Ṽd
xD − xd

=
αT + 1

β − δT − (β + δT )αT

(
ṼT − ṼD

) εel
qµn0

Dκ . (3.148)

Substituting Eq. 3.147 into Eq. 3.148, we obtain:

αB + 1

β − δB − (β + δB)αB

(
Ṽd − ṼB

) εel
qµn0

Dκ =
αT + 1

β − δT − (β + δT )αT

(
ṼT − ṼD

) εel
qµn0

Dκ

=⇒ Ṽd = ṼB +
αT + 1

αB + 1

β − δB − (β + δB)αB
β − δT − (β + δT )αT

(
ṼT − ṼD

)
,

and using again the second continuity condition:

εd

ṼD − ṼB −
αT + 1

αB + 1

β − δB − (β + δB)αB
β − δT − (β + δT )αT

(
ṼT − ṼD

)
xD − xd

=
αT + 1

β − δT − (β + δT )αT

(
ṼT − ṼD

) εel
qµn0

Dκ

=⇒ ṼD =

εd
xD − xd

(
ṼB + ṼT

αT + 1

αB + 1

β − δB − (β + δB)αB
β − δT − (β + δT )αT

)
+ ṼT

αT + 1

β − δT − (β + δT )αT

εel
qµn0

Dκ

εd
xD − xd

(
1 +

αT + 1

αB + 1

β − δB − (β + δB)αB
β − δT − (β + δT )αT

)
+

αT + 1

β − δT − (β + δT )αT

εel
qµn0

Dκ

.

Then denoting:

γ =
αT + 1

αB + 1

β − δB − (β + δB)αB
β − δT − (β + δT )αT

(3.149)

we finally get:

ṼD =

ṼB + ṼT

(
γ +

αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

)
1 + γ +

αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

Ṽd =

ṼTγ + ṼB

(
1 +

αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

)
1 + γ +

αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

. (3.150)
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Because the current is the same in each section, we compute it as displacement current
in the dielectric:

J̃ = −jωεd
ṼD − Ṽd
xD − xd

= −
jωεd

(
ṼT − ṼB

) αT + 1

β − δT − (β + δT )αT

εel
εd

Dκ

qµn0

1 + γ +
αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

= jω
∆Ṽ

(1 + γ)
β − δT − (β + δT )αT

αT + 1

1

εel

qn0

kBTκ
+
xD − xd
εd

. (3.151)

3.A.3.1 Equivalent formulation

According to the equivalent formulation developed in Sec. 3.1.1.1, we have:

qµn0κ
2 (β − δ − (β + δ)α) = 2ξ (1− α) + jωκL (1 + α) .

This means that:

γ =
αT + 1

αB + 1

2ξ (1− αB) + jωκ∆xB (1 + αB)

2ξ (1− αT ) + jωκ∆xT (1 + αT )

where ∆xB = xd and ∆xT = L− xD. We obtain then:

J̃ = jω
∆Ṽ

(1 + γ)
2ξ (1− αT ) + jωκ∆zT (1 + αT )

1 + αT

1

εelDκ3
+

hd
εd − jσd/ω

(3.152)

where we have also included a finite conductivity σd in the dielectric region representing
the biomolecule and hd = xD − xd. If we now assume that |αT | � 1 and |αB| � 1, we
can approximate the former equation as:

J̃ ' jω
∆Ṽ

(1 + γ)
2ξ + jωκ∆zT

εelDκ3
+

hd
εd − jσd/ω

(3.153)

= jω
∆Ṽ

4ξ + jωκhd
εelDκ3

+
hd

εd − jσd/ω

(3.154)

As expected, also in this case the admittance ytot is the series connection of the dielectric
region and the electrolyte region admittances.

3.A.4 1D cartesian model with dielectric layer, electrolyte and
dielectric region inside

We consider the possibility of having at the same time a dielectric layer in the region [0,
a] and another dielectric layer in the region [xd, xD] which are distinct subdomains of the
region [0, L].
We denote ṼI = Ṽ (a), Ṽd = Ṽ (xd) and ṼD = Ṽ (xD) and, using the results in Sec. 3.1.2,
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write the potential in the overall domain as:

Ṽ =



ṼI − ṼB
a

x+ ṼB x ∈ [0, a]

− q

εel

[
2

κ2

Ṽd − ṼI
β − δB − (β + δB)αB

(
e−κ(x−a) − αBeκ(x−a)

)
+l1B (x− a) + l2B

]
x ∈ [a, xd]

ṼD − Ṽd
xD − xd

(x− xd) + Ṽd x ∈ [xd, xD]

− q

εel

[
2

κ2

ṼT − ṼD
β − δT − (β + δT )αT

(
e−κ(x−xD) − αT eκ(x−xD)

)
+l1T (x− xD) + l2T

]
x ∈ [xD, L]

(3.155)

Imposing the continuity of the normal component of the dielectric induction through the
interfaces yields:



εs
ṼI − ṼB

a
=

αB + 1

β − δB − (β + δB)αB

(
Ṽd − ṼI

) εel
qµn0

Dκ

αB + 1

β − δB − (β + δB)αB

(
Ṽd − ṼI

) εel
qµn0

Dκ = εd
ṼD − Ṽd
xD − xd

εd
ṼD − Ṽd
xD − xd

=
αT + 1

β − δT − (β + δT )αT

(
ṼT − ṼD

) εel
qµn0

Dκ

From the first and the second equation:

εs
ṼI − ṼB

a
= εd

ṼD − Ṽd
xD − xd

=⇒ ṼI = ṼB +
εd
εs

a

xD − xd

(
ṼD − Ṽd

)
Eq. 3.150 still holds substituting ṼB with ṼI , so that we get:

ṼI = ṼB +
εd
εs

a

xD − xd

(
ṼT − ṼI

) αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

1 + γ +
αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

= ṼB +
a

εs

ṼT − ṼI
(1 + γ)

β − δT − (β + δT )αT
αT + 1

1

εel

qn0

kBTκ
+
xD − xd
εd

If we now call:

η = (1 + γ)
β − δT − (β + δT )αT

αT + 1

1

εel

qn0

kBTκ
+
xD − xd
εd

=

(
β − δT − (β + δT )αT

αT + 1
+
β − δB − (β + δB)αB

αB + 1

)
1

εel

qn0

kBTκ
+
xD − xd
εd
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We have:

ṼI =
ṼBεsη + ṼTa

εsη + a

ṼD =

ṼI + ṼT

(
γ +

αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

)
1 + γ +

αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

Ṽd =

ṼTγ + ṼI

(
1 +

αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

)
1 + γ +

αT + 1

β − δT − (β + δT )αT

εel
εd

(xD − xd)
Dκ

qµn0

(3.156)

The current then is:

J̃ = −jωεs
ṼI − ṼB

a
= jω

∆Ṽ

η +
a

εs

3.A.5 1D cartesian model with DC bias (only electrolyte) - alter-
native derivation

We can write Eq. 3.73 in a matrix form
du
dx

= Au, where:

u =



Ṽ

φ̃+

φ̃−

dṼ

dx

dφ̃+

dx

dφ̃−
dx


, A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

κ2
D

2

(
δ(x) +

1

δ(x)

)
−κ

2
D

2
δ(x) − κ2

D

2δ(x)
0 0 0

−κ2
ω κ2

ω 0 0 − 1

δ(x)

dδ(x)

dx
0

−κ2
ω 0 κ2

ω 0 0
1

δ(x)

dδ(x)

dx


We calculate the eigenvalues (κ) by solving the characteristic equation:

det(κI−A) = det



κ 0 0 −1 0 0
0 κ 0 0 −1 0
0 0 κ 0 0 −1

−κ
2
D

2

(
δ(x) +

1

δ(x)

)
κ2
D

2
δ(x)

κ2
D

2δ(x)
κ 0 0

κ2
ω −κ2

ω 0 0 κ+ η(x) 0
κ2
ω 0 −κ2

ω 0 0 κ− η(x)



= κ

κ5 −
(

2κ2
ω +

κ2
D

2

(
δ +

1

δ

)
+ η2

)
κ3 +

κ4
ωδ +

κ2
D

2

(
1 + δ2

) (
κ2
ω + η2

)
δ

κ+

κ2
D

2
κ2
ω

(
δ2 − 1

)
η

δ


where we have defined:

η(x) =
1

δ(x)

dδ(x)

dx
=

4α

λD

e
x−a
λD(

α e
x−a
λD + 1

)(
α e

x−a
λD − 1

) .
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The only eigenvalue that can be immediately found is κ1 = 0; the other ones have to
be computed numerically. We then find the matrix transformation T(x) such that A =
TΛT−1 where Λ is the diagonal matrix of the eigenvalues. The system is then diagonalized
as:

du
dx

= Au ⇐⇒ du
dx

= TΛT−1u ⇐⇒ dy
dx

= Λy (3.157)

where y = T−1u. The solution of the diagonalized system is:

yl(x) = Cl exp

(∫ x

x0

κl(ζ)dζ

)
= sl exp

(∫ x

x0

κl(ζ)dζ + cl

)
where l = 1..6 is the eigenvalue index, x0 is the lower boundary of the domain, in our case
then x0 = 0, and we have chosen to include the constant inside the exponential, adding
the sign sl.
The boundary conditions are:


Ṽ

dφ̃+

dx

dφ̃−
dx


0

=

ṼB0
0

 and


Ṽ

dφ̃+

dx

dφ̃−
dx


L

=

ṼT0
0



As we know that the actual solution is u = Ty, we can write:T1y
T5y
T6y


0

=

ṼB0
0

 and

T1y
T5y
T6y


L

=

ṼT0
0


where Tk denotes the k-th row of T. Because one row of T is arbitrary, we can set
T1 =

[
1 1 1 1 1 1

]
. Solving this system of equations we obtain the constants cl.

The matrix T can be easily calculated noting that the columns Tl are:

Tl =



1

− κ2
ω

κ2
l + κlη − κ2

ω

− κ2
ω

κ2
l − κlη − κ2

ω
κ2
D

2κl

((
δ +

1

δ

)
+ δ

κ2
ω

κ2
l + κlη − κ2

ω

+
1

δ

κ2
ω

κ2
l − κlη − κ2

ω

)
−κl

κ2
ω

κ2
l + κlη − κ2

ω

−κl
κ2
ω

κ2
l − κlη − κ2

ω


and the column corresponding to κl = 0 is Tl =

[
1 1 1 0 0 0

]T . In this way we can
write explicitly the system of boundary conditions (denoting with l = 1 the eigenvalue
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κl = 0, as previously done):

6∑
l=1

sle
cl = ṼB

6∑
l=2

sle
clκl(0)

κ2
ω

κl(0)2 + κl(0)η(0)− κ2
ω

= 0

6∑
l=2

sle
clκl(0)

κ2
ω

κl(0)2 − κl(0)η(0)− κ2
ω

= 0

6∑
l=1

sle
cl exp

(∫ L

0

κl(ζ)dζ

)
= ṼT

6∑
l=2

sle
clκl(L)

κ2
ω

κl(L)2 + κl(L)η(L)− κ2
ω

exp

(∫ L

0

κl(ζ)dζ

)
= 0

6∑
l=2

sle
clκl(L)

κ2
ω

κl(L)2 − κl(L)η(L)− κ2
ω

exp

(∫ L

0

κl(ζ)dζ

)
= 0

3.A.6 Spherical 1st order model with only electrolyte - integra-
tion constants

To calculate the integration constants in Eqs. 3.85, first we note that:

∂y−2(−jκir)
∂r

= j
(−2κlr cosh(κlr) + (2 + κ2

l r
2) sinh(κlr))

κ2
l r

3
.

The expressions for the gradients are:

∇φ̃1 · r̂ =
∂φ̃1

∂r
=

(
c′1
∂y−2(−jκ1r)

∂r
− c′2

∂y−2(−jκ2r)

∂r
+ c3

)
cos θ

∇φ̃2 · r̂ =
∂φ̃2

∂r
=

(
c′1
∂y−2(−jκ1r)

∂r
+ c′2

∂y−2(−jκ2r)

∂r
+ c3

)
cos θ

Therefore, we need to solve the system:
c′1
∂y−2(−jκ1r)

∂r

∣∣∣
R
− c′2

∂y−2(−jκ2r)

∂r

∣∣∣
R

+ c3 = 0

c′1
∂y−2(−jκ1r)

∂r

∣∣∣
R

+ c′2
∂y−2(−jκ2r)

∂r

∣∣∣
R

+ c3 = 0

− ξ

jω
c′1 y−2(−jκ1R) + c3R = Ṽ0

. (3.158)

Subtracting the first equation from the second immediately tells that c′2 = c2 = 0. The
other constants are (with the substitution ρ0 = κR):

c1 =
j

2
c′1 = −jω

2

κ2R2

κR(ξ − 2jω) cosh(κR) + (−ξ + (2 + κ2R2) jω) sinh(κR)
Ṽ0

= −jω ρ2
0 exp(−ρ0)

ρ0(ξ − 2jω) (1 + exp(−2ρ0)) + (−ξ + (2 + ρ2
0) jω) (1− exp(−2ρ0))

Ṽ0
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c3 =
jω

R

−2κR cosh(κR) + (2 + κ2R2) sinh(κR)

κR(ξ − 2jω) cosh(κR) + (−ξ + (2 + κ2R2) jω) sinh(κR)
Ṽ0

=
jω

R

−2ρ0 (1 + exp(−2ρ0)) + (2 + ρ2
0) (1− exp(−2ρ0))

ρ0(ξ − 2jω) (1 + exp(−2ρ0)) + (−ξ + (2 + ρ2
0) jω) (1− exp(−2ρ0))

Ṽ0

3.A.7 Spherical 1st order model with particle - integration con-
stants

The expressions of the integration constants in Eq. 3.93 are:

c1 = 3R5V0κ
2jω
[
− 3eρpr3

pεp(2 + ρ0(2 + ρ0))jω

+ eρ0
( (
R3 − r3

p

)
(εp(1 + ρp) + εel(2 + ρp(2 + ρp)))2ξ

+
(
2r3

p(εp − εel) +R3(εp + 2εel)
)

(2 + ρp(2 + ρp))jω
)]
/η

d1 = eρ0+ρp3R5V0κ
2jω
[
− 3eρ0r3

pεp(2 + ρ0(−2 + ρ0))jω

+ eρp
( (
R3 − r3

p

)
(εp(1− ρp) + εel(2 + ρp(−2 + ρp)))2ξ

+
(
2r3

p(εp − εel) +R3(εp + 2εel)
)

(2 + ρp(−2 + ρp))jω
)]
/η

c3 = 3R5V0jω
[
e2ρp(2 + ρ0(2 + ρ0))

(
(εp(1− ρp) + εel(2 + ρp(−2 + ρp)))2ξ

+ (εp + 2εel)(2 + ρp(−2 + ρp))jω
)

− e2ρ0(2 + ρ0(−2 + ρ0))
(

(εp(1 + ρp) + εel(2 + ρp(2 + ρp)))2ξ

+ (εp + 2εel)(2 + ρp(2 + ρp))jω
)

+ 4eρ0+ρpεpρ
3
pξ
]
/η

d3 = 3R5r3
pV0jω

[
e2ρp(2 + ρ0(2 + ρ0))

(
(εp(1− ρp) + εel(2 + ρp(−2 + ρp)))ξ

+ j(−εp + εel)(2 + ρp(−2 + ρp))ω
)

− e2ρ0(2 + ρ0(−2 + ρ0))
(

(εp(1 + ρp) + εel(2 + ρp(2 + ρp)))ξ

+ j(−εp + εel)(2 + ρp(2 + ρp))ω
)

+ 2eρ0+ρpεpρ
3
0ξ
]
/η

e1 = 3R5V0εel(ξ + jω)
[
− 4eρ0+ρp

(
R3 − r3

p

)
κ3ξ

+ 3je2ρp(2 + ρ0(2 + ρ0))(2 + ρp(−2 + ρp))ω

− 3je2ρ0(2 + ρ0(−2 + ρ0))(2 + ρp(2 + ρp))ω
]
/η

η = −
(

3jeρpR3(εp(−1 + ρp)− εel(2 + ρp(−2 + ρp)))ξ

+ eρ0
(
− j

(
2r3

p(εp − εel) +R3(εp + 2εel)
)

(−1 + ρ0)ξ

+
(
r3
p(−εp + εel) +R3(εp + 2εel)

)
(2 + ρ0(−2 + ρ0))ω

))(
− 3eρ0R3(2 + ρp(2 + ρp))ω + eρp

(
2j
(
R3 − r3

p

)
(1 + ρ0)ξ +

(
2R3 + r3

p

)
(2 + ρ0(2 + ρ0))ω

) )
+
(
− 3eρpR3(2 + ρp(−2 + ρp))ω

+ eρ0
(
−2j

(
R3 − r3

p

)
(−1 + ρ0)ξ +

(
2R3 + r3

p

)
(2 + ρ0(−2 + ρ0))ω

) )
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(
− 3jeρ0R3(εp(1 + ρp) + εel(2 + ρp(2 + ρp)))ξ

+ eρp
(
j
(
2r3

p(εp − εel) +R3(εp + 2εel)
)

(1 + ρ0)ξ

+
(
r3
p(−εp + εel) +R3(εp + 2εel)

)
(2 + ρ0(2 + ρ0))ω

))
where we have set again ρ = κr, so that ρp = κrp and ρ0 = κR. We also can assume that
ρ0 � 1. The constants then are:

c1 = 3R5V0κ
2jω
[
− 3eρpr3

pεpρ
2
0jω + eρ0

( (
R3 − r3

p

)
(εp(1 + ρp) + εel(2 + ρp(2 + ρp)))2ξ

+
(
2r3

p(εp − εel) +R3(εp + 2εel)
)

(2 + ρp(2 + ρp))jω
)]
/η

d1 = eρ0+ρp3R5V0κ
2jω
[
− 3eρ0r3

pεpρ
2
0jω + eρp

( (
R3 − r3

p

)
(εp(1− ρp) + εel(2 + ρp(−2 + ρp)))2ξ

+
(
2r3

p(εp − εel) +R3(εp + 2εel)
)

(2 + ρp(−2 + ρp))jω
)]
/η

c3 = 3R5V0jω
[
e2ρpρ2

0

(
(εp(1− ρp) + εel(2 + ρp(−2 + ρp)))2ξ + (εp + 2εel)(2 + ρp(−2 + ρp))jω

)
− e2ρ0ρ2

0

(
(εp(1 + ρp) + εel(2 + ρp(2 + ρp)))2ξ + (εp + 2εel)(2 + ρp(2 + ρp))jω

)
+ 4eρ0+ρpρ3

pεpξ
]
/η

d3 = 3R5r3
pV0jω

[
e2ρpρ2

0

(
(εp(1− ρp) + εel(2 + ρp(−2 + ρp)))ξ + j(−εp + εel)(2 + ρp(−2 + ρp))ω

)
− e2ρ0ρ2

0

(
(εp(1 + ρp) + εel(2 + ρp(2 + ρp)))ξ + j(−εp + εel)(2 + ρp(2 + ρp))ω

)
+ 2eρ0+ρpρ3

0εpξ
]
/η

e1 = 3R5V0εel(ξ + jω)
[
− 4eρ0+ρp

(
ρ3

0 − ρ3
p

)
ξ

+ 3je2ρpρ2
0(2 + ρp(−2 + ρp))ω − 3je2ρ0ρ2

0(2 + ρp(2 + ρp))ω
]
/η

η = −
(

3jeρpR3(εp(−1 + ρp)− εel(2 + ρp(−2 + ρp)))ξ

+ eρ0
(
− j

(
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ0ξ +

(
r3
p(−εp + εel) +R3(εp + 2εel)

)
ρ2

0ω
))(

− 3eρ0R3(2 + ρp(2 + ρp))ω + eρp
(
2j
(
R3 − r3

p

)
ρ0ξ +

(
2R3 + r3

p

)
ρ2

0ω
) )

+
(
− 3eρpR3(2 + ρp(−2 + ρp))ω + eρ0

(
−2j

(
R3 − r3

p

)
ρ0ξ +

(
2R3 + r3

p

)
ρ2

0ω
) )(

− 3jeρ0R3(εp(1 + ρp) + εel(2 + ρp(2 + ρp)))ξ

+ eρp
(
j
(
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ0ξ +

(
r3
p(−εp + εel) +R3(εp + 2εel)

)
ρ2

0ω
))

Large particle Assuming |ρp| � 1, the constants are:

c1 = 3R5V0κ
2jω
[
− 3eρp−2ρ0r3

pεpρ
2
0jω + e−ρ0

( (
R3 − r3

p

)
(εpρp + εelρ

2
p)2ξ

+
(
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ2
pjω
)]
/η

d1 = eρp3R5V0κ
2jω
[
− 3r3

pεpρ
2
0jω + eρp−ρ0

( (
R3 − r3

p

)
(−εpρp + εelρ

2
p)2ξ

+
(
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ2
pjω
)]
/η

c3 = 3R5V0jω
[
e2ρp−2ρ0ρ2

0

(
(−εpρp + εelρ

2
p)2ξ + (εp + 2εel)ρ

2
pjω
)
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− ρ2
0

(
(εpρp + εelρ

2
p)2ξ + (εp + 2εel)ρ

2
pjω
)

+ 4eρp−ρ0ρ3
pεpξ

]
/η

d3 = 3R5r3
pV0jω

[
e2ρp−2ρ0ρ2

0

(
(−εpρp + εelρ

2
p)ξ + (−εp + εel)ρ

2
pjω
)

− ρ2
0

(
(εpρp + εelρ

2
p)ξ + (−εp + εel)ρ

2
pjω
)

+ 2eρp−ρ0ρ3
0εpξ

]
/η

e1 = 3R5V0εel(ξ + jω)
[
− 4eρp−ρ0

(
ρ3

0 − ρ3
p

)
ξ + 3je2ρp−2ρ0ρ2

0ρ
2
pω − 3jρ2

0ρ
2
pω
]
/η

η = −
(

3jeρp−ρ0R3(εpρp − εelρ2
p)ξ

− j
(
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ0ξ +

(
r3
p(−εp + εel) +R3(εp + 2εel)

)
ρ2

0ω
)

(
− 3R3ρ2

pω + eρp−ρ0
(
2j
(
R3 − r3

p

)
ρ0ξ +

(
2R3 + r3

p

)
ρ2

0ω
) )

+
(
− 3eρp−ρ0R3ρ2

pω − 2j
(
R3 − r3

p

)
ρ0ξ +

(
2R3 + r3

p

)
ρ2

0ω
)

(
− 3jR3(εpρp + εelρ

2
p)ξ

+ eρp−ρ0
(
j
(
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ0ξ +

(
r3
p(−εp + εel) +R3(εp + 2εel)

)
ρ2

0ω
))

where we have also multiplied nominator and denominator by exp(−2ρ0).
If we now assume that ρ0 � ρp the constants simplify to:

c1 = e−ρ03R5V0κ
2jω
( (
R3 − r3

p

)
(εpρp + εelρ

2
p)2ξ

+
(
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ2
pjω
)
/η

d1 = −eρp9R5V0κ
2jωr3

pεpρ
2
0jω/η

c3 = −3R5V0jωρ
2
0

(
(εpρp + εelρ

2
p)2ξ + (εp + 2εel)ρ

2
pjω
)
/η

d3 = −3R5r3
pV0jωρ

2
0

(
(εpρp + εelρ

2
p)ξ + (−εp + εel)ρ

2
pjω
)
/η

e1 = −9R5V0εel(ξ + jω)ρ2
0ρ

2
pjω/η

η = −3R3ρ2
pjω
( (

2r3
p(εp − εel) +R3(εp + 2εel)

)
ρ0ξ −

(
r3
p(−εp + εel) +R3(εp + 2εel)

)
ρ2

0jω
)

+ 3R3(εpρp + εelρ
2
p)ξ
(
− 2

(
R3 − r3

p

)
ρ0ξ +

(
2R3 + r3

p

)
ρ2

0jω
)

If we instead assume that ρ0 ≈ ρp, which implies c1 exp (ρ0)→ 0, we can simplify the
expression of the current as follows:

Ĩ ' πRεel

(
− d1ξ exp(−ρ0)− c3jωR + 2jω

d3

R2

)
' 3πR4Ṽ0jωεel

[
2R2

(
R3 − r3

p

)
ακ2ξ2ρp(εp − αεp + (1 + α)εelρp)

+ ξ
(
r3
pαεpρ

2
0

(
−3R2(1 + α)κ2 + 4ρ0

)
+ 2

(
R3 − r3

p

) (
1 + α2

)
εpρ

2
0ρp

+ (1 + α)
(
R2α

(
2r3

p(εp − εel) +R3(εp + 2εel)
)
κ2 − 2

(
R3 − r3

p

)
(−1 + α)εelρ

2
0

)
ρ2
p

− 4R3αεpρ
3
p

)
jω +

(
−1 + α2

) (
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ2

0ρ
2
pω

2
]
/η

where we have written α = exp (ρp − ρ0).
If we now assume that the particle is at large distance from the electrodes, then α ' 0
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and:

Ĩ ' −3πR4Ṽ0jωεel

[
ξ
(

2
(
R3 − r3

p

)
εpρ

2
0ρp +

(
2
(
R3 − r3

p

)
εelρ

2
0

)
ρ2
p

)
jω

−
(
2r3

p(εp − εel) +R3(εp + 2εel)
)
ρ2

0ρ
2
pω

2
]
/[( (

2r3
p(εp − εel) +R3(εp + 2εel)

)
ρ0ξ +

(
r3
p(−εp + εel) +R3(εp + 2εel)

)
ρ2

0jω
)

(
3R3ρ2

pjω
)

+
(

2
(
R3 − r3

p

)
ρ0ξ +

(
2R3 + r3

p

)
ρ2

0jω
)(

3R3(εpρp + εelρ
2
p)ξ

)]
= πRṼ0ω

2εelρ0ρp

[
2
(
R3 − r3

p

)
(εp + εel) ξ +

(
2r3

p(εp − εel) +R3(εp + 2εel)
)
jω
]
/[( (

2r3
p(εp − εel) +R3(εp + 2εel)

)
ξ +

(
r3
p(−εp + εel) +R3(εp + 2εel)

)
ρ0jω

)
ρpjω

+
(

2
(
R3 − r3

p

)
ξ +

(
2R3 + r3

p

)
ρ0jω

)
(εp + εelρp)ξ

]

3.A.8 Spherical 0th order model with only electrolyte - integra-
tion constants

As before, subtracting the first two equations from Eq. 3.100 tells us immediately that
c2 = d2 = 0 and φ̃1 = φ̃2 = φ̃. Eq. 3.100 transforms then to:



c1 exp (κRi)
κRi − 1

κR2
i

− d1 exp (−κRi)
κRi + 1

κR2
i

− d3

R2
i

= 0

c1 exp (κRo)
κRo − 1

κR2
o

− d1 exp (−κRo)
κRo + 1

κR2
o

− d3

R2
o

= 0

− ξ

jω

c1 exp (κRi) + d1 exp (−κRi)

κRi

+ c3 +
d3

Ri

= Ṽ0

− ξ

jω

c1 exp (κRo) + d1 exp (−κRo)

κRo

+ c3 +
d3

Ro

= 0

The solution is:

c1 = RiRoκjω
(
e−ρo (1 + ρi)− eρi−2ρo (1 + ρo)

)
Ṽ0/η

d1 = RiRoκjω
(
−e2ρi−ρo (1− ρi) + eρi (1− ρo)

)
Ṽ0/η

c3 = Ri

(
−2eρi−ρoρoξ + (1 + ρi) (ξ + jω(1− ρo))− e2ρi−2ρo (1− ρi) (ξ + jω(1 + ρo))

)
Ṽ0/η

d3 = −RiRojω
(
(1 + ρi) (1− ρo)− e2ρi−2ρo (1− ρi) (1 + ρo)

)
Ṽ0/η

η = −4eρi−ρoRiRoκξ − ((Ro (1− ρo)−Ri (1 + ρi)) ξ + (Ro −Ri) (1 + ρi) (1− ρo) jω)

+ e2ρi−2ρo ((Ro (1 + ρo)−Ri (1− ρi)) ξ + (Ro −Ri) (1− ρi) (1 + ρo) jω)

where ρi = κRi and ρo = κRo.
We now define α = exp(ρi − ρo). We can safely assume that the outer electrode has a



102 3.A. APPENDICES

wide radius, so that ρo = κRo � 1. In this way the constants simplify to:

c1 = e−ρoRiRoκjω ((1 + ρi)− αρo) Ṽ0/η

d1 = eρiRiRoκjω (−α (1− ρi)− ρo) Ṽ0/η

c3 = Ri

(
−2αρoξ + (1 + ρi) (ξ − jω)− α2 (1− ρi) (ξ + jω)

)
Ṽ0/η

d3 = −RiRojω
(
− (1 + ρi) ρo − α2 (1− ρi) ρo

)
Ṽ0/η

η = −4αRiRoκξ − ((−Roρo −Ri (1 + ρi)) ξ + (Ro −Ri) (1 + ρi) ρojω)

+ α2 ((Roρo −Ri (1− ρi)) ξ + (Ro −Ri) (1− ρi) ρojω)

Large radius inner electrode If the inner electrode has a large radius (ρi = κRi � 1),
but still much smaller than the outer electrode (ρi � ρo, α → 0), then we can further
simplify the solution:

c1 = e−ρoRiRoκjω (1 + ρi) Ṽ0/η

d1 = −eρiRiRoκjωρoṼ0/η

c3 = Ri (1 + ρi) (ξ − jω) Ṽ0/η

d3 = RiRojω (1 + ρi) ρoṼ0/η

η = − ((−Roρo −Ri (1 + ρi)) ξ + (Ro −Ri) (1 + ρi) ρojω)

3.A.9 Spherical 0th order model with particle - integration con-
stants

Defining αi = exp(ρi− ρp) and αo = exp(ρP − ρo) the constants in Eqs. 3.103 - 3.104 are:

c1i = rprPRoṼ0εpκ (−eρi(1 + ρp) + eρp(1 + ρi))(
e2ρo(1 + ρP )(−1 + ρo)− e2ρP (−1 + ρP )(1 + ρo)

)
jω(ξ + jω)/η

d1i = e(rp+Ri)κrprPRoṼ0εpκ (eρp(−1 + ρp) + eρi(1− ρi))(
−e2ρo(1 + ρP )(−1 + ρo) + e2ρP (−1 + ρP )(1 + ρo)

)
jω(ξ + jω)/η

c3i =
1

Ri

rprPRoṼ0εp
(
e2ρo(1 + ρP )(−1 + ρo)− e2ρP (−1 + ρP )(1 + ρo)

)
(ξ + jω)(

2e(rp+Ri)κρiξ − e2ρi(1 + ρp)(ξ + jω − ρijω)− e2ρp(−1 + ρp)(ξ + jω + ρijω)
)
/η + Ṽ0

d3i = rprPRoṼ0εp
(
−e2ρi(1 + ρp)(−1 + ρi) + e2ρp(−1 + ρp)(1 + ρi)

)(
e2ρo(1 + ρP )(−1 + ρo)− e2ρP (−1 + ρP )(1 + ρo)

)
jω(ξ + jω)/η

c1o = rprPRoṼ0εpκ
(
−e2ρi(1 + ρp)(−1 + ρi) + e2ρp(−1 + ρp)(1 + ρi)

)
(eρo(1 + ρP )− eρP (1 + ρo)) jω(ξ + jω)/η

d1o = e(rP+Ro)κrprPRoṼ0εpκ
(
−e2ρi(1 + ρp)(−1 + ρi) + e2ρp(−1 + ρp)(1 + ρi)

)
(eρP (−1 + ρP ) + eρo(1− ρo)) jω(ξ + jω)/η

c3o = − rprP Ṽ0εp
−e2ρo(1 + ρP )(−1 + ρo) + e2ρP (−1 + ρP )(1 + ρo)(
−e2ρi(1 + ρp)(−1 + ρi) + e2ρp(−1 + ρp)(1 + ρi)

)(
e2ρo(1 + ρP )(−1 + ρo)− e2ρP (−1 + ρP )(1 + ρo)

)
(ξ + jω)(

−2e(rP+Ro)κρoξ + e2ρo(1 + ρP )(ξ + jω − ρojω) + e2ρP (−1 + ρP )(ξ + jω + ρojω)
)
/η

d3o = rprPRoṼ0εp
(
−e2ρi(1 + ρp)(−1 + ρi) + e2ρp(−1 + ρp)(1 + ρi)

)
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(
e2ρo(1 + ρP )(−1 + ρo)− e2ρP (−1 + ρP )(1 + ρo)

)
jω(ξ + jω)/η

e =
rPRoṼ0

Ri (eρi(1 + ρp)− eρp(1 + ρi))
(−eρi(1 + ρp) + eρp(1 + ρi))(

e2ρo(1 + ρP )(−1 + ρo)− e2ρP (−1 + ρP )(1 + ρo)
)

(ξ + jω)(
− 4e(rp+Ri)κrpRiεpκξ + e2ρi

(
Ri(εp − εel)(−1 + ρi)(ξ + jω)

+ r2
pεpκ(ξ + jω − ρijω) + rp

(
−Riεelκ(−1 + ρi)(ξ + jω) + εp

(
ξ + (−1 + ρi)

2jω
)) )

+ e2ρp
(
Ri(εp − εel)(1 + ρi)(ξ + jω) + r2

pεpκ(ξ + jω + ρijω)

+ rp
(
Riεelκ(1 + ρi)(ξ + jω)− εp

(
ξ + (1 + ρi)

2jω
)) ))

/η + Ṽ0

f = rprPRoṼ0εel
(
−e2ρi(1 + ρp)(−1 + ρi) + e2ρp(−1 + ρp)(1 + ρi)

)(
e2ρo(1 + ρP )(−1 + ρo)− e2ρP (−1 + ρP )(1 + ρo)

)
(ξ + jω)2/η

η =
1

Ri

e−2(ρp+ρo)(ξ + jω)
[
− 2eρp+ρi+2ρorPRoεpξ(1 + ρP )(Riρp + rpρi)(−1 + ρo)

+ 4eρP+2ρi+ρorprPRiεpξ(1 + ρp)(−1 + ρi)ρo − 4e2ρp+ρP+ρorprPRiεpξ(−1 + ρp)(1 + ρi)ρo

+ 2eρp+2ρP+ρirPRoεpξ(−1 + ρP )(Riρp + rpρi)(1 + ρo)

+ e2(ρi+ρo)(rPRiRo(1 + ρP )(−1 + ρi)(−1 + ρo)(−εel(1 + ρp)(ξ + jω) + εp(ξ + jω + ρpjω))

− rp(1 + ρp)(RiRo(−1 + ρi)(−1 + ρo)(εp(ξ + jω)− εel(ξ + ξρP + jω))

+ rP (−Roεp(1 + ρP )(−1 + ρo)(ξ + jω − ρijω)

+Ri(−1 + ρi)(−εel(−1 + ρo)ρojω + εp(ξ(1 + ρP )− (1 + ρP − ρo)(−1 + ρo)jω)))))

+ e2(ρp+ρo)(rPRiRo(1 + ρP )(1 + ρi)(−1 + ρo)(εel(−1 + ρp)(ξ + jω) + εp(ξ + jω − ρpjω))

+ rp(−1 + ρp)(RiRo(1 + ρi)(−1 + ρo)(εp(ξ + jω)− εel(ξ + ξρP + jω))

+ rP (Roεp(1 + ρP )(−1 + ρo)(ξ + jω + ρijω) +Ri(1 + ρi)(−εel(−1 + ρo)ρojω

+ εp(ξ(1 + ρP )− (1 + ρP − ρo)(−1 + ρo)jω)))))

+ e2(ρP+ρi)(−rPRiRo(−1 + ρP )(−1 + ρi)(1 + ρo)(−εel(1 + ρp)(ξ + jω) + εp(ξ + jω + ρpjω))

− rp(1 + ρp)(RiRo(−1 + ρi)(1 + ρo)(εel(ξ(−1 + ρP )− jω) + εp(ξ + jω))

+ rP (Roεp(−1 + ρP )(1 + ρo)(ξ + jω − ρijω) +Ri(−1 + ρi)(εelρo(1 + ρo)jω

+ εp(ξ(−1 + ρP ) + (−1 + ρP − ρo)(1 + ρo)jω)))))

+ e2(ρp+ρP )(−rPRiRo(−1 + ρP )(1 + ρi)(1 + ρo)(εel(−1 + ρp)(ξ + jω) + εp(ξ + jω − ρpjω))

+ rp(−1 + ρp)(RiRo(1 + ρi)(1 + ρo)(εel(ξ(−1 + ρP )− jω) + εp(ξ + jω))

+ rP (−Roεp(−1 + ρP )(1 + ρo)(ξ + jω + ρijω) +Ri(1 + ρi)(εelρo(1 + ρo)jω

+ εp(ξ(−1 + ρP ) + (−1 + ρP − ρo)(1 + ρo)jω)))))
]

3.A.10 Derivation of the analytical model for the admittance
change

As a first step we note that again the solution in the particle is simply given by:

Ṽ (r, θ) = e1r cos θ (3.159)

The solution in the electrolyte is given again by Eq. 3.93 with c2 = d2 = 0.
From now on we concentrate on the dependence on r, since the dependence on cos θ does
not show up in the calculation of the integration constants. This happens because for
the continuity of the dielectric displacement we need to calculate the derivative of the
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potential with respect to the direction normal to the surface, which is simply r̂.
Setting explicitly the boundary conditions gives then the following equations:

c3R+
d3

R2
− 1

jωτ

[
c1

(
1

κR
− 1

κ2R2

)
exp(κR) + d1

(
1

κR
+

1

κ2R2

)
exp(−κR)

]
= Ṽb (3.160a)

c3R+
d3

R2
+ c1

(
1

κR
− 1

κ2R2

)
exp(κR) + d1

(
1

κR
+

1

κ2R2

)
exp(−κR) = Ṽb (3.160b)

c3rp +
d3

r2
p

− 1

jωτ

[
c1

(
1

κrp
− 1

κ2r2
p

)
exp(κrp) + d1

(
1

κrp
+

1

κ2r2
p

)
exp(−κrp)

]
= e3rp (3.160c)

c3 − 2
d3

r3
p

+ c1

(
1

r
− 2

κr2
+

2

κ2r3

)
exp(κr)− d1

(
1

r
+

2

κr2
+

2

κ2r3

)
exp(−κr) = 0 (3.160d)

εel

[
c3 − 2

d3

r3
p

− c1

jωτ

(
1

r
− 2

κr2
+

2

κ2r3

)
exp(κr) +

d1

jωτ

(
1

r
+

2

κr2
+

2

κ2r3

)
exp(−κr)

]
= εpe3

(3.160e)

Solving this system of equations gives:

c3 = R2
(

(Rκ− 1)
(
εp
(
r2pκ

2jωτ + 2rp(κjωτ + κ) + 2jωτ + 2
)

+ 2εel
(
2 + 2κrp + κ2r2p

)
(1 + jωτ)

)
+ e2κ(rp−R)(Rκ+ 1)

(
εp
(
r2pκ

2jωτ − 2rp(κjωτ + κ) + 2jωτ + 2
)

+ 2εel
(
r2pκ

2 − 2rpκ+ 2
)

(1 + jωτ)
) )
Ṽb/η

d3 = −r3pR2
(

(Rκ− 1)
(
εp
(
r2pκ

2jωτ + rpκ(2jωτ − 1) + 2jωτ − 1
)
− εel

(
2 + 2κrp + κ2r2p

)
(1 + jωτ)

)
+ e2κ(rp−R)(Rκ+ 1)

(
εp
(
r2pκ

2jωτ + rp(κ− 2κjωτ) + 2jωτ − 1
)
− εel

(
r2pκ

2 − 2rpκ+ 2
)

(1 + jωτ)
) )
Ṽb/η

c1 = −3jωτr3pR
2κ2εpe

κ(rp−2b)(Rκ+ 1)Ṽb/η

d1 = 3jωτr3pR
2κ2εp(Rκ− 1)eκrp Ṽb/η

e3 = 3R2εel(1 + jωτ)
((

2 + 2κrp + κ2r2p
)

(Rκ− 1) + e2κ(rp−R)
(
r2pκ

2 − 2rpκ+ 2
)

(Rκ+ 1)
)
Ṽb/η

η = (Rκ− 1)
( (
r3p + 2R3

)
(rpκεp + εel(2 + 2κrp + κ2r2p) + εp)− jωτ(2 + 2κrp + κ2r2p)(

r3p(εp − εel)−R3(εp + 2εel)
) )

+ e2κ(rp−R)(Rκ+ 1)
( (
r3p + 2R3

)
(εp(1− rpκ) + εel(rpκ(rpκ− 2) + 2))

− jωτ(rpκ(rpκ− 2) + 2)
(
r3p(εp − εel)−R3(εp + 2εel)

) )
If we assume that R−rp � |1/κ|, this implies |eκ(rp−R)| → 0. It is then natural to assume
also R� |1/κ|. We can then simplify the constants:

c3 = R3κ
(
εp
(
r2
pκ

2jωτ + 2rp(κjωτ + κ) + 2jωτ + 2
)

+ 2εel
(
2 + 2κrp + κ2r2

p

)
(1 + jωτ)

)
Ṽb/η

d3 = −r3
pR

3κ
(
εp
(
r2
pκ

2jωτ + rpκ(2jωτ − 1) + 2jωτ − 1
)
− εel

(
2 + 2κrp + κ2r2

p

)
(1 + jωτ)

)
Ṽb/η

c1 ' 0

d1 = 3jωτr3
pR

3κ3εpe
κrpṼb/η

e3 = 3R3κεel(1 + jωτ)
(
2 + 2κrp + κ2r2

p

)
Ṽb/η

η = κR
( (
r3
p + 2R3

)
(rpκεp + εel(2 + 2κrp + κ2r2

p) + εp)− jωτ(2 + 2κrp + κ2r2
p)(

r3
p(εp − εel)−R3(εp + 2εel)

) )
If we further assume that, not only R − rp � |1/κ|, but also R � rp, we can further
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simplify the constants:

c3 '
1

R

εp
(
2 + 2κrp + jωτ(2 + 2κrp + κ2r2

p)
)

+ 2εel
(
2 + 2κrp + κ2r2

p

)
(1 + jωτ)

2(εp(1 + κrp) + εel(2 + 2κrp + κ2r2
p)) + jωτ(2 + 2κrp + κ2r2

p)(εp + 2εel)
Ṽb

=
Ṽb
R

(3.161a)

d3 '
r3
p

R

εp
(
1 + κrp − jωτ(2 + 2κrp + κ2r2

p)
)

+ εel
(
2 + 2κrp + κ2r2

p

)
(1 + jωτ)

2(εp(1 + κrp) + εel(2 + 2κrp + κ2r2
p)) + jωτ(2 + 2κrp + κ2r2

p)(εp + 2εel)
Ṽb

(3.161b)
c1 ' 0 (3.161c)

d1 ' 3jωτ
r3
p

R
κ2 εpe

κrp

2(εp(1 + κrp) + εel(2 + 2κrp + κ2r2
p)) + jωτ(2 + 2κrp + κ2r2

p)(εp + 2εel)
Ṽb

(3.161d)

e3 ' 3
1

R

εel(1 + jωτ)
(
2 + 2κrp + κ2r2

p

)
2(εp(1 + κrp) + εel(2 + 2κrp + κ2r2

p)) + jωτ(2 + 2κrp + κ2r2
p)(εp + 2εel)

Ṽ0

(3.161e)

Since, as we show in the following, the calculation of ∆S entails subtracting α and
Ṽb/R, the approximation α ' Ṽb/R is not accurate enough, and we have to retain at least
the second order term in r3

p. This approximation should work only near r = R, where in
any case γ− ' 0 with our assumptions. Using Eq. 3.160a we can then immediately write:

c3 =
Ṽb
R
− d3

R3
(3.162)

The solution in absence of the particle can be immediately found letting rp → 0,
leading to the constants:

c0
3 =

Ṽb
R
, c0

1 = 0, d0
1 = 0

Using the usual definition, we now compute the complex conjugate of complex power
through outer interface of region b:

S∗ = −
∫ π

0

Ṽ ∗(R, θ)J̃r(R, θ)2πR
2 sin θdθ (3.163)

where the ∗ denotes the conjugate operation and J̃r is the total current density in the r
direction:

J̃r = −jωεdṼ
dr
− 2q2µn0

dφ̃

dr
(3.164)

Note also the minus sign in Eq. 3.163 which is necessary to have an inner orientation for
the current on the electrode. Since we have assumed that R − rp � |1/κ|, we can make
the approximation:

dṼ

dr

∣∣∣∣∣
r=R

' dφ̃

dr

∣∣∣∣∣
r=R

'
(
c3 − 2

d3

R3

)
cos θ (3.165)
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The complex power in presence of the particle is then:

S∗p =

∫ π

0

Ṽ ∗b cos θ (σb + jωεel)

(
c3 − 2

d3

R3

)
cos θ2πR2 sin θdθ

=
4π

3
R2 (σb + jωεel) Ṽ

∗
b

(
c3 − 2

d3

R3

)
(3.166)

where σb = 2q2µn0 is the electrolyte conductivity.
The complex power in absence of the particle is similarly expressed as:

S∗0 =
4π

3
R2 (σb + jωεel) Ṽ

∗
b c

0
3 (3.167)

The difference in complex conjugate power with and without particle is then:

∆S∗ = S∗p − S∗0 = −4π

3
(σb + jωεel) Ṽ

∗
b 3
d3

R

= −3

2

1+κrp
2+2κrp+κ2r2p

+ εel
εp

+ ωτ( εel
εp
− 1)

1+κrp
2+2κrp+κ2r2p

+ εel
εp

+ ωτ( εel
εp

+ 1
2
)
Ωp (σb + jωεel)

∣∣∣Ẽ0

∣∣∣2 (3.168)

where we have used Eqs. 3.161b - 3.162, the value of the unperturbed electric field
Ẽ0 = −Ṽb/R and the fact that the volume of the particle is:

Ωp =
4π

3
r3
p (3.169)

This proves Eq. 3.114.

3.A.11 1D semiconductor resistor - integration constants

Resistor in AC small signal regime We have to solve:

Ṽ1 + Ṽ3 + Ṽ4 = 0

Ṽ1 −
1

κ2
D

((
κ2
ω + 2κL

(
κL −

√
κ2
D + κ2

L + κ2
ω

))
Ṽ3 +

(
κ2
ω + 2κL

(
κL +

√
κ2
D + κ2

L + κ2
ω

))
Ṽ4

)
= 0

Ṽ1 + Ṽ2L+ Ṽ3 exp (κ3L) + Ṽ4 exp (κ4L) = Ṽ0

Ṽ1 + Ṽ2L−
1

κ2
D

((
κ2
ω + 2κL

(
κL −

√
κ2
D + κ2

L + κ2
ω

))
Ṽ3 exp (κ3L)

+

(
κ2
ω + 2κL

(
κL +

√
κ2
D + κ2

L + κ2
ω

))
Ṽ4 exp (κ4L)

)
= Ṽ0

The solution is simply given by:

Ṽ1 = Ṽ3 = Ṽ4 = 0, Ṽ2 =
Ṽ0

L
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Capacitor in AC small signal regime The solution of the system of boundary con-
ditions gives:

Ṽ1 = κ2
D

(
2
(
−e−2κsL + 1

) (
κ2
DκL + 2κ3

L

)
+

+
(
e−2κsL + 1− 2e(κL−κs)L

)
κsκ

2
ω −

(
−e−2κsL + 1

)
κL
(
2κ2

s − κ2
ω

)) Ṽ0

η

Ṽ2 = −
(

4κ2
L

(
κ2
D + κ2

L − κ2
s

)2
+ 4κ2

L

(
κ2
D + κ2

L − κ2
s

)
κ2
ω + (κL − κs)(κL + κs)κ

4
ω

)
×

×
(
−e−2κsL + 1

) Ṽ0

η

Ṽ3 = −
(
−e−2κsL + e(κL−κs)L

)
κ2
D

(
2κ2

DκL + (κL − κs)
(
2κL(κL + κs) + κ2

ω

)) Ṽ0

η

Ṽ4 =
(
−1 + e(κL−κs)L

)
κ2
D

(
2κ2

DκL + (κL + κs)
(
2κL(κL − κs) + κ2
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+
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(
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4
ω
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3.A.12 Switching capacitance model parameters
The contents of this section have been kindly provided by F. Widdershoven.
The charge transferred from the charge node to the discharge node during one switching
period is:

Qp =

[
(Cs + Cp)− Cspa

e1 (1− e3 (e4 + (1− e4) pbpa)) + e3 (1− e1 (e2 + (1− e2) pbpa))

1− e3 (e4 + (1− e4) pbpa) e1 (e2 + (1− e2) pbpa)

]
VDD

(3.170)

with the parameters:

pa =
Cs

Cs + CE
pb =

Cs
Cs + Cp

(3.171a)

τa = RE (Cs + CE) τb = RE

(
CsCp
Cs + Cp

+ CE

)
(3.171b)

e1 = exp

(
− t1
τa

)
e2 = exp

(
−t2 − t1

τb

)
(3.171c)

e3 = exp

(
−t3 − t2

τa

)
e4 = exp

(
−t4 − t3

τb

)
(3.171d)



Chapter 4

Numerical methods

This chapter describes the theory behind the development of a simulator based on the
Control Volume Finite Element Method (CVFEM) for the DC and AC behaviour of na-
noelectrode biosensors in three dimensions (3D).The choice to develop a custom, full 3D
numerical solver maturated at the start of this thesis work, after having evaluated 1D
and 2D models implemented with finite difference discretization schemes. In fact, it soon
became clear that on the one hand only a full 3D code could address the complex ge-
ometrical problem of the interaction of an analyte with the biosensors. On the other
hand, since the response due to a single biomolecule is typically very small, a very high
accuracy is necessary to fully assess the biosensor response. The chosen CVFEM enables
a very accurate calculation of the current at the contacts, and therefore of the change in
admittance at the electrodes due to the presence of a small biomolecule.
The derivation of the CVFEM discretization of the PB and PNP equations with non lin-
ear (exponential) charge terms is an original contribution of this work and poses specific
discretization and accuracy problems.
Commercial general purpose FEM solvers (e.g. Comsol [61]) in general do not provide the
level of accuracy needed for our calculations. On the contrary simulation tools specifically
dedicated to electronic devices (TCAD, e.g. Sentaurus Device [35]) always lack specific
models to describe electrolytes and surface electrochemical phenomena specific of biosen-
sors. At the end of this chapter (Sec. 4.6), however, we will show a possible strategy to
overcome some of the issues of commercial TCAD.

4.1 Weak formulations
In order to use the Finite Element Methods (FEMs), we have to start from a weak for-
mulation of the equations of interest. In a classical formulation, like the ones derived in
Chap. 2, the solution is defined point-wise and all derivatives up to the derivatives in the
equation are known to exist. Weak formulations are defined via integrals against certain
“test functions”. Therefore the solution is only unique up to a set of points of Lebesgue
measure zero (i.e., not an interval).
In practice this procedure is performed starting from a residual formulation of the equa-
tions [62], so that we seek an unknown function u (for instance V or φm) such that it
satisfies a set of differential equations Ai(u) in the form:

A(u) =

A1(u)
A2(u)

...

 = 0 (4.1)
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in the domain Ω. The function u may be a scalar quantity or may represent a vector of
several variables. Similarly, the differential equation A(u) may be a single one or a set of
simultaneous possibly non-linear equations Ai(u).

As the set of differential equations 4.1 has to be zero at each point of the domain Ω,
it follows that we can use a weak formulation and write:∫

Ω

vTA(u)dΩ = 0 , (4.2)

where vT =
[
v1 v2 . . .

]
is a set of arbitrary test functions and the length of v is equal

to the number of equations (or components of u). We recall that the weak formulation
means that the equation (Eq. 4.2) must hold for all test functions v. We will not address
in this thesis the question from which function space the test functions should be chosen,
for which the reader can refer to specialized texts.
This formalism will be always the starting point for our analysis of FEMs. The different
methods that lie in the FEM family differ on the choice of the functions v. The spe-
cific ultimate goal is to develop an accurate, current conservative and efficient FEM on
arbitrary tetrahedral grids.

4.1.1 DC models

Poisson equation The residual statement of Poisson equation (Eq. 2.1) is:

A(V0) = ∇ · (ε∇V0) + ρ0 (4.3)

where V0 is the DC potential and ρ0 the volume charge density. Using an arbitrary smooth
scalar test function v we can then cast it into the weak formulation:∫

Ω

vA(V0)dΩ =

∫
Ω

v (∇ · (ε∇V0) + ρ0) dΩ = 0 .

Integrating by parts we obtain:∫
Ω

v∇ · ε∇V0dΩ = −
∫
Ω

∇v · ε∇V0dΩ +

∮
Γ

vε∇V0 · n̂ dΓ .

The weak formulation then is:

−
∫
Ω

∇v · ε∇V0dΩ +

∫
ΓD

vε∇V0 · n̂ dΓ +

∫
Ω

vρ0dΩ = 0 (4.4)

for all test functions v, where we have also used the boundary conditions (Eq. 2.2).

Current equations Taking into account the boundary conditions, the DC weak form
of the first formulation (Eq. 2.21) is:

−
∫
Ω

Zmqµm∇v ·
(
ni exp

(
Zmq

kBT
(φ0m − V0)

)
∇φ0m

)
dΩ

+

∫
ΓφD

vZmqµmni exp

(
Zmq

kBT
(φ0m − V0)

)
∇φ0m · n̂ dΓ = 0 (4.5)
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and for the second formulation (Eq. 2.22):

−
∫
Ω

ε∇v · ∇φmdΩ +

∫
Ω

vε
Zmq

kBT
∇φm · ∇ (φm − V ) dΩ +

∫
ΓφD

vε∇φm · n̂ dΓ = 0 . (4.6)

for all test functions v. In the following we will derive the discretized form for both
formulations of the current equations.

4.1.2 AC models

Poisson equation Following the same methodology, we derive the weak formulation of
Eq. 2.30:

−
∫
Ω

∇v · ε∇Ṽ dΩ +

∫
ΓD

vε∇Ṽ · n̂ dΓ +

∫
Ω

v

Nsp∑
m=1

Z2
mq

2

kBT
n0m

(
φ̃m − Ṽ

)
dΩ = 0 . (4.7)

for all test functions v.

Current equations The weak formulation for the current equations (Eq. 2.34) is:

−
∫
Ω

Zmqµm∇v ·
(
n0m

(
Zmq

kBT

(
φ̃m − Ṽ

)
∇φ0m +∇φ̃m

))
dΩ

+

∫
ΓφD

vZmqµm

(
n0m

(
Zmq

kBT

(
φ̃m − Ṽ

)
∇φ0m +∇φ̃m

))
· n̂ dΓ

−
∫
Ω

vjωn0m
Zmq

kBT

(
φ̃m − Ṽ

)
dΩ = 0 . (4.8)

for all test functions v.

4.2 CVFEM discretization of model equations
We look for the discretized formulation of the models equations 4.4-4.8 in the framework
of the well-known finite element methods [62]. In particular, we use the common Galerkin
Finite Element Method (GFEM [62]) as a reference to assess advantages and limitations
of the Control Volume Finite Element Method (CVFEM [63]). In fact CVFEM has the
potential to efficiently achieve high accuracy and current conservation. These methods
differ only for the choice of the basis function, so that the general discretization procedure
remains the same.
The first step in the discretization is to divide the domain Ω in a discrete set of nodes,
edges, faces and volumes that, in our case, will always be elements of a 3D tetrahedral
mesh. The second step is then to approximate the components of the unknown functions
vector u (hereafter denoted u) by calculating their value uj on the nodes and interpolating
them in the mesh volumes using interpolation functions N j [62]:

u '
Nnod∑
j=1

N juj . (4.9)
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The N j are the basis functions for the finite-dimensional function space where the solution
is calculated. In this work we will always use piece-wise linear interpolation functions, so
that ∇N j is constant inside each mesh volume, and we consider only the neighbour nodes
for the interpolation, i.e. N j = 0 in the mesh volumes that are not connected to node nj.
These particular functions are often called hat functions.
The weak formulations, due to their integral nature, allow an approximation to be made
if, in place of any test function v, we put a finite set of approximate functions [62]:

v '
Nnod∑
j=1

wjδûj (4.10)

where Nnod is the number of mesh nodes, wj the basis functions associated to node j and
the δûj are arbitrary (constant) parameters. Using the approximation 4.10, we can then
transform the weak formulation (Eq. 4.2) to:

(δûj)T
∫
Ω

wjTA(u)dΩ = 0 =

 0
0
...

 ; j = 1, ..., Nnod

for all δûj, and since they are arbitrary and using Eq. 4.9 we have a set of equations which
is sufficient to determine the parameters ui:∫

Ω

wjTA(u)dΩ = 0; j = 1, ..., Nnod .

We also use the same basis functions for each variable in vector u, i.e. wj = wj.
The last step is the choice of basis functions wj. In GFEM the choice is wj = N j [62],

whereas in CVFEM the choice is wj = γj, where [63]:

γj =

{
1 in Ωj

c ∈ Ω

0 in the complement

where Ωj
c is the control volume around node nj and Γj = ∂Ωj

c its border. In our context
the control volume borders are defined by connecting the baricenters of volumes, faces
and edges as shown in Fig. 4.1. The basis function γj has the following properties [63]:∫

Ω

∇γj · σdΩ = −
∫
Γj

σ · n̂ dΓ

∫
Ω

∇ ·
(
γjσ

)
dΩ = 0

where σ is any smooth vector field.
In the following sections we explicitly derive the models’ discretization for the CVFEM,

since this method has never been applied before in our context. Moreover, we report the
final results for GFEM and carry out a detailed comparison between the two methods.
For convenience, Fig. 4.1 reports some useful definitions that are used in the derivations.
Note that, as usual in Finite Element Methods, we will always choose uj = uD (where uD
is the Dirichlet boundary condition for the unknown function u) for the nodes nj ∈ ΓD;
consequently, neither we need to write the discretized equations for these nodes, nor we
need to calculate the integrals on ΓD. As we will see when discussing global conservation
(Sec. 4.2.1.3), however, these integrals are necessary for a post processing computation of
the current at the contacts.
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Fig 4.1: Unitary reference tetrahedron (red) and control volume Ω̂c around node n0 (blue). In
addition, 2D cuts (for clarity) with node nj and its neighbour volumes and nodes are shown.
The node is either on Dirichlet boundary (left) or in the bulk (right). The control volume is
highlighted and the surfaces ΓD, Γj and Γj,k are marked.

4.2.1 CVFEM discretization of the DC equations

4.2.1.1 Poisson equation

The first step is to use the CVFEM basis functions in Eq. 4.4, which yields:∫
Γj

ε∇V0 · n̂ dΓ +

∫
Ωjc

ρ0fdΩ +

Nsp∑
m=1

Zmq

∫
Ωjc

n0mdΩ = 0 (4.11)

where, as already discussed, we discretize the equations only on the nodes ni /∈ ΓD, so
that the integrals on ΓD can be dropped. To discretize Eq. 4.4 we then first use the
approximation 4.9:

Nnod∑
i=1

V i
0

∫
Γj

ε∇N i · n̂ dΓ +

∫
Ωjc

ρ0fdΩ +

Nsp∑
m=1

Zmq

∫
Ωjc

n0mdΩ = 0

Using the linear interpolation functions N j defined above we can write:
Nnod∑
i=1

V i
0

∫
Γj

ε∇N i · n̂ dΓ =
∑
i∈ΛjI

V i
0

∑
k∈Υi,j

∫
Γj,k

ε∇N i,k · n̂ dΓ + V j
0

∑
i∈ΛjI

∑
k∈Υj

∫
Γj,k

ε∇N j,k · n̂ dΓ

where Λj
I are the nodes connected to node nj, Υj the tetrahedral volumes connected to

node nj and Υi,j the volumes connected to both node nj and ni. Γj,k, N j,k and N i,k are
the portions of Γj, N j and N i that lie inside the primal volume vk, respectively.
We can then write the discretized Poisson equation as:∑

i∈ΛjI

ai,jV i
0 + bjV j

0 +

∫
Ωjc

ρ0fdΩ +

Nions∑
m=1

Zmq

∫
Ωjc

n0mdΩ = 0 (4.12)
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where ρ0f is the constant volume charge density and:

ai,j =
∑
k∈Υi,j

∫
Γj,k

ε∇N i,k · n̂ dΓ (4.13a)

bj =
∑
i∈Λj

∑
k∈Υi,j

∫
Γj,k

ε∇N j,k · n̂ dΓ = −
∑
i∈ΛjI

ai,j (4.13b)

where we used the property that if the basis functions are linear, then:

∇N j,k · σ = −
∑
i∈Λj,k

∇N i,k · σ

for any σ smooth vector field, where Λj,k
I are the nodes connected to node nj and to

volume vk. We can write more explicitly the non-linear term:

Qj
0el =

∫
Ωjc

ρ0eldΩ =

Nions∑
m=1

Zmqn
∞
m

∫
Ωjc

exp

(
Zmq

kBT

∑
i∈Λj

N i
(
φi0m − V i

0

))
dΩ (4.14)

where Λj are the nodes connected to node nj, with nj included.
A surface charge density (σ0) can be easily specified on the mesh surfaces by adding to
the equation for node nj a term:

Qj
S =

∫
ΓjP

σ0dΓ

where ΓjP is the part of the primal surface that is included in the control volume Ωj
c. In

this expression σ0 can be an arbitrary function of the potential V0 as for instance the
site-binding charge σsb (Eqs. 2.11-2.12).

The non-linear system made by Eq. 4.12 is then solved using a standard Newton-
Raphson method, as we will see in Sec. 4.4. Therefore, for the solution of the system,
we need also to compute the Jacobian; its non-linear part is derived in Sec. 4.A.1. More
details on the solution algorithm are reported at the beginning of Section 4.4. Note that
the non-linear system could be solved also using an iterative solver, without the need of
computing the Jacobian, but we would expect the convergence to be significantly slower.

As we will show in Sec. 4.A.2, in our specific case where: 1) the control volume is
defined using the faces and volumes centroids and 2) the basis functions are linear, then
the a and b coefficients in Eq. 4.13 are exactly the same as the ones obtained for the
GFEM. This is consistent with the findings of [64] for the box method. This means that
an expression alternative to Eq. 4.13 is:

ai,j = −
∑
k∈Υi,j

∫
vk

∇N j,k · ε∇N i,kdΩ = −
∑
k∈Υi,j

εkvk∇N j,k · ∇N i,k

bj = −
∑
i∈Λj

∑
k∈Υi,j

∫
vk

∇N j,k · ε∇N j,kdΩ = −
∑
k∈Υi,j

εkvk∇N j,k · ∇N j,k = −
∑
i∈Λj,k

ai,j

In this way the GFEM formulation reads:∑
i∈Λj

ai,jV i
0 + bjV j

0 +

∫
Ωj

N jρ0fdΩ +

Nions∑
m=1

Zmq

∫
Ωj

N jn0mdΩ = 0 (4.15)

where Ωj = ∪k∈Υjv
k is the union of all tetrahedra connected to node nj.
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4.2.1.2 Current equations

First formulation The weak formulation with the CVFEM shape functions is:

Zmqµm

∫
Ω

γj∇ ·
(
n∞m exp

(
Zmq

kBT
(φ0m − V0)

)
∇φ0m

)
dΩ = 0 .

Integrating again by parts and using the properties of the shape functions we can directly
write:

Zmqµmn
∞
m

∫
Γj

exp

(
Zmq

kBT
(φ0m − V0)

)
∇φ0m · n̂ dΓ = 0 .

Using also the approximations 4.9 we obtain:

Zmqµmn
∞
m

∑
i∈Λj

φi0m
∑
k∈Υi,j

∫
Γj,k

exp

(
Zmq

kBT

∑
i∈Λj,k

N i,k
(
φi0m − V i

0

))
∇N i,k · n̂ dΓ = 0

where Λj are the nodes connected to nj (including nj itself) while Λj,k are those nodes in
the Λj set that are also bound to the tetrahedron k.
In order to have the same units of measurement as for the Poisson equation, we multiply
the equation by (ε/Zmqµmn∞m ), so that we obtain:

∑
i∈Λj

φi0m
∑
k∈Υi,j

εk
∫
Γj,k

exp

(
Zmq

kBT

∑
i∈Λj,k

N i,k
(
φi0m − V i

0

))
∇N i,k · n̂ dΓ = 0 . (4.16)

Second formulation In this case the weak formulation with the CVFEM shape func-
tions reads: ∫

Ω

γjε

(
Zmq

kBT
∇φ0m · ∇ (φ0m − V0) +∇2φ0m

)
dΩ = 0 .

Integrating again by parts and using the properties of the shape functions we can directly
write:

Zmq

kBT

∫
Ωjc

ε∇φ0m · ∇ (φ0m − V0) dΩ +

∫
Γj

ε∇φ0m · n̂ dΓ = 0 .

Using also the approximations 4.9 we obtain:

Zmq

kBT

∫
Ωjc

ε∇
(
Nnod∑
i=1

N iφi0m

)
· ∇

Nnod∑
i=1

N i
(
φi0m − V i

0

)
dΩ +

∫
Γj

ε∇
(
Nnod∑
i=1

N iφi0m

)
· n̂ dΓ = 0

and noting that ∇N i,k is a constant inside each tetrahedron:

Zmq

kBT

∑
k∈Υj

Ωj,k
c Vk

(∑
i∈Λj,k

φi0m∇N i,k

)
·
(∑
i∈Λj,k

(
φi0m − V i

0

)
∇N i,k

)
+
∑
i∈Λj

φi0m
∑
k∈Υi,j

VkΓj,k · ∇N i,k = 0
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where Vk is the volume of tetrahedron vk. We can write this equation in a more compact
form by denoting:

ai,jS =
∑
k∈Υi,j

εkΓj,k · ∇N i,k

bjS =
∑
i∈Λj

∑
k∈Υi,j

εkΓj,k · ∇N j,k = −
∑
i∈Λj

ai,jS .

The coefficients ai,jS and bjS are exactly the same ones of the linear part of Poisson equation
(Eq. 4.13), but only if the entire system is composed of semiconductor. In fact, since the
current equations Eq. 2.22 are valid only in the semiconductor, the sums on the volumes
in these coefficients range only on the volumes that lie in this material.

4.2.1.3 Global conservation

In typical nanoelectronic sensors, the output signal consists in the value of electrical quan-
tities at the terminals (e.g., dielectric displacement flux, current, etc). For few particles’
sensors the signal is given by a tiny change of these quantitites: current and flux conser-
vation are thus key ingredients for an accurate sensor simulation. If global conservation
is not verified, the calculation of these boundary quantities is not consistent and can be
affected by excessively large errors for single molecule analysis purposes.

Since in CVFEM the fluxes are calculated on the control volume surfaces, the method
has the so called telescoping property [65], which ensures that the fluxes are conserved
when passing from one control volume to the adjacent ones. CVFEM is thus locally con-
servative with respect to these fluxes. To ensure the global conservation property, however,
fluxes on the Dirichlet control volumes (DCV) have to be calculated with special care [63].
As usual in FEMs, we always assume that two adjacent but distinct electrodes are sep-
arated by at least two points. Following [63], we show below that global conservation is
retained if the boundary quantities are carefully calculated by consistently post-processing
the simulation data. In fact, in the DCVs the control volume equation is:∫

Γjint

ε∇V0 · n̂ dΓ−
∫

ΓD∩Γj

D⊥dΓ +

∫
Ωjc

ρ0fdΩ +

∫
Ωjc

ρ0eldΩ = 0

where the V i
0 are known because they come from the solution of the system and D⊥ =

−ε∇V0 · n̂ are the normal components of the dielectric displacements on the Dirichlet
boundary. We divide the surface integral in the part on the Dirichlet boundary ΓD and
the part of the DCV surface outside ΓD, that is Γjint = Γj − (ΓD ∩ Γj) (see the left sketch
in Fig. 4.1). We represent D⊥ in the same basis as the potential, D⊥ =

∑
iN

iDi
⊥. This

equation has to be discretized consistently with Eq. 4.12 to find a system of equations
with Di

⊥ as unknowns:∑
i∈ΛjI

ai,jV i
0 + bjV j

0 −
∑
i∈ΛjD

Di
⊥e

i,j −Dj
⊥f

j +

∫
Ωjc

ρ0fdΩ +

∫
Ωjc

ρ0eldΩ = 0 (4.17)

where ai,j and bj are given by Eq. 4.13 and:

ei,j =

∫
ΓD∩Γj∩Γi

N idΓ, f j =

∫
ΓD∩Γj

N jdΓ (4.18)
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This procedure yields the dielectric displacement’s fluxes on the Dirichlet boundary, i.e.,
the electrodes. According to Gauss’s law, the flux can be used to calculate for instance
the DC differential capacitance of the sensor.

Following similar steps we can write the current equations on the DCVs, making use
of Eq. 2.20. In this case it is more convenient to use the first formulation, that is:

− 1

Zmq

∫
ΓD∩Γj

J⊥,m dΓ + Zmqµmn
∞
m

∫
Γjint

exp

(
Zmq

kBT
(φ0m − V0)

)
∇φ0m · n̂ dΓ = 0

where we denote with J⊥,m = ~Jm · n̂ the normal component of the ionic or electronic
current due to the species m flowing through the Dirichlet boundary. As we have done
for the dielectric displacement, we represent J⊥,m in the same basis as the potential,
J⊥,m =

∑
iN

iJ i⊥,m. This equation has to be discretized in the same way as for the
dielectric displacement to find a system of equation with J i⊥,m as unknowns:

Zmqµmn
∞
m

∑
k∈Υj

∑
i∈(j,Λj,k)

φi0m

∫
Γj,kint

exp

Zmq
kBT

∑
i∈(j,Λj,k)

N i,k
(
φi0m − V i

0

)∇N i,k · n̂ dΓ

− 1

Zmq

∑
i∈ΛjD

J i⊥,me
i,j + J j⊥,mf

j

 = 0 (4.19)

where ei,j and f j are exactly the same of Eq. 4.18.
For the purpose of comparing CVFEM and GFEM we observe that, in order for

GFEM to be globally conservative, the same approach described here should be used, by
substituting the appropriate GFEM expressions of the coefficients in Eq. 4.17.

4.2.2 CVFEM discretization of the AC equations

4.2.2.1 Poisson and current equations

Following the same CVFEM procedure described above, we can discretize the Poisson
(Eq. 4.7) and the current (Eq. 4.8) equations. We thus obtain:

Poisson:
Nnod∑
i=1

Ṽ i

∫
Γj

ε∇N i · n̂ dΓ +

Nions∑
m=1

Z2
mq

2

kBT

Nnod∑
i=1

(
φ̃im − Ṽ i

)∫
Ωjc

N in0mdΩ = 0

Current: − jZ2
mq

2µm
ω

Nnod∑
i=1

φ̃im

∫
Γj

n0m∇N i · n̂ dΓ +
Zmq

kBT

Nnod∑
i=1

(
φ̃im − Ṽ i

)∫
Γj

n0mN
i
Nnod∑
l=1

φl0m∇N l · n̂ dΓ


− Z2

mq
2

kBT

Nnod∑
i=1

(
φ̃im − Ṽ i

)∫
Ωjc

N in0mdΩ = 0

where we also have multiplied the current equations by Zmq/jω in order to have the
coefficients with the same unit of measurement (Farads) as in Poisson equation. Following
the same discretization procedure described in Sec. 4.2.1.1, we can write Poisson equation
as: ∑

i∈Λj

ci,jṼ i + djṼ j +

Nions∑
m=1

(∑
i∈Λj

si,jm φ̃
i
m + tjmφ̃

j
m

)
= 0 (4.20)
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and the current equations as:∑
i∈Λj

(
si,jm + gi,jm

)
Ṽ i +

(
tjm + hjm

)
Ṽ j +

∑
i∈Λj

oi,jm φ̃
i
m + pjmφ̃

j
m = 0 (4.21)

The coefficients are:

si,jm =
Z2
mq

2

kBT

∑
k∈Υi,j

∫
Ωj,kc

N i,kn0mdΩ (4.22a)

tjm =
Z2
mq

2

kBT

∑
i∈Λj

∑
k∈Υi,j

∫
Ωj,kc

N j,kn0mdΩ (4.22b)

ci,j = ai,j −
Nions∑
m=1

si,jm (4.22c)

dj = bj −
Nions∑
m=1

tjm (4.22d)

gi,jm = j
Z3
mq

3

kBT

µm
ω

∑
k∈Υi,j

∑
l∈Λj,k

φl0m

∫
Γj,k

N i,kn0m∇N l,k · n̂ dΓ (4.22e)

hjm = j
Z3
mq

3

kBT

µm
ω

∑
i∈Λj

∑
k∈Υi,j

∑
l∈Λj,k

φl0m

∫
Γj,k

N j,kn0m∇N l,k · n̂ dΓ (4.22f)

oi,jm = −jZ2
mq

2µm
ω

∑
k∈Υi,j

∫
Γj,k

n0m∇N i,k · n̂ dΓ−
(
si,jm + gi,jm

)
(4.22g)

pjm = −jZ2
mq

2µm
ω

∑
i∈Λj

∑
k∈Υi,j

∫
Γj,k

n0m∇N j,k · n̂ dΓ−
(
tjm + hjm

)
(4.22h)

Note that in the electrolyte gi,jm = hjm = 0, since ∇φ0m = 0.

Site-binding charge The implementation of the site-binding model Eq. 2.33 gives
additional contributions to Poisson equation:

Q̃sb = q

∫
Γj,kP

NSαsb
φ̃H − Ṽ
Vth

dΓ

where Γj,kP is the part of the primal surface (i.e., the surfaces of the tetrahedra) that is
included in control volume Ωj

c and tetrahedron vk:

αsb =
K ′b(k

b
bn0H(kban0H + jω) +K ′ak

b
a(K

′
bk
b
b + 4kbbn0H + jω))

(K ′aK
′
b + n0H(K ′b + n0H))(K ′ak

b
a(K

′
bk
b
b + jω) + (kban0H + jω)(kbb(K

′
b + n0H) + jω))

The additional coefficients are then:

si,jsb =
q

Vth

∑
k∈Υi,j

∫
Γj,kP

N i,kNSαsbdΓ (4.23a)

tjsb =
q

Vth

∑
i∈Λj

∑
k∈Υi,j

∫
Γj,kP

N j,kNSαsbdΓ (4.23b)
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So that the voltage coefficients for the Poisson equation are not the ones in Eq. 4.22 any
more, but change to:

ci,j = ai,j −
Nions∑
m=1

si,jm − si,jsb (4.24a)

dj = bj −
Nions∑
m=1

tjm − tjsb (4.24b)

. The quasi-potential coefficients for the hydrogen become:

spi,jH = si,jH + si,jsb (4.25a)

tpjH = tjH + tjsb (4.25b)

where we used the subscript H instead of the generic ion indexm to indicate the hydrogen
coefficients.

The corresponding AC coefficients using the GFEM are reported in the chapter ap-
pendix 4.A.3.

4.2.2.2 Global conservation

As in the DC case (Eq. 4.17), the electric displacement on the boundary has to be com-
puted with care in order to ensure global conservation hence, a consistent calculation of
the terminal currents. For the sake of finding generally applicable results, we avoid the
assumption that the electrodes are ideally polarizable, so that the contact current density
is:

~̃J = jω ~̃D +
∑
m

~̃Jm

Consistently with Sec. 4.2.1.3, we denote D̃j
⊥ the normal component of the nodal dielectric

displacement at node j, and J̃ j⊥,m the normal component of the nodal ionic current density
of carrier species m at node j. Since we recall (Eq. 2.37b) that:

~̃Jm = −Z2
mq

2µmn0m

(
Zmq

kBT

(
φ̃m − Ṽ

)
∇φ0m +∇φ̃m

)
the equivalent of Eq. 4.17 at faradaic (ohmic) contacts is then:

∑
i∈Λj

ci,j Ṽ i + dj Ṽ j −
∑
i∈ΛjD

D̃i
⊥e

i,j − D̃j
⊥f

j +

Nions∑
m=1

∑
i∈Λj

si,jm φ̃
i
m + tjmφ̃

j
m

 = 0 (4.26a)

∑
i∈Λj

(
si,jm + gi,jm

)
Ṽ i +

(
tjm + hjm

)
Ṽ j +

∑
i∈Λj

oi,jm φ̃
i
m + pjmφ̃

j
m −

∑
i∈ΛjD

J̃ i⊥,me
i,j/jω − J̃ j⊥,mf j/jω = 0

(4.26b)

where ei,j and f j are the same as in the DC case (Eq. 4.18) and the other coefficients are
given by Eq. 4.22. Note that the corresponding equations for ideally polarizable contacts
are readily recovered by removing the equations for J̃⊥,m.



CHAPTER 4. NUMERICAL METHODS 119

4.2.2.3 Contact admittance

As we will discuss in Sec. 5.5, it is useful to foresee a more general case where the contacts
(identified by integer index l) can have a lumped series admittance Yl as sketched in Fig.
4.2. This implies that the current going out of the contact Ĩl is given by:

Ĩl = −Yl(Ṽ l
el − Ṽ l

int)

where Ṽ l
el is the voltage imposed at the electrode and Ṽ l

int is the potential in the inner
part of the electrode (see Fig. 4.2). The addition of external lumped elements to the
simulation domain is well known in TCAD and obviously results in additional unknowns
(the Ṽ l

int) and equations. The equations to add are:

∑
i∈Λj

ci,jṼ i + djṼ j −
∑
i∈ΛjD

D̃i
⊥e

i,j − D̃j
⊥f

j +

Nions∑
m=1

(∑
i∈Λj

si,jm φ̃
i
m + tjmφ̃

j
m

)
= 0

∑
i∈Λj

(
si,jm + gi,jm

)
Ṽ i +

(
tjm + hjm

)
Ṽ j +

∑
i∈Λj

oi,jm φ̃
i
m + pjmφ̃

j
m −

∑
i∈ΛjD

J̃ i⊥,me
i,j/jω − J̃ j⊥,mf j/jω = 0

∑
j∈Λlel

∑
i∈ΛjD

(
jωD̃i

⊥ +

Nions∑
m=1

J̃ i⊥,m

)
ei,j +

(
jωD̃j

⊥ +

Nions∑
m=1

J̃ j⊥,m

)
f j

 = −Yl(Ṽ l
el − Ṽ l

int)

where Λl
el denotes the nodes connected to electrode l. In order to have the same units

of measurements for all the unknowns, we use the variables Ṽ j
D = jωD̃j

⊥/Yl and Ṽ j
m =

J̃ j⊥,m/Yl and thus alleviate possible ill-conditioning problems of the system of equations.
The subscript l is not needed in the definition of Ṽ j

D and Ṽ j
m since each node nj can lie

only on one electrode l. In this way we can write:

∑
i∈Λj

ci,jṼ i + djṼ j −
∑
i∈ΛjD

Ṽ i
D

Yl
jω
ei,j − Ṽ j

D

Yl
jω
f j +

Nions∑
m=1

(∑
i∈Λj

si,jm φ̃
i
m + tjmφ̃

j
m

)
= 0

∑
i∈Λj

(
si,jm + gi,jm

)
Ṽ i +

(
tjm + hjm

)
Ṽ j +

∑
i∈Λj

oi,jm φ̃
i
m + pjmφ̃

j
m −

∑
i∈ΛjD

Ṽ i
m

Yl
jω
ei,j − Ṽ j

m

Yl
jω
f j = 0

Yl
jω

∑
j∈Λlel

∑
i∈ΛjD

(
Ṽ i
D +

Nions∑
m=1

Ṽ i
m

)
ei,j +

(
Ṽ j
D +

Nions∑
m=1

Ṽ j
m

)
f j

 = − Yl
jω

(Ṽ l
el − Ṽ l

int)

As usual we have made the assumption that two adjacent but distinct electrodes are
separated by at least two points.

Fig 4.2: Sketch of a generic electrode (identified by the index l) with a lumped series admittance
Yl.

4.2.3 Volume integrals

As we have just seen, in order to calculate the discretized coefficients we need to compute
volume and surface integrals. This computation is very expensive in terms of resources,
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since it has to be done multiple times for each mesh node. In addition, the accuracy of
this calculation is critical to determine the overall accuracy of the simulation method.
These reasons justify the necessity to discuss in detail how the numerical integration is
performed.

We start discussing the calculation of volume integrals. According to Eq. 4.12, given
a tetrahedron identified by the index k, that has node nj as one of the vertices, we have
to calculate integrals I of the kind:

I =

∫
Ωj,kc

f(~x)dΩ (4.27)

where f(~x) is an arbitrary continuos function, and for the sake of a lean notation we
dropped the indices j and k. In the following we concentrate on the calculation of I in
the CVFEM case; however, very similar considerations apply to the calculation of volume
integrals in GFEM.
An important advantage of CVFEM over GFEM is that integrals of the kind in Eq. 4.27
are generally of lower order with respect to those of GFEM (compare for example the
CVFEM and GFEM AC coefficients Eqs. 4.22-4.54). The higher is the integral order, the
more integration points are needed to retain the same accuracy using a Gauss integration
rule [66]; this fact highlights the need of accurate and efficient integration procedures.
Several approaches have been proposed to calculate Eq. 4.27. Perhaps the most common
one [67] is to transform the coordinates from ~x to ~ξ =

[
ξ η ζ

]T by a transformation
T such that ~x = T ~ξ and such that the calculation is appreciably simpler. Using T the
integral becomes:

I =

∫
Ωj,kc

f(~x)dΩ =

∫
Ω̂j,kc

f(~ξ) |det(J)| dΩ̂

where Ω̂j,k
c is the control volume in the transformed space and J is the Jacobian matrix of

T. In standard GFEM on a simplicial mesh, the transformation is chosen in a way that
maps the k-th element into a reference unitary simplex (Fig. 4.1). The transformation is
thus an affinity and |det(J)| is either equal to the length or to twice the area or to six times
the volume of the simplex when working in one, two or three dimensions, respectively. In
our case this implies that:

I = 6Vk
∫
Ω̂c

f(~ξ)dΩ̂ = 6VkÎ (4.28)

where Ω̂c is the control volume in the reference tetrahedron (the blue shape in Fig. 4.1) and
Vk is the volume of the original tetrahedron vk. Note that the integral in Eq. 4.28 does not
depend on the specific tetrahedron but only on the integrand function f . An important
difference of CVFEM with respect to GFEM is that in Eq. 4.28 the term Î is calculated
only on the control volume Ω̂c and not on the entire tetrahedron. This implies that the
well-known exact expressions for the integration coefficients of polynomial expressions
using baricentric coordinates [67] can not be used in the CVFEM case and an alternative
mean to compute Î has to be devised.

Another approach to compute Î is to use numeric integration with quadrature formu-
las, for instance using Gauss points [67]. However, since the region Ω̂c is not the unitary
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reference cube, this approach requires to divide Ω̂c in elementary subvolumes and to carry
out numerical integration on each of them.

Another possibility would be to use a transformation to directly map the control vol-
ume into a unitary reference cube and then calculate nodes and weights as tensor products
of the Gauss’s quadrature formulas from the 1-dimensional case [67]. The required trans-
formation however is non-linear and complicates the overall calculation.

Yet another approach is presented in [68] for a quadrilateral or hexaedral mesh, but
it requires to define the control volume boundaries on the Gauss-Legendre points instead
of the much simpler centroids of faces and elements as done in this work. In addition,
it is not straightforward to translate the approach of [68] from hexaedral to tetrahedral
meshes.

For all these reasons, we have decided to calculate Î via direct symbolic integration.
The integral Î is then computed as a sum of integrals ÎlP on elementary subvolumes
included in the ξ domain in the interval ξ ∈ [ξa, ξb], in the η domain from line la to line lb
and in the ζ domain from the ξη plane to the plane P .

As a first example of this procedure, we calculate the volume of Ω̂c; that is, we set
f(ξ, η, ζ) = 1. We can simply prove by direct calculation or by geometrical considerations
that Vol

(
Ω̂c

)
= 1/24, that is, 1/4 of the volume of the unitary tetrahedron. Similarly

we can prove that: ∫
Ω̂c

N0dΩ̂ =
25

1152
,

∫
Ω̂c

N1..3dΩ̂ =
23

3456
(4.29)

where we have called N0..3 the linear basis functions of nodes n0..3 respectively in the
unitary reference tetrahedron (see Eq. 4.59). The expressions of N0..3 are reported in Sec.
4.A.7 in the chapter appendix.

We also need to calculate the integrals containing non linear functions of V0, such as
for instance Eq. 4.14. In the specific case of Eq. 4.14 the integrand becomes:

f(~x) = exp

[
Zmq

kBT

(
Vref −N j,kV j

0 −
∑
i∈Λj,k

N i,kV i
0

)]
. (4.30)

To maintain a simple notation, we introduce a new variable vl with l = 0..3 where:

v0 =
Zmq

kBT

(
Vref − V j

0

)
, v1..3 =

Zmq

kBT

(
Vref − V i

0

)
so that the integrand is:

f(~x) = exp

(
v0N

j,k +
∑
i∈Λj,k

viN
i,k

)
(4.31)

where we have used the fact that N j,k +
∑

iN
i,k = 1. The integral of f(~x) in Eq. 4.31 is

given in Eq. 4.56 as a function of the terms ul = vl − v0 where l = 1..3. The expression
of the integral reveals that numerical issues could arise due to the limit forms 0/0. This
problem, however, can be easily overcome by using a Taylor expansion. For instance, an
expansion at third order around ul = 0 is given in the Sec. 4.A.4. Note that using a Taylor
expansion is equivalent to employing a quadrature integration rule, but the advantage of
our method is that the integral can also in principle be computed exactly (using Eq. 4.56)
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and that there is no need to define integration points inside the tetrahedron for each
integral that we need to calculate.

Another important advantage of the proposed method is the reduced calculation com-
plexity at the same desired accuracy. In fact, using the quadrature integration and assum-
ing that Ω̂j,k

c is mapped into the unitary reference cube via a non-linear transformation,
6 integration points would be necessary to have an approximation of order 3 [66]. This
means that we need to evaluate the integrand function, in our case an exponential, 6 times.
Because the exponential function is numerically implemented as a series and assuming to
truncate it at the third order, then we need to sum 24 terms. On the other hand, using
the exact expression of Î expanded in Taylor series at order 3 requires to evaluate a series
of 20 terms plus one exponential function (4 additional terms if truncated at third or-
der), which gives the same computational cost as the quadrature formula. Our approach,
however, as already discussed, uses a linear transformation, which means that only the
volume needs to be actually computed, while mapping Ω̂j,k

c into a cube would require to
calculate also the non-linear transformation. In addition, the quadrature formula from
[66] uses the values of the function on the faces baricenters, while we directly use the
nodal values. The advantage of our method comes from the fact that, in the approximate
calculation, we use the known expansion of the exponential function.

As a final remark we note that, in order to solve the non-linear system of equations
(Eq. 4.12), we also need to calculate the Jacobian of the system (Eq. 4.51). These terms
include integrals very similar to I, so that the same considerations above apply to them
as well. Also in this case we can overcome issues with 0/0 forms by using a Taylor
expansion. The Taylor forms are reported in Sec. 4.A.4 for the sake of an immediate use
by the interested reader.

4.2.4 Surface integrals

In CVFEM integrals of the form:

IS =

∫
Γj,k

f(~x)∇~x g(~x) · n̂ dΓ (4.32)

appear, where f(~x) and g(~x) are again continuous and differentiable functions. For in-
stance these are found in Eq. 4.22. In all cases considered here g(~x) will be one of the
linear basis functions. The surface Γj,k can be divided into 3 planar surfaces, each one
intersecting one of the edges that connect node j with the other 3 tetrahedron’s nodes (see
Fig. 4.1). We will call these surfaces Γj,k1 , Γj,k2 , Γj,k3 , where we choose Γj,ki as the surface
that intersects the edge that connects nodes nj and ni. We can then write the surface
integral as a sum of three terms I lS:

IS =
3∑
l=1

∫
Γj,kl

f(~x)∇~x g(~x) · n̂ dΓ =
3∑
l=1

I lS (4.33)

We apply again the transformation to the unitary reference tetrahedron of Fig. 4.1 ~x = T ~ξ
to each integral, so that:

∇~x g(~x) = J−T∇~ξ g(~x(~ξ))
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where J−T is the transposed inverse matrix of J. The surface element is written explicitly:

n̂ dΓ =
∂~rl
∂x
× ∂~rl
∂y

dy dx

where ~rl =
[
x y alP + blPx+ clPy

]T (i.e, the vector defining the surface (plane) Γj,kl )
can be described by the vector ~Γj,kl whose norm is equal to the surface area and whose
direction is orthogonal to the surface with outer orientation with respect to Ωj,k

c . When
applying the transformation T we can prove that the following relations hold:

∥∥∥~Γj,kl ∥∥∥
∂~rl
∂x
× ∂~rl
∂y∥∥∥∥∂~rl∂x

× ∂~rl
∂y

∥∥∥∥ = |det(J)|
∥∥∥~̂Γl∥∥∥J−T

(
∂~̂rl
∂ξ
× ∂~̂rl
∂η

)
∥∥∥∥∥∂~̂rl∂ξ × ∂~̂rl

∂η

∥∥∥∥∥
∫
Γj,kl

f(~rl)

∥∥∥∥∂~rl∂x
× ∂~rl
∂y

∥∥∥∥∥∥∥~Γj,kl ∥∥∥ dy dx =

∫
Γ̂l

f(~̂rl)

∥∥∥∥∥∂~̂rl∂ξ × ∂~̂rl
∂η

∥∥∥∥∥∥∥∥~̂Γl∥∥∥ dη dξ

where ~̂rl =
[
ξ η αlP + βlP ξ + γlPη

]T is the vector defining the surface (plane) Γ̂l in the
transformed space. We can then write the complete expression of the integral:

I lS =
(
J−T∇~ξ g(~x(~ξ))

)
· ~γj,kl

∫
Γ̂l

f(~̂rl)dη dξ (4.34)

where:

~γj,kl = |det(J)|J−T
(
∂~̂rl
∂ξ
× ∂~̂rl
∂η

)

Note that, since g and ~̂rl are linear functions, their derivatives have been taken out of the
integral and that:

~Γj,kl = ~γj,kl

∥∥∥~̂Γl∥∥∥∥∥∥∥∥∂~̂rl∂ξ × ∂~̂rl
∂η

∥∥∥∥∥
(4.35)

The values of the integrals in Eq. 4.33 are reported in the appendix. Once again, in order
to avoid issues with 0/0 forms, we used a Taylor expansion of the integral.

Primal surface integrals In order to impose the global conservation we have to cal-
culate integrals of the form (see Eq. 4.18):

IS =

∫
Γj,kP

f(~x)dΓ

where Γj,kP is the part of the primal surfaces of the tetrahedron comprised in the control
volume Ωj,k

c on which we set Dirichlet boundary conditions. In each volume Ωj,k
c , Γj,kP can
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be made of a different number of surfaces, from 0 to 3. From now on we will assume that
Γj,kP is made of all the facets on the 3 primal surfaces, i.e Γj,kP =

∑
l Γ

j,k
P l with l ranging

from 1 to 3. For each facet we can then write:

I lS = 2ΓPl

∫
Γ̂Pl

f(~̂r)dΞ2 dΞ1

where ΓPl is the area of the primary face opposite to node nl in the original space and
we have used the fact that the faces are planar surfaces, so that the surface element is
constant and can be taken out of the integral. More explicitly then:

ΓPl =
1

2
|det(J)|

∥∥∥∥∥J−T
(
∂~̂rPl
∂Ξ1

× ∂~̂rPl
∂Ξ2

)∥∥∥∥∥
where ~̂rPl is again the vector defining the face (similarly as ~̂rl). We denote Γ̂Pl the surface
opposite to node nl in the transformed space and we have also called Ξi the coordinates,
because they have to be chosen differently according to the surface Γ̂Pl. In particular we
have that:

(Ξ1,Ξ2) =


(ξ, η) if l = 3

(ξ, ζ) if l = 2

(η, ζ) if l = 1

The values of the integrals are explicitly reported in Sec. 4.A.6.

4.3 1D CVFEM simulator
The full 3D simulator is a very general purpose tool for sensor analysis whose capability
will be demonstrated in Chaps. 5-6. However, it usually requires a large computational
effort for the purpose of studying simple 1D systems, it is convenient to use a 1D model.
In the following we will then present the development of a 1D CVFEM simulator for
dielectric/electrolyte systems, that is derived from the general 3D expressions presented in
this chapter. We therefore make the same assumptions as above, for instance the linearity
of the basis functions N j. We will therefore not include the model for the semiconductor
material.

4.3.1 DC model

Let’s assume a 1D system develops along x (see the sketch in Fig. 4.3). We use j as the
node index and we do not need a different index for the volume (k in the 3D simulator),
since in this simple 1D system the number of volumes is Nnod − 1, where Nnod is the
number of nodes. In addition, each mesh node j is attached only to two volumes, so that
we can use the same index j for both entities. With the help of Fig. 4.3, we denote then

Fig 4.3: Sketch of a generic point xj in the 1D mesh.



CHAPTER 4. NUMERICAL METHODS 125

N j,j as the basis function around node xj defined inside the volume between xj and xj+1.
The basis functions become finally:

N j,j =
xj+1 − x
xj+1 − xj

, N j,j−1 =
x− xj−1

xj − xj−1

N j+1,j =
x− xj
xj+1 − xj

, N j−1,j−1 =
xj − x
xj − xj−1

.

Consistently with the previous section, we define the control volume by using the baricen-
ters of the mesh volumes, which is denoted xj+ 1

2
= (xj + xj+1)/2. We can then specialize

Eq. 4.12 as:
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(4.36)

The coefficients are:

aj+ =
1

A

∫
∂Cj,j+1

ε∇N j+1,k · n̂ dΓ =
εj

xj+1 − xj
(4.37a)

aj− =
1

A

∫
∂Cj,j−1

ε∇N j−1,k · n̂ dΓ =
εj−1
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(4.37b)

bj =
1

A

 ∫
∂Cj,j+1

ε∇N j,k · n̂ dΓ +

∫
∂Cj,j−1

ε∇N j,k · n̂ dΓ

 = −(aj− + aj+) (4.37c)

where εj is the permittivity in the mesh volume xj, ∂Cj−1,j and ∂Cj,j+1 the control
volume surfaces (in the transversal y and z coordinates) at xj− 1

2
and xj+ 1

2
respectively.

The coefficients are calculated per unit transversal area A. The non-linear charge term is
calculated as:
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 (4.38)

where:

N j−
eq =

Zmq

kBT

(
Vref −N j,j−1V j

0 −N j−1,j−1V j−1
0

)
N j+
eq =

Zmq

kBT

(
Vref −N j,jV j

0 −N j+1,jV j+1
0

)
We now define:

vjm =
Zmq

kBT
V j

0 , ujm− = vjm − vj−1
m , ujm+ = vjm − vj+1

m
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and we also call lj− = xj − xj−1 and lj+ = xj+1 − xj the lengths of the cells around node
xj. We can finally calculate the integrals in Eq. 4.38:

Iejm− =

∫ zj

zj−
1
2

eN
j−
eq dz = exp

(
Zmq

kBT

(
Vref − V j

0

)) exp
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)
− 1
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lj− (4.39a)

Iejm+ =

∫ zj+
1
2

zj
eN

j+
eq dz = exp

(
Zmq

kBT
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Vref − V j

0

)) exp
(
ujm+/2
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− 1

ujm+

lj+ (4.39b)

Since we need to calculate other integrals (e.g., for the Jacobian computation), it would
be useful to have a general procedure to compute integrals. We show in the following how
a general procedure can be established.

For the implementation of the 1D CVFEM model, we need to calculate integrals of
the type: ∫ x2

x1

f (V (x)) dx

where V (x) = N1(x)V1+N2(x)V2 is the interpolation in terms of the basis functions. Since
we always use linear basis functions with the properties that N1(x1) = 1, N1(x2) = 0,
N2(x1) = 0, N2(x2) = 1, we can immediately see that:

V (x) =
x2 − x
x2 − x1

V1 +
x− x1

x2 − x1

V2,
dV (x)

dx
=
V2 − V1

x2 − x1

We can then easily see that:∫ xb
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∫ xb
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f (V (x))
dV (x)
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V2 − V1

(F (V (xb))− F (V (xa)))

where F is the primitive of f with respect to the variable x. We immediately notice that
Eqs. 4.39 above are indeed in this form. This also tells us that for any function f the
integrals depend on the geometry only through the length of the cell, provided that we
use linear basis functions and that the extrema xa and xb are x1 and x2 (as in the FEM)
or x1 and (x1 + x2)/2 (as in the CVFEM).

The non-linear Jacobian coefficients are reported in Sec. 4.A.8 in the chapter appendix.

Global conservation We specialize Eq. 4.17 on the two boundaries of the 1D domain:
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where we have used the fact that:
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1

A

∫
ΓD∩Γj

N jdΓ = 1



CHAPTER 4. NUMERICAL METHODS 127

4.3.2 AC model

To derive the 1D AC model we start from Eqs. 4.20 - 4.21:

Poisson : cj+Ṽ j+1 + cj−Ṽ j−1 + djṼ j +

Nions∑
m=1

(
sj+m φ̃j+1

m + sj−m φ̃j−1
m + tjmφ̃

j
m

)
= 0 (4.40)

current : gj+m Ṽ j+1 + gj−m Ṽ j−1 + hjmṼ
j + oj+m φ̃j+1

m + oj−m φ̃j−1
m + pjmφ̃

j
m = 0 (4.41)

The coefficients are reported in Sec. 4.A.8.

Current through ideally polarizable electrodes In the following, we show how to
compute the current at the bottom electrode (x = 0). The current at the other contact
can be immediately calculated in a similar way but it should give exactly the same result,
since in a 1D system the total current has to be conserved.
To compute the current density at the contacts, we impose the global conservation, so
that we need to compute the dielectric displacements D̃⊥, as in Sec. 4.2.2.2, solving as a
post-processing step the following equations:

cj+Ṽ j+1 + djṼ j − D̃j
⊥ +

Nions∑
m=1

(
sj+m φ̃j+1

m + tjmφ̃
j
m

)
= 0, for j = 1

cj−Ṽ j−1 + djṼ j − D̃j
⊥ +

Nions∑
m=1

(
sj−m φ̃j−1

m + tjmφ̃
j
m

)
= 0, for j = Nnod

At ideally polarizable electrodes the total current is just a displacement current that reads:

J̃ex = −jωD̃1
⊥ = jωD̃Nnod

⊥ .

With this notation the current density in the system is positive when flowing along the x
direction, that is from the bottom to the top electrode.

Current through Faradaic electrodes with admittance in series We assume
now that the electrodes can be connected in series with admittances (per unit area) yl,
where consistently with Sec. 4.2.2.2, l is the electrode index. In the following we will
always assume that l = 1 and l = 2 at the bottom and top electrodes respectively. We
also suppose that the electrodes can have a Dirichlet boundary condition on the quasi-
potentials, so that the contact current has also ionic contributions. This is clearly a very
general case which goes beyond what is examined in the results section of this thesis. The
contact current is then:

J̃(0) = −jωD̃1
⊥ −

∑
m

J̃1
⊥,m

J̃(L) = jωD̃Nnod
⊥ +

∑
m

J̃Nnod⊥,m .

The equation for the current at the electrodes is:

J̃(0) = y1(Ṽ 1
el − Ṽ 1) (4.42a)

J̃(L) = −y2(Ṽ 2
el − Ṽ Nnod) (4.42b)
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where Ṽ 1
el and Ṽ 2

el are the potential externally applied at the bottom and top electrodes. In
the system matrix we then need to add Nions+3 rows that represent the contact equations.
If we choose to calculate the current at the bottom electrode (current conservation will
enforce the same current at the top electrode), then the equations are given by Eq. 4.42a
and the following four relations:
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⊥ +
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As in the 3D solver, it is useful for numerical reasons to have the same units of measure-
ments for all the unknowns. We then use the variables Ṽ 1

D = jωD̃1
⊥/y1 and Ṽ 1

m = J̃1
⊥,m/y1

(as in Sec. 4.2.2.2), so that we can write:
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Ṽ 1
D
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jω
+
∑
m

Ṽ 1
m

y1

jω
=
y2

jω
(Ṽ 2

el − Ṽ Nnod) (4.43d)

The system of equations is then solved using the same techniques used for the DC solver.
This will be the topic of the next section.

4.4 Numerical implementation
A full three dimensional CVFEM and GFEM simulator (hereafter denoted ENBIOS:
Electronic NanoBIOsensor Simulator) has been implemented using MATLAB [69], based
on Netgen general purpose tetrahedral meshes [70]. The non-linear DC system (Eqs.
4.12-4.16) has been solved using MATLAB’s built-in routine fsolve through Levenberg-
Marquardt’s algorithm [71], which was the one that proved to be most robust and accurate
among MATLAB’s default choices. The convergence criterion was set to machine precision
and corresponds to about 10−6 elementary charges for the quadratic norm of the S vector
in Eq. 4.44. Typically convergence is obtained in five iterations starting from the initial
guess given by the linear Poisson solution.
The AC problem is instead solved using Matlab’s built-in routine mldivide (the backslash
operator), which uses different direct methods to find the solution of a linear system
depending on the properties of the matrices. Since the system matrix is fairly large,
it would appear that an iterative method could be advantageous. However, mldivide is
usually so efficient that, unless there are memory issues or one can provide a very good
estimate of the solution, the iterative solvers provided with Matlab are unlikely to offer a
significant advantage.
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We did not explore this point in more detail since the linear system’s solution is usually
not the bottleneck of our simulation code. We had neither memory issues nor lack of
computational power, since we could use machines with up to 200 GB of RAM and 64
cores each.

4.4.1 DC problem

Boundary conditions for the DC problem are a mixture of Dirichlet and Neumann con-
ditions. The Neumann borders don’t need any special care (since as usual in FEMs [62],
these are the natural boundary conditions for the method), while the voltages on the
Dirichlet boundaries are known and therefore do not contribute to the variables vector.
The overall system of equations can be put in the form:

S = A0 V0 + C0 + Q0f + Q0el = 0 (4.44)

where A0 is the matrix containing Poisson coefficients (Eq. 4.13), the voltage vector
V0 has dimensions Nnodes − Next where Next is the number of nodes on the Dirichlet
boundaries and the vector C0 contains the coefficients related to the voltages on the
Dirichlet boundary. The non-linear vector Q0el contains the expression in Eq. 2.4 for the
ion concentrations.

4.4.2 AC problem

Since the AC model equations are linearized, the resulting solution system is linear. It
can then be written as:

AŨ + C = 0 (4.45)

where Ũ =
[
Ṽ φ̃1 ... φ̃Nions

]T
is the vector of unknown variables, the voltage vector

Ṽ has again dimensions Nnodes−Next and the vector C contains the coefficients related to
the voltages on the Dirichlet boundary, both for Poisson and for the ion current equations.
If all the electrodes are ideally polarizable, the vectors φ̃m have dimensions Nnodes. The
top left part of matrix A, which encloses the Poisson coefficients for the voltage vector,
has exactly the same structure of A0, since Poisson DC and AC equations have a very
similar form.

4.4.2.1 Generalized electrodes

If we allow some electrodes to be Faradaic or to be connected in series with a lumped
admittance, the vector of unknown variables is:

Ũ =



Ṽ
φ̃1

...

φ̃Nions
ṼD

Ṽ1

...

ṼNions

Ṽint


,



Ṽ→ nVint : points that are not on the electrodes
φ̃i → nφint : points that are not on the Faradaic electrodes
ṼD → nVel : points that are on the electrodes with admittance
Ṽi → nφel : points that are on the Faradaic electrodes with admittance
Ṽint → nel : electrodes with admittance

where the dimensions of each subarray are also shown. The constant vector C contains
the voltages applied on all the electrodes and the quasi-potentials on Faradaic electrodes.
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4.4.3 Simple example

Fig 4.4: Simple 2D mesh.

In order to understand all implementation details, we consider as a simple 2D example
the mesh shown in Fig. 4.4, where we suppose that the system is entirely composed
of electrolyte. The mesh is composed of 15 edges and 8 nodes. We suppose Dirichlet
boundary conditions on nodes n1, n2 and n3. No external lumped component is considered.
The 15× 8 edges-nodes incidence matrix G of such a mesh is:

G =



1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 0 0 −1 0 0
1 0 0 −1 0 0 0 0
0 1 0 −1 0 0 0 0
0 1 0 0 −1 0 0 0
0 0 1 0 −1 0 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 −1 0 0 0
0 0 0 1 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 1 0 −1 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1


For each edge the matrix element value is −1 for the first node and +1 for the second.
As a convention, the first node is the one with the lower index. Based on Eq. 4.12, the
DC matrices are:

A0 =


b4 −a9 −a10 −a11 0
−a9 b5 0 −a12 −a13

−a10 0 b6 −a14 0
−a11 −a12 −a14 b7 −a15

0 −a13 0 −a15 b8

 , C0 =


−a4V 1

0 − a5V 2
0

−a6V 2
0 − a7V 3

0

−a3V 1
0

0
−a8V 3

0

 , V0 =


V 4

0

V 5
0

V 6
0

V 7
0

V 8
0
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where the coefficients are given by Eq. 4.13.
The AC matrices for a simple electrolyte with only two ion species are:

 Ṽφ̃1

φ̃2

 =



Ṽ 4

Ṽ 5

Ṽ 6

Ṽ 7

Ṽ 8

φ̃1
1

φ̃2
1
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1
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φ̃5
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2

φ̃2
2

φ̃3
2
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2
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2
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2
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2

φ̃8
2



, C =



−c4Ṽ 1 − c5Ṽ 2

−c6Ṽ 2 − c7Ṽ 3

−c3Ṽ 1

0

−c8Ṽ 3
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1Ṽ
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1Ṽ

2

h2
1Ṽ
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1Ṽ
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1Ṽ

3
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1Ṽ
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1Ṽ

2

−g4
1Ṽ
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1Ṽ

2

−g6
1Ṽ

2 − g7
1Ṽ

3

−g3
1Ṽ

1

0

−g8
1Ṽ

3
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2Ṽ

1 − g1
2Ṽ

2
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2Ṽ

2 − g1
2Ṽ

1 − g2
2Ṽ

3

h3
2Ṽ

3 − g2
2Ṽ

2

−g4
2Ṽ

1 − g5
2Ṽ

2

−g6
2Ṽ

2 − g7
2Ṽ

3

−g3
2Ṽ

1

0

−g8
2Ṽ

3





132
4.4.

N
U
M
E
R
IC

A
L
IM

P
LE

M
E
N
TA

T
IO

N

A =



d4 −c9 −c10 −c11 0 s1,4
1 s2,4

1 0 t41 s5,4
1 s6,4

1 s7,4
1 0 s1,4

2 s2,4
2 0 t42 s5,4

2 s6,4
2 s7,4

2 0

−c9 d5 0 −c12 −c13 0 s2,5
1 s3,5

1 s4,5
1 t51 0 s7,5

1 s8,5
1 0 s2,5
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2 s4,5

2 t52 0 s7,5
2 s8,5

2

−c10 0 d6 −c14 0 s1,6
1 0 0 s4,6

1 0 t61 s7,6
1 0 s1,6

2 0 0 s4,6
2 0 t62 s7,6

2 0

−c11 −c12 −c14 d7 −c15 0 0 0 s4,7
1 s5,7

1 s6,7
1 t71 s8,7

1 0 0 0 s4,7
2 s5,7

2 s6,7
2 t72 s8,7

2

0 −c13 0 −c15 d8 0 0 s3,8
1 0 s5,8

1 0 s7,8
1 t81 0 0 s3,8

2 0 s5,8
2 0 s7,8

2 t82
−g4

1 0 −g3
1 0 0 p1

1 o1
1 0 o4

1 0 o3
1 0 0 0 0 0 0 0 0 0 0

−g5
1 −g6

1 0 0 0 o1
1 p2

1 o2
1 o5

1 o6
1 0 0 0 0 0 0 0 0 0 0 0

0 −g7
1 0 0 −g8

1 0 o2
1 p3

1 0 o7
1 0 0 o8

1 0 0 0 0 0 0 0 0
h4

1 −g9
1 −g10

1 −g11
1 0 o4

1 o5
1 0 p4

1 o9
1 o10

1 o11
1 0 0 0 0 0 0 0 0 0

−g9
1 h5

1 0 −g12
1 −g13

1 0 o6
1 o7

1 o9
1 p5

1 0 o12
1 o13

1 0 0 0 0 0 0 0 0
−g10

1 0 h6
1 −g14

1 0 o3
1 0 0 o10

1 0 p6
1 o14

1 0 0 0 0 0 0 0 0 0
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1 −g12
1 −g14

1 h7
1 −g15

1 0 0 0 o11
1 o12

1 o14
1 p7

1 o15
1 0 0 0 0 0 0 0 0

0 −g13
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1 h8
1 0 0 o8

1 0 o13
1 0 o15

1 p8
1 0 0 0 0 0 0 0 0
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2
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2 0 0 0 0 0 0 0 0 0 0 0 o11

2 o12
2 o14

2 p7
2 o15

2

0 −g13
2 0 −g15

2 h8
2 0 0 0 0 0 0 0 0 0 0 o8

2 0 o13
2 0 o15

2 p8
2
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4.5 Model validation and comparisons with GFEM

4.5.1 1D system CVFEM/GFEM comparison

Given the complexity of the endeavour, a structured verification strategy has been de-
ployed to validate ENBIOS in a variety of simple cases and to compare it to the established
GFEM approach. In particular, we will compare CVFEM and GFEM in a 3D rectangular
prism domain which consists of a uniform region (100 nm long in the z direction) with
a square cross section of 10 nm edge (Fig. 4.5). All the quantities are expect to depend
only on z like in a 1D case. We point out that, although the system is by construction
1D, the mesh is fully 3D. The simple 1D model described in Sec. 3.1 has thus been used
for verification. The maximum spacing is set uniform in the entire region and it is the
same in all 3 spatial directions. The electrolyte is 1:1 symmetric with mobility of the
two species equal to 3.24×1011 m/Ns. The permittivity is calculated as a function of the
salt concentration according to [48], while its dependence on the frequency is neglected,
since it will become important only over 1 GHz, i.e., frequencies not accessible by state of
the art hardware [33]. The bottom electrode is always ideally polarizable, while the top
electrode is Faradaic in DC and ideally polarizable in AC. The validation and comparison
between CVFEM and GFEM will be first made for a DC problem, then we will move
to an AC problem with no DC bias applied. For both these cases exact analytical solu-
tions to compare with [36, 1] have been given in Secs. 3.1.3-3.1. Then we will compare
CVFEM and GFEM on an AC problem with a DC bias applied. Since CVFEM falls in
the family of the Finite Volume methods, we expect the convergence behaviour reported
in the literature for the latter methods [64, 72] to be valid also for CVFEM.

DC problem Under DC bias conditions the reference analytical solution is given by
the Gouy-Chapman model [36] (see also Sec. 3.1.3), which reads:

V0 =
4kBT

q
tanh−1

(
tanh

(
q (VB − Vref )

4kBT

)
e
− z
λD

)
(4.46)

where λD =
√
εkBT/2n∞q2 is the Debye length and VB is the potential at the bottom

electrode. The model assumes that the potential on the opposite electrode is equal to Vref ,
so that the double layer is formed only at the bottom electrode, and that the electrodes
are very far away from each other (in practice more than a few λD). In the following we
will always assume Vref = 0 V.
Fig. 4.6 shows the difference δV0 between Eq. 4.46 and the simulations performed with
the 3D code for a few VB and bulk salt concentration n∞. The solution is calculated on

Fig 4.5: Sketch of the 1D system used to compare CVFEM and GFEM solvers. The domain is
filled by a 1:1 symmetric electrolyte.
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(d) 1.5 mM, 100 mV

Fig 4.6: Error δV0 in the potential profile calculated using the CVFEM (filled symbols) or
the GFEM (empty symbols) with respect to the analytical Gouy-Chapman solution [36] for the
1D system (Eq. 4.46) at different height above the bottom electrode and for four meshes with
maximum spacing equal to 10, 5, 2.5, 1.25 nm. The calculations refer to different bulk salt
concentration and the potential applied at one electrode.
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(d) 1.25 nm

Fig 4.7: Real and imaginary parts of the small signal current versus frequency (left) and relative
difference between the real and imaginary parts of the simulated current and the analytical model
of [1] for a 1D system of 100 nm length and 100 nm2 area, with a maximum mesh node spacing
of 10 nm (c) or 1.25 nm (d). No DC bias is applied.

4 different meshes, corresponding to decreasing mesh size. Noting that λD = 8 nm at 1.5
mM and λD = 0.8 nm at 150 mM, we see that CVFEM and GFEM solutions match very
closely when the grid is sufficiently refined (b-d). This is consistent with the findings of
[63] for linear problems, but in our case there is still a slight advantage of CVFEM. On
the other hand, on coarse grids (a-c) CVFEM offers a greater advantage with respect to
GFEM, especially when the non-linearity is stronger (c) because of a larger applied DC
bias. This indicates also that the convergence of the non-linear solver in the GFEM case
is more difficult than in the CVFEM case. Since the only coefficients that differ between
CVFEM and GFEM are the ones in Q0el, we have to compare the non-linear integral
calculations. To this purpose, a direct comparison of the 0th order and of the cubic terms
in Eqs. 4.57-4.58 shows that CVFEM weights more the value v0 than vi with respect to
GFEM, an observation that contributes to explain the slightly different results provided
by the two methods.
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(c) 15 mM
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(d) 15 mM

Fig 4.8: Convergence of the real and imaginary parts of the current varying the maximum
mesh spacing at two different bulk salt concentrations and for different potential applied at one
electrode. The simulations are made at a frequency of 12 kHz. λD = 8 nm at 1.5 mM and 2.5
nm at 15 mM.
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{ Ĩ}

[A
]

 

 

CVFEM
GFEM
0 V
1 mV
10 mV
100 mV

(a) 1.5 mM

1.252.5 5 10
6.6795

6.68

6.6805

6.681

6.6815

6.682 x 10−12

Maximum mesh size [nm]

ℑ
{ Ĩ}
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Fig 4.9: Same as Fig. 4.8 but at a frequency of 1.6 GHz.

AC problem Since our simulation tool is designed to study impedimetric biosensors,
and in particular nanoelectrode based capacitive biosensor, the first desired output of the
simulation is the small-signal admittance Yi at each contact electrode i, which is simply
calculated from the contact current Ĩi:

Yi ,
Ĩi

Ṽel
= Gi + jωCi

where all the contacts are either grounded or biased at the voltage Ṽel.
We assume here that no DC bias is applied, and we use as a benchmark the analytical
solution of the model equations presented in [1]. Fig. 4.7 (two leftmost graphs) shows
the real and imaginary parts of the current spectra at the contacts for three different salt
concentrations. We define εMR and εMI as the relative difference between the analytical
model [1] and the simulation of the real and imaginary parts of the current respectively.
As we see from Fig. 4.7c, εMR and εMI are not negligible at low frequency, since in this case
the maximum spacing is always greater than or at most comparable to the Debye length
(8 nm at 1.5 mM and 2.5 nm at 15 mM). We point out, however, that at low frequency
the current itself is very small and that the error decreases greatly when increasing the
frequency, since the ions start to be not fast enough to follow the field oscillations. At high
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frequency then εMR tends to a constant and εMI is very small because the solution tends to
be that of a conventional Laplace equation, which is linear and therefore solved exactly
(up to machine precision) by both methods. We also note that CVFEM and GFEM are
very close to each other, while GFEM offers a modest advantage in terms of error with the
analytical model. This is again consistent with the findings of [63]. If we now compare the
AC coefficients of GFEM and CVFEM reported in Eqs. 4.22-4.54 at zero DC bias (hence
constant n0m) by using Eqs. 4.29-4.55, we see that CVFEM weights more the value of
the potentials around node nj than around the neighbor nodes with respect to GFEM,
as previously observed for the DC case. Upon mesh refinement (Fig. 4.7d), provided the
maximum mesh size h is always smaller than the Debye length, CVFEM and GFEM the
errors at low frequency reduce with dependence O(h2), both in real and imaginary parts.

AC problem with DC bias We also simulated a case similar to the previous one,
but we also apply a DC bias at the bottom electrode. In this case a reference analytical
solution is not available. Figs. 4.8 - 4.9 show the convergence of the real and imaginary
parts of the current at low (12 kHz) and high (1.6 Ghz) frequency as a function of the
DC potential VB applied at the electrode and of the bulk salt concentration n∞. For
reference the electrolyte cut-off frequency is 3.5 and 350 MHz for n∞ = 1 and 100 mM.
As we see (Fig. 4.8), at low frequency and at high DC bias the CVFEM converges more
regularly with the mesh refinement than in the case of GFEM. The real and imaginary
parts behave similarly between each other.
From Fig. 4.9 we see that, at high frequency, the convergence on the imaginary part of
the current is very rapid, as shown also in the previous paragraph. Also the real part is
converging well, except at high DC bias, where the GFEM can sometimes give incorrect
results on coarse grids (change of sign of the current in Fig. 4.9a-c). Overall, the CVFEM
proves also in this case to have a better convergence behaviour than the GFEM especially
on coarse grids and with a DC bias.

4.5.2 Nanoelectrode array

We report in this section a comparison between ENBIOS and the results obtained with
GFEM for a realistic biosensor. In particular, we consider the CMOS integrated nano-
electrode array presented in [33] (see the sketch in Fig. 5.3), where one row of electrodes
is polarized at a potential Vel and the remaining ones are grounded, thus constituting a
counter electrode. The current is measured individually at each electrode. First of all we
consider a small array of 3×3 electrodes of 20nm radius with pitch 70nm and 80nm in
the x and y directions respectively. Such dimensions are not representative of the real
array [33], but are needed in order to keep the number of mesh points to a reasonable
level and to test the convergence. In fact, we set a mesh maximum spacing of 10nm in
the proximity of the electrodes, and we uniformly refine the entire mesh twice, therefore
increasing each time by 8 the number of mesh points. Fig. 4.10 shows the convergence of
the current at the central electrode as a function of the mesh size for different DC bias
and salt concentrations. The results are very similar to the ones in Figs. 4.8-4.9.

4.5.3 Site-binding model

In this section we report the verification of the implementation of the DC site-binding
surface charge model (Eq. 2.11). The AC site-binding model (Eq. 2.33) has not been
implemented in the current version of the code yet.



CHAPTER 4. NUMERICAL METHODS 137

2.5 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4 x 10−16

Maximum mesh size [nm]

ℜ
{ Ĩ}
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Fig 4.10: Nanoelectrode array - Convergence of the real and imaginary parts of the current
at the central electrode varying the maximum mesh spacing in the electrodes proximity at two
different bulk salt concentrations and for different potential applied at the central electrode row.
The curves at very low DC bias are typically one on top of the other, so they are not visible. λD
= 9.6 nm at 1 mM and 3 nm at 10 mM.

We then simulate a simple 1D system similar to that of Fig. 4.5, where an additional oxide
with tox = 3 nm thickness and a compact layer (CL) with tCL = 0.25 nm on top cover the
bottom electrode. In these conditions an analytical model for the potential profile in the
structure can be derived and used as reference to compare with simulations. We use again
the Gouy-Chapman model (Eq. 4.46) and denote V0 the potential at the CL/electrolyte
interface, and Vox the potential at the oxide/CL interface. In these conditions, by imposing
the continuity of potential and dielectric displacement at the interfaces and the linearity of
the potential profiles across the oxide and CL (both assumed as ideal dielectrics), besides
the SB charge model of Eq. 2.11, we get the following system of equations:

σSB(Vox) =
εox
tox

(Vox − Vel)−
εCL
tCL

(V0 − Vox) (4.47a)

0 =
εCL
tCL

(V0 − Vox) +
√

8kBTn0εel sinh

(
qVel

2kBT

)
(4.47b)

This system of equations has to be solved numerically to calculate V0 and Vox. Note that
we have decided to place the SB charge at the oxide/CL interface, consistently with the
results in [55].



138 4.6. USE OF COMMERCIAL TCAD

Vel [V]
-10 -5 0 5 10

M
od

ul
us

 o
f s

ur
fa

ce
 c

ha
rg

e 
σ

SB
 [C

 m
-2

]

10-5

10-4

10-3

10-2

10-1

0.01 mM
1 mM
100 mM
sim
analytical

(a) pH = 3

pH
2 4 6 8 10 12

Su
rfa

ce
 p

ot
en

tia
l V

ox
 [V

]

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0
0.01 mM
1 mM
100 mM
sim
analytical

(b) Vel = 0 V

Fig 4.11: Comparison between simulations (symbols) and the model of Eq. 4.47 (lines). The
agreement is excellent in all conditions, demonstrating the correct and accurate implementation
of SBC in ENBIOS.

Fig. 4.11 shows the comparison between the simulations versus Vel (a) and pH (b) and
the model. In this case we decided not to simulate explicitly the pH, that is to sum the
H+ and OH− concentrations to the K+ and Cl− concentrations, respectively, so that we
could consider a 1:1 electrolyte with one cation and one anion species. The information
about the pH is however necessary to correctly compute σSB.
We see that the agreement between simulations and the analytical model is excellent, both
considering the value of σSB and of the surface potential Vox, at all salt concentrations,
pHs and DC bias.

4.6 Use of commercial TCAD
An alternative approach to the simulation of nanoelectronic biosensors, instead of the
development of ad-hoc numerical models, would be the use of available TCAD tools
such as, for instance, Sentaurus Device [35]. On the one hand, TCAD offers detailed
and accurate models for the semiconductors and the capability to handle complex and
arbitrary device geometries. However, at the time of writing this thesis, commercial
TCAD is not equipped to model electrolytes or buffer solutions.
In order to expand the applicability of TCAD to biosensors, a simple technique has been
developed to include an “electrolyte material” region into the commercial TCAD simulator
Sentaurus Device [35]; this approach trades a simplified description of the electrolyte for
the possibility to exploit the above mentioned pros of the TCAD. Most of the results
reported in this section have been presented in [6]. We have obtained further results by
implementing also the site-binding model in TCAD [7], but these are not shown here since
the work has been mostly carried out by another student.

Our approach exploits the similarity between the equations describing positive and
negative ions in the electrolyte and those for holes and electrons in a semiconductor. In
this respect, a 1:1 electrolyte can be described in SDevice as a semiconductor (that we
call “electrolyte material”) with zero gap, a constant permittivity and an effective density
of states in conduction and valence band:

NC = NV = NAn0 × 10−3 (4.48)

whereNA is Avogadro’s number and n0 the ion molar concentration (M=mol/l) in the bulk
of the solution, defined as a region where we have the same concentration of positive and
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negative ions, hence overall charge neutrality. Setting EG = 0 implies np = NCNV . The
electron and hole mobility in this “electrolyte material” is adjusted to the corresponding
values of the ions [52]. Care should be paid to disable the default temperature dependence
of the model parameters and to avoid the build-up of unphysical offsets in NC , NV , EG
and mobility whenever the temperature is different from the model reference value.

The proposed approach allows us to easily exploit all the features of the TCAD, such
as: calibrated mobility models for silicon, multiple type of analysis and the handling of
arbitrary geometries in 2D and in 3D. Clearly, there are limitations as well. First of all,
only a single 1:1 ionic solution can be included, whereas electrolytes with many types of
ions and diversified valence are used in experiments; this point will be discussed in the
next section. In addition, only idealized interfaces without steric effects [53] and without
surface reactions [42] can be treated. The control on the numerical error is also quite
limited with respect to ad-hoc codes developed for the modelling of electrolyte screening,
such as ENBIOS. The work presented in this dissertation goes well beyond the similar
model in [73] by proposing strategies to account for steric effects, solutions with multi-ions,
water molecule polarizability at the interfaces.

4.6.1 Equivalent 1:1 electrolyte

One of the basic assumptions behind the TCAD approach proposed is that the electrolyte
must be symmetric with ion species of unit valence. In real world, however, most biosen-
sors operate with multi-ion electrolytes and buffer solutions featuring several ion species
of diverse valence. For instance, a commonly used Phosphate Buffered Saline (PBS) in
biosensor research is composed of four salts: potassium dihydrogen phosphate (KH2PO4),
disodium hydrogen phosphate (Na2HPO4), sodium chloride (NaCl) and potassium chlo-
ride (KCl). At the bulk concentration n0 = 248.4 mM and the temperature T = 300 K,
the dissociation leads to the following distribution of ion concentrations: K+ = 45 mM,
H2PO−4 = 18 mM, Na+ = 203.4 mM, HPO2−

4 = 101 mM, Cl− = 28.4 mM. The description
of such a complex electrolyte would be time consuming in ad-hoc simulators as ENBIOS
and actually impossible in state of the art TCAD tools , but it could be greatly sim-
plified if we could introduce an equivalent electrolyte composed only of two monovalent
ion species, one cation and one anion. To understand the accuracy limitations of such
a simplification, we firstly note that in DC conditions, under the assumption of a dilute
electrolyte with non-interacting ion species, the Gouy-Chapman theory predicts that the
potential profile decays with characteristic length equal to the Debye length (λD) [74]:

λD =

√
εkBT∑

ma
(Zmq)2n0m +

∑
mc

(Zmq)2n0m

(4.49)

where we have separated the contributions of the anions, in number ma, from that of the
cations, in number mc. The biosensor response is determined by the screening properties
of the electrolyte and since the latter are defined by the Debye length (Eq. 4.49), then
it makes sense to define the ion concentration of the equivalent electrolyte in such a way
that its Debye length is the same as the one of the actual electrolyte. We will assume,
in general, that the equivalent electrolyte has an unsigned valence Za for the anions and
unsigned valence Zc for the cations. Imposing the equivalence of the Debye lengths and
the bulk charge neutrality for the equivalent electrolyte, we have the following system of
equations:



140 4.6. USE OF COMMERCIAL TCAD

0 0.5 1 1.5 2

1 

10 

100 

z [nm]

V D
C

 [m
V]

 

 

40mM
200mM
actual PBS
eq. 1:1 electrolyte

0 0.5 1 1.5 2

106

108

1010

z [nm]

|
| [

C
/m

3 ]

 

 

eq. 1:1 electrolyte anion
eq. 1:1 electrolyte cation
actual PBS anions
actual PBS cations

Fig 4.12: Comparison of potential profiles (left) and absolute charge density profiles of anions
and cations (right) between the PBS solution with Fa 6= Fc (filled symbols) and the equivalent
electrolyte with unit valence (open symbols). The curves in the left plot correspond to n0 = 40
mM (dashed lines) and 200 mM (solid lines) and VDC = 10 mV and 100 mV, while in the
right plot V0 = 100 mV and n0 = 200 mM. We verified explicitly that the mutual agreement
at high VDC is much improved if an equivalent electrolyte with Z = 2 is chosen (not shown).
Unfortunately this is not possible in commercial TCAD.


∑

ma
Z2
mn0m = Z2

an0a∑
mc
Z2
mn0m = Z2

cn0c

Zan0a = Zcn0c

⇒


n0a = Fa

Z2
a

n0c = Fc
Z2
c

Za = Fa
Fc
Zc

(4.50)

where Fa =
∑

ma
Z2
mn0m and Fc =

∑
mc
Z2
mn0m. As expected the system is under-

determined and one free parameter (either Za or Zc) remains. We also note that if
an integer Zc is chosen, then Za may not be an integer number, and that only if Fa = Fc
then the equivalent electrolyte has symmetric valence Z:Z and concentrations n0a = n0c.
Consequently, only in this case it is possible to assume unit valence and then also exactly
represent the actual electrolyte with an equivalent one having n0a = Fa and n0c = Fc
by setting the corresponding effective density of states according to Eq. 4.50. The PBS
solution we introduced before fulfills the charge neutrality condition but it does not fulfil
the condition Fa = Fc. Therefore, it cannot be modeled exactly with an equivalent elec-
trolyte of unit valence. In this case we have decided to use a mean of Fa and Fc in Eq.
4.50, namely FM = (Fa + Fc)/2.

To quantify the error induced in the solution, we report in the left plot of Fig. 4.12 the
mean field electrostatic potential profiles across a simple electrolyte slab such as that in
Fig. 4.5 for two values of n0 and two values of V0. The right plot shows the corresponding
charge density profiles due to anions and cations at V0 = 100 mV and n0 = 200 mM. All
the simulations were made using our full-custom Poisson-Boltzmann solver ENBIOS. As
expected, the symmetric 1:1 electrolyte does not exactly mimic the real PBS, but in this
case the maximum error on the potential is at most a fraction of kBT/q. We also note
that the charge profile of the real electrolyte is squeezed toward the interface more than
that of the equivalent electrolyte. This is because the solution has a large component,
both in cations and in anions, of ions with valence modulus 2, hence it has a shorter
Debye length.

To understand in detail the derivations above, we simulated an hypothetical buffer
solution with composition: K+ = 45 mM, H2PO−4 = 18 mM, Ca2+ = 101.4 mM, HPO2−

4 =
101.4 mM, Na+ = 1.4 mM, Cl− = 28.4 mM, where we have replaced some Na+ with Ca2+
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in order satisfy the condition Fa = Fc. The equivalent electrolyte was chosen to be
1:1 symmetric, as the one simulated by the TCAD. In this case the agreement between
simulations with the actual and the equivalent electrolyte is improved but there is still
a small error. If we then use a valence of 2 instead of 1 in the equivalent electrolyte, in
particular if the valence of the symmetric species of the equivalent electrolyte is chosen
to be equal to the one of the ion species dominating the composition of the buffer, we
can obtain an almost perfect agreement between simulations with the actual and the
equivalent electrolyte. Unfortunately, it is not possible in TCAD to change the electron
and hole charges so as to mimic valence values different from 1. Therefore the accuracy
of TCAD simulations is inherently limited by the small errors exemplified in Fig. 4.12.

4.7 Summary
In this chapter we have developed and validated a numerical simulator ENBIOS for nano-
electronic biosensors. ENBIOS relies on the models described in Chap. 2, which have been
solved on general 3D unstructured tetrahedral grids using for the first time the Control
Volume Finite Element Method. Particular care has been given to calculate accurately the
currents at the electrodes in order to retain the method’s global conservation, hence the
accuracy on current calculations, that is needed to compute the tiny admittance changes
due to the introduction of small molecules in the domain. We have also discussed in detail
the methods for the calculations of surface and volume integrals, with respect to accuracy
and computational speed. In fact, the presence of highly non linear (exponential) terms
poses unique and delicate accuracy problems in the evaluation of these integrals.
The implementation has been validated against the analytical models described in Chap.
3. A comparison with the standard Galerkin Finite Element Method is also discussed,
showing that CVFEM offers an advantage, especially for coarse grids. This in turn entails
the possibility to use CVFEM with less refined grids than GFEM.

Finally, we have shown a procedure to use a commercial TCAD for semiconductor
devices (Sentaurus Device, which does not natively support the electrolyte environment,
Sec. 4.6) to describe electrolytes. Despite the successful results, the inherent limitations
of TCAD prevent this approach to be widely applicable to all classes of biosensors. This
further justifies our need of developing an ad-hoc instrument like ENBIOS.
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4.A Appendices

4.A.1 Jacobians for DC equations

The non-linear Jacobian components of Poisson equation J
j,V j0
P = ∂Qj

0el/∂V
i

0 , J
j,V l0
P =

∂Qj
0el/∂V

j
0 , J

j,φj0m
P = ∂Qj

0el/∂φ
i
0m and J j,φ

l
0m

P = ∂Qj
0el/∂φ

j
0m are calculated as:

J
j,V j0
P = −

Nsp∑
m=1

Z2
mq

2

kBT
n∞m
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k∈Υj
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Ωj,kc
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Zmq
kBT

N j
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(4.51a)
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J
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J
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(4.51d)

Note that for the nodes in the electrolyte φ0m is not a variable because it is equal to Vref ,

therefore we do not need to calculate J j,φ
j
0m

P and J j,φ
l
0m

P .
The Jacobians of the current equation in the first formulation are:

J
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Cm = −Zmq

kBT
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∇N i,k · n̂ dΓ

(4.52c)

J
j,φl0m
Cm =

∑
k∈Υj,l

εk
∫
Γj,k

exp

(
Zmq

kBT

∑
i∈Λj,k

N i,k
(
φi0m − V i

0

))
∇N l,k · n̂ dΓ
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+
Zmq

kBT

∑
i∈Λj,l

φi0m
∑

k∈Υi,j,l

εk
∫
Γj,k

N l,k exp

(
Zmq

kBT

∑
i∈Λj,k

N i,k
(
φi0m − V i

0

))
∇N i,k · n̂ dΓ

(4.52d)

The Jacobians of the current equation according to the second formulation are:

J
j,V j0
Cm = −Zmq

kBT

∑
k∈Υj

εkΩj,k
c

(∑
i∈Λj,k

φi0m∇N i,k

)
· ∇N j,k (4.53a)

J
j,V l0
Cm = −Zmq

kBT

∑
k∈Υj,l

εkΩj,k
c

(∑
i∈Λj,k

φi0m∇N i,k

)
· ∇N l,k (4.53b)

J
j,φj0m
Cm =

Zmq

kBT

∑
k∈Υj

εkΩj,k
c ∇N j,k ·

(∑
i∈Λj,k

(
2φi0m − V i

0

)
∇N i,k

)
+
∑
k∈Υj

εkΓj,k · ∇N j,k

(4.53c)

J
j,φl0m
Cm =

Zmq

kBT

∑
k∈Υj,l

εkΩj,k
c ∇N l,k ·

(∑
i∈Λj,k

(
2φi0m − V i

0

)
∇N i,k

)
+
∑
k∈Υj,l

εkΓj,k · ∇N l,k

(4.53d)

4.A.2 On the equivalence of CVFEM and GFEM
Here we prove that, in our specific case where the control volumes are defined with refer-
ence to the centroids of the edges and faces, and the basis functions are linear, discretized
Poisson coefficients are exactly equal in GFEM and CVFEM. Similar conclusions have
been found in [64] for the Box method. Starting from:∫

vk

∇N j,k · ∇N i,kdΩ =

∫
Γk

N j,k∇N i,k · n̂ dΓ−
∫
vk

N j,k∇ · ∇N i,kdΩ

=

∫
Γk

N j,k∇N i,k · n̂ dΓ ,

where Γk is the surface of the tetrahedron k, we need to prove that:

3∑
l=1

∫
Γj,kl

∇N i,k · n̂ dΓ = −
3∑
l=0

∫
Γkl

∇N i,k · n̂ N j,kdΓ

that is:

|det(J)| ∇N i,k · J−T
3∑
l=1

(
∂~̂rl
∂ξ
× ∂~̂rl
∂η

)∫
Γ̂l

dη dξ =

− |det(J)| ∇N i,k · J−T
3∑
l=0

(
∂~̂rPl
∂Ξ1

× ∂~̂rPl
∂Ξ2

) ∫
Γ̂Pl

N0(~̂rPl)dΞ1 dΞ2

where Γj,kl are the three facets that compose Γj,k and Γkl are the four faces of the tetrahe-
dron. Here the convention is the one already defined; namely: Γj,kl is the facet between
node n0 and nl and Γkl is the face opposite to node nl. The term |det(J)| ∇N i,k · J−T is
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the same at both sides of the expression.
We can proceed further by combining Eqs.B.5e-g with Eqs.B.5h-j to get:(

∂~̂rl
∂ξ
× ∂~̂rl
∂η

)∫
Γ̂l

dη dξ =
~̂
Γl .

In addition, from Eqs.B.5a we compute:∫
Γ̂P0

N0(~̂rP0)dξ dη = 0

and taking into consideration also Eqs.B.5k-m we obtain:∫
Γ̂Pl

N0(~̂rPl)dΞ1 dΞ2 =
1

6
, l = 1..3

where the definition of Ξ1 and Ξ2 implies an outer orientation to the surface Γ̂Pl. Then,
we conclude that:

−
3∑
l=0

(
∂~̂rPl
∂Ξ1

× ∂~̂rPl
∂Ξ2

) ∫
Γ̂Pl

N0(~̂rPl)dΞ1 dΞ2

=
3∑
l=1

(
∂~̂rl
∂ξ
× ∂~̂rl
∂η

)∫
Γ̂l

dη dξ =
1

6
[1, 1, 1]

which is the desired result.

4.A.3 Discretized AC GFEM coefficients

In the GFEM case the coefficients are very similar to Eq. 4.22 and read:

si,jm =
Z2
mq

2

kBT

∑
k∈Υi,j

∫
vk

N j,kN i,kn0mdΩ (4.54a)

tjm =
Z2
mq

2

kBT

∑
i∈Λj

∑
k∈Υi,j

∫
vk

(
N j,k

)2
n0mdΩ (4.54b)

ci,j = ai,j −
Nions∑
m=1

si,jm (4.54c)

dj = bj −
Nions∑
m=1

tjm (4.54d)

oi,jm = jZ2
mq

2µm
ω

∑
k∈Υi,j

∫
vk

n0m∇N j,k · ∇N i,kdΩ− si,jm (4.54e)

pjm = jZ2
mq

2µm
ω

∑
i∈Λj

∑
k∈Υi,j

∫
vk

n0m∇N j,k · ∇N j,kdΩ− tjm (4.54f)
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For simplicity, we have written here only the coefficients for the electrolyte, not for the
semiconductor case. Note also that:∫

Ω̂

N2
0dΩ =

1

60
,

∫
Ω̂

N0NidΩ =
1

120
(4.55)

4.A.4 Volume integrals

Denoting ul = vl − v0, the non-linear volume integral is:

I =

∫
Ωj,kc

exp

(
N j,kv0 +

∑
i∈Λj,k

N i,kvi

)
dΩ

= 6Vk ev0
(

4
(
e
u1
2 − e 1

3
(u1+u3)

)
u1 (u1 − 2u2) (u1 − 2u3)

−
9
(
e

1
3

(u1+u2) − e 1
4

(u1+u2+u3)
)

(2u2
1 − 5u1u2 + 2u2

2) (u1 + u2 − 3u3)

−
4
(
e
u2
2 − e 1

3
(u2+u3)

)
(2u1 − u2)u2 (u2 − 2u3)

+
−1 + e

u3
2

u1u2u3

+
e
u3
2 − e 1

3
(u1+u3)

u1 (u1 − u2) (−2u1 + u3)

+
−e 1

3
(u1+u3) + e

1
4

(u1+u2+u3)

(u2
1 − 3u1u2 + 2u2

2) (u1 − 3u2 + u3)
+

−eu32 + e
1
3

(u2+u3)

(u1 − u2)u2 (−2u2 + u3)

+
−e 1

3
(u2+u3) + e

1
4

(u1+u2+u3)

(u1 − u2) (2u1 − u2) (−3u1 + u2 + u3)

)
(4.56)

Its Taylor expansion at third order around ui = 0 gives:

I ' Vk ev0
2488320

(
622080 + 1067u3

1 + 1067u3
2 + 3u2

2 (3864 + 491u3) + 3u2
1 (3864 + 491u2 + 491u3)

+ 3u2 (33120 + u3 (4656 + 491u3)) + 3u1

(
33120 + 491u2

2 + 582u2 (8 + u3) + u3 (4656 + 491u3)
)

+ u3 (99360 + u3 (11592 + 1067u3))
)

(4.57)

The Taylor expansions of the Jacobian terms are:
∂I
∂v0
' Vk ev0

52254720

(
10364u3

1 + 10364u3
2 + 15120 (450 + 67u2 + 67u3) + 6u2u3 (22155 + 2258u3)

+ 3u2
2 (38115 + 4516u3) + 3u2

1 (38115 + 4516u2 + 4516u3) + u2
3 (114345 + 10364u3)

+ 6u1

(
168840 + 2258u2

2 + 3u2 (7385 + 864u3) + u3 (22155 + 2258u3)
))

∂I
∂v1
' Vk ev0

52254720

(
6833u3

1 + 2605u3
2 + 3024 (690 + 97u2 + 97u3) + 9u2

2 (3437 + 391u3)

+ 9u2u3 (4074 + 391u3) + u2
3 (30933 + 2605u3) + u2

1 (67221 + 7815u2 + 7815u3)

+ u1

(
486864 + 6051u2

2 + 61866u3 + 6051u2
3 + 18u2 (3437 + 391u3)

))
Due to symmetry, in order to find ∂I/∂v2 and ∂I/∂v3 we start from ∂I/∂v1 and make
the substitutions (u1, u2)→ (u2, u1) and (u1, u3)→ (u3, u1) respectively.

As an example, we report also the Taylor expansion for I in the GFEM case:

I =

∫
vk

N j,k exp

(
N j,kv0 +

∑
i∈Λj,k

N i,kvi

)
dΩ

' Vk
840

(
u3

1 + u3
2 + u2

2(7 + u3) + u2u3(7 + u3) + u2
3(7 + u3) + 42(5 + u2 + u3)

+ u2
1(7 + u2 + u3) + u1

(
42 + u2

2 + u2(7 + u3) + u3(7 + u3)
) )

(4.58)
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4.A.5 Internal surface integrals

We denote with I lSf the integrals calculated in the transformed space:

I lSf =

∫
Γ̂l

f(~̂rl)dη dξ

The explicit expressions for I lSf when f is given by Eq. 4.30 are:

I1
Sf =

ev0

u1 − 2u2

(
−

3
(
e

1
3

(u1+u2) − e 1
4

(u1+u2+u3)
)

u1 + u2 − 3u3

+
2
(
e
u1
2 − e 1

3
(u1+u3)

)
u1 − 2u3

+
−e 1

3
(u1+u3) + e

1
4

(u1+u2+u3)

u1 − 3u2 + u3

)

I2
Sf =

ev0

2u1 − u2

(
3
(
e

1
3

(u1+u2) − e 1
4

(u1+u2+u3)
)

u1 + u2 − 3u3

−
2
(
e
u2
2 − e 1

3
(u2+u3)

)
u2 − 2u3

+
e

1
3

(u2+u3) − e 1
4

(u1+u2+u3)

−3u1 + u2 + u3

)

I3
Sf =

2 ev0

u1 − u2

(
e
u3
2 − e 1

3
(u1+u3)

−2u1 + u3

+
e

1
3

(u1+u3) − e 1
4

(u1+u2+u3)

u1 − 3u2 + u3

+
−eu32 + e

1
3

(u2+u3)

−2u2 + u3

+
−e 1

3
(u2+u3) + e

1
4

(u1+u2+u3)

−3u1 + u2 + u3

)

Also in this case, to avoid potential 0/0 limit forms, we can take a Taylor expansion
around ui = 0.

4.A.6 Boundary surface integrals

The integrals calculated in the transformed space on the boundary facets that we need
for the global conservation are:

∫
Γ̂Pl

N0dΞ2 dΞ1 =
11

108∫
Γ̂Pl

NidΞ2 dΞ1 =
7

216
(1− δil)

where δil is the Kronecker’s delta and we have chosen to call Γ̂Pl the surface opposite to
node nl.
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4.A.7 Geometric elements

If we consider the unitary reference tetrahedron of Fig. 4.1, we can calculate all the
geometric elements that we need in the integrals:

N0 = 1− ξ − η − ζ (4.59a)
N1 = ξ (4.59b)
N2 = η (4.59c)
N3 = ζ (4.59d)

∂~̂r1

∂ξ
× ∂~̂r1

∂η
=
[
2 1 1

]
(4.59e)

∂~̂r2

∂ξ
× ∂~̂r2

∂η
=
[
1 2 1

]
(4.59f)

∂~̂r3

∂ξ
× ∂~̂r3

∂η
=

1

2

[
1 1 2

]
(4.59g)

~̂
Γ1 =

1

24

∂~̂r1

∂ξ
× ∂~̂r1

∂η
(4.59h)

~̂
Γ2 =

1

24

∂~̂r2

∂ξ
× ∂~̂r2

∂η
(4.59i)

~̂
Γ3 =

1

12

∂~̂r3

∂ξ
× ∂~̂r3

∂η
(4.59j)

∂~̂rP1

∂η
× ∂~̂rP1

∂ζ
=
[
1 0 0

]
(4.59k)

∂~̂rP2

∂ζ
× ∂~̂rP2

∂ξ
=
[
0 1 0

]
(4.59l)

∂~̂rP3

∂ξ
× ∂~̂rP3

∂η
=
[
0 0 1

]
(4.59m)

We have chosen to call n1, n2 and n3 the nodes on the ξ, η and ζ axes respectively. The
transformation ~x = T ~ξ is given by:

T =

x1 x2 x3

y1 y2 y3

z1 z2 z3


where [xi, yi, zi] are the coordinates of the node ni of the original tetrahedron in a system
of coordinates where node nj,k is in the origin. Because the transformation T is linear,
J = T. In the original tetrahedron we have also that:

Vk =
|det(J)|

6

~Γj,kl = |det(J)|

∥∥∥~̂Γl∥∥∥∥∥∥∥∥∂~̂rl∂ξ × ∂~̂rl
∂η

∥∥∥∥∥
(
∂~̂rl
∂ξ
× ∂~̂rl
∂η

)
J−1
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4.A.8 1D CVFEM coefficients

Useful definitions that we will use in the following are:

δ−eq = −u
j
m−

lj−
, δ+

eq =
ujm+

lj+

The non linear part of the Jacobian is:

J j =
∂

∂V j
0

∫ x
j+1

2

x
j− 1

2

ρ0eldx = −
Nions∑
m=1

Z2
mq

2

kBT
n∞0m

∫ x
j+1

2

x
j− 1

2

N jeN
j
eqdx

J j− =
∂

∂V j−1
0

∫ x
j+1

2

x
j− 1

2

ρ0eldx = −
Nions∑
m=1

Z2
mq

2

kBT
n∞0m

∫ xj

x
j− 1

2

N j−1,j−1eN
j−
eq dx

J j+ =
∂

∂V j+1
0

∫ x
j+1

2

x
j− 1

2

ρ0eldx = −
Nions∑
m=1

Z2
mq

2

kBT
n∞0m

∫ x
j+1

2

xj

N j+1,jeN
j+
eq dx

The integrals in the Jacobian coefficients are easily calculated:

IJ j,j− =

∫ xj

x
j− 1

2

N j,j−1eN
j−
eq dx

=
eN

j−
eq (xj)

(
−1 + δ−eq (xj − xj−1)

)
+ e

Nj−
eq (x

j− 1
2

)
(

1 + δ−eq

(
xj−1 − xj− 1

2

))
(xj − xj−1)

(
δ−eq
)2

IJ j,j+ =

∫ x
j+1

2

xj

N j,jeN
j+
eq dx

=
eN

j+
eq (zj+

1
2 )
(
−1 + δ+

eq

(
xj+ 1

2
− xj+1

))
+ eN

j+
eq (xj)

(
1 + δ+

eq (xj+1 − xj)
)

(xj − xj+1)
(
δ+
eq

)2

IJ j,j−1
− =

∫ xj

x
j− 1

2

N j−1,j−1eN
j−
eq dx

=
eN

j−
eq (xj) − eN

j−
eq (x

j− 1
2

)
(

1 + δ−eq

(
xj − xj− 1

2

))
(xj − xj−1)

(
δ−eq
)2

IJ j,j+1
+ =

∫ x
j+1

2

xj

N j+1,jeN
j+
eq dx

= −
eN

j+
eq (xj) − eNj+

eq (zj+
1
2 )
(

1 + δ+
eq

(
xj − xj+ 1

2

))
(xj − xj+1)

(
δ+
eq

)2

When the potential is constant, δ−eq = 0 and δ+
eq = 0. For numerical reasons it is more

convenient to treat this case separately, deriving that:

IJ j,j− = eα
−
eq

(
xj − xj− 1

2

)(
xj + xj− 1

2
− 2xj−1

)
2 (xj − xj−1)

IJ j,j+ = −eα+
eq

(
xj − xj+ 1

2

)(
xj + xj+ 1

2
− 2xj+1

)
2 (xj − xj+1)
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IJ j,j−1
− = eα

−
eq

(
xj − xj− 1

2

)2

2 (xj − xj−1)

IJ j,j+1
+ = −eα+

eq

(
xj − xj+ 1

2

)2

2 (xj − xj+1)

The AC coefficients are:

sj−m =
Z2
mq

2

kBT

∫ xj

x
j− 1

2

N j−1,j−1n0mdx

sj+m =
Z2
mq

2

kBT

∫ x
j+1

2

xj

N j+1,jn0mdx
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Z2
mq

2

kBT

∫ xj

x
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2

N j,j−1n0mdx+

∫ x
j+1

2

xj

N j,jn0mdx
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Z2
mq

2

kBT
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x
j− 1

2
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Z2
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2
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ω
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2
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ω
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2
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2

1
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∣∣∣
x
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1

xj+1 − xj
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Chapter 5

Nanoelectrode array biosensors

This chapter reports the analysis and simulation of nanoelectrode array biosensors. The
reference system considered in the study is the one presented in [33], but we emphasize that
several papers reported on similar integrated systems in the recent literature [75, 76, 77,
76]. From the standpoint of physics, as outlined in previous chapters, we always assume
that the electrodes are ideally polarizable, so that no electrochemical reaction is possible
on them, and therefore no DC current flows. This is a reasonable approximation if the
electrodes are coated with gold, as in [33, 75]. Simulations will always be in the frequency
domain, and we will use a circuit model (see Sec. 3.6) to translate the so-calculated
admittance into a capacitance value representative of a real switching biosensor like [33].
For the simulations, we use either a full-custom 2D finite difference / finite volume solver,
which we reported earlier [1], or the 3D simulator ENBIOS presented in the previous
chapter.

We start showing the validation of ENBIOS with experimental results for capacitive
biosensors reported in the literature. We then describe simulations and experiments on
microparticles detection, where the experimental part was mostly carried out by the Uni-
versity of Twente, project partner. The study has led to a direct experimental verification
of the theory as well as some interesting conclusions about capacitive biosensors. We then
present and verify a model for the nanoelectrode response to spherical particles, which
could not be experimentally tested yet. Since the simulation of a large array entails a
heavy computational burden, we developed an original technique to reduce calculation
time which is described in Sec. 5.5. Finally we discuss in Sec. 5.8 a few case studies more
relevant for biological application, that is, the detection of small biomolecules such as
proteins and DNA.

In all our simulations we will use simplified models for the microparticles and biomolecules,
such as spheres and cylinders. The microparticles we used [12] were manufactured in a
spherical shape, so our approximation is fully appropriate. For the case of biomolecules,
however, one may be concerned about our approximation with spheres and cylinders.
This concern can be answered noting that for a few biomolecules, e.g. short DNA strans,
cylindrical models have been reported in the literature to be very accurate [40]. Spherical
models can resemble very closely the shape of viruses and globular proteins, and there-
fore we expect these to be relatively as well. Since the detection is made possible by the
change of the electric energy due to replacement of the electrolyte with a particle, in the
high-frequency limit we expect a response proportional to the volume (Eq. 5.4) and not
much sensitive to the particle shape as long as the field is roughly constant. In order
to improve the model accuracy, we also included charges on the biomolecules’ surface,
with values extracted from experimental results or from higher accuracy models in the
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Technology CMOS 0.18µm 1P6M 
Power supply  1.8 V 
Die Size 3.5×3.5 mm2 
Array size 96×96 
Electrode size 22×22 ±1µm 
Electrode gap 8 ± 1 µm 
Micro-chamber height 100 ± 5 µm 
Expose electrode material Gold (1 µm) 
Signal to Noise Ratio (S/R) 22 (@ 200 kHz) 

50 µm 

Fig. 1. Conceptual diagram of a silicon microelectrode-array 
based electrical impedance spectroscopy (EIS) platform. The 
ITO capping glass functioned as a counter electrode during 
EIS and offered additional optical detection of captured cells. 

Fig. 2. Tumor cell measurement set-up based on EIS platform: (a) measurement modules; and (b) 
electrical models for (i) bare electrode, (ii) electrode with adherent cell, and (iii) equivalent circuit 
for Z(ω). The total impedance of electrode-electrolyte is modeled as a series combination of 
electrode impedance Z(ω) and Rs. The spread resistance, Rs increases with the presence of a cell. 
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Fig. 3. Photograph of the packaged EIS CMOS biochip. The high-density 
microelectrode-array was bounded with a non-conductive, biocompatible 
fluidic dam for cell experiments and bond pads were insulated. Particles or 
cells were seeded into the chamber using capillary action. (b) Zoomed image 
of electrodes with ITO lid removed. 
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Fig. 4. Photograph of the EIS platform with handheld control unit and the packaged 
CMOS biochip mounted on a ZIF socket. The detected signal from EIS was 
measured by an external HP 4284A LCR meter. 

Fig. 5. SEM images of post-processed gold microelectrodes, (a) microelectrode array and, (b) cross-sectional image of 22µm-wide electrode the multilayer Al 
metallization, via interconnects, and dielectrics layers underneath the capping electrodes. A 0.1µm thick Ti adhesion layer (not shown) is sandwich between Au and 
Al. A capping Pt is deposited to protect the top Au during sample preparation with focused ion beam (FIB) milling.  

Table 1: EIS CMOS Biochip Specifications

Fig. 6 Electro-impedance spectra measured from four sets of gold electrodes with varying KCl concentration as a parameter. (a) Chamber height of 100µm, (b) 
chamber height 40µm, and (c) Plot of electrode impedance as function of KCl concentration with chamber height as parameter. A separation of 40µm between the 
working and counter electrodes produced clear spectrum the lowest variability between electrodes. 
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Fig 5.1: Sketch of the system of [76] reproduced from the original paper and comparison of
simulated impedance spectra with the measurements in Fig. 6b (b) and 6c (c) of ref. [76].
Resistive and inductive series parasitics, likely present in the real system because of the off-chip
measurement setup, have been introduced in the simulations to match the experiments.

literature. Finally, we note that ENBIOS allows to describe arbitrary geometries, the
only practical limitation being the mesh size and the corresponding calculation time.
We also point out that, at this phase, we are aiming only to give qualitative explanations
and highlight possible advantages in the operation of nanoelectrode biosensors. Despite
these approximations, as we will show in this chapter, our simplified models can provide
a very good physical insight.

5.1 Model validation
To the best of our knowledge, there is very limited experimental data available yet for high
frequency impedance spectroscopy detection of small individual biomolecules beyond ξ =
σel/εel. This is even more true if we focus on the case study system of [33]. Some results
have been published only very recently for interdigitated capacitors detecting entire cells.
The salt concentration had to be reduced orders of magnitude below the physiological
limit to reduce the cut-off frequency and probe above fc in spite of the large fringing
capacitance. Existing demonstrators of micro-electrode arrays operate at relatively small
frequency (≤ 1 MHz, [75, 76, 77]) and perform measurements partly off chip, hence with
non negligible parasitics.

We attempted a preliminary validation of the sensor model using the results in [76],
where an ideally polarizable electrode of 22 × 22 µm2 size is at a 40 or 80 µm distance
from a Faradaic electrode of 100 × 100 µm2 size. As in this case the electrodes are very
large compared to the Debye length, we resorted to the numerical technique described in
Sec. 5.5 to shorten the simulation time and make simulations manageable.
The left graph in Fig. 5.1 reports the comparison of the baseline capacitance in the absence
of functionalization or biomolecules for different salt concentrations. The simulations
show a respectable agreement with experiments in the explored frequency range, but we
had to assume that large resistive and inductive series parasitics are present. These are
very likely present in the real system because of the off-chip measurement setup, and we
will show in Sec. 6.2.1 that are very important to take into account in non-integrated
realizations (as also pointed out in [78]). The weak dependence of the impedance on
chamber height shown in [76] is also captured by our simulations (graph on the right).



152 5.2. NANOELECTRODE ARRAY BIOSENSOR

 

Fig 5.2: a, Optical image of the CMOS chip showing the nanoelectrode array (dark rectangle)
and readout circuitry (yellow and green). b, AFM topographic images of the nanoelectrodes.

The experimental curves are affected by noise, parasitics and possibly the result are of
not so stable experiments, therefore the verification has not so compelling validity.

In the following section we will show a more thorough validation, performed by com-
paring our simulations to very well controlled experiments done at Twente University
(Prof. Serge Lemay, Cecilia Laborde) using the system of [33].

5.2 Nanoelectrode array biosensor

The sensing platform presented in [33] consists of a 90 nm CMOS chip (Fig. 5.2a) with a
256×256 nanoelectrode array (90 nm radius polished Au islands on a 0.6×0.89 µm2 grid;
Fig. 5.2b) and integrated readout circuitry. The nanoelectrodes are row-wise selectable
and column-wise individually readable. When immersed in fluid they form metal/liquid
nanocapacitors. A selected row of nanocapacitors is repetitively charged/discharged at 50
MHz with a modulation voltage step VMOD = 245 mV via two individual MOS transistors
using all unselected nanoelectrodes in parallel as counter electrode. The charge/discharge
current of a selected nanocapacitor is integrated over multiple cycles and read out via
on-chip analog/digital converters. In this way high-frequency operation with attofarad
resolution is achieved. We express the measured response signal as an equivalent switch-
ing capacitance Cexp, defined as the integrated charge per charge/discharge cycle divided
by the modulation voltage step. This approach takes simultaneously advantage of three
strengths of integrated circuits: high frequencies, miniaturization and large-scale inte-
gration. Although other promising concepts have been reported [79, 80, 81, 76, 29],
this biosensor platform has unique features, enabling real time, massively parallel high-
frequency impedance measurements and imaging with attofarad resolution on the submi-
cron scale.
Individual chips are placed in a custom-built test socket (CSP/µBGA Test & Burn socket
- Aries Electronics, Inc.) mounted on a readout printed circuit board. A PDMS gasket is
used to create a solution reservoir (volume ∼ 50 nl) directly on top of the nanoelectrode
array. Two 500 µm holes fitted with tubing (PEEK, ID 125 µm, OD 510 µm) provide
fluidic access to the measurement volume. The potential of a complete row of electrodes
is switched simultaneously and the capacitive responses of the individual electrodes Cexp
are measured and discretized with 8 on-chip A/D converters. The remaining 255 rows of
the array act as a pseudo-reference electrode. Typically, 1350 charge-discharge cycles are
employed per measurement of Cexp and 9 subsequent measurements per row were aver-
aged on-chip, resulting in a complete array scan rate of 4.76 frames/second. Real time
imaging is thus enabled by the platform.
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5.3 Detection of dielectric and conductive beads

In search for accurate validations of our simulations we have started a collaboration with
Twente University, where a nanoelectrode array sensing platform is available from NXP
Semiconductors (the developer of the system in [33], see Sec. 5.2) to the electro-chemists
group of Prof. Serge Lemay. Several experiments were carried out concerning the baseline
and the response to fairly large dielectric and conductive spherical beads. In fact, the use

WE#

Fig 5.3: Sketch of the nanoelectrode array, where the central row (green) is biased while the
other ones remain grounded and the current is measured independently at each biased electrode
(WE) in the active row.

 

Fig 5.4: a, Optical image of the CMOS chip showing the nanoelectrode array (dark rectangle)
and readout circuitry (yellow and green). b, AFM topographic images of the nanoelectrodes.
c-d, Each electrode is alternately charged and discharged at 50 MHz with two MOS transistors,
producing a detectable average electrical measured current (black arrows). A 4.4 µm radius
microsphere landing on the array perturbs the electric field generated by each electrode, inducing
a position-dependent change in the current (expressed as a change in capacitance ∆Cexp) of three
neighboring electrodes. e, Theoretical spatial distribution of AC potential at low frequency in
150 mM salt. The electric field only penetrates a few Debye screening lengths into the solution
except for the central electrode, which is positioned within a Debye length of the particle. The
dashed line indicates the microsphere position. f, AC potential amplitude at 50 MHz in 150 mM
salt, where the potential extends deep into the solution.
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Parameter Symbol Value Units
Electrode radius rel 75 [nm]
Electrode x-pitch px 600 [nm]
Electrode y-pitch py 890 [nm]
Particle radius rb 2.5 or 4.5 [µm]
Mobility of K+ µ1 4.75 · 1011 [m/Ns]
Mobility of Cl− µ2 5.05 · 1011 [m/Ns]
Temperature T 298.16 [K]
Electrolyte permittivity εel Eq. 2.39 [F/m]
Particle permittivity (dielectric) εp 2.6ε0 [F/m]
Particle permittivity (conductive) εp 6.9ε0 [F/m]
Particle conductivity (conductive) σp 6.3× 107 [S/m]

Table 5.1: Parameters used in the simulations.

of small particles is presently made difficult by the absence of a reliable protocol to attach
the beads on the sensor surface, thus it leaves excessive uncertainty on the particle height
above the electrodes. The sedimentation is instead very efficient with large particles. We
then compare our results to these experiments performed at Twente University on the
system of [33].

In the experiments, dielectric microspheres of 8.7 ± 0.7µm and 5 ± 0.7µm diame-
ter aldehyde/sulfate latex beads from Life Technologies with dielectric constant εbead =
(2.49÷ 2.55)ε0 between 1 kHz and 1 GHz, and conducting microspheres (8.75± 0.13µm
and 5 ± 0.7µm diameter Au-coated polystyrene beads from microParticles GmbH) were
suspended in 6.6 pH PBS (0.1 mM H3PO4, 0.1mM KOH). The salt concentration of
the buffer solution was further adjusted by adding KCl. The bead-containing solution
was injected in the detection chamber, replacing the bead-free buffer, and the sedimen-
tation process was monitored in real time. No Brownian motion of the microparticles
was observed following sedimentation. The measurements are a courtesy of C. Laborde
and S. Lemay, University of Twente [12], the author of this thesis participated to one
measurement session.

In the simulations, the particle is spherical with either 9 or 5 µm diameter, the elec-
trolyte is made of KCl with appropriate salt concentration. The complete set of simulation
parameters is summarized in Tab. 5.1. Fig. 5.3 shows a sketch of a part of the simulated
nanoelectrode array (see Sec. 5.2). The complete array features 256× 256 nanoelectrodes
with 0.6× 0.89 µm spacing.

Figs. 5.4a-b show in more detail the nanoelectrode array biosensor [33], which has been
used for the experiments. The detection principle, outlined in Sec. 3.6, is also depicted
in Figs. 5.4c-d. As evident from all the discussions throughout this thesis, we expect the
biosensors to be able to detect the presence of the particles at low frequency only if they
are very close to the electrode, while they should be visible from a larger distance at high
frequency (compare Figs. 5.4e-f).

5.3.1 Simulation results

Since the particle is large compared to the electrode pitch (5 µm versus 0.6 or 0.89 µm, if
not otherwise specified), we have to simulate a large portion of the nanoelectrode array in
order not to introduce numerical truncation errors. We then simulate a subset of 13× 17
nanoelectrodes, but the domain size is set to even larger dimensions (a cube with edge
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Fig 5.5: Total admittance at the central electrode with particle height dz = 1 nm over the
central electrode and centered on its top. Note that both the pole and the zero frequencies
change with salt concentration as in the model of Sec. 3.1.1.3.
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Fig 5.6: Total admittance at the central electrode (split in conductance and capacitance) and
corresponding fit with an equivalent circuit composed of the series of one capacitor Cs and the
parallel of a resistor GE and a capacitor CE (R2C model, see Fig. 3.27). The particle is located
at dz = 1 nm over the electrode and is centered on its top. Note that the fit is very good and
that the large error on G with the conductive particle at high frequency is ininfluential since it
has a small impact on the total Y .

50 µm). As the number of electrodes is so large, the minimum mesh spacing in their
proximity can be set to a value appropriate for simulations up to about 10 mM (2 nm
' λD at 10 mM) at most, and it is too coarse at higher salt concentrations. Therefore,
the simulations at 100 mM which we performed to compare with measurements may be
affected by relatively larger errors at low frequency.

Since we apply no DC bias at the electrodes, we do not include a Stern layer in the
simulations. In addition, as in the experiments, no SAM is present on top of the electrodes.

Fig. 5.5 shows the admittance at the central electrode in absence or presence of a
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n0 [mM] Particle Cs [fF] CE [fF] GE [nS]

1 None 1.51 0.205 4.48
Dielectric 0.297 0.016 0.35
Conductive 7.94 20.0 435

10 None 4.90 0.187 40.9
Dielectric 2.16 0.015 3.35
Conductive 8.91 15.6 3410

Table 5.2: Table of the lumped circuit elements for the R2C model used in Fig. 5.6.

Frequency [Hz]
104 105 106 107 108 109 1010

C
sw

 [f
F]

10-2

10-1

100

101

d.c. = 25%
d.c. = 50%
no particle
dielectric
conductive

(a) Cp 0 fF
Frequency [Hz]

104 105 106 107 108 109 1010

|∆
C

sw
| [

fF
]

10-1

100

101

dielectric
conductive
d.c. = 25%; Cp = 0.00 fF
d.c. = 25%; Cp = 0.50 fF
d.c. = 50%; Cp = 0.00 fF
d.c. = 50%; Cp = 0.50 fF

Fig 5.7: Switching capacitance Csw at the central electrode with salt concentration 10 mM,
varying the model parameters for the switching capacitance (duty-cycle and parasitic capacitance
Cp). The particle has dz = 1 nm over the electrode and is centered on its top. There are
interesting peaks in the response.

particle centered on its top at a distance dz = 1 nm. We immediately note that, depending
on the particle’s material, the admittance may decrease or increase with respect to the
reference case without particle. This is easily understood considering that, in one case,
part of the electrolyte volume is replaced with a lower dielectric constant material, while
in the other case the field lines are grouped and focused by the metallic particle. We
also see that the admittance spectra are relatively simple to interpret, since they show
with evidence only two zeros and one pole. This is also apparent in Fig. 5.6, where the
admittance is now represented as Y = G+jωC and accurately fitted to a lumped elements
circuit model (R2C) with one resistor and two capacitors like the one in Fig. 3.27. The
lumped element values are reported in Tab. 5.2.
Consistently with Sec. 3.1.1.3, we define the first cut-off frequency fs as the frequency of
the pole, while the second zero is the electrolyte’s dielectric relaxation cut-off frequency
fc. fs defines the frequency above which the static Debye screening starts to be overcome,
while above fc the response depends only on the bulk dielectric properties of the materials
that lie between the electrodes and not on the AC EDLs, which have disappeared.

To compare AC small signal simulations with measurements, as outlined in Sec. 3.6,
we have to first calculate an approximation of the measured capacitance Cexp. In fact,
Cexp is measured with CBCM techniques [33] from the average value of the discharge
current under pulsed excitation.
One possibility is to consider the switching capacitance Csw was calculated as explained
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in Sec. 3.6 by using the R2C model of Fig. 3.27 with parameter values as in Tab. 5.2. Fig.
5.7 shows Csw at the central electrode for a few duty cycle (d) and parasitic capacitance
(Cp) values. We immediately see that Csw is generally sensitive to the duty cycle only in
the small frequency interval between fs and fc. Furthermore, outside this interval, the
change in capacitance ∆C = Cwp − Cw/op between the cases with and without particle is
insensitive to Cp, as expected. Based on the device architecture of [33], a realistic duty
cycle is d.c. ' 25% and an average Cp ' 0.5 fF was estimated; we will always use these
values in the following calculations.
An alternative way to estimate the measured capacitance is to calculate the modulus of
the charge at the nanoelectrode, leading to an effective capacitance Ceff = |Y/jω|. This
definition of Ceff is justified based on the observation that the detector responds to both
the real and imaginary parts of the admittance in a way that is not easily predictable
a-priori and that the total charge, roughly proportional to the modulus of Y , should
contribute. Fig. 5.8 compares Ceff and Csw for an extensive set of cases, showing that the
two approximations for ∆C are very close to each other, except in the intermediate region
between the cut-off frequencies. In the following we will therefore use both approximations
to compare with measurements. Note that zeros and sign changes are not visible in these
cases essentially due to the very non-uniform field distribution and to the fact that the
particle is close to the electrode and therefore interacts with its EDL.

Fig. 5.9 shows the simulated profile of ∆C along the central row of electrodes at 50
MHz, while the particle is located above the center of the central electrode. Since we are
in the high-frequency limit (fc(10mM) ' 20 MHz), the response is independent of the
salt concentration, except for the weak modulation of the electrolyte permittivity (see Eq.
2.39). We also note that ∆C depends weakly on the exact distance between the particle
and the electrode dz, except at the central electrode for conductive particles. This is
because a conductive particle attached to the electrode effectively acts as a protrusion,
extending the electrode inside the electrolyte and thus remarkably increasing the electrode
surface. Fig. 5.9 also shows that, as expected, not only the central electrode, which is the
only one within one Debye length to the particle, but also the adjacent electrodes are able
to detect the analyte. We also note that there are peaks in the response. We will analyze
this interesting aspect in more detail in Sec. 5.4.
To gain further insight on the results above, Fig. 5.10 shows the real part of the potential
Ṽ at x = y = 0 in the z direction, that is perpendicularly to the electrodes. The particle is
neutral with 5 µm radius and located at distance dz from the electrode. We immediately
recognize the Debye screening layer at low frequency. We also note that, at high frequency,
the potential of the conductive particle is not at the bulk value (i.e. the value at infinite
distance), while at low frequency it is always very close to that value even at a distance
(1 nm) much smaller than the Debye length (10 nm). This effect is due to the large
size of the particle with respect to the nanoelectrodes dimensions. Fig. 5.11 shows the
modulus of the electric field |Ẽ| at high frequency (50 MHz) in the nanoelectrode plane.
As expected, |Ẽ| is larger on the nanoelectrode’s edge.

Since, as we have seen, the electric field at high frequency decays slowly for increasing
distance from the electrodes, we have also tested the influence of the system’s dimensions
on the simulated response. Fig. 5.12 reports the baseline Ceff , that is, the effective capac-
itance at one electrode in absence of the particle, varying the medium (air, IPA and an
electrolyte with various concentrations of KCl), the frequency and the size of the domain.
Air and IPA have been simulated as dielectric materials with relative permittivities of 1
and 18 respectively. In particular we simulated a small array of 5× 5 nanoelectrodes and
a large array of 13× 17 nanoelectrodes. We immediately see that, in all cases considered
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Fig 5.8: Left: effective and switching capacitance at the central electrode. The particle has dz =
1 nm over the electrode and is centered on its top. Right: corresponding change in capacitance
for dielectric and conductive particles. Note that, although Csw and Ceff are different from each
other, due to the introduction of Cp in the model for Csw, the ∆C in presence of the particle are
essentially very similar between the models.

here, the domain size does not have an appreciable impact on the results, thus providing
reassuring indications on the validity of the adopted model.

5.3.2 Comparison to experiments

Fig. 5.13 shows the comparison between the measured baseline capacitance (i.e., without
particles) and the corresponding simulated switching capacitance, calculated for duty-
cycle d = 25% and parasitic capacitance Cp = 0.5 fF, varying the salt concentration,
as for the indications in Sec. 3.6. We observe that the agreement between simulations
and measurements is very good, despite the use of a single calibration parameter (Cp).
Fig. 5.14a shows similar baseline measurements varying the operation frequency and for
various media (i.e., air, IPA, milliQ water and various solutions of KCl in water). We
note once again the large spread in the measurements, which is due to a spread in para-
sitic capacitance at the electrodes. In Fig. 5.14b we compare these measurement to the
simulation data, and find once again that the agreement is excellent, both on the absolute
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Fig 5.9: Change in effective capacitance on the central row. The particle of radius 5 µm has
varying dz over the electrode and is centered on its top, frequency 50 MHz. The vertical lines
mark sign changes. Note that the response id independent of salt concentration at high frequency.

value and on the location of the transition frequencies. In the simulations a compact
layer of 0.25 nm thickness and relative permittivity 7 is present on the electrodes, since
at high salt concentration we expect the CL to give an important contribution to the
total capacitance. Also in this case there is a larger error in the comparison at high salt
concentration, probably due on the one hand to an uncertainty on the CL’s properties
and on the other hand to a not yet accurate array calibration in all conditions. However
we point out that the transition frequency is correctly reproduced by simulations also in
this case.

Fig. 5.15a shows two-dimensional maps of the measured response ∆Cexp of the nano-
electrode array to sedimented dielectric microspheres for three different frequencies. Below
the first cut-off frequency fs (1.6 MHz) the microspheres are undetectable except when
they sediment directly on one electrode (red circle), as expected. Upon increasing the
frequency to 7.1 MHz and 50 MHz the particles become visible over an increasingly large
area of the array, demonstrating that screening by the double layer is being overcome.
This result is a remarkable confirmation of the theoretical predictions and explanations
given in Sec. 3.3.5.

To make this conclusion more quantitative, we define the effective size of the particles
σ, defined as:

σ2 =

∑
i

∑
j [(pxi− r0x)

2 + (pyj − r0y)
2] ∆Cexp(i, j)∑

i

∑
j ∆Cexp(i, j)

(5.1)

where px and py are the electrode pitches in the x and y directions, r0x and r0y are the
coordinates of the center of mass of the distribution and ∆Cexp(i, j) is the change in ca-
pacitance for electrode (i, j) after sedimentation of the particles. The same expression
was used to compute σ in simulations, except that ∆Cexp was replaced by ∆Cth, where
Cth is the simulated capacitance and can stand either for Ceff or Csw.
Fig. 5.15b shows capacitance maps of individual particles for salt concentrations ranging
from 1 mM (typical in field-effect detection experiments [82, 83]) to 100 mM (near physi-
ological conditions). The measured apparent radius σexp of the microparticles (σexp ' 2.5
µm, comparable to their physical radius) is orders of magnitude larger than the Debye
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{Ṽ

}
[V

]

 

 

dz 1nm

dz 20nm

dz 40nm

no particle

(b) dielectric, 50 MHz

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1 x 10−3

z [µm]

ℜ
{Ṽ
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Fig 5.10: Real part of the electric potential in the vertical (z) direction above the center of the
central electrode (x = y = 0), with salt concentration 1 mM and applied voltage 1 mV. Note
that, at high frequency, the conductive particle potential is not at the bulk value (i.e. the value
at infinite distance), while at low frequency it is always very close to it even at a distance (1 nm)
much smaller than the Debye length (10 nm).

length λD and independent of salt concentration. Fig. 5.15c shows the corresponding sim-
ulated responses that are in excellent quantitative agreement with experimental results.
This ab-initio predictability is remarkable considering that most impedance spectroscopy
data obtained with macroelectrodes can only be interpreted qualitatively by fitting to em-
pirical models [84, 85]. Fig. 5.15d further demonstrates theoretically and experimentally
that particles of different diameters can be distinguished, illustrating that the spatial reso-
lution is determined by solution-side processes and is not introduced by the measurement
electronics. These observations represent a direct illustration that double layer screening
is effectively mitigated by high-frequency operation of the nanoelectrode array.

As shown in the previous section by means of simulations (Fig. 5.8), dielectric spheres
replace high-permittivity electrolyte by a medium with much lower permittivity, repelling
the electric field lines and causing Cexp to decrease (∆Cexp < 0). Conducting spheres, on
the other hand, attract electric field lines, causing Cexp to increase (∆Cexp > 0). This
effect can be used for discriminating between different particles. Fig. 5.16a and 5.16b show
experimental ∆Cexp maps of a mixture of dielectric (latex) and conducting (gold-coated
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Fig 5.11: Vector modulus of the amplitude of the electric field near the central electrode in
the electrode plane (z = 0) with no particles. Frequency 50MHz and salt concentration 1 mM.
Numerical noise affects the field values at the edge of the electrode.
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Fig 5.12: Simulated baseline effective capacitance Ceff in absence of the particle for various
media and frequencies and changing the dimensions of the array. We immediately see that there
is no appreciable change in Ceff between the small (5× 5) and large (13× 17) array.

polystyrene) particles with the same 2.5 µm radius. While the apparent particle radius
is similar for both cases (σ ' 1.7 µm), the conductive microparticles show an increase in
capacitance (∆Cexp > 0) instead of a decrease. Once again the experimental response,
in particular the sign change, confirms the predictions by simulations (Fig. 5.16c), thus
proving the ability of the physical model to capture the main features of the experiment.
This capability of discriminating between particles purely based on their intrinsic electrical
properties is unique to high-frequency spectroscopy, as presented here.

We now look at these data under a different perspective, and use simulations to better
understand the measurements. Fig. 5.17 shows again the measured ∆C profiles along the
central row, and the corresponding simulations, for a few particle distances from the elec-
trode. We see that, as expected from previous results in Fig. 5.16, the simulations match
very well the experiments both in the prediction of the peak values and of the decay law
of ∆C with the electrode position. The discrepancy at high distance may be due to the
noise and, in the case of simulations, to numerical errors. Looking at simulations data in
Fig. 5.17b, we can estimate a particle’s distance from the electrode about 20 nm.
Finally, Fig. 5.18 shows similar data, normalized to the peak value at the central electrode
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Fig 5.14: Measured capacitance (a) varying the frequency and the medium on top of the array
and comparison (b) between the measured and the switching capacitance Csw calculated with
the model in Sec. 3.6 with duty-cycle d = 25% and parasitic capacitance Cp = 0.37 fF, that
is equal to the measured capacitance in air. In (b) the solid lines are the simulation data, the
filled symbols are the means of the measurement in (a) and the empty symbols are the means on
similar measurements on another chip. In the simulations a compact layer of 0.25 nm thickness
and relative permittivity 7 is present on the electrodes. The measurements are a courtesy of C.
Laborde and S. Lemay, University of Twente [12].

for different particle’s size. We note that again the simulations can reproduce very accu-
rately the measured response, in all conditions. We also see that the decay of the response
with distance depends on the particle’s dimensions, which gives a further indication on
the imaging capabilities of this biosensor platform.

Regarding the broad shoulder that is visible in measured data in Fig. 5.17a, we should
note that its value is ∆C ≈ 5aF , which is about 1% of the total capacitance at the
electrodes (see Fig. 5.13). A possible explanation for this effect (that is not visible in all
experiments, see for instance Fig. 5.18 comparing 5 µm and 9 µm beads), may reside in
small differences between the permittivity of the PBS electrolyte used when measuring in
absence of the beads and the one where the beads are dispersed, due to contaminations.



CHAPTER 5. NANOELECTRODE ARRAY BIOSENSORS 163

Fig 5.15: a, Spatial map of the measured capacitance change (∆Cexp) induced by the sedimen-
tation of insulating 4.4 µm radius particles for frequencies of 1.6 MHz, 7.1 MHz and 50 MHz.
Each pixel represents a nanoelectrode. The sensitivity to the presence of microparticles increases
with the frequency. b, Response to a single particle at salt concentrations of 1 mM, 10 mM and
100 mM and a frequency of 50 MHz. The rectangular shape corresponds to the asymmetry in
the pitch of the array. The apparent particle size σ is independent of ionic strength over two
orders of magnitude. Each map was normalized to the maximum value of |∆Cexp|. c, Theoretical
predictions (∆Cth) for the same conditions as in b. d, Map of the array’s experimental response
to a mixture of two sizes of microparticles, radius 4.4 µm (red circle) and 2.5 µm (black circle)
at 100 mM salt concentration. The insets show the experimental (top) and theoretical (bottom)
maps for a single 2.5 µm particle. The measurements are a courtesy of C. Laborde and S. Lemay,
University of Twente [12].

5.3.3 Considerations on cell detection

An important application for biosensors is stimulation and sensing of biological cells. In
this section we provide an outline about why moving to very high frequency is advanta-
geous also in this case.
Using ENBIOS, we have run numerical simulations of a model system where either a
model cell of cylindrical shape (radius 5 µm, height 4.86 µm, membrane thickness 5 nm,
roughly representative of the dimensions of an eukaryotic cell) or a homogeneous dielec-
tric particle with the same dimensions lies on top of the nanoelectrode array. The cell
is described as an outer dielectric shell with relative dielectric constant equal to 2.6 (see
the top sketch in Fig. 5.19). The internal cytoplasm is described as an aqueous medium
with the same properties as the outer electrolyte (100 mM KCl salt concentration, i.e.
approximately physiological conditions). The bead dielectric constant is the same as the
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Fig 5.16: a, Response of the array to a mixture of dielectric and conducting 2.5 µm radius
spheres. The signals have opposite polarities, demonstrating the ability to discriminate between
two types of particles at high frequencies. b, Zoomed out view of figure a, comprising 30% of
the nanoelectrode array surface. c, Comparison of experimental (left) and theoretical (right)
capacitance maps of a conducting particle at 50 MHz and 100 mM salt. The measurements are
a courtesy of C. Laborde and S. Lemay, University of Twente [12].
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Fig 5.17: Change in switching capacitance at the central electrode, compared with measure-
ments. In the simulations the particle is centered on the central electrode, the salt concentration
is 1 mM (conductive particle) or 10 mM (dielectric particle) and the frequency 50 MHz. The
measurements are a courtesy of C. Laborde and S. Lemay, University of Twente [12].

one of the cell wall (bottom sketch in Fig. 5.19). The elevation of the bead and the cell
above the electrodes is chosen equal to 50 nm, as a first order approximation of typical
conditions in experiments. The electrode dimensions are the same as in the real system
(Tab. 5.1).

Fig. 5.19 shows the effective capacitance change induced by the bead and the model
cell over a wide frequency range. We observe that up to f = 1 MHz the cell and the bead
provide essentially the same frequency response, demonstrating that below approximately
1 MHz the AC probe field used for impedance measurements does not penetrate the wall
of the cell. Only above about 10 MHz the two spectra start to diverge considerably,
pointing out the penetration of the field inside the cytoplasm. These results clearly point
out that only by reaching high frequencies in the 10 MHz range it is possible to probe the
inner portion of the cells. In this way also the inner cell structures may become accessible
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Fig 5.19: Change in effective capacitance at the central electrode for either a homogeneous
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but filled with electrolyte except for the 5 nm outer membrane (which is made of the same
material of the dielectric particle). In the simulations the particle and the cell have dz = 50 nm
and they are centered on the electrode center. Salt concentration 100 mM.

to the sensor, both on the detection and on the stimulus point of view. Conventional
impedance spectroscopy, on the other hand, is not able to penetrate the cell membrane
due to lower applied frequencies.

5.4 Model for the admittance change due to spherical
particles

The numerical models introduced in Chap. 4 offer many advantages; among them: flexi-
bility in the definition of the sensor and particle geometrical and physical parameters, and
accuracy of the solution. Unfortunately, as seen in Chap. 3, significantly different spatial
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scales characterize the solution of the PB and PNP equations in biosensors, because of
the extremely small value of the static Debye length compared to the sensor dimensions.
The inherently multiscale nature of the solution is most often addressed via an aggressive
grid refinement, which in turn implies lengthy calculations, severe memory requirements
and sometimes convergence problems, especially at high electrolyte salt concentration and
with applied DC bias, cannot be excluded.
For all these reasons the derivation of analytical compact models to highlight the main
dependencies of the biosensor response is highly desirable. In this spirit, analytical models
were derived in Chap. 3. Also, in Sec. 5.5 we will see an alternative to mesh refinement
which, although very accurate and powerful, can not be applied to all cases of interest.
Analytical compact models of, for instance, ISFET based pH sensors, have been pro-
posed in the past [86, 87], but rarely verified extensively against numerical simulations or
experiments.

In this context, we now present the verification of the model of Sec. 3.3.6 for the admit-
tance change (∆Y ) induced by spherical dielectric (colloidal) particles at nanoelectrodes.
We demonstrate that, in spite of the approximations made, the compact model for ∆Y
expressed by Eq. 3.116 nicely captures the dependence of the nanoelectrode admittance
change upon frequency (f), particle volume (Ωa) and complex permittivity of the media,
over a wide range of sensor and particle physical and geometrical parameters. The model
implicitly assumes that the particle is small compared to the electrodes and located at
some distance from them. Therefore, it is not directly applicable to the measurements in
the previous section. Our results support the possibility to use the analytical model for
interpreting the nanoelectrode response, especially in the high frequency limit.
An experimental confirmation of this capability has been obtained by the group of Maarten
Jongsma and Harrie Verhoeven via measurements on live and dead cells. The results have
been reported in [12].

5.4.1 Numerical reference model

In order to validate the analytical model of Eq. 3.116 we used as reference the two-
dimensional numerical finite-difference solver for the Poisson-Boltzmann (Eq. 2.1) and
Poisson-Nernst-Planck equations (Eqs. 2.30-2.35) described in [1, 9]. This simulator has
been the test bench for the modeling activities that led to the development of ENBIOS
during the thesis. Given the good results obtained by the verification and the good
agreement between calculations with ENBIOS full 3D models and 2D models with ring
shaped electrodes (not shown here), it was felt that entirely repeating the analysis with
the full 3D code was not worth the effort.
Compared to the early results of [1], more accurate description of a typical nanoelectrode
array geometry was achieved adding the possibility to define more than just one electrode
on the same plane at the bottom of the simulation domain (Fig. 5.20b). This planar
arrangement of the electrodes closely resembles that of fabricated biosensors (Fig. 5.20c)
and, compared to Fig. 5.20a, generates a highly non uniform distribution of the electric
field in the electrolyte. By an appropriate choice of the electrode dimensions and particle
radius, the electric field over the extension of the particle can be made highly non uniform,
especially at low frequency up to approximately the electrolyte dielectric’s relaxation cut-
off frequency fc. Therefore, differently from [1, 9] where electrodes were located one in
front of the other, the improved simulation code used in this section can be used to test if
the assumption of field uniformity made in the derivation of Eq. 3.116 has an appreciable
impact on the accuracy of the results. We will use electrodes with radius of 75 nm and
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pitch (defined as the distance between the electrodes centers) of 660 nm, which is of the
same order as the interelectrode distance in the array of [33]. The difference between the
inner and the outer radii of the counter electrodes CE1, CE2 (see Fig. 5.20b) is 150 nm.

In all simulations, the DC bias on the electrodes and the net charge on the particle
are both zero. The particle permittivity is taken equal to 2.3ε0 and its radius ranges from
5 nm (which may represent a large protein [88]) to 500 nm (a virus or a colloidal particle
[89]). A thin dielectric layer with permittivity ε=75ε0 and thickness 0.25 nm, mimicking
the Stern compact layer (Sec. 2.3.2 and [90]) was considered on the bottom surface. Note
that in the Stern layer the permittivity should be lower than in the electrolyte, as discussed
in Sec. 2.3.2, but, because in all the simulations no DC bias is applied, as we have seen
the exact value of the compact layer permittivity has a modest quantitative impact on
the results, thus justifying the assumptions made.

The system geometry is sketched in Fig. 5.20. One active electrode and two counter
electrodes are included in the simulation domain and we explicitly verified that the ad-
dition of more electrodes would not change the results in the range of particle radii
considered. For the sake of simplicity the electrolyte dielectric constant is independent
of ion-concentration and frequency [48, 50]. This approximation has a small quantitative
impact but no qualitative practical consequence on the results) as also illustrated in Sec.
2.3.1).

Fig. 5.21 compares the change in conductance (∆G, top) and capacitance (∆C, bot-
tom) obtained by means of 2D numerical simulations with the predictions of Eq. 3.116
for particles of different radius (from 40 nm to 500 nm, left) suspended 200 nm above
the bottom electrode and for a particle with fixed 40 nm radius suspended at different
height above the electrode (right). The analytical model (open symbols) nicely repro-
duces all features in the simulated nanoelectrode admittance response, and shows very
good quantitative agreement for particles smaller than the electrode radius placed at least
a few Debye lengths above the electrode surface. In most cases, ∆G and ∆C increase
for increasing frequency and tend to a constant value for f � fc = σel/(2πεel), being as
usual fc the electrolyte dielectric relaxation cut-off frequency. A peak in ∆C is sometimes
observed, which will be discussed in more detail in Sec. 5.4.2. The dips in ∆G are caused
by sign changes. It can be shown analytically that these sign changes appear in multi-
domain media with spacially dependent complex conductivity that entail sign changes of
the frequency dependent real part of (Ẽ0/Ṽ0)2 (see also left graph in Fig. 5.26).

Actual biomolecules often carry a pH dependent surface charge when dispersed in elec-
trolyte environment. To exemplify the impact of this charge on the admittance response,

WE#WE#
CE1#

CE2#

CEi#

Fig 5.20: Sketch of the uniform field system where the analytical model is derived (a), of the
2D approximation with cylindrical symmetry of the nanoelectrode array (b) and of the real array
(c). The DC and AC potential is applied to the working electrode (WE, green). Its neighbours
(counter electrodes CE, blue) are grounded. Moving to cylindrical coordinates, the 8 nearest
CEs in (c) become the CE1 electrode in (b), the next 16 become the CE2 and so on.
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Fig 5.21: Comparison between the change in conductance (∆G, top) and capacitance (∆C,
bottom) obtained by means of 2D numerical simulations and the predictions of the proposed
analytical model for particles of different radius suspended 200 nm above the bottom electrode
(left) and for a particle with fixed rp = 40 nm suspended at different height above the electrode
(right). Sign changes on ∆G are marked .Bulk ion concentration n∞=1.5 mM.

Fig. 5.22 shows ∆G and ∆C for neutral and positively charged biomolecules (σq ≈ 5
mC/m2, see e.g., [88]). As can be seen, consistently with previous results [1, 10], the
charge affects mostly the low frequencies below the peak frequency, but does not upset
the qualitative features of the spectrum, which still exhibits a maximum and two cut-off
frequencies. Similar results were obtained upon application of a DC bias up to about
100-200 mV between the electrodes. These simulations suggest that, although derived
for neutral biomolecules at zero DC voltage, the model of Eq. 3.116 retains its ability to
provide qualitative insight even in these more general conditions.

In order to understand in more detail the role played by the environment and the
system parameters on the nanoelectrode response and the applicability of the analytical
model to a wide range of physical conditions we will separately examine in the following
all the main dependencies of ∆Y=∆G + jω∆C. In particular, we focus on the change
in capacitance ∆C at high frequency because tiny capacitance changes can be accurately
measured on integrated circuits [91] and because the high frequency regime hols the
promise for accurate and sensitive detection of analytes.
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Fig 5.23: Real (left) and Imaginary (right) part of f(ω) of Eq. 3.115 for particles of different
radius. Note that |<{f(ω)}|� |={f(ω)}|. Bulk ion concentration n∞=1.5 mM. Filled symbols
show simulations without AC diffusion currents. These are not so important for the considered
dielectric particles but instead extremely relevant for conductive particles.

5.4.2 Verification

As a first step we examine the term f(ω). Fig. 5.23 reports its real (left) and imaginary
(right) parts over a wide frequency range for particles of rp = 40, 200 and 500 nm radius.
Clearly, f(ω) has a negligibly small imaginary part (compared to the real part) and,
as expected from Eq. 3.115, tends to −3/2 for ω → 0. For insulating particles, which
are the scope of this section, the inclusion of diffusion AC currents is not so important
(compare filled and open symbols in Fig. 5.23) and furthermore, f(ω) exhibits a very
modest variation over the entire frequency range and a negligible dependence on the
particle size. For conducting particles instead (not shown), f(ω) is strongly affected
by diffusion AC currents, it is remarkably frequency dependent and even changes sign
around fc. However, a detailed analysis of this effect goes beyond the scope of this
section. Therefore, for all practical cases of dielectric particles f(ω) does not affect the
expected proportionality between ∆Y and Ωp, (Ẽ0/Ṽ0)2 and the complex permittivity of
the electrolyte σel + jωεel. Consequently, in the following we will consider f(ω) a real
constant.



170
5.4. MODEL FOR THE ADMITTANCE CHANGE DUE TO SPHERICAL

PARTICLES

5.4.2.1 Volume dependence

Next we examine the proportionality of ∆Y to the particle volume Ωp. To test the model
prediction we run 2D numerical simulations for particles of increasing radius located at
fixed height above the electrode. Fig. 5.24 shows the high frequency ∆G and ∆C (f � fc)
as a function of particle volume and clearly demonstrates that proportionality to Ωp is
verified as long as the particle is located sufficiently above the electrode, and the particle
radius is not too large. Similar results (not shown) were obtained also at lower frequencies
f ≈ fc and f � fc. Meaningful discrepancies with respect to the model predictions could
be found only for relatively large particles at very small distance from or in contact with
the electrode.

In this context a particle can be smaller than an electrode and still too close to it to be
described with a bulk model, as that of Eq. 3.116. Alternatively, it can be a few 100 nm
above the working electrode but its radius can be comparable to the inner radius of CE1.
In that case it will experience a highly nonuniform electric field. Both these cases lead to
deviations from the model of Eq. 3.116, as seen in Fig. 5.24. In the first case deviations
from the model occur if the particle/electrode separation is:

1. less than a few Debye lengths;

2. comparable or less than the particle radius (but still considerably larger than the
Debye length).

5.4.2.2 Field dependence

Since very sensitive and accurate capacitance measurements are possible with integrated
circuitry in CMOS technology [33, 92], in the following we will restrict our attention on
the change in capacitance ∆C due to insertion of particles in the nanoelectrode sensor.
As we will see, especially at high frequency particle detection based on high frequency
∆C offers several advantages that justify this choice. To this purpose, starting from Eq.
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Fig 5.24: ∆G (left plot) and ∆C (right plot) at high frequency versus particle volume (∝ r3
p)

and dz. rp = 50, 100, 200 and 400 nm. We note the linearity of the curves when the particle
bottom surface is not too close to the electrode (the straight dashed curve is a guide for the eye
with unitary slope). Bulk ion concentration n∞=1.5 mM.
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3.116 and reminding that f(ω) is essentially a real term, we can express ∆C as:

∆C = f(ω)Ωpεel χ (5.2)

χ = <


[
Ẽ0

Ṽ0

]2
+

1

ωτel
=


[
Ẽ0

Ṽ0

]2
 (5.3)

∆C is the sum of two contributions, respectively proportional to the imaginary part of
(Ẽ0/Ṽ0)2 multiplied by the electrolyte conductivity σel = εel/τel and the real part of
(Ẽ0/Ṽ0)2 multiplied by the electrolyte permittivity.
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Fig 5.25: Frequency dependence of |χ| at a few locations above the electrode center. The data
refers to electrolyte molar concentrations n∞ = 1.5 mM (left) and 150 mM (right).

In order to test and understand the dependence of ∆C on the field intensity contained
in the χ parameter (Eq. 5.3), we run 2D simulations for a variety of physical conditions.
In fact, the analytical model has been derived under the assumption of a small particle
suspended much above the electrode in a spherically symmetric field configuration while
in reality the electrodes are lying adjacent to one another on the chip surface, so that
the accuracy of the expression for χ cannot be given for granted. On the other hand,
since the field configuration and intensity at the location where the particle stands can
be engineered to some extent via a suitable sensor design, insight in the field dependence
of the nanoelectrode response clearly bears extremely useful practical information.

Fig. 5.25 shows the frequency dependence of |χ(ω)| computed numerically at a few
locations above the electrode center. We note that if |χ(ω)| is calculated at a distance from
the electrodes larger than a few Debye lengths λD, then a peak appears in the spectrum.

As shown in Fig. 5.26 this peak is due to the second term in the expression of χ
(see Eq. 5.3), that is, to the frequency dependence of the imaginary part of (Ẽ0/Ṽ0)2.
The presence of such a peak is also visible in Fig. 5.21 and was previously observed in
[1]. Using the simple 1D analytical model of Sec. 3.1.1, we can derive an approximate
analytical expression for the peak frequency assuming the particle is not too close to the
electrode . In particular, following the calculations in Sec. 3.1.1.4, the expression reads
(see also Eq. 3.48):

f 2
p =

f 2
c

3

−1 +

√√√√√1 + 24λ2
D

(
Ẽ0

Ṽ0

)2
∣∣∣∣∣∣
ω=∞

 (5.4)
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2}
 

 

n
0
 = 1.5mM

n
0
 = 15mM

n
0
 = 150mM

Fig 5.26: Comparison between the two terms contributing to ∆C in Eq. 5.3 as a function of
frequency and for a few bulk electrolyte concentrations n∞. The sum of these terms gives the
analytic ∆C.

n∞ [mM] fc [MHz] dz fp [MHz] fsimp [MHz]

1.5 5.22 10λD 0.60 0.61
20λD 0.58 0.61

150 543 10λD 6.08 6.25
20λD 5.86 6.25

Table 5.3: Table of the peak frequencies calculated with Eq. 5.4 (fp) and extracted from Fig.
5.25 (fsimp ), for different salt concentrations and heights above the centre of the electrode. The
electrolyte dielectric relaxation’s cut-off frequency fc is also shown.

where fc = 1/2πτel = σel/2πεel is again the electrolyte’s dielectric relaxation cut-off
frequency and the term Ẽ0/Ṽ0 is calculated in the limit of high (infinite) frequency, where
it is a real number. Note that, because Ẽ0/Ṽ0 is a function of the position, so is fp. In Tab.
5.3 we show that this approximate expression can reproduce very well the peak frequencies
extracted from Fig. 5.25. In this case the electric field Ẽ0 has been directly calculated in
the simulations. Since in practical cases it is always true that λ2

D(Ẽ0/Ṽ0)|ω=∞ � 1, we
expand the square root in Eq. 5.4 and note that fp is proportional to λD, i.e. it is roughly
proportional to the square root of n∞, while fc is directly proportional to n∞ via the σel
term. This observation is consistent with the data reported in Tab. 5.3.

Large particles located in proximity of the electrode tend to average out the electric
field; therefore the peak will smear out and possibly disappear from the capacitive response
of large particles, as visible in Fig. 5.8. Furthermore, the peak is expected to disappear
for small particles nearly attached to the electrode as in Fig. 5.46, since in this case
the influence of the AC double layer becomes important. Unfortunately, at the time of
writing, these predictions could not be verified experimentally yet because the software
of [33] is not ready to perform calibrated frequency sweeps.

Fig. 5.27 reports ∆C at the frequency of peak response (open symbols) and ∆C at
high frequency (1 GHz, filled symbols) versus |χ| over a wide range of molar concentration,
particle radius and height above the electrode. In many of these conditions the model
assumption of a large R/rp ratio and consequently an essentially constant AC electric
field in the region occupied by the particle is not well satisfied. Nevertheless we see that
the capacitance change is approximately linear in |χ|, as expected based on the compact
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Fig 5.27: Nanoelectrode response ∆C to the introduction of a particle in the electrolyte as a
function of |χ|, where χ is the term in square brackets in Eq. 5.3 and Ẽ0 is the unperturbed
electric field at the position of the center of the particle. The data refers to electrolyte molar
concentrations of 1.5 mM (left) and 150 mM (right), at f = fc and f � fc, particle height above
the electrode between 0 and 1000 nm.

analytical model, except when the particle is large and its elevation above the electrode
very small, as discussed in Sec. 5.4.2.1. These results further confirm the validity of the
analytical model.
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Fig 5.28: Simulated ∆C at 1 GHz (left) and ω∆C/={(Ẽ0/Ṽ0)2} at the frequency of the peak
response (right) as a function of electrolyte bulk conductivity for a few particle sizes. The
elevation above the electrode is dz = 200 nm.

5.4.2.3 Concentration dependence

The results in Fig. 5.26 show that the imaginary part of (Ẽ0/Ṽ0)2 divided by ω (second
term in Eq. 5.3) is vanishingly small for both low and high ω while the first term containing
the real part of (Ẽ0/Ṽ0)2 is small below fc and tends to a constant value for f → ∞.
Therefore, since σel is proportional to the electrolyte molar concentration while εel is very
weakly affected by it, based on the analytical model we expect ∆C at high frequency to
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be dominated by the first term in Eq. 5.3 and to be essentially independent of frequency
and salt concentration regardless of details such as the particle dimensions.

To prove this point, Fig. 5.28 (left) reports the simulated ∆C at high frequency (1
GHz) as a function of the electrolyte conductivity σel. We see that the predictions of the
analytical model are fully confirmed over a wide range of parameter values and the high
frequency ∆C is as expected independent of salinity. In fact, such a behaviour has been
observed previously in simulations [1, 3, 9].

In general, however, both terms contributing to χ may be relevant. We can then write
that:

ωχ

=
{

(Ẽ0/Ṽ0)2
} = ω

<
{

(Ẽ0/Ṽ0)2
}

=
{

(Ẽ0/Ṽ0)2
} +

σel
εel

= ω
<
{

(Ẽ0/Ṽ0)2
}

=
{

(Ẽ0/Ṽ0)2
} + 2πfc

From this expression we immediately note that, if the real and imaginary parts of (Ẽ0/Ṽ0)2

are of comparable magnitude and the frequency is much smaller than fc, the second term
should be dominant and directly proportional to σel. This condition is indeed fulfilled at
the frequency of the peak as evident from the numerical simulations shown in Fig. 5.28
(right). These results confirm the concentration dependence predictions of the analytical
model.

5.4.3 Range of model validity

Having characterized the main model dependencies in Section 5.4.2, we then tested the
high frequency analytical model predictions for many different parameter sets. In fact high
frequency operation, although more difficult to implement in hardware, is very promising.
Figure 5.29 shows the high frequency ∆C calculated for five different particles located at
three different heights above the nanoelectrode (0 nm, 10 nm and 100 nm). The particle
radius is 5, 30, 50, 100 and 300 nm. For curves with circles, the term Ẽ0 is computed from
the 2D simulations as the electric field at the location of the particle center in absence of
the particle. As we can see, the analytical model captures very well the sensor response for
small particles but the discrepancy with the numerical model increases for particle radii
comparable to electrode dimensions, and decreasing distance from the electrode. Figure
5.30 shows similar results, but now, the radius is fixed and the height is changed. Similar
results were obtained for the high frequency ∆C for an electrolyte concentration of 150
mM. This is expected, because at frequency above the electrolyte cut-off AC screening
becomes ineffective and the capacitance change is independent of the ion concentration
(as demonstrated in Fig. 5.28 left).

Note that if the electric field at the position of the particle center is replaced by
the average field over the particle volume the model accuracy is remarkably improved,
especially for large particles and small elevation values. This observation entails that there
is no real advantage in making the field non uniform over the particle volume, but it is
advantageous if the particle occupies a region with high average unperturbed electric field.
Moreover, it suggests the possibility to reliably use the model predictions well beyond the
strict domain of validity of the approximations used.

5.5 Simulations with lumped double layer admittance
Since, as already pointed out, at high molarity the electrolyte Debye screening length
(λD) is much shorter than typical sensor dimensions, challenging multiscale-multiphysics
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simulation problems arise. Issues are especially severe for impedimetric sensor arrays as
the one described in Sec. 5.2 [33, 76] because every electrode has on top a thin electrical
double layer (EDL) with rapidly changing ion concentrations (nm) and potential (V ) [36]
which in turn demand either a fine mesh or special purpose boundary conditions [93].
To make things even worse, very accurate calculations are necessary because the useful
signal is a small change of the electrode admittance with respect to a reference condition
(∆Y = Y − Y0) due to changes of the analyte configuration (e.g. introduction of a
biomolecule, drift of a biomolecule’s position with respect to the electrode, etc.).

In this section we propose a technique to efficiently account for the EDLs in computing
the small signal AC response of impedimetric sensors [33, 76]. The technique significantly
reduces the need of fine meshing the EDLs, thus enabling fast simulation of many analyte
configurations.
This technique can be useful also in the scope of a domain decomposition (which has been
applied to biosensors for instance in [93]), although we will not use it for this purpose.
Instead, we will apply the technique only on the external boundary of the domain.
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5.5.1 Methodology

We illustrate the method with reference to the nanoelectrode array biosensor presented
in Sec. 5.2 [33] (Fig. 5.31), and we use the 3D numerical model ENBIOS to prove the
effectiveness of the proposed approach. The array behaves as a multi-terminal device
(Fig. 5.32a), and due to the small λD accurate simulations require a very fine mesh next
to each electrode, especially at low frequency.

To gain a first insight into the problem, we make use of the analytical 1D model of
Sec. 3.1.1 (see Fig. 3.1, left), and use the series model for the admittance double layer
(Eq. 3.38), which is reported here for convenience:

yDL = jωεelκ
ξ + jω

ξ
(5.5)

where κ2 = (ξ + jω)/D is the squared inverse screening length, ξ = 2q2µn0/εel the
electrolyte cut-off angular frequency, µ the ion mobility (in m/Ns), D=µkT the diffusivity,
n0 the DC bulk ion concentration.
Eq. 3.38 shows that yDL is inversely proportional to the scale length 1/κ which provides
an estimate of the thickness of the EDL. The double layer capacitance cDL = = (yDL) /ω
has a ω3/2 dependence and tends to infinity at high frequency, whereas yH tends to a
constant capacitance per unit area cH = εel/L. These observations suggest to represent
the EDL as a lumped admittance in series to an electrode in direct contact to the bulk
electrolyte. This representation can be generalized to a multiterminal nanoelectrode array
as described in the following.

Firstly, we group the array electrodes as follows (Fig. 5.31 and Fig. 5.32): the grounded
ones are connected to terminal C. Among the remaining N electrodes (which we assume
all biased at the same DC and AC voltage, as in [33]), we group in terminal P those whose
EDL is affected by changes in the analyte configuration, while the others are grouped in
terminal A. Detailed knowledge of the ion concentrations nm and potential φ in the EDL
for all analyte configurations is thus necessary only for electrodes which belong to set P ;
not for those of set A. In fact, by definition, the EDLs of electrodes in C and A stay the
same for all configurations. Note that if the analytes are smaller than the electrode pitch,
and with a proper definition of the configuration space, P cointains only one electrode,
whereas the A set groups many of them. We now denote M the terminal where the AC
current, hence, the admittance is measured.

Electrodes*

EDLs*

Analyte*

y1
pi
tc
h*
=*
89
0n
m
*

x1pitch*=*600nm*

Fig 5.31: Nanoelectrode array sensor with the definition of the different families of electrodes.
Electrode radius rel=75 nm [33]. Each configuration corresponds for instance to a different
location of the particle.
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M and P are coincident We start assuming that M = P . We will then discuss the
case when M is in group A. The definitions above allow us to model the device as a
2-port with admittance matrix:

Y2 =

[
YPP YPA
YAP YAA

]
=

[∑
j∈P
∑

l∈P Yjl
∑

j∈P
∑

l∈A Yjl∑
j∈A
∑

l∈P Yjl
∑

j∈A
∑

l∈A Yjl

]
where the Yjl are the elements of the device N -port Y matrix.

As suggested in Sec. 3.1.1.2, we write the k-th electrode admittance, Yk (k ∈ P ), as the
series connection of the EDL admittance, YDLk, given by the rapidly space-varying field
near the electrode, and the bulk admittance, Ybk, given by the field that deeply penetrates
into the electrolyte:

1

Yk
=

1

YDLk
+

1

Ybk
. (5.6)

The YDLks can be computed once for all analyte configurations.
The next step is to transform the 2-port into a new 2-port with admittance matrix

Y2i connected to the admittances YDLC , YDLA (Fig. 5.32c), respectively representing the
EDLs of the electrodes in groups C and A. Clearly, only Y2i is affected by changes in the
analyte configuration, whereas YDLA and YDLC are not.

If ports M = P and A are both biased at VH , the admittance between port M and
ground is Y = YPP + YPA. To identify the unknown admittances YDLC and YDLA and
then calculate Y for all configurations of interest, we can thus proceed as sketched in Fig.
5.33; namely:

1. we extract the k-th terminal double layer admittance YDLk in the reference con-
figuration using Eq. 5.6 where 1/Ybk is the admittance obtained when the EDL is

(a) (b)

(c) (d)

Fig 5.32: AC small signal representations of the nanoelectrode array: (a) multi-terminal; (b)
2-port; (c) 2-port with external lumped elements (M = P ); (d) 3-port with external lumped
elements (M 6=P ).
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eliminated by setting Dirichlet boundary conditions (DBCs). If the electrodes are
all identical (as is typically the case in regular arrays [33, 76]), we can then easily
calculate YDLA and YDLC as the parallel connection of an appropriate number of
Ydlk;

2. we set DBCs at all terminals except M (which eliminates the corresponding EDLs
and the need for a fine mesh next to the electrodes) and compute the intrinsic Y2i;

3. according to the model of Fig. 5.32c, and denoting ∆ the determinant of Y2i, YiP =
YiPP + YiPA and YiA = YiAP + YiAA, we compute the admittance at M as:

Y ≈ Y ′ = YDLC
∆ + YiP YDLA

∆ + YiAA YDLC + YDLA (YiA + YiP + YDLC)
(5.7)

4. we change analyte configuration, go back to steps (2)-(3), where meshing of only
one EDL is necessary, and efficiently recompute Y ′ for the new configuration.

Since the EDLs vanish at small distance from the electrodes, simulations at step (1) can
be run (with remarkable time saving) on a small subset of the array and imposing DBC
on all electrodes other than k.
We emphasize that DC bias, Stern layers [36] and self-assembled monolayers (SAMs,
assuming that they are much thinner than the separation between the electrodes) should
be included in the simulations used to calculate YDLA and YDLC . We also underline that
the method assumes that the EDL thickness is much smaller than the dimensions of the
system. In this way when DBCs are imposed and Ybk is identified including the region
previously occupied by the EDL only a negligible error is introduced.

M and P are not coincident Let us now consider the case where M is one of the
electrodes in A and it is therefore distinct from P . A 3-port model is now mandatory
(Fig. 5.32d). The system matrix is:

Y3 =

YMM YMP YMA

YPM YPP YPA
YAM YAP YAA



Reference'
system'
(1'EDL)'

YdlA'
and'
YdlC'

Simulated'
System'(EDL'

on'P)'

Y’'

Reference'
system'
(no'EDL)'

Ydlk'

Change'
analyte'

configuraBon'

step'1'

step'2'

step'3'

step'4'

Fig 5.33: Flowchart of the procedure to calculate Y ′ when M=P . The outer loop on the right
(steps 2-4) is repeated for each analyte configuration, while YDLA and YDLC are retained. Step
1 is executed only once. Similar procedures are used to calculate Y ′′ and Y ′′′ (see text).
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and the expression for the admittance at M is now:

Y ' Y ′′′ = (YDLCYdlM (YDLAYiM + ∆21 + ∆22))
/

(
∆ + YDLC∆22 + YdlM (YiAAYDLC + YDLA(YiA + YDLC + YiP + YiM ) + ∆11 + ∆12 + ∆21 + ∆22)

+ YDLA(YDLCYiMM + ∆22 + ∆23 + ∆32 + ∆33)
)

(5.8)

where ∆ is the determinant of Y3i, ∆ij is the determinant of the matrix obtained elim-
inating row i and column j from the matrix Y3i, YiM = YiMM +YiMP +YiMA, YiP =
YiPM+YiPP +YiPA and YiA =YiAM+YiAP +YiAA. The steps to compute the unknowns in
Eq. 5.8 and the YDLA, YdlM and YDLC are the same explained for the two-port case (see
also Fig. 5.33).The method and Eqs.5.7-5.8 can be further generalized to cases where the
EDLs of more than one active electrode have to be meshed and resolved or when VM 6=VA,
but the computational advantage becomes progressively less pronounced.

An alternative method, inspired to the mixed device circuits simulation approach [94],
would be to solve the intrinsic system (i.e., with no EDLs on both A and C) simulta-
neously with the equations that give the potential drop on the Ydlks. The mixed mode
approach is fully general and requires to run only one simulation for each analyte config-
uration (compared to 2 in the 2-port procedure), but it greatly complicates the algorithm
implementation and it may introduce numerical issues, because the values of the matrix
elements in the rows that correspond to the Ydlk are of very different magnitude with
respect to those in the rows corresponding to the intrinsic part of the system under study.
This is evident seeing at the explanation of Sec. 4.2.2.3.

5.5.2 Results

We tested accuracy and numerical efficiency of the method by investigating the response
of the nanoelectrode array in [33] to neutral spherical particles representative of various
biomolecules: large proteins (rp = 10nm) [88], viruses (rp = 500 nm) [95], and cylindrical
DNA strands (rp = 1.25 nm, h=13.2 nm corresponding to 40 basis) [40]. We typically
simulate a subset of 5×5 electrodes or less depending on particle size. The molecule is
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Fig 5.34: Left: exact total admittance at port M=P in the absence of molecules (Y0, reference
configuration) for a few DC bias voltages. Note the symmetric response for positive and negative
bias voltages. Right: total admittance at port M (Y0), one-electrode EDL admittance (Ydl), and
intrinsic admittance at port M (YiM ). DC bias VDC=0 V; NaCl bulk electrolyte concentration
n∞=10 mM.
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located next to the center electrode (P ) and no SAM is present unless otherwise specified.
The absence of dielectric layers, hence of site binding charge, entails a symmetric response
for positive and negative bias voltages.

Fig. 5.34 reports the P -electrode admittance in the absence of molecules (Y0, reference
configuration) calculated with the exact 3D reference model (i.e., with all EDLs included,
left, [4]), the intrinsic Yi (EDL on P only) and the one-electrode EDL admittance YDL
(right). YDL is comparable to Y at low frequency, whereas |YDL| � |Y | ' |Yi| at high
frequency. Fig. 5.35 shows the change in admittance and in capacitance ∆C== (∆Y ) /ω
due to dielectric or metallic particles calculated with the exact 3D model and with the
proposed lumped element approximation of the EDLs (∆Y ′). The excellent agreement ob-
served at all frequencies between ∆Y and ∆Y ′ demonstrates the accuracy of the proposed
method.
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Fig 5.35: Change in admittance (left) and corresponding change in capacitance (right) due to the
introduction of a spherical dielectric or conductive particle (rp= 10 nm) on the center electrode
of the array calculated at M=P with exact 3D simulations (∆Y , ∆C; all EDLs included), with
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Fig 5.36: Change in capacitance due to a spherical dielectric or conductive particle (rp = 500nm)
at the center electrodeM=P of the array calculated with the reference full 3D simulations (∆C)
and the lumped element model of Fig. 5.32c (∆C ′ and ∆C ′′). ∆Y ′ and ∆C ′ are excellent
approximations of ∆Y and ∆C at all frequencies; ∆Y ′′ and ∆C ′′ only at high frequency. SAM
thickness 2.5nm.
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Since at high frequency YDLA and YDLC are often much larger than Y , we also com-
puted Y ′′=limYDLA,YDLC→∞ Y

′. We see from Fig. 5.34 that Y ′′ ' Y ′ at high frequency,
which suggests the possibility to further simplify the simulations by neglecting the EDLs
on all counterelectrodes except P whenever Ydl is very large, i.e. at large salt concentration
and high frequency. The inclusion of YDLA and YDLC in the model is instead mandatory
for accurate results at low frequency.
Similar conclusions were obtained for any particle height, dz, and radius, rp, provided
the analyte interacts only with electrode P . This is demonstrated in Fig. 5.36, which
reports ∆C due to the rp=500 nm particle in presence of a 2.5nm thick SAM and for
varying position, DC bias and salt concentration. Needless to say, all these considerations
depend on the actual system geometry, the frequency range of and the salt concentration.
It is therefore recommended that the use of this technique is guided by experience and
common sense to avoid naive errors.

Fig. 5.37 shows the results when M 6= P and the 3-port model is used (triangles left).
The comparison with the results obtained with a 2-port approximation (where we included
the electrodes P in set A, and calculated YDLA as the parallel of only those YDLs that are
not in series with P ) demonstrates the need of a 3-port representation when M 6= P . In
fact, the 2-port approximation under- or overestimates ∆C especially at high frequency.

Fig. 5.38 shows the simulated change in admittance ∆Y=Yss−Yds and capacitance ∆C
when a single strand DNA attached to a 2.5 nm SAM on top of the electrode is hybridized
with a complementary sequence, thus forming a double strand (ds). The agreement with
the reference full 3D simulations is again excellent if the calculation is carried out with the
proposed method. More results on the response of the array to DNA strand hybridization
is found in Sec. 5.8.

Last but definitely not the least, Fig. 5.39 shows the relative speedup provided by
our method with respect to calculations where all EDLs are explicitly meshed. All cases
discussed above are reported. A remarkable speedup factor of about a factor of 3 to
30 is observed, roughly proportional to the square of the ratio between the number of
mesh-points in the systems without and with the lumped elements.

Besides the insight on the role of EDLs in the array response, the proposed technique
is thus very advantageous, accurate and easy to implement.

As a final note, see that there are sign changes in ∆C in Figs. 5.36 - 5.37, which
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Fig 5.37: Same as in Fig. 5.36, but calculating ∆C at the first neighbour from the central
electrode (M 6= P ). The results given by the 2-port and 3-port models (∆C ′ and ∆C ′′′) are
shown. Note that ∆C ′′′ is a good approximation of ∆C at all frequencies while ∆C ′ is not.
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correspond to the sharp dips. As illustrated already in Sec. 3.3.5, the sign changes are
due to the balance between diffusion forces on the one hand and ohmic transport on the
other hand. This effect is more evident when the double layers are more pronounced, i.e.,
in the cases with conductive particles and applied DC bias.

5.6 ∆Y for small spherical particles in constant field

We now analyse the biosensor response due to the same spherical dielectric particle of 10
nm radius (representative of a big protein [88], ε = 2.6ε0). In order to easily understand
the physical phenomena, like the frequency dependence of the electrolyte permittivity,
steric effects, biomolecule charge and AC diffusion currents, and to more easily compare
to the study in Sec. 5.4, we take a step back and analyse a slightly simpler 2D system with
cylindrical symmetry (Fig. 5.40). In absence of particles this is a 1D system, like the one
solved in Sec. 3.1. We simulate the change in admittance ∆Y between the electrodes due
to the introduction of a small spherical particle. The simulation parameters are reported
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Fig 5.38: Change in admittance (left) and capacitance (right) due to DNA hybridization. The
single (ss) and double (ds) DNA strands are modeled as in [9]. Calculations are done with
exact 3D simulations explicitly accounting for all EDLs (∆Y=Yss-Yds, ∆C== (∆Y ) /ω), with
the proposed procedure based on lumped elements (∆Y ′, ∆C ′) and neglecting all EDLs except
the one on M=P (∆Y ′′, ∆C ′′). The DNA is attached to a 2.5 nm SAM and stands upright from
the electrode center; n∞=150 mM. ∆Y ′ and ∆C ′ are excellent approximations to ∆Y , ∆C at
all frequencies. ∆Y ′′ and ∆C ′′ only at high frequency.
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Fig 5.39: Simulation speedup between the proposed method (∆Y ′, i.e. EDL only on M and
lumped elements for k /∈ M) and the case where all EDLs are explicitly meshed and accounted
for (∆Y ) versus the ratio of the number of mesh points in the grids. M=P . |VDC |=0.1 V. The
speedup is a factor of 2/3 smaller when M 6= P because one extra simulation is required for each
analyte configuration.
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Parameter Symbol Value Units
Bottom electr. DC pot. V0B 0.05 [V]
Top electr. DC pot. V0T 0 [V]
Bulk potential Vref 0 [V]
System radius ρmax 91 [nm]
System height zmax 200 [nm]
SAM thickness hSAM 2.5 [nm]
Mobility of Na+ µ1 3.242 · 1011 [m/Ns]
Mobility of Cl− µ2 4.937 · 1011 [m/Ns]
Temperature T 307.66 [K]
SAM permittivity εSAM 2.3ε0 [F/m]
Biomolecule permittivity εbiomol 2.3ε0 [F/m]

Table 5.4: Parameters used in the simulations.

!"

#"
$" %&'&("

)*)+,-&.)"

/&0"
)*)+,-&.)"

%1&(&*)+2*)"

!"

#"
3" 456"

7*)+,-&*8,)"

Fig 5.40: Sketch of the 2D system with cylindrical symmetry used to study the impact of
AC diffusion currents, SAM and particle position on the response of a nanoelectrode to the
introduction of biomolecules.

in Tab. 5.4 and for the simulation we use the solver presented in [1].

5.6.1 Physical effects on the admittance response

In the previous version of our solver, reported in [3], we did not take into account neither
the AC diffusion currents nor the electrolyte permittivity dispersion nor the steric effects.
To assess the impact of these additional terms on the total admittance Y0, we have decided
to study them one at a time. The considered model system is shown in Fig. 5.40, where
a SAM is present on top of the bottom electrode.
Fig. 5.41 compares the admittance between the electrodes in absence of particles Y0 cal-
culated using the old solver (upward triangles), adding the AC diffusion terms to the
equations (downward triangles) and accounting also for the electrolyte permittivity dis-
persion through Eq. 2.39, where G0 = <(Y0) and C0 = =(Y0/ω). The parameters used in
this section are reported in Tab. 5.4. If not otherwise specified, the electrolyte permittiv-
ity dispersion is neglected and εel takes a frequency independent value equal to εs(S, T ),
that is εel(ω = 0) in Eq. 2.39.

Looking at Fig. 5.41 we not that AC diffusion currents (curves with triangles up and
triangles down) tend to decrease the capacitance of the bare system without particles tends
to be almost independent of the salt concentration for frequencies above the electrolyte
cut-off frequency fc defined in Sec. 3.1.1.3 (fc ≈ 15 MHz at 5 mM and fc ≈ 1.5 GHz at
500 mM, see also Fig. 3.9). Note that, differently from the results in [3], C0 is not exactly
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Fig 5.41: Total admittance between the electrodes of the model system in Fig. 5.40 without
biomolecules. The curves are computed either neglecting AC diffusion currents and the electrolyte
permittivity dispersion (upward triangles), or accounting only for the AC diffusion currents
(downward triangles) or accounting for both (circles) at different salt concentrations.
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Fig 5.42: Total admittance between the electrodes of the model system in Fig. 5.40 without
biomolecules. The curves are computed either neglecting (PB - empty symbols) or taking into
account (MPB - filled symbols) steric effects but neglecting the electrolyte permittivity dispersion
for different DC voltage and salt concentrations. The ionic radius is a = 0.25 nm.

independent of salt concentration because the electrolyte permittivity has a small decrease
for increasing salinity [48] (barely detectable in Fig. 5.41b) at and above f ≈ 10 GHz, not
accounted for in [3]. The effect is of limited practical relevance though. We also see that,
at high frequency, the curves computed with the two models match perfectly, but at low
frequency there is an important difference; in particular, in the new model the capacitance
at low frequency depends on the salt concentration (triangles down, Fig. 5.41b), while it
does not when AC diffusion currents are neglected (triangles up). The discrepancy can
be explained observing that, neglecting the AC diffusion currents, there is no AC double
layer on the electrodes. This means that the capacitance at low frequency CL is given
just by the SAM capacitance CSAM , which doesn’t depend on the salt concentration. On
the other hand, if the AC double layer is present, CL is given by the series of CSAM and
the double layer capacitance CDL depends on the salt concentration; therefore also CL
depends on the salt concentration. Note that the dependency of εel on the salinity is so
small that the effects are completely negligible at low frequencies.
When we account also for the electrolyte permittivity dispersion versus frequency, we note
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Fig 5.43: Admittance variation due to a neutral spherical biomolecule of 30 nm radius attached
to the SAM. The curves are computed either neglecting AC diffusion currents and the electrolyte
permittivity dispersion (upward triangles), or accounting only for the AC diffusion currents
(downward triangles) or accounting for both (circles) for different salt concentrations. ∆G is
negative at low frequencies and positive at high frequencies, with the sign reversal at fc.

that nothing changes at low frequency, while at frequency above fel = 1/2πτ1 ≈ 25 GHz
as defined in Eq. 2.39 (τ1 depends weakly on the salt concentration), the dispersion effect
becomes important; in particular the imaginary part of the permittivity causes a rise in
the conductance G0, while the lowering of the real part reduces the overall capacitance C0.
Compared to the capacitance, the conductance seems to be influenced by the permittivity
dispersion at lower frequencies because of the logarithmic scale.

Steric effects To analyze the steric effects (see also Sec. 2.3.2), we consider simulations
which include the AC diffusion currents but not the electrolyte permittivity dispersion, as
already discussed. We calculated the total admittance between the electrodes as a function
of the salt concentration and of the applied DC voltage (Fig. 5.42). The total conductance
and capacitance are essentially independent of the applied bias in the explored conditions.
Note that most of the voltage drop is across the SAM layer. The results (Fig. 5.42, filled
symbols) suggest that steric effects are of limited importance in these cases, as in Sec.
2.3.2 (aions = 0.25 nm as appropriate for Na+ and Cl− [96]).
In order to explain this evidence, we follow the arguments made in [56] and we define
the critical potential difference with respect to the bulk Vc at which steric effects become
important as:

Vc = −kBT
Zq

ln(n∞0 a
3
ions) . (5.9)

In the worst case considered n∞0 a
3
ions = 0.47%, which corresponds to Vc = 0.14 V. Be-

cause of the very different thickness and permittivity of the SAM and of the bulk elec-
trolyte, even a DC voltage as high as V0B − Vref = 10 V results in a potential at the
SAM/electrolyte interface of only about 0.05 V, sufficiently smaller than Vc. Remem-
bering also that the AC analysis is performed in the small signal approximation, it is
certainly true that even accounting for the extra AC potential Vc can never be reached in
the explored cases. This justifies also our choice of neglecting the steric effects in the AC
analysis.

5.6.2 Response due to a neutral spherical biomolecule

We employed our solver to investigate the biosensor response to the presence of a biomolecule
in the system (Fig. 5.43). Unless otherwise stated, the biomolecule is assumed to be a
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spherical dielectric region touching the SAM surface, and with a frequency independent
relative permittivity of 2.3 and a radius of 30 nm. Such an idealized biomolecule can be
representative of a big protein cluster or a small virus [97, 95]. The change in admittance
∆Y = Y0 − Ymol is reported in Fig. 5.43. The same procedure of adding the effects one
by one as in Fig. 5.41 was followed.
Looking first at the effect of AC diffusion currents only (triangles up and down in Fig.
5.43), we see that at low frequency they change remarkably the nature of the biosen-
sor signals ∆G = <(∆Y ) and ∆C = =(∆Y/ω). We also see that at low frequency the
biomolecule has a large effect on the capacitance at low salt concentrations, while at high
frequencies it doesn’t. This can be explained noting that, at 1.5 mM, the low-frequency
screening length is sufficiently large to let the biomolecule interact with the double layer
on the SAM/electrolyte interface, therefore leading to a stronger response compared to
the case where the screening length is much smaller (i.e. 150 mM). We observe also that
the frequency dependence is strongly affected by the salt concentration and ∆C tends to
a constant, independent of the salt concentration, only when f is much larger than the
electrolyte cut-off frequency fc ≈ 450 MHz at 150 mM.
This behaviour can be explained noting that, at low frequency, Y tends to be purely
capacitive and the overall capacitance is given just by the series of the SAM capacitance
with the double-layer capacitance. For this reason, changing the bulk electrolyte proper-
ties (with the addition of the biomolecule) doesn’t give an appreciable effect. On the other
hand at high frequency the effect of the biomolecule is purely dielectric and is due to the
substitution of a portion of the electrolyte volume with a biomolecule of low permittivity.
This explains why ∆C doesn’t depend on the salt concentration at high frequency.
We note also that, at the cut-off frequency, there is a dip in |∆G|, which is the signa-
ture of a sign reversal. In fact, ∆G is negative at low frequencies and positive at high
frequencies. The positive sign of ∆G at high frequency derives from the fact that we are
replacing a conductive region with a dielectric (the biomolecule). At low frequency, on
the other hand, the effect of the double layer perturbation are prominent, therefore the
sign is reversed.

If we account also for the electrolyte permittivity dispersion, we can make similar
statements to the case of the total admittance. Because this effect lowers the total ca-
pacitance and rises the total conductance, it is reasonable to expect ∆C and ∆G to have
the same behaviour, and this is indeed what we observe in Fig. 5.43. So we can conclude
that, in order to achieve the highest sensitivity and to be independent of the parameters
it is desirable to work at frequencies around fc but sufficiently lower than the permittivity
cut-off frequency fel. These requirements identify a frequency range between 300 MHz
and 10 GHz at physiological salt concentration and between 3 MHz and 10 GHz at low
salt concentration.

5.6.3 Response due to a charged spherical biomolecule

Having understood the importance of AC diffusion currents and of the complex permittiv-
ity of the electrolyte, we now investigate a more complicated but realistic case. In all the
following simulations we have included both AC diffusion currents and the permittivity
dispersion. Steric effects have been neglected since they are negligible in the considered
systems.

We reconsider the biosensor response to the presence of a spherical biomolecule in
the system as in Fig. 5.43, employing Eq. 2.39 for the electrolyte permittivity, but now
adding a constant surface charge of ± 0.01 C/m2 on the biomolecule, as expected given



CHAPTER 5. NANOELECTRODE ARRAY BIOSENSORS 187

105 106 107 108 109 101010 12

10 10

10 8

10 6

Frequency [Hz]

|
 G

| =
 |G

0
G

m
ol

| [
S]

 

 

1.5 mM
150 mM
negative
positive

105 106 107 108 109 101010

5

0

5

10

Frequency [Hz]

 C
 =

 C
0

C
m

ol
 [a

F]

Fig 5.44: Admittance variation due to a uniformly charged spherical biomolecule of 30 nm
radius with surface charge density of ± 0.01 C/m2 attached to the SAM.

the typical protein dimension [88]. A more precise and quantitative estimation of a par-
ticular biomolecule’s surface charge would necessarily need reliable experimental data or
sophisticated Monte-Carlo measurements as in [98].
Also in this case of a charged particle ∆C tends to a constant, independent of the salt
concentration, when the frequency is greater than fc but sufficiently lower than fel (Fig.
5.44). Interestingly, at high salt concentrations the change in admittance becomes almost
insensitive to the charge on the biomolecule, while at low concentrations the charge has
an important effect. More details on the impact of biomolecule charges on the response
will be given in Sec. 5.8 in the discussion of DNA detection.

We also note that, in all the considered cases, for such a small nanoparticle ∆C is very
tiny, giving rise to the need of employing high performance integrated charge detection
systems [91]. This in turn suggests the need to exploit nanoelectrode arrays to increase
the overall signal level [33].

5.7 Nanoelectrode response to small spherical particles
In this section we investigate in more detail the biosensor response due to the same
spherical dielectric particle of 10 nm radius (representative of a big protein [88], ε = 2.6ε0)
of Fig. 5.35, and a metallic particle of same size and conductivity σ = 6.3×107 S/m. Again,
an array of 5×3 electrodes is considered inside a 1.8µm × 3.6µm rectangular domain. The
particle is located above the central working electrode WE and the electrolyte is composed
of KCl in water with concentration n∞ = 10 mM. All other simulation parameters are
listed in Tab. 5.4.

Fig. 5.45 shows the real part of the simulated potential profile in the absence of particles
with an AC potential of 1 mV applied at the central row of electrodes. This is a small
value for realistic systems, but since we are solving a linear problem ∆Y does not depend
on the AC modulation voltage. We observe that the electrolyte potential takes a value
in-between the WE and CE potentials, as already observed in Sec. 5.3. As shown already
a few times in this thesis, we note the broader penetration of the electric field at high
frequency (Fig. 5.45b), which implies the ability of the system to detect analytes beyond
the limitation due to static electrolyte screening.

Fig. 5.46 reports ∆C while changing the vertical (dz) and horizontal (dh) distance of
the particle from the electrode and the DC bias applied to the central row. As expected,
at high frequency the DC bias has no influence on ∆C and the response is not limited
by the electrolyte screening, thus demonstrating the key advantage of the AC sensing
principle. We also observe that, as expected, DC biases of opposite sign compared to the



188 5.8. DETECTION OF DNA STRANDS AND HYBRIDIZATION

(a) 12 kHz (b) 1.6 GHz

Fig 5.45: Real part of the AC potential profile in the electrodes plane (z = 0) of a nanoelectrode
array at 12 kHz (a) and 1.6 GHz (b). At high frequency (b) screening by the electrolyte is
overcome, and the electric field penetrates into the system. These simulations are performed
without the biomolecule.

bulk potential do not affect the AC response. This result indirectly confirms the validity
of the model implementation and the accuracy of the solution in presence of DC bias.
We finally note that the biosensor response increases when the particle is on the edge of
the electrode, as predicted by Eq. 3.116, since the electric field at the particle location is
enhanced by fringing effects.

5.8 Detection of DNA strands and hybridization

Gene sequencing is an especially relevant field of application for nanoelectronic biosensors,
where the main target is to detect selectively the presence of DNA or PNA strands. Fig.
5.47 illustrates the internal structure of DNA and PNA molecules. The most stricking
difference is that the latter backbone is composed of repeating N-(2-aminoethyl)-glycine
units linked by peptide bonds, unlike the deoxyribose that composes DNA.
In this section we use the 2D Poisson-Boltzmann and Poisson-Nernst-Planck solver pre-
sented in [1] and ENBIOS to study the AC behaviour of nanoelectrode capacitive biosen-
sors for DNA detection. Most of the results have been reported in [10]. A preliminary
account neglecting 3D and orientation effects was given in [9].

Although the DNA/PNA strand is small compared to the electrode, in the 3D simu-
lations a large domain of 3×5 electrodes is considered to capture the slowly decaying AC
potential profile at high frequency; we have verified that adding more electrodes would
not change our results. As usual, we assume a biasing scheme where rows of ideally po-
larizable (gold) electrodes are simultaneously biased and the current is measured at each
terminal, as in the real system [33]. The Self Assembled Monolayers (SAM) employed to
functionalize the electrode surface [99] are described as a compact dielectric layer with
parameters as in Tab. 5.6. This is consistent with the findings in [100, 101] for dense high
quality thiol-based films as those used in DNA detection.

As discussed in Sec. 2.3.2, the Poisson-Boltzmann equation is strongly non-linear and it
is valid until the onset of steric effects. This is equivalent to saying that the potential drop
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(d) dz 20 nm, dh 75 nm

Fig 5.46: Nanoelectrode array - Change in capacitance at the central electrode (WE) due to
a particle of 10nm radius with the center on top of the electrode (a-b) or on the edge of the
electrode in a direction with an angle of 3π/4 with respect to the x axis (c-d), see the sketch
above. The particle is either attached to the electrode (a-c) or elevated by 20 nm (b-d). The
DC bias is applied to the central row (x direction) and the reference potential in the bulk of the
electrolyte Vref is always 0 V. The salt concentration is 10 mM.

across the diffuse layer reaches the critical value [102] Vc as in Eq. 5.9. We have verified
that for a typical ionic radius aions = 0.25 nm, even at the highest salt concentrations we
never come too close to this limit, mainly because most of the potential drops across the
low dielectric constant SAM (εSAM ≈ 2 - 3 [99, 100, 101]), and consequently the surface
charge density at the electrolyte/SAM interface is not so high as to invalidate the strong
dilution assumptions behind the Poisson-Boltzmann model. Note that, as shown also in
[103], it is possible to build very compact SAM, therefore confirming our choice to model
it as an ideal uniform layer.

5.8.1 DNA / PNA model

Consistently with the results in [40], we use a simple model for the double strand DNA
(dsDNA) and PNA (dsPNA), i.e. a cylindrical dielectric region of dielectric permittivity
εd = 2.5ε0, radius rds = 1.25 nm and height hmol = 13.2 nm, corresponding to 40 bases.
In the 2D case the cylinder stands upright along the z direction and is centered at radial
coordinate ρ = 0. A constant volume charge density equal to the nominal value of 2
electron charges (-2q) per base pair is initially attributed to the dsDNA rod. In wet
conditions however, the effective dsDNA charge per base is typically smaller than -2q per
base pair and changes with the ion concentration [104], as reported in Tab. 5.5. The
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2.2 PNA

Il PNA è l’analogo sintetico del DNA, nel quale la catena fosfato-zucchero è
sostituita da unità ripetute di N-(2-amminoetil)-glicina, come possiamo vedere
in fig. 2.3.

Questa nuova “spina dorsale” è

Figura 2.3: Confronto fra la struttura del
PNA e quella del DNA

stata progettata per la prima volta
nel 1991 con lo scopo di ottenere un
nuovo reagente che si legasse specifi-
camente al DNA per verificare l’at-
tivazione dei geni da parte di alcu-
ni farmaci. Si tratta di una molecola
elettricamente neutra ed inoltre di�-
cilmente degradabile da enzimi qua-
li la nucleasi e la proteasi, che nor-
malmente rompono i legami del DNA
per copiare le informazioni in esso
contenute. Il PNA è una sostanza
che non si trova in natura e va crea-
ta artificialmente, ma è preferibile al
DNA per scopi di ricerca o per uti-
lizzi commerciali. La neutralità elet-
trica infatti porta con sé un serie di
vantaggi:

• La carica presente sul DNA rende molto di�cile l’ibridazione di una sin-
gola elica con l’elica complementare, a meno che le eliche non si trovino
immerse in elettroliti in cui la carica ionica non agisca da schermo nei
confronti di quella presente sul DNA, consentendo di fatto alle due eliche
di avvicinarsi. Diversamente, non c’è mai repulsione elettrostatica quan-
do il PNA si lega all’acido nucleico target; quindi i legami PNA-DNA o
ancora meglio i legami PNA-PNA sono molto più stabili rispetto ai lega-
mi DNA-DNA. Ciò si manifesta in una più alta temperatura di fusione1,
quindi in una maggiore stabilità termica.

• Un errore di accoppiamento fra le basi è molto più destabilizzante per il
legame PNA/DNA rispetto a quello DNA/DNA. Infatti la temperatura
di fusione cala molto più vistosamente nel primo caso. Questa proprietà

1Per temperatura di fusione si intende la temperatura per la quale una metà delle molecole
di DNA si presentano sotto forma di doppia elica, mentre l’altra è denaturata, ovvero divisa
in due filamenti singoli. La temperatura di fusione dipende da diversi fattori, quali la
concentrazione ionica e la variazione di entropia della reazione di dissociazione.

19

Fig 5.47: Internal structure of DNA and PNA molecules.

Molecule 150 mM 390 mM 1 M
ssDNA 0.80 0.86 0.89
dsDNA 1.3 1.5 1.6
ssPNA-ssDNA 0.85 0.91 0.93

Table 5.5: Effective number of electron charges per base (ssDNA) or base pairs (dsDNA and
ssPNA-ssDNA) calculated with the model of [104]. The values for ssDNA differ from those in
[9] because of the different single strand radius.

(much weaker) pH dependence of the strand charge was instead neglected because, as
suggested by the results in Sec. 5.6 and confirmed in the following, the exact charge value
is not critical for the high frequency capacitance response. The charge density of dsPNA
is zero [105] over a wide range of pH and salt concentrations.

As for the single strand DNA (ssDNA) and ssPNA, the nominal charge per base pair
is halved compared to the respective double strands and, furthermore, we considered two
possible choices:

1. the ssDNA and ssPNA retain the ε and r values of the dsDNA and dsPNA;

2. the ssDNA and ssPNA parameters are the same as above but the radius is rss =
rds/
√

2 so that the ssXNA rod (where X stands for either D or P) has half volume
as the dsXNA one.

The second model differs from the one of [9] since here we assume that the displaced
electrolyte volume (and not the radius) doubles when passing from single to double strand
molecules. The rss and rds values we have chosen are consistent, but not exactly equal,
to the ones in [104] (0.7 nm and 1 nm respectively), and, in the case of the second model
above, they essentially respect the same rss/rds ratio. This small discrepancy does not
affect the general conclusions of our work, whose main purpose is to provide insight on the
impedance response and its trends, but not strictly quantitative values. In fact, the choice
of optimum rss and rds values requires a careful comparison with reliable experiments
which are not yet available (to the best of our knowledge) or sophisticated molecular
dynamics simulations [40], and goes beyond the scope of the present work.
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(b) dz = λD/2
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(c) dz = hmol

Fig 5.48: Change in nanoelectrode capacitance between the case when a dsPNA molecule is
introduced in the system at a distance dz = 0 (a), dz = λD/2 (b) and dz = hmol (c) between the
bottom part of the biomolecule and the SAM. λD is the Debye length.

Parameter Symbol Value Units
Bottom electr. DC pot. V0B 0.05 [V]
Top electr. DC pot. V0T 0 [V]
Bulk potential Vref 0 [V]
System radius ρmax 91 [nm]
System height zmax 200 [nm]
Electrode radius rel 75 [nm]
Pitch in the x direction px 600 [nm]
Pitch in the y direction px 890 [nm]
SAM thickness hSAM 2.5 [nm]
Mobility of K+ [52] µ1 4.75× 1011 [m/Ns]
Mobility of Cl− [52] µ2 4.937× 1011 [m/Ns]
Temperature T 307.66 [K]
SAM permittivity εSAM 2.3ε0 [F/m]
DNA-PNA permittivity εd 2.5ε0 [F/m]

Table 5.6: Parameters used in the 2D and 3D simulations.

5.8.2 Simulations

In all simulations, if not otherwise stated, we have used the parameters listed in Tab. 5.6.
The electrolyte is a KCl solution in water; however, using NaCl would not change our
results significantly (as evident comparing these calculations to the ones reported in [9]).

5.8.2.1 ∆C due to dsXNA and hybridization

As previously done in several sections of this thesis, we interpret the admittance Y (f)
between the electrodes with an equivalent circuit consisting of the parallel connection
of a conductance G(f) and a capacitance C(f), Y (f) = G(f) + jωC(f). Since we are
interested in capacitive biosensors, in the following we concentrate on C(f).

In this section we initially calculate the change in capacitance ∆C between the case
where no molecule is present (C0, reference condition) and the one where a biomolecule
is inserted in the system, that is ∆C = C0 − CdsXNA. Fig. 5.48 shows ∆C due to a
dsPNA (which is an uncharged biomolecule) versus the distance from the SAM/electrolyte
interface. As expected, because of static Debye screening, at low frequencies ∆C rapidly
drops to zero when the dsPNA moves away from the SAM (compare Fig. 5.48 a,b and c)
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Fig 5.49: Change in nanoelectrode capacitance with and without biomolecule at a distance λD
from the SAM. The biomolecule is dsDNA with either -2q per base pair (triangles upward) or
the effective charge from Tab. 5.5 (triangles downward).

so that the response is very sensitive to the actual biomolecule height above the electrode.
On the contrary, at high frequency ∆C is almost independent of the distance from the
SAM, dz. This is because above the electrolyte’s dielectric relaxation cut-off frequency
(fc = σel/(2πεel ≈ 350 MHz at 100 mM) the dominant effect causing the capacitance
change is the replacement of some volume of the high permittivity electrolyte with a
molecule of much smaller permittivity. We also note that in proximity of the electrolyte’s
dielectric relaxation cut-off frequency (fc = 0.47, 1.3, 3.9 GHz at n∞ = 150, 387 and 1000
mM respectively) the capacitive response ∆C is always close to the maximum so that fc
can be regarded as a nearly optimum detection condition. A more accurate estimate of
the frequency of peak response was given in Sec. 3.1.1.4.

If we now consider charged DNA strands, we observe similar qualitative trends (Fig.
5.49, triangles upward) but, because the charge and the substitution of electrolyte’s vol-
ume with the biomolecule give ∆C of opposite sign, a few sign changes appear in Fig.
5.49 which were not previously present. This can be regarded as an interesting signature
of the presence of charges. Interestingly, these sign changes closely resemble the ones
seen in Sec. 3.3.5, indicating that also in this case they are most likely due to a balance
between the diffusion and ohmic terms in the PNP equation. Also in this case ∆C at low
frequency is much smaller than at high frequency.

The correction from the nominal to the effective charge has quite a strong impact on
∆C at low frequency (compare triangles upward and downward in Fig. 5.49), essentially
due to the strong non-linearity of the equilibrium Boltzmann distribution. Note however,
that in the high frequency limit ∆C is insensitive to the biomolecule charge, and therefore
to charge fluctuations as well. This is another potential advantage of high-frequency
compared to low-frequency sensor operation.

Having discussed the main trends of the ∆C spectra, we investigate next the position
and orientation effects. To this purpose, the charges on the molecules will always be those
from Tab. 5.5.

5.8.2.2 ∆C position effects

So far we have always calculated ∆C as the change in capacitance between the case
without biomolecule and the case when a biomolecule is present. In actual DNA sensors,
however, the sensing process occurs via hybridization of a pre-existing layer of DNA or
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(a) dz = 0 nm; rss = rds
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(b) dz = λD/2; rss = rds
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(c) dz = hmol; rss = rds
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(d) dz = 0 nm; rss = rds/
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(e) dz = λD/2; rss = rds/
√

2

105 106 107 108 109 101010−11

10−10

10−9

10−8

10−7

10−6

Frequency [Hz]

|6
 C

| =
 |C

ss
XN

A−
C

ds
XN

A| [
fF

]

 

 

(f) dz = hmol; rss = rds/
√

2

Fig 5.50: Absolute value of the change in capacitance due to the ssPNA-ssDNA or dsDNA
hybridization for the different models and at different heights of the molecule from the SAM.
The sharp cusps at intermediate frequencies are caused by sign changes.

PNA attached to the SAM by complementary DNA strands in solution. Therefore, it
is more interesting to calculate ∆C as the change in admittance between the case when
a ssDNA or ssPNA strand is initially present and the case when a dsDNA or a ssPNA-
ssDNA complex are present, that is ∆C = CssXNA − CdsXNA.
To this purpose, two idealized cases have been considered as explained in Sec. 5.8.1:
rss = rds and rss = rds/

√
2.

Fig. 5.50 reports the change in capacitance due to the formation of a ssPNA-ssDNA
complex from a ssPNA (triangles down) and of a dsDNA from a ssDNA (triangles up).
As we see, the ∆C spectrum is sensitive to the model used. In particular, according to the
first model where single and double strands have the same diameter (Figs. 5.50a, b, c),
∆C is very low at high frequency because the effect of volume substitution is absent and
features like the charge per base have modest effect on the response (as already shown
in Fig. 5.49). At low frequency the ∆C values predicted by the two models are in the
same order of magnitude, indicating that in this case the change of the charge effect
is comparable to the volume substitution. We again note the sign changes in ∆C, as
discussed for Fig. 5.49.

Fig. 5.51 takes a different perspective on these data, showing ∆C at a fixed low (50
kHz) and high frequency (500 MHz) and large salt concentration (1 M) as a function of
the distance from the SAM. As expected, |∆C| is larger when the molecule is close to
the SAM and drops much faster with distance at low frequency. It is also larger at high
frequency if we assume a radius change during hybridization (dashed lines). The sign
of ∆C at high frequency depends on the choice made to model the ssXNA, confirming
that the effects of the charge and the dielectric constant (volume change) go in opposite
directions. The experimentally observed sign change [75] suggests that when a compact
layer of hybridized DNA forms on the electrode, the dielectric effect is dominant, but
more accurate studies are necessary to clarify this behaviour. The comparison carried out
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Fig 5.51: 2D simulation of the ∆C due to the ssPNA-ssDNA (triangles downward) or dsDNA
(triangles upward) hybridization at 50 kHz (left) and 500 MHz (right) and 1 M. rss = rds (solid
lines); rss = rds/

√
2 (solid lines).
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Fig 5.52: 3D simulation of the ∆C due to the ssPNA-ssDNA (triangles downward) or dsDNA
(triangles upward) hybridization. The data are reported either at a fixed orientation (a) or at a
fixed position in the x-y plane (b), and the salt concentration is 150 mM. The dsXNA (dashed
rectangles) is modeled as a cylinder concentric to the ssXNA (filled rectangles), as sketched in
the figure.

in this section highlights the potential of physical models to elucidate some of the signal
transduction mechanisms. Unfortunately, to the best of our knowledge there is still too
limited experimental data gathered on well-defined repeatable and reliable conditions to
allow for extensive comparisons with experiments.
We also note that, since the frequency is high, there is almost no screening of the AC field
and thus ∆C remains large even for DNA/PNA strands at large distance from the SAM
which is a clear advantage in terms of biomolecule detection. We finally note that, in
this high frequency regime, using ssPNA as a probe molecule instead of ssDNA (compare
triangles up to triangles down) gives little advantage in terms of signal strength.

5.8.2.3 ∆C orientation effects

We now consider a realistic 3D system where the unperturbed (without biomolecules)
field distribution is non-uniform. To this purpose, we have employed the full 3D CVFEM
solver ENBIOS and simulated the biosensor array [33], with the parameters listed in Tab.
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5.6. Fig. 5.52 shows ∆C due to the formation of a ssPNA-ssDNA complex from a ssPNA
and of a dsDNA from a ssDNA, using a radius of rds/

√
2 for the single stranded molecule.

The double strand molecules are always attached to the SAM (i.e., dz = 0), have either
the axis oriented in the z direction (θ = 0) or tilted at θ = π/4 and θ = π/2 with respect
to it, while the angle with respect to the x axis is always ϕ = 0 (see the sketches in Fig.
5.52). The midpoint of the strand is located either at the center of the working electrode
(∆x = ∆y = 0) or on its edge in the x or y direction, (∆x; ∆y) = (rel;0) or (0;rel). Since
the interelectrode distance is not the same in the x and y directions, these two cases are
expected to give a different ∆C. A difference is also expected because of the row-wise AC
excitation of the electrodes.

We immediately note (Fig. 5.52a) that ∆C for the molecule in the center of the
electrode is very similar to the one reported in Fig. 5.50d, as expected since the electric
field in this region is fairly uniform and therefore the 2D simulation is a reasonably
accurate representation of the more realistic 3D system. On the other hand, we note that
∆C at both low and high frequency increases by approximately an order of magnitude
when the particle is on the edge of the electrode, due to the locally high value of the
fringing electric field. The non-uniformity of the field gives also rise to a different shape
of the curves, and a maximum appears when the particle lies at the edge; this suggest the
existence of optimum detection conditions within non uniform fields and the possibility
to optimize the Ẽ0/Ṽ0 ratio for optimum sensitivity (see the model in Sec. 3.3.6). We
also note that the slight asymmetry of the array does not have a great impact on ∆C for
a z-oriented molecule (θ = 0, compare red and green curves in Fig. 5.52a). Fig. 5.52b
shows that the orientation is instead important at low frequency for a molecule in the
center of the electrode. We explain this observation noting that when the molecule is
horizontal (θ = π/2), the ssXNA is slightly detached from the SAM. The very small
elevation (dz = 0.4 nm) is sufficient to change considerably the response at low frequency,
as evident also from Fig. 5.50. As expected, it still holds that in all cases ∆C at high
frequency is independent on the charge and frequency and it has a weaker dependence on
position and orientation.

5.9 Summary
In this chapter we have studied the response of a nanoelectrode array biosensor to spherical
microparticles my means of simulations and compared the results with measurements
mostly carried out at the University of Twente by the group of Prof. S. Lemay (Sec. 5.3).
The agreement we found between simulations and measurements is excellent, essentially
without fitting parameters. This is a remarkable confirmation of the adequacy of the
chosen model for the problem at hand. Our study demonstrated the fact that high frequency
measurements can indeed probe particles beyond the static screening length. In addition,
we have shown that the nanoelectrode array is capable of probing the particle’s material;
namely, to discriminate between dielectric and conductive particles. Simulations based
on the models of Chap. 2 confirmed their usefulness for the extraction of quantitative
information on the analytes from the measurement data.

In Sec. 5.4 we have validated, by means of simulations, an analytical model for the
admittance change at a nanoelectrode due to a small spherical particle. The model is
not directly comparable to results in Sec. 5.3 because of the assumptions made on the
particle and system dimensions, but nevertheless provides extremely useful physical in-
sight. Notably, the model predicts the response to be proportional to the particle volume
and complex conductivity and to the magnitude of the electric field in the location of
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the particle. This model suggests a wide range of possibilities for the engineering of na-
noelectrode biosensors. In particular it is shown that there is no advantage in having a
non-uniform field over the particle volume, but it is advantageous if small particles are
located at positions with high AC field.

The simulations above allowed us to test the performance of ENBIOS for the analysis of
realistic complex systems. The results motivated the proposition of an original simulation
scheme (Sec. 5.5) to greatly reduce the computational burden due to the fine meshing of
Electrical Double Layers by replacing them with circuit lumped elements.

We have also explored the nanoelectrode biosensor response due to small spherical par-
ticles, which can represent big proteins or viruses (Secs. 5.7-5.6), and to DNA molecules
(Sec. 5.8), including orientation effects. We found that, unless the strand adheres to the
electrode, modest changes in capacitance should be expected. These simulations con-
firmed once more the potential advantage of high frequency operation, namely:

• the ability to overcome of the static screening and the independence of the response
on salt concentration;

• the very good theoretical predictability of the response, even in the presence of
non-idealities such as surface charges;

• the insensitivity to hardly controllable parameters such as free charges;

• the additivity of the response with respect to the number of particles, at least for a
small number of them;

• the identification of optimum detection frequencies and critical cut-off frequencies;

• a greater freedom to engineer the biosensor, in order to take advantage of the fact
that the region sensitive to the analyte is not limited to the sensor surface.

As a final remark, note that for one small biomolecule ∆C ≈ 1 zF, i.e., it is close to
the lowest detection limits experimentally demonstrated so far [92]. This observation
entails that it might be difficult but not impossible to reach single-molecule detection
with current or scaled versions of nanoelectrode arrays such as the one in [33].



Chapter 6

Nanowire pH-sensors and bio-sensors

Nanowire (NW) devices, in particular Silicon NWs (SiNW) are of great interest in both
nanoelectronics and nanotechnology. In the field of biosensors, the roughly 1D nature of
the NWs is beneficial to achieve short settling time, due to considerations on the geometry
of diffusion from the bulk electrolyte to the sensor device [106]. SiNWs operated in
subthreshold regime can also offer a high sensitivity, although at the expense of increased
noise [31]. Two main applications have recently emerged for SiNW sensors: Ion Sensitive
FET (ISFET) and BioFET.
Since their introduction in 1970 [27], ISFETs have found their major application as pH
sensors. The physical transduction mechanism is provided by the build up of the site-
binding charge (see Sec. 2.1.1.1). It is only recently that ISFETs have found broader
applications in the biosensor industry [19], but the implementation still relies on the pH
sensing.

Attempts have also been made to use SiNWs as biosensors, but the issue of static
Debye screening, already discussed in Chaps. 3-5, has so far prevented a major success of
these devices [107]. Silicon nanowire ISFETs have been recently studied, as for instance
in [31, 93, 34, 108].

In the previous chapters we have seen that the Debye screening limit is overcome when
operating the sensing element in the AC high frequency regime. In this chapter, we will
explore this concept for SiNWs considering both pH sensor and biosensor applications.

6.1 Nanowire pH sensors
This section presents the work on SiNWs for pH sensing developed in collaboration with
CEA/LETI laboratories in Grenoble (Dr. Thomas Ernst), which fabricated the SiNWs,
and CLSE/EPFL laboratory in Lausanne (Prof. Carlotta Guiducci), which developed
the microfluidic and the measurement protocols. The experimental setup and measure-
ment protocols we started with are described in [108]. Here we report for convenience
a few essential informations as well as the specific improvements made to perform AC
measurements.

Devices The SiNWs are fabricated from Silicon-on-Insulator (SOI) wafers. The wafers
feature a 200 nm top silicon layer on a 400 nm thick SiO2 insulating bulk oxide (BOX).
The silicon top layer is first thinned down by several steps of silicon thermal oxida-
tion/deoxidation to tSi = 50 nm, where the tSi corresponds to the nominal height of the
SiNWs. The NWs are patterned using deep ultraviolet (DUV) or e-beam lithography and
etched by reactive ion etching (RIE). The SiNWs body is covered by a high quality SiO2

197
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gate oxide grown by thermal dry oxidation while the rest of the chip is passivated by a
multilayered insulator.
The fabricated chip features 75 SiNWs with different widths and lengths and nominal
thickness of either 50 or 25 nm. Different chips with various doping and oxide thickness
are available. In this thesis we always used the devices denoted as p05 and p07, whose
characteristics are summarized in Tab. 6.1. Note that, because of the doping configura-
tion, the p05 devices work in accumulation and the p07 in inversion. These chips always
feature silicized contacts. Most of the work presented here will be done on 5B02 devices,
which have nominal length 500 nm and width 80 nm.

The SiNW chip is coupled with a microfluidic module that employs custom made
Ag/AgCl reference electrodes (REs) and allows subsequent injections of different solu-
tions into sub 5 µl microchannels. Ag/AgCl pseudo-RE were obtained starting from pure
silver by chemical anodization in chlorine ions solutions (e.g., KCl) or by plasma treat-
ments in chlorine chambers. In our setup, silver L-shaped tubes are anodized in 0.1 M
KCl solution, in order to obtain a 5 µm thick AgCl metal salt layer. These tubes are
inserted into a microfluidic chip, serving both as REs and as inlet/outlet of the system.
The microchannels are realized with a chemical resistant double-coated tape (3M 9086),
patterned by laser micromachining. The height of the channels is defined by the thickness
of the tape (190 µm). A Polymethyl methacrylate (PMMA) cap is placed on top to seal
the channels and the inlet and outlet tubes inserted. A sealing polymer is used to avoid
fluid leakages from the inlet/outlet. During measurements, the solutions are fluxed by
means of an external syringe pump (Harvard Apparatus). Particular care is needed to
avoid the formation of air bubbles. The SiNWs can be operated either by the solid-state
back gate and/or by the liquid fluid gate. Fig. 6.1 reports the chip photograph, together
with the microfluidics.

Differently from almost all previous studies (except [79, 109], to our knowledge) and
coherently with all the previous work shown in this thesis, we measure the SiNWs in

p05 - n+/n/n+ resistor p07 - pMOSFET
Source/Drain doping n-type, 1020 cm−3 p-type, 1020 cm−3

Channel doping n-type, 1016 cm−3 n-type, 1016 cm−3

Nanowire oxide thickness 3 nm 8.5 nm
Nanowire width 80÷ 150 nm 80÷ 150 nm
Nanowire length 500÷ 2375 nm 500÷ 2375 nm

Table 6.1: Parameters of the CEA/LETI SiNWs chips and devices used in this thesis.

  

B. Microfluidics  
Among the many different types of REs, Ag/AgCl electrodes 
have been the object of extensive research and development, 
especially in the frame of electrochemical applications [5, 6, 
8, 9]. 
Ag/AgCl pseudo-RE can be obtained starting from pure 
silver by chemical anodization in chlorine ions solutions 
(e.g., KCl) or by plasma treatments in chlorine chambers [9].   
In our setup, silver L-shaped tubes are anodized in 0.1 M 
KCl solution, in order to obtain a 5 µm thick AgCl metal salt 
layer. 
These tubes are inserted into a microfluidic chip, serving 
both as REs and as inlet/outlet of the system. 
The microchannels are realized with a chemical resistant 
double-coated tape (3M 9086), patterned by laser 
micromachining. The height of the channels is defined by the 
thickness of the tape (190 µm). A Poly(methyl methacrylate) 
(PMMA) cap is placed on top to seal the channels and the 
inlets and outlets tubes inserted. A sealing polymer is used to 
avoid fluid leakages from the inlets/outlets (Fig. 2). 
During measurements, the solutions are fluxed by means of 
an external syringe pump (Harvard Apparatus). 
The described microfluidic setup is a compact and effective 
solution that integrates Ag/AgCl REs, microfluidics and 
sensing nanodevices.  

C. Electrical setup 
The electrical measurements were performed by means of a 
semiconductor parameter analyzer (Agilent 4156C) used both 
in sweep and sampling mode. We polarized the SiNRs in 
saturation with constant gate and drain voltages. 

III. RESULTS 

According to the site binding model applied to ISFET 
devices [10-12], the surface of the gate oxide becomes 
negatively charged when in contact with electrolyte solutions 
characterized by pH values bigger than its isoelectric point 
(pI ≈ 2-3 in the case of SiO2). This phenomenon is due to the 
deprotonation of the silanol groups. A charged silica surface 
attracts a layer of counter-ions to maintain the overall charge 
neutrality, forming an Electrical Double Layer (EDL).  

The pH-induced surface potential change ∆Ψ0 is given by: 
  

                    (1) 
where K is the Boltzmann constant, T is the absolute 
temperature, e the elementary charge, α is the dimensionless 
sensitivity parameter given by α = (CDL/CB + 1)-1 with CB 
indicating the surface buffer capacitance determined by the 
density of active OH- groups on the gate oxide and CDL the 
double layer capacitance with 0 ≤ α ≤ 1. 
The ISFET sensitivity approaches the theoretical Nernst limit 
with α ≈ 1, i.e. when CB is much larger than CDL.  
Different pH solutions in contact with the gate oxide lead to 
different surface potentials and, as a consequence, difference 
conductance values at a fixed polarization.  
Fig. 3 shows the response of two different SiNRs to pH 
variation. The two devices were operated in parallel, first in 
front-gating and then in back-gating configuration. The drain 
currents IDS were measured in real-time while the solutions 
with different pH were injected into the microfluidics. 
As expected, IDS of an n-type SiNR decreases when the pH 
increases since a higher number of negative charges 
accumulate on the gate oxide surface. 
Fig. 3 shows an enhanced sensitivity to pH change when the 
two devices are operated in back-gating configuration. When 
front-gating is used, since both the polarization and 
interaction of the negative charges with the SiNR take place 
at the front-gate side, the change in surface potential leads to 
an equal shift in the threshold voltage of the device 
(ΔVth,FG = ∆Ψ0). When back-gating, instead, ∆Ψ0 should be 
related to the back-gate, through which we actively operate 
the device. As the back-gate capacitance is lower than the 
front-gate one – due to the thick BOX with respect to the 
high-quality thin front-gate oxide, the change in surface 
potential on the front-gate side translates effectively into a 
bigger back-gate threshold voltage shift (ΔVth,BG > ΔVth,FG). 
In a setup that polarizes the device with a constant IDS and 
monitors the fluctuations of VBG-S, ΔVth,BG corresponds to the 
back-gate voltage shift that compensates for the negative 
charges accumulated on the front-gate oxide surface. In this 
kind of configuration (IDS constant), back-gating leads to an 
enhanced sensitivity in terms of ΔVth / ΔpH. However, this 
enhanced response should not be observed when measuring 

 
 
Fig. 1. SEM images of a SiNR: (a) Top view, (b) Cross-section. When the 
width of the SiNR is comparable with the thickness, as in this case, we can 
call the structure a nanowire (NW). SEM pictures courtesy of CEA-LETI 
(Grenoble, France). 

 
 
Fig. 2. Exploded view of the microfluidic setup. From bottom to top we can 
see the NR chip, the double-coated tape defining three microchannels, the 
PMMA cap, the sealing polymer and the Ag/AgCl inlet and outlets tubes. 

Fig 6.1: Photograph of the silicon nanowire chip and of the microfluidics. The picture is
reproduced from [108].
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the AC domain. To this purpose we use an Agilent 4294A impedance analyzer, which
is connected to drain (high input) and source (low input). The back and fluid gate
are instead biased via a semiconductor parameter analyzer (Agilent 4156C). With this
configuration the measured admittance is then given by the measured AC source current
divided by the applied AC drain voltage Yexp = ĨS/ṼD. In order to achieve a reasonable
signal to noise ratio, if not otherwise specified, the magnitude of the AC voltage applied to
the high potential is 100 mV. Note that, although the instrument can reach measurement
frequency up to 100 MHz, in practice because of the off-chip parasitics the maximum
measurement frequency was limited in the range between 40 Hz and 1 MHz, since, as we
will see in the following, the response starts to be dominated by the parasitics already at
∼ 300 kHz. This bandwidth, however limited, is still much larger than that in [109] and
comparable to those in [75, 79].
The open and short compensations are always performed as suggested by the instrument
manual. In some measurements we also use a very large device to run an additional load
compensation; however, the only difference we could observe between the cases with and
without the load compensation occurs in the range where the response is dominated by
the parasites.

6.1.1 Measurements of pH ladders

As usual in the study of ISFETs for pH sensing, in this section we show experimental
pH ladders. We start with a solution of known pH and gradually increase (or decrease)
the pH value to reach the final value, while continuously running measurements, where
at each time step we acquire an entire AC admittance spectrum in the 40 Hz ÷ 1 MHz
frequency range.
The solutions are made of KCl dissolved in milliQ water, while the pH has been adjusted
by adding strong acid (HCl) or base (KOH). These solutions range from pH = 3 to pH =
8, with steps of one pH unit. The final pH value has been controlled with a commercial
pH meter. The target salt concentration for all solutions is 100 mM; however the addition
of acid or base do not guarantee a precisely constant salt concentration for all solutions.

We have also prepared solutions with a controlled target salt concentration of 0.15
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Fig 6.2: IDS(VFG) curves (in DC), before and after one pH ladder at 1 nA and one other at 100
nA on the 5A02 device (W = 80 nm, L = 500 nm) in chip number 20 of the p05 type (n+/n/n+

resistor), either in logarithmic or linear scale. VDS = 100 mV.
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mM ranging from pH = 5 to pH = 8, with steps of one pH unit. Since in this latter case
the solution is not buffered and has a very low salt content, it is very sensitive to changes
in pH due to the absorption of CO2 from the air, resulting in a not very well-controlled
pH.

6.1.1.1 n+/n/n+ resistor

The n-type devices used in this section (5A02 and 5B02) both belong to chip number
20 of the p05 type. They have equal nominal dimensions (width 80 nm, length 500 nm)
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Fig 6.3: pH ladder on the 5A02 device (W = 80 nm, L = 500 nm) in chip number 20 of the
p05 type (n+/n/n+ resistor) at a few bias points and frequencies. The injections go from pH 8
to pH 3 and then again up to pH 8.
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but are located in different parts of the chip. p05 devices have a thin gate oxide (3 nm).
We have performed IDS(VFG) measurements in DC before and after each pH ladder to
check the device stability and choose the bias points (above and below threshold). Since
all the pH ladders start from pH 8, this is the pH at which the IDS(VFG) curves are
measured. Therefore, throughout the whole section, IDS = x nA denotes a IDS(VFG)
curve measured at pH = 8 before the pH ladder at VDS = 100 mV. In a few cases the
admittance Y is reported not as magnitude and phase but as conductance and capacitance
(Yexp = Gexp + jωCexp). Measurements in this section were always made after short/open
and load compensation with the on-chip 5A00 calibration resistor of 55 kΩ.

Fig. 6.2 reports the IDS(VGS) curves in DC at VDS = 100 mVmeasured before and after
each pH ladder. The threshold voltage VT ≈ 1.2 V does not shift appreciably after the
measurements, meaning that the characteristics are fairly stable. Note that at IDS = 100
nA the bias point is slightly above threshold at the considered pH (i.e., pH = 8), but it
will result well above threshold for the other pH values, since the curves shift to the left
for decreasing pH.

Fig. 6.3 shows magnitude and phase of Yexp versus time while stepping the pH of
injected solutions from pH = 8 to pH = 3 and then back to pH = 8 in steps of one unit
of pH. The curves are shown for different DC current (1 nA and 100 nA) and frequency.
We immediately note a drift in the characteristics, especially at pH = 8, as also observed
previously in the literature [108, 110]. Consistently with Fig. 6.4, we also observe a higher
conductance sensitivity SG below threshold. Finally, we note that at low frequency (20
kHz) and above threshold the pH ladder is visible in the Yexp magnitude but not clearly in
its phase, while at high frequency and below threshold the opposite occurs. In contrast,
in the other regimes the pH ladder is visible when looking at both magnitude and phase.
As a general remark, all the pH ladders are fairly noisy, possibly because of RTN noise,
especially at threshold. Another possible source of variability and drift is the very thin
gate oxide, which can be easily penetrated by ions. Finally, also the reference electrodes
may contribute to the drift.
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Fig 6.4: AC admittance spectra on the 5A02 device (W = 80 nm, L = 500 nm) in chip number
20 of the p05 type (n+/n/n+ resistor) at different pHs.
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Fig 6.5: AC admittance spectra on the 5B02 device (W = 80 nm, L = 500 nm) in chip
number 20 of the p05 type (n+/n/n+ resistor) at different pHs and salt concentration. Load
compensation on the parasitic resistance and inductance.

Fig. 6.4 shows the Yexp spectra varying the pH. We immediately notice that, for fre-
quencies above ∼ 300 kHz, all the curves fall one on top of the other, which means that
the response is dominated by the parasitics. We also note that, as expected because this
is an n-type device and the site-binding charge becomes more negative increasing the pH,
the conductance Gexp = < (Yexp) at low frequency increases with pH. In addition, since
at IDS = 1 nA we are below threshold, the sensitivity in conductance SG = ∆Gexp/Gexp

for varying pH is larger than at IDS = 100 nA (above threshold). We finally see that the
phase of Yexp changes with the pH.

The cut-off frequency fc at 100 mM is ' 300 MHz (Chap. 3, Eq. 3.27), and thus
our measurement frequency range is too narrow to capture the effects due to the AC
de-screening. In an attempt to put in evidence AC descreening effects as those reported
in Chap. 5 for the nanoelectrode system, we therefore decided to use the solutions with
salt concentration 0.15 mM, and compare the results to the ones at 100 mM. Fig. 6.5
shows such a comparison for the spectra of Yexp and varying the pH. Now we observe a
clear effect of the salt concentration on the response in the range between 3 and 200 kHz.
This is likely due to a difference in the double layer capacitance at the oxide/electrolyte
interface. We will discuss this point in more detail in the following.
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6.1.1.2 pMOSFET

This section reports measurements similar to the previous ones, but on the 3dots chip of
p07 type (pMOSFET), always on the 5B02 device (width 80 nm, length 500 nm). These
devices are p-doped (as opposed to the n-doped p05 ones) in the source and drain regions
and the same (low) n doping in the nanowire. In addition, they have a thicker gate oxide
(8.5 nm), which is more resistant to contamination and salt penetration.

The pH ladders start from pH = 5 and reach pH = 8 and then goes back to pH = 5,
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Fig 6.6: pH ladder on the 5B02 device (W = 80 nm, L = 500 nm) in chip 3dots of the p07 type
(pMOSFET). The injections go from pH = 5 to pH = 8 and then again up to pH = 5 for the
case at IDS = 10 nA, and just from pH = 5 to pH = 8 at IDS = 100 nA. In all cases, at each
pH step the measurement is done first at the salt concentration 100 mM and then at 150 µM.
Load compensation on the parasitic resistance of the 5B00 large device.
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Fig 6.7: AC admittance spectra on the 5B02 device (W = 80 nm, L = 500 nm) in chip 3dots of
the p07 type (pMOSFET) at different pHs and salt concentration. Load compensation accounts
for both the parasitic resistance and inductance of the calibration resistor.

therefore the admittance first increases and then decreases with time, as in the previous
section. The first pH step is done at salt concentration 100 mM, then the 0.15 mM at
the same pH is injected, afterwards the following pH at 100 mM is used and so on. In
this way the static IDS(VFG) curves (always done at VDS = 100 mV) are measured at the
same pH = 5 and salt concentration 100 mM.
In the first measurements (Fig. 6.6) we have applied the load compensation with a 65 kΩ
calibration resistor (5B00 device). In all subsequent measurements we compensated for
both the resistance and the inductance of the calibration device. We concluded that the
inclusion of the inductance compensation does not change the admittance in the range
where the response is not dominated by the parasitics, i.e. below ≈ 300 MHz (not shown).

Fig. 6.6 shows the pH ladders measured alternating the solutions at 100 mM and 0.15
mM salt concentration, for two polarizations, one below (IDS = 10 nA) and one above
threshold (IDS = 100 nA). We immediately note the lower stability of the solutions at 150
µM, which is evident from the drift and the presence of peaks in the response. Regarding
the frequency and polarization dependencies, all the considerations that we made for Fig.
6.3 still hold.

Fig. 6.7 shows similar measurement, where the load compensation is active both on
the parasitic resistance and inductance. We immediately note that, regardless of the
different oxide thickness with respect to p05 devices, the results are qualitatively similar
to the ones in Fig. 6.5. In particular we see that at 100 mM and before the onset of
parasitics the admittance exhibit only one zero, while at 0.15 mM the first zero is shifted
to lower frequency and there is an additional pole at higher frequency. Once again, the
salt concentration has an impact on the response in the range between ∼ 3 and 300 kHz.

Fig. 6.8 shows the corresponding pH ladders, with pH range between 5 and 8 and using
only the solutions with salt concentration 100 mM. Once again, regarding the frequency
and polarization dependencies, all considerations in the previous section still hold. In
particular, a drift in the characteristics is present, which depends on pH. In addition, at
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Fig 6.8: pH ladder on the 5B02 device (W = 80 nm, L = 500 nm) in chip 3dots of the p07 type
(pMOSFET). The injections go from pH = 5 to pH = 8 and then again up to pH = 5. Solutions
at salt concentration 100 mM. Load compensation on the parasitic resistance and inductance.

low frequency (20 kHz) and at higher DC current the pH ladder is visible in the Yexp
magnitude but not clearly in its phase, while at high frequency and low DC current the
opposite occurs. In contrast, in the other regimes the pH ladder is visible when looking
at both magnitude and phase.
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6.1.2 Experimental admittance spectra versus salt concentration

Figs. 6.5-6.7 unambiguously show a remarkable sensitivity of the admittance to salt
concentration in the intermediate range between ∼ 3 and 300 kHz. We therefore want
to analyze this aspect in more detail, disregarding for the moment the pH dependencies.
In fact, provided that the H+ (or OH−) concentrations are much smaller than the salt
concentration, changing the pH only causes a threshold shift, as evident from the previous
results (Figs. 6.5-6.7) and coherently with the literature [27].

In this section we then show additional measurements on p05 and p07 chips varying
the salt concentration. To this purpose, we prepared 5 solutions of KCl in MilliQ water
with concentrations from 100 µM to 1 M. The measured pHs are reported in Tab. 6.2,
with a measurement error of ±0.1 pH. Note that these pHs, as well as those reported
in previous sections, deviate from the theoretical value of pH = 7 due to the absorption
of CO2 from the air, which is then transformed into a weak acid in solution (H2CO3).
However we verified that during our measurements they did not vary from the values in
Tab. 6.2 of more than 0.1 pH.

KCl concentration pH
100 µM 6
1 mM 5.9
10 mM 5.85
100 mM 5.75
1 M 5.65

Table 6.2: pHs of the KCl solutions.

6.1.2.1 pMOSFET

We reconsider the 3dots chip of p07 type (pMOSFET) and the 5B02 device (width 80
nm, length 500 nm). In the following, we skip the load compensation, since it does not
affect the results in the frequency range of interest.
Fig. 6.9 shows the admittance spectra for a few salt concentration, polarization and os-
cillator level VAC (i.e., the AC potential applied at the high electrode). As expected,
changing the oscillator level from 10 mV to 100 mV does not appreciably change the
response, but it lowers down considerably the noise. In addition in graphs (b) and (c),
we now clearly see the effect of salt concentration on the admittance in the intermediate
frequency range.
Fig. 6.10 shows the IDS(VGS) curves measured before and after the acquisition of the
AC spectra. We see that the AC measurements do not introduce perturbation in the DC
curves, thus providing reassuring indications on the meaningfulness of the data. Moreover,
we observe a shift of the curves of about 50 mV per salt concentration decade, likely due
to a concentration dependent offset of the reference electrode voltage. The 100 µM and
1 mM solutions provide similar results, possibly due either to the contamination between
different solutions or to the presence of relatively large quantities of H2CO3.

6.1.2.2 n+/n/n+ resistor

We have repeated the measurements of previous section also on the number 20 chip of p05
type (n+/n/n+ resistor) and the 5B02 device (width 80 nm, length 500 nm), featuring
a much thinner oxide. At first we have used the usual 5B02 device, and then we have
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Fig 6.9: AC admittance spectra on the 5B02 device (W = 80 nm, L = 500 nm) in chip
3dots of the p07 type (pMOSFET) varying salt concentration and AC oscillator level. No load
compensation, bandwith 5.

changed the length and width of the device by measuring two 4A devices (4A07: width
80 nm, 4A10: width 150 nm), all with length 2375 nm, see Tab. 6.3. These measurements
are done with a simple open/short compensation and an AC oscillator level of 100 mV,
unless otherwise specified.

Fig. 6.11 (a) and (c) shows similar results to Fig. 6.9 (b) and (c), confirms that doping,
working regime (accumulation or inversion) and oxide thickness do not have a strong
impact on the shape of the AC response spectra. Here we also show the admittance Yexp
as Yexp = Gexp + jωCexp, that is, using a parallel conductor/capacitor model. These plots
reveal that the difference between the admittance spectra in the intermediate frequency

5A02 and 5B02 4A07 4A10
Nanowire width W 80 nm 80 nm 150 nm
Nanowire length L 500 nm 2375 nm 2375 nm

Table 6.3: Measured devices on the CEA/LETI SiNWs chips used in this thesis.
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Fig 6.10: IDS(VFG) curves on the 5B02 device (W = 80 nm, L = 500 nm) in chip 3dots of the
p07 type (pMOSFET) varying salt concentration. VDS = 100 mV.

range is mainly due to a decrease of the capacitance with salt concentration.
This behaviour is totally unexpected, since the theoretical models for the double layer
capacitance (see Sec. 3.1.1.2) predict an increase with salt concentration. The IDS(VGS)
curves measured before and after the AC characterization (Fig. 6.12) reveal the same
behaviour as for the p07 chip. Namely, we observe a shift of the curves of about 50
mV per salt concentration decade, likely due to a concentration dependent offset of the
reference electrode voltage.

We then performed similar measurements, but changing the device, in order to test
the effect of the nanowire length and width. Fig. 6.13 reports the admittance spectra for
the 4A07 and 4A10 devices (see Tab. 6.3) varying the salt concentration and bias. These
devices are affected by the salt concentration in the same way as the 5B02 one, as evident
also from the IDS(VGS) curves (Fig. 6.14). The qualitative trends agree with the ones for
the 5B02 device, but some quantitative differences are visible.
This point is worth being investigated in detail, however for time constraints it is left for
future work.
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Fig 6.11: AC admittance spectra on the 5B02 device (W = 80 nm, L = 500 nm) in chip
number 20 of the p05 type (n+/n/n+ resistor) versus frequency, salt concentration and bias.
The admittance is presented as magnitude and phase (left plots) or conductance and capacitance
(right plots). Simple open/short compensations, VAC = 100 mV.
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Fig 6.12: IDS(VFG) curves on the 5B02 device (W = 80 nm, L = 500 nm) in chip number 20
of the p05 type (n+/n/n+ resistor) varying salt concentration. VDS = 100 mV.
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Fig 6.13: AC admittance spectra on the 4A devices (W = 80 or 150 nm, L = 2375 nm) in chip
number 20 of the p05 type (n+/n/n+ resistor) for different salt concentration, bias and device
width. Simple short/open compensation.
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Fig 6.14: IDS(VFG) curves on the 4A devices (W = 80 or 150 nm, L = 2375 nm) in chip
number 20 of the p05 type (n+/n/n+ resistor) varying salt concentration. VDS = 100 mV.
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6.2 Comparison with simulations

In order to interpret the experimental findings, we compare the measurements with sim-
ulations performed with ENBIOS. To this purpose, nanowires with the same geometry
as the experimental samples have been simulated to derive the behaviour of the intrinsic
device. Unfortunately, real devices are affected by large parasitics, which dominate the
measured response starting from a low frequency (≈ 300 kHz), often much smaller than
the electrolyte cut-off frequency fc (see Sec. 3.1.1.3).

As a first step for the identification of a model for the parasitics, in Sec. 6.2.1 we
derive and verify on simulations a lumped element circuit of the “intrinsic” NW (i.e., the
NW without the effect of parasitics) and whose elements are physically based. Then, in
Sec. 6.2.2 we derive a circuit model for the parasitics and use it in combination with the
intrinsic NW equivalent circuit to compare simulations and measurements.

6.2.1 Lumped element circuit for nanowire in electrolyte

In order to determine the most appropriate circuit topology for a physically based lumped
element model of the nanowire in electrolyte environment, we initially simulated with
ENBIOS the intrinsic part of nanowires with the same geometry as the experimental
samples (see Tab. 6.3). Remind that we defined the source admittance as Yexp = ĨS/ṼD,
where ĨS is the AC current measured at the source and ṼD the AC drain voltage (while
all other terminals are grounded). We retain the same definition also in simulations, and
consistently calculate a simulated Ysim. Note that, using this definition, Ysim and Yexp are
not admittances of two-terminal devices (although they have measure units of Siemens),
since the NW device is not a bipole but has a fluid gate and a back gate terminal as well.
In the following we will critically analyse this point in more detail.
Fig. 6.15 shows the simulated admittance spectra of 5B02 n+/n/n+ devices with the
parameters in Tab. 6.4 in KCl electrolyte. The Ysim = G + jωC is represented by the
parallel RC model. The polarizations correspond to different points on the ID(VFG)
curves at VDS = 100 mV. We immediately note the presence of a cut-off frequency at
approximately 1, 10 and 100 MHz which depends on the salt concentration and coincides
with the usual electrolyte’s dielectric relaxation cut-off frequency fc. As expected, at
constant current the oxide thickness has a modest effect only above threshold (graph c).

In order to understand how the different parts of the system affect the response, we
search for a lumped element circuit model of the device in the AC small signal regime.
We tested a few circuits and the simplest topology we could find that reproduces the
real and imaginary parts of Ysim over a wide frequency range is the one of Fig. 6.16,
where we joined together the terminals for the back and the fluid gate, since they are

Parameter Symbol Value Units Ref.
Nanowire length LNW 500 [nm]
Nanowire width WNW 80 [nm]
Nanowire height hNW 30 [nm]
Nanowire oxide thickness tox 3 and 8.5 [nm]
Contacts height hSD 60 [nm]
Temperature T 298.16 [K]
n doping n 1022 [m−3]
n+ doping n+ 1025 [m−3]

Table 6.4: Parameters used in the simulations (unless otherwise stated).
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both AC grounded. Here R1 aims to represents the wire resistance, C2 the series of the
oxide and EDL capacitance, C3 and R3 the bulk electrolyte and the substrate capacitance
and resistance and C4 a source to drain capacitive coupling via the electrolyte and the
substrate. This physical interpretation will be critically re-examined later in more detail.
We emphasize that this model was not only derived from physical considerations, but
mostly because it was the simplest we could find that could reproduce the surprising
decrease of the capacitance for increasing salt concentration observed in previous section.
From the model in Fig. 6.16 we immediately note that the NW can be represented as a
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Fig 6.15: Nanowire source admittance spectra at different bias points, corresponding to de-
pletion and accumulation on the ID(VFG) curves at VDS = 100 mV. Note the steady increase
of conductance for increasing current. The dips in the capacitance correspond to sign changes.
Here and in the following n0 is the salt concentration in the bulk of the electrolyte.
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2-port with admittance matrix:

Y =

[
YDD YDS
YDS YSS

]
(6.1)

where the currents at the drain and source contacts are:[
ĨD
ĨS

]
= Y

[
ṼD
ṼS

]
(6.2)

With this definition it is immediate to see that Ysim = ĨS/ṼD = YDS, since we always
keep ṼS = 0.
It is natural at this point to evaluate how well can the model of Fig. 6.16 (which we
call 2R3C model) fit to the simulation data for the intrinsic device. Fig. 6.17 shows the
comparison between simulations and the model. All parameters, except for R1, which is
directly extracted from the low frequency conductance, are simultaneously fitted using a
least-square optimizer. The relative deviations:

εR =
<{Ysim − Yfit}
< {Ysim}

, εI =
={Ysim − Yfit}
= {Ysim}

(6.3)

Fig 6.16: Nanowire system equivalent circuit 2R3C.
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Fig 6.17: Nanowire source admittance spectra and corresponding fit to the 2R3C model at
different polarizations, corresponding to different points on the ID(VFG) curves at VDS = 100
mV. tox = 3 nm.



216 6.2. COMPARISON WITH SIMULATIONS

obtained by this unconstrained fit are chosen as error functions in order to well reproduce
not only the magnitude of Y but the real and imaginary parts separately. The circuit
elements are reported in Fig. 6.18 for the devices with tox = 3 nm (left plots) and 8.5 nm
(right plots). We immediately recognize that G3 is directly proportional to salt concen-
tration in all cases (top plots), suggesting the idea that it represents the bulk electrolyte
conductivity, as originally thought. All the other elements do not depend on n0 and this is
surprising in view of the fact that C2 should include the effect of the concentration depen-
dent EDL capacitance. Furthermore, looking at the dependence on the DC bias (bottom
plots), expressed as a function of the DC resistance R1, we note that all the capacitive
elements have non-trivial and not easy to interpret dependences. Since the blind fitting
procedure does not seem to yield physically based results for the capacitances, in the next
section we then devise a different procedure to identify the physical origin of these circuit
elements and to extract physically based values.

6.2.1.1 Extraction of circuit elements

To attribute a physical meaning to the circuit elements and extract physically meaningful
values, we use a two-step procedure. The idea behind it is that, since the real part is
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Fig 6.18: Circuit elements of the 2R3C model derived by unconstrained fitting the simulated
admittance spectra.
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so much larger than the imaginary part over most of the frequency spectrum (see, e.g.,
Fig. 6.17) a global fitting procedure will be inaccurate in extracting the tiny capacitances
responsible for the appearance of the small imaginary part of Ysim. The procedure has
the following steps:

1. we fix the resistance R1 to the value of the nanowire resistance at very low frequency;

2. we derive all the lumped circuit elements from the simulated NW admittance spec-
trum, as in the previous section;

3. we then assume, consistently with previous results (Fig. 6.18), that G3 represents
the bulk electrolyte conductance, and therefore it should not depend on the bias.
Accordingly, we fix G3 to the value obtained from the previous fitting at a particular
DC bias, which is chosen in subthreshold since the large NW resistance make the
result very sensitive to the electrolyte;

4. we fix C3 =
G3

ξ
, where ξ is the electrolyte’s dielectric relaxation cut-off frequency;
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Fig 6.19: Nanowire source admittance spectra and corresponding fit to the 2R3C model (second
fit only on C2 and C4) at different oxide thickness and polarizations, corresponding to different
points on the ID(VFG) curves at VDS = 100 mV.
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5. we re-fit C2 and C4 of the 2R3C model, using as initial guess the values derived
from the previous fitting.

This new extraction procedure yields an excellent agreement between the 2R3C model and
numerical simulations, essentially indistinguishable from the previous one (compare Figs.
6.17 and 6.19). In particular, the model nicely reproduces the existence of a frequency
interval where the imaginary part decreases for increasing salt concentration, definitely an
unusual effect. Also, the sign changes and the frequency of the zero are nicely reproduced.
Figs. 6.20 - 6.21 show the lumped element values versus concentration n0 and drain cur-
rent. We see that by imposing a bias and concentration independent C3 (as it is expected
to be based on the physical consideration that it should represent the bulk electrolyte
and substrate capacitances) we obtain that also C4 is essentially bias independent. The
following physical interpretation appears then natural:

• R1: nanowire resistance;

• C2: series of accumulation, oxide and double-layer capacitances;

• G3 and C3: bulk electrolyte conductance and capacitance;

• C4: capacitance between source and drain.

In particular, if we concentrate on C2 (see Fig. 6.21), we immediately recognize the typical
bias dependence of accumulation and oxide capacitances in series of MOSFET devices.
The concentration dependence of the EDL capacitance is visible only at large DC bias.
Indeed, we estimated the oxide capacitance with a simple 1D approximation, i.e. con-
sidering the three edges of the nanowires as if they were planar surfaces with no fringing
effects. This estimation gives Cox = 1.15 fF for tox = 3 nm and Cox = 0.41 fF for tox = 8.5
nm, which is reasonable if we look at the asymptotic values of C2 for increasing VFG.
In addition to the MOSFET accumulation capacitance we observe an effect of the salt
concentration at high DC bias, where the double layer capacitance CDL (assumed real
and frequency independent since its anomalous frequency behaviour is not relevant in
this case) is not any longer so much larger than the series of the oxide and accumulation
capacitances and can be estimated in the same way as for Cox, but using as thickness the
Debye length λD. This estimation gives CDL = 6.9 fF at 1 mM and CDL = 69 fF at 100
mM, thus supporting our hypothesis.

6.2.2 Parasitics and simulation comparisons

Having derived a physically based circuit model for the intrinsic nanowire in electrolyte
environment which reproduces accurately the simulations, we can now move to the com-
parison with experimental results. As discussed in Sec. 6.1, the available nanowires have
very large parasitics, which result in a cut-off frequency of about 300 kHz, which is very
low compared to fc at 1 - 100 mM. In order to compare simulations to measurements, we
then need to include the parasitics in the model.
Fig. 6.22 shows the chosen topology for the network of external parasitic elements, where
the inner rectangle (W) denotes the intrinsic NW, which we will represent with the equiv-
alent circuit of Fig. 6.16. In the fitting procedure used to extract the parasitic lumped ele-
ment values we decided to freeze the intrinsic NW circuit elements to the values extracted
with the two-steps procedure above (except for R1 which is adjusted to the measured DC
conductance value); thus, we fit only the parasitics. We already derived the value of the
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parasitic series resistance RS in Sec. 6.1 from the measurements of the very large 5B00
devices and they are:
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Fig 6.20: Circuit elements of the 2R3C model derived by the constrained, two-steps fitting of
the simulated admittance spectra. Note the constant C3 (by construction) and C4.
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• RS ' 55 kΩ in p05 chips (n+/n/n+ resistors);

• RS ' 65 kΩ in p07 chips (pMOSFETs).

Fig 6.22: Equivalent circuit of the nanowire system with parasitics.
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Fig 6.23: Parasitic elements of the circuit model of Fig. 6.22, using for W the 2R3C circuit
(Fig. 6.16a) with parameters extracted from numerical simulations via the constrained two-steps
fitting procedure. (a): n+/n/n+ resistors in p05 chips; (b): pMOSFETs in p07 chips.
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For the sake of a rapid analysis of many devices, and despite the different doping species
in p05 and p07 chips, we used the same simulated data of n+/n/n+ resistors for both
resistor and pMOSFET analysis. This choice is justified noting that all admittance spectra
are measured at fixed points on the ID(VFG) curves, that is either in subthreshold or
immediately above threshold. In these conditions, the admittance spectra are influenced
by the doping only via the slightly different mobilities between electrons and holes. The
fitting was based only on the data points that lie above the noise level (see for instance
Fig. 6.24), which is around 10−8 S.

Fig. 6.23 shows the measured admittance spectra and the fits with the circuit model
of Fig. 6.22. The fitting is satisfactory in almost all cases, especially in view of the fact
that the parameters of the intrinsic NW are taken directly from the simulations and from
the DC conductance value.
Fig. 6.24 reports the extracted values of the parasitics as a function of salt concentration.
It is difficult to identify clear trends in the elements’ dependency on salt concentration
and on DC bias.

These considerations support our statement that the measured admittance in our
setup is dominated by the on-chip parasitics (the off-chip ones are in principle calibrated
out by the initial instrument calibration procedure). In order to confirm this finding, we
performed similar measurements as before on devices with very narrow nominal width
and negligible current at any DC bias. Using SEM measurements on similar chips we
verified that the nanowires were indeed not present in these chips, probably due to a non
well-controlled etching process.
Fig. 6.25 shows the admittance spectra of these “absent” devices in p05 and p07 chips
at various DC bias and salt concentration. We see no clear dependence on VFG of any
parasitic element. We also immediately recognize that the only qualitative difference
between the curves in Fig. 6.24 and the ones of Fig. 6.25 is in the conductance at low
frequency. This statement is confirmed from the data of Fig. 6.26, where the measurements
on nanowires are directly compared to the measurements in absence of devices. These
observations lead us to conclude that these devices’s response are unfortunately too much
dominated by parasitics to be able to observe the intrinsic NW behaviour predicted by
simulations in any parameter except the DC conductance. A similar conclusion regarding
the importance of parasitics is reported for instance in [78]. This stress out once more
the importance of having integrated platforms like [33], to be able to reduce the effect of
parasitics and to do on-chip calibrations.

In all these measurements, however, we have noted that the capacitance in the inter-
mediate frequency range has a dependence on salt concentration which is opposite to our
expectations based on the physical models of Chap. 2. To elucidate this point, we have
performed additional measurements with an improved setup featuring a lock-in amplifier.
The discussion and validation of this setup is still ongoing, but we show some preliminary
result here.
Fig. 6.27 shows the admittance measured with the new setup between the source and
fluid gate terminals, keeping the drain and the back gate floating. We immediately see
that, in this case the capacitance increases with salt concentration, as expected from the
theory and oppositely to all other measurements in this section. This observation leads
us to conclude that the anomalous frequency behaviour may be due to the combination
of two effects:

1. the source admittance that we measured is not a real admittance, but an element
of the 2-port admittance matrix of the system;
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Fig 6.24: Comparison between the measurements on p05 (left) and p07 (right) devices and the
model of Fig. 6.22 fitted to the data at fixed polarization and varying the salt concentration.
The intrinsic nanowire W is modelled with the 2R3C circuit of Fig. 6.16, with the parameters
taken directly from the simulations.

2. also in simulations (for instance Fig. 6.17) there are intermediate frequency ranges
where the capacitance changes and is apparently decreasing with salt concentra-
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Fig 6.25: Measurements with no nanowires in p05 and p07 chips, showing that the admittance
does not depend on the DC bias. This supports the statement that in this case the devices are
absent.
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Fig 6.26: Comparison between measurements on nanowires (at IDS = 10 nA) and measurements
in absence of nanowires. We immediately see that the parasitics are dominating the response,
with the only exception of the DC resistance.

tion; since in the measurement we could only look at a very small portion of the
spectrum, we may as well be in an intermediate frequency range. Note also that
the fact that the lower cut-off frequency in the simulations is much larger than in
the measurements is coherent with this view, since this frequency is very sensitive
to the exact geometry. Since in simulations we only include the intrinsic nanowire,
the parasitics present in the real system not surprisingly can provide lower cut-off
frequencies.



224 6.2. COMPARISON WITH SIMULATIONS

102 103 104 105C
on

du
ct

an
ce

 |G
| [

S]

10-9
10-8
10-7
10-6
10-5

Frequency [Hz]
102 103 104 105C

ap
ac

ita
nc

e 
|C

| [
pF

]

10-1

100

101

102

1 mM
10 mM
100 mM

(a) p05

102 103 104 105C
on

du
ct

an
ce

 |G
| [

S]

10-9
10-8
10-7
10-6
10-5

Frequency [Hz]
102 103 104 105C

ap
ac

ita
nc

e 
|C

| [
pF

]

10-1

100

101

102

1 mM
10 mM
100 mM

(b) p07

Fig 6.27: Measurements of the admittance between fluid gate and source with drain and back
gate floating on 5B02 nanowires. The measurement setup is different from the other measure-
ments of this section and features a lock-in amplifier. Note the capacitance increase for increasing
salt concentration.
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6.3 Nanowire biosensors

Nanowire Bio-FETs (NWs) have been investigated recently (e.g. for DNA and proteins
detection [111, 112, 113]) because of the expected enhanced sensitivity, also due to the
geometry of the diffusion process [31, 114].
As mentioned several times in this thesis, Bio-FETs that detect changes of the DC conduc-
tance, G, threshold voltage, VT , or drain current, ID, induced by the biomolecule charge
suffer severe limitations due to static screening beyond the Debye length λD (∼1nm at
physiological salt concentration ≈100 mM, see Fig. 3.3) [107]. The analytical and nu-
merical models developed in Chaps. 3-4 and the experiments in [79, 77] suggest that AC
operation may lead to overcome this limit, to improve the sensitivity and the measure-
ment stability, thus disclosing a wide range of industry-relevant applications.
While low frequency AC impedimetric sensors are well established in electrochemical mea-
surements [76, 75], few authors addressed NW Bio-FET AC operation [79, 109]. Specif-
ically, models are missing to explore working frequencies up to or above the electrolyte
dielectric-relaxation cut-off frequency, fc = σel/2πεel ≈ 300 MHz@100mM, which is feasi-
ble in integrated CMOS technology.
In this section, we investigate theoretically the AC small signal operation of nanowire sen-
sors up to frequency above fc by means of full three-dimensional simulations of NW Bio-
FETs in electrolyte environment with ENBIOS. The analysis aims at serving as physically
sound and transparent foundation for the development of compact models of nanowires
in electrolyte environment.

6.3.1 Models and devices

We study n+nn+ and p+pp+ SOI NWs (Fig. 5.20) with the default parameters given
in Tab. 6.5, unless otherwise specified. Compared to the CEA/LETI devices, here we
consider NWs with thicker gate oxide (20 nm), as necessary in practice to eliminate
spurious gate leakage and ion contamination. We assume a KCl electrolyte, but qualitative
results are independent of the buffer. A compact Self Assembled Monolayer (SAM), either

Parameter Symbol Value Units Ref.
Nanowire length L 500 [nm]
Nanowire width W 60 [nm]
Nanowire height h 60 [nm]
Oxide thicknesses tox, tbox 20, 400 [nm]
SAM thickness tSAM 2.5 [nm]
Contacts height hSD 60 [nm]
Temperature T 298.16 [K]
n and p dopings n, p 1022 [m−3]
n+ and p+ dopings n+, p+ 1025 [m−3]
Mobility of K+ µ1 4.755 · 1011 [m/Ns] [52]
Mobility of Cl− µ2 5.052 · 1011 [m/Ns] [52]
SAM permittivity εp 2.5ε0 [F/m] [97]
Biomolecule radius rp 10 [nm] [88]
Biomolecule permittivity εp 2.6ε0 [F/m] [97]

Table 6.5: Parameters used in the simulations. The nanowire dimensions are those of the
reference device.
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directly bound to the gate dielectric or to a 20 nm thin intermediate gold layer (not
shown in Fig. 6.28) is assumed to functionalize the NW [99]. The SAM is treated as an
ideal interface-charge-free dielectric [99] capable of suppressing the surface pH sensitivity,
consistently with [110]. As shown also in [103], it is possible to build very compact SAM,
therefore confirming our choice to model it as an ideal uniform layer. Biomolecules are
modelled as dielectric spheres [97, 88], with rp = 10 nm (i.e., a big protein, [88] and
an optional surface charge of ±5 mC/m2, as expected from the data in [88]; qualitatively
similar results were obtained for different particle radius, charge and shape. A more precise
and quantitative estimation of a particular biomolecule’s surface charge would necessarily
need reliable experimental data or sophisticated Monte-Carlo measurements as in [98].
We also do not consider the noise and fluctuations associated with the binding/unbinding
of the biomolecules on the surface, which has been extensively described in [115]. We
consider n∞ = 1 mM and 100 mM bulk ion concentration, and three particle elevations
above the SAM at each salt concentration: dz ' 2λD, dz ' λD/4, and dz = 0 nm (see
sketch in Fig. 6.28), where λD is taken at the corresponding n∞ value.

6.3.2 Numerical simulations of nanowires

In this section a large number of nanowire simulations is presented. On the one hand we
aim at understanding the response of the nanowire to AC signals and biomolecules; on
the other hand those simulations constitute a database for the development of physically
based equivalent circuit models, as shown in Sec. 6.2.
Fig. 6.29 (right) reports the nanowire IDS(VFG) curves in wet environment. As we have
seen also in this chapter, a site-binding charge at the dielectric/electrolyte interface (SBC)
gives a rigid pH dependent threshold shift in absence of biomolecules. In presence of
biomolecules however, as shown in Fig. 6.30, the SBC reduces, sometimes remarkably,
the nanowire sensitivity to charged biomolecules, and increases the response to neutral
biomolecules. We note however that the response to neutral biomolecules in presence
of SBC is qualitatively similar (although numerically lower) to the response to charged
biomolecules in absence of SBC. For this reason and in the spirit of a worst case appraisal
of possible advantages of AC operation the SBC is not included in the following calcu-

Fig 6.28: 3D and 2D views of the simulated nanowire biosensor with indication of the considered
biomolecule positions w.r.t. λD. The electrolyte is biased at VFG by an ideal Faradaic reference
electrode. The AC voltage ṼD is applied at the drain with all other terminals grounded. If
explicitly mentioned, a 20 nm thick gold layer (not shown) is deposited above the dielectric to
facilitate adhesion of the SAM.
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geometry (left) and charge models (right). VDS=50 mV. Note the rigid shift of the curves for
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Fig 6.30: Change in source trans-admittance ∆Y = ∆ĨS/ṼD due to the introduction of one
neutral (blue), positive (red) and negative (green) particle at dz = 0 centred on the reference
nanowire, either including or neglecting SB charges. The bias point is in the subthreshold regime.
Note that the SBC decreases the sensitivity to charged biomolecules, but increases it for neutral
ones.

lations. This approach is also consistent with [110] if the SAM surface has suppressed
sensitivity to pH and the nanowire operates at the isoelectric point. Since gold layers are
sometimes used to favour adhesion of the SAM to the sample, the presence of a thin Au
layer is also considered in some calculations.
Fig. 6.29, left shows that the current-voltage curves of a few devices with different geome-
try calculated by ENBIOS scale as expected withW and L until the onset of short channel
effects. The graph demonstrates ENBIOS ability to trace the whole I − V characteristic
from subthreshold to inversion/accumulation regimes. In the following we examine either
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Fig 6.32: Source admittance Y = ĨS/ṼD, varying the geometry, salt concentration and doping
type in depletion (VFG=0 V). Note the capacitive behaviour in AC for f > fc. fc ≈ 3.5 MHz@1
mM; fc ≈ 350 MHz @100mM (dashed vertical lines).

two fixed bias points, representative of depletion and accumulation conditions in long
devices (|VFG| = 0 V and 2 V, respectively), or two points at a fixed distance from the
threshold voltage VT , defined as the voltage for IDS = 100 nA on the I −V characteristic
(VFG = 0.19 V at VT − 200 mV and VFG = 0.89 V at VT + 500 mV in the cases shown
here).

Fig. 6.31 reports the change in DC conductivity due to the presence of one particle,
at the center of the channel ∆G, vs. normalized particle distance from the SAM, dz/λD,
and clearly illustrates the main issue with DC detection techniques; namely: the rapid
drop of |∆G| for increasing dz and n∞.

Figs. 6.32-6.33 show the calculated nanowire source trans-admittance spectra Y (f) =
ĨS/ṼD. As expected, in the absence of SBC the only difference between n− and p−type
NWs is the value of the DC conductance G, that scales according to the asymmetric carrier
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Fig 6.33: As in Fig. 6.32 for the reference nanowire varying doping, salt concentration and DC
bias.

mobility. The channel conductance is small for VFG < VT and the electrolyte capacitance
dominates Y (f) for f > fc, as clearly visible from the increase of |Y | with frequency
and the phase approaching π/2. We also note that, similarly to the frequency fs in Sec.
3.1.1.3, a first cut-off frequency f1 < fc exists, which also depends on salt concentration
and gives a sudden increase in the Y phase. On the contrary, G is large above threshold,
yielding an essentially constant Y (f) regardless of n∞.
Fig. 6.34 shows also the admittances YBG = ĨBG/ṼD and YFG = ĨFG/ṼD calculated at
the back and fluid gates respectively. We note that, as expected, above threshold |Y | �
[YBG, YFG], that, is the current flows almost exclusively in the nanowire. On the other
hand, below threshold the current flows appreciably (in some cases even predominantly)
towards the gates.

To explore the potential of high frequency operation, we examine the change in source
trans-admittance ∆Y due to the introduction of one biomolecule at 1 kHz, representa-
tive of existing impedimetric sensing techniques, at 1MHz and at 1 GHz, respectively
comparable and higher than fc. Above fc the ions do not respond to the AC signal and
consequently become ineffective in screening the analyte. Fig. 6.35 reports ∆Y for one
biomolecule attached to the SAM. ∆Y for charged biomolecules is never smaller than for
neutral ones; at high frequency in depletion |∆Y | tends to be insensitive to the charge
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Fig 6.34: Source Y = ĨS/ṼD, back gate YBG = ĨBG/ṼD and fluid gate YFG = ĨFG/ṼD
admittances, where ṼD is the drain small-signal voltage, for different dopings, salt concentrations
and DC biases. VFG = 0 V < VT and VFG = 2 V > VT .

sign while the phase is opposite. This result is consistent with those reported for charge
biomolecules and DNA strands in Secs. 5.6-5.8 and suggests the potential of AC operation
to provide less drift and more stable response than DC techniques, essentially because of
the reduced surface AC field. Therefore, in the following we focus on n-type NWs and
on positive charges only. The same data of Fig. 6.35 are shown in Fig. 6.36 in terms of
admittance Y = G+ jωC. We see that the change in capacitance ∆C at high frequency
is constant, independent of the biomolecule charge and very weakly dependent on the DC
bias.

Fig. 6.37 shows ∆G (top) and ∆C (bottom) in depletion versus dz/λD and n∞ for
neutral (left) and charged (right) particles. As dz increases above λD, the particle exits
the static surface electrical double layer (see sketch in Fig. 5.20), whose thickness ≈ λD
is set by n∞ (λD ' 1 nm at 100 mM and ' 10 nm at 1 mM). Consequently, at 1 kHz
the signal decays rapidly for increasing dz, similarly to the DC case (Fig. 6.31), whereas
at high frequency ∆G and ∆C are almost unaffected by dz and n∞, which means that
the NW can detect analytes beyond the Debye screening limit. Fig. 6.38 reports similar
results at VFG=2 V. ∆G is now large and independent of f but still rapidly decaying with
dz; in contrast, ∆C at high frequency is independent of dz and n∞ for both charged and
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Fig 6.35: Change in source admittance ∆Y due to the introduction of one neutral (blue),
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mM salt concentration. The absence of site-binding charge results in symmetric response to
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Fig 6.36: Same as Fig. 6.35 but representing the admittance change as ∆Y = ∆G+ jω∆C.

neutral particles.
Note that again ∆C ≈ 1 zF, i.e., it is close to the lowest detection limits experimentally

demonstrated so far [92]. Therefore it appears that single biomolecule detection is hardly
reachable with this type of device design. Fig. 6.39 shows that, consistently with the DC
results of [31], in the examined NWs the AC response to the introduction of k biomolecules
∆Y = ∆Gk+jω∆Ck scales linearly with k for small k values, regardless of frequency, bias
and n∞. Consequently, our one-particle results are also representative of more realistic
conditions where a large number of biomolecules is captured for a measurable response.

For practical sensor design, not only the absolute but also the relative response is
important, since it sets the ADC resolution. In this spirit, Fig. 6.40 reports the high
frequency conductance and capacitance sensitivities, SG = ∆G/G0 and SC = ∆C/C0,
respectively, for a particle distance beyond the static screening limit (dz ' 2λD). We
observe that SC > SG at high frequency and for neutral particles, underlying another
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Fig 6.37: ∆G (top) and ∆C (bottom) in depletion due to one neutral (a) and positively
charged (b) particle located at a few dz above the SAM for f = 1 kHz� fc (blue); f = 1MHz ≈
fc@1mM� fc@100mM (red); f = 1GHz� fc@100mM (green). Reference n+nn+ nanowire at
VFG=0 V. The responses increase and becomes flatter as f increases.
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Fig 6.38: Same as Fig. 6.37 for VFG=2 V (accumulation). The capacitance response increases
and becomes flatter as f increases.

advantage of the use of high detection frequency. Note that SC increases with frequency
until it becomes independent of salt concentration and charge, whereas SG is large only
for charged particles at low salt concentration.

According to [31, 79, 106], the DC conductance sensitivity scales as − log(n∞) for
large electrolyte voltage drop and low Bio-FET channel charge, and as 1/

√
n∞ for small

voltage drop. We thus decided to investigate the scaling of the high frequency response.
As a first step, we verified that in both DC and AC small signal regimes our device works
in presence of a small electrolyte voltage drop. If a large voltage drop were present, non-
linearity and steric effects would dominate the response leading to a scaling of the type
− log(n∞) [31].
Fig. 6.41a shows the behaviour of SG in the DC regime. The best fit of the simulation
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Fig 6.40: Conductance sensitivity, SG = |∆G/G0|, and capacitance sensitivity SC = |∆C/C0|,
to one neutral (blue) and charged (red) particle for dz = 0 nm.

results is obtained with a 1/(n∞)3/4 line. To illustrate the corresponding behaviour in
AC regime Fig. 6.41b reports SG and SC=∆C/C0 for both depletion and accumulation
bias points. Fig. 6.41b refers to 1kHz and suggests again a 1/(n∞)3/4 scaling trend for a
small single molecule as in the explored case study. Interestingly, SC at 1kHz (bottom
graph) obeys a similar law. Fig. 6.42 reports similar results at a few frequencies: below
fs (1 kHz), in between fs and fc (1 MHz) and above fc (1 GHz). For f > fc SC is
essentially insensitive to n∞ and particle charge q (green curves). Note that achieving
such a high f is not strictly necessary since at physiological salt concentration fc is only
about 350 MHz. If the signal frequency is lowered (e.g., 1 MHz), a non-trivial dependency
of SC vs. n∞ is found, essentially due to the interaction of the particle and NW double
layers. This complex behaviour is a further obstacle to a simple interpretation of detection
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experiments, thus supporting the choice of exploring the very high frequency range.
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6.4 Summary
In this chapter we have studied nanowire-based pH- and bio-sensors operated in the AC
regime. We have performed the measurements in collaboration with CEA/LETI (dr.
Thomas Ernst) and EPFL (prof. Carlotta Guiducci). In Sec. 6.1 we have reported pH
ladder measurements which show that, depending on the chosen frequency of operation,
the pH effect may be visible in the magnitude of the admittance, in its phase or in both.
This observation opens a new and largely unexplored set of possibilities for the design of
pH sensors.
We have also investigated the effect of the salt concentration on the nanowire trans-
admittance ĨS/ṼD, and we have proven that in our samples it has an effect in the frequency
range between a few kHz and few hundred of kHz. We have unexpectedly found that
the nanowire trans-capacitance in this intermediate frequency range decreases with salt
concentration, while intuitively one would expect it to increase.

Sec. 6.2 develops an accurate lumped element circuit model for the real and imaginary
parts of the NW trans-admittance and a corresponding parameter identification proce-
dure from simulations. The model reveals the existence of an intermediate frequency
range where the trans-capacitance of the intrinsic NW decreases for increasing frequency.
Furthermore, Sec. 6.2 reports the comparison between our measurements and simulation
results obtained with ENBIOS. The agreement is very good if we consider the presence of
the parasitics, that also exist in the real system. Unfortunately, the same parasitics hide
the response of all NW parameters except the DC conductance. Additional work has to
be done in this area to reach a complete and detailed understanding of the results and to
benchmark the performance against competitor sensing schemes.

Finally, in Sec. 6.3 we have investigated by means of ENBIOS simulations the response
of a nanowire biosensors to small spherical particles, representative of large proteins. We
have proven that, also for this sensing device (and not just for nanoelectrodes), working
at high frequency can increase the response by overcoming the screening and reducing the
sensitivity to the exact position of the particle, to its charge and to the salt concentra-
tion. The magnitude of the response to a single biomolecule is comparable to the lowest
detection limits experimentally proven to date. This is a promising finding in view of the
goal to achieve single molecule detection, but more work will be necessary in the future
to explore noise level and signal to noise ratio limitations.



Chapter 7

Conclusions and outlook

In this work we have developed compact analytical models and complex numerical sim-
ulation tools to study nanoelectronic biosensors. Simulation results were compared to
pioneering experimental findings by the group of Prof. Lemay University of Twente and
to measurements on nanowires fabricated at CEA/LETI. Most of the work focused on
high frequency impedimetric techniques based on nanoelectrodes and nanowires. For this
class of sensors we interpret the admittance spectra and their changes due to various
types of biomolecules. The key steps of our research and most relevant findings can be
summarized as follows (in order of exposition).

Chap. 2 provides a general overview of the model equations to describe in the con-
tinuum multi-ion electrolyte, insulator and semiconductor materials in DC and AC small
signal regimes. In particular, in DC conditions (Sec. 2.1) the adopted model equations
are the Poisson-Nernst-Planck (PNP, also known as Poisson-Drift-Diffusion) equations. In
small signal AC conditions (Sec. 2.2) the model is given by the linearized Poisson-Nernst-
Planck equations. In both the DC and AC regimes we impose a combination of Neumann
(zero outer flux) and Dirichlet boundary conditions to describe ideally polarizable and
Faradaic electrodes.
We have also investigated a few physical mechanisms possibly responsible of localized or
global deviations of the electrolyte electrical properties from the PNP equations. Among
these, the site-binding reactions at the dielectric/electrolyte surface, the electrolyte per-
mittivity dependence on temperature, salt concentration and frequency (Sec. 2.3.1) and
the so called steric effects (i.e., the compact layer of ions that forms at charged interfaces,
Sec. 2.3.2). Careful implementation of refined model equations allowed us to identify
the range of conditions where these effects become important, and to conclude that, in
many instances relevant for biosensor simulation, a simple but effective way to alleviate
substantially the model inaccuracy is to mimic the compact Stern layer by introducing a
thin dielectric layer on the interfaces with the electrolyte. The dielectric constant in this
layer, which is reduced with respect to the electrolyte due to surface polarization, can be
estimated a priori, as we have shown that its dependence on the surface electric field is
not so large to be of practical relevance in typical operating conditions.

In Chap. 3 we derive original analytical models for the AC small signal regime in
electrode/dielectric/electrolyte systems either in 1D cartesian (Sec. 3.1) or 1D and 2D
spherical (Sec. 3.3) coordinates. The electrodes are always assumed ideally polarizable,
which is a desirable property for impedimetric sensors, sometimes difficult to achieve in
real systems. In all cases we have shown the formation of the Electrical Double Layer
(EDL) at the electrodes at low frequency and the existence of different length scales of
the ion concentration. The EDL prevents the electric field to penetrate into the bulk of
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Parameter Symbol Expression

Debye screening length λD =

√
εelkBT

2q2n0

Angular cut-off frequency ξ =
2q2µn0

εel
=
σel
εel

=
1

τ
= 2πfc

First cut-off frequency (1D cartesian) fs ' ξ

π

λD
L

AC inverse screening length κ =

√
ξ + jω

D
=

1

λD

√
1 + jωτ

Double layer admittance yDL ∝ jωεelκ

Table 7.1: Summary of the most relevant electrolyte parameters derived in the AC models of
Secs. 3.1-3.3.

the system, thus impeding to probe analytes at large distance. The classical model for the
EDL adequately fits the numerical results, but we demonstrated that an ωp dependence
of the EDL capacitance vs. frequency (with fractional p values) has to be expected, be-
cause of the dispersive behaviour of the EDL even for a perfectly flat surface, regardless
of the electrode’s surface roughness. Therefore the EDL cannot be represented simply
by conventional capacitances and resistances, nor the representation is unique. We have
also shown that a first cut-off frequency fs exists, above which the electric field begins
to penetrate into the electrolyte, and that above a second cut-off frequency fc (the elec-
trolyte’s dielectric relaxation cut-off frequency) the EDLs disappear and the response of
the system is purely dielectric. We have noted that fs is geometry-dependent; the fc,
instead, is solely dependent on the electrolyte conductive and dielectric properties.
By comparing results in 1D cartesian and 2D spherical coordinates we could show that
some relevant parameters (summarized in Tab. 7.1) have a general applicability regardless
of the system geometry.
In particular, the electrolyte dielectric relaxation cut-off frequency fc is a general prop-
erty of all the considered systems, regardless of the geometry and of the properties of the
electrodes surface. In contrast, we have seen that the first cut-off frequency fs is also
affected by the physical details of the electrodes. In real biosensor systems this could be
an issue, since on the electrodes surface electrochemical phenomena and deviations from
simple theory may occur, leading to a not well-controlled nor easy to interpret behaviour
in the frequency range between fs and fc.

In Chap. 4 we develop and validate the full 3D numerical simulator ENBIOS for na-
noelectronic biosensors. ENBIOS relies on the models described in Chap. 2, which have
been solved on general 3D unstructured tetrahedral grids using for the first time the Con-
trol Volume Finite Element Method. Care has been given to calculate accurately the
currents at the electrodes in order to retain the method’s global conservation property,
hence the accuracy on current calculation, that is mandatory to compute the tiny admit-
tance changes due to the introduction of small molecules in the domain. We have also
discussed in detail the methods for the calculation of surface and volume integrals, with
respect to accuracy and computational speed. In fact, the presence of highly non linear
(exponential) terms poses unique and critical accuracy problems in the evaluation of these
integrals.
The implementation has been validated against the analytical models described in Chap.
3. A comparison with the standard Galerkin Finite Element Method shows that CVFEM
offers an advantage, especially for coarse grids. This in turn entails the possibility to use
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CVFEM with less refined grids than GFEM, a highly desirable property when meshing
the thin electrical double layer.
We have also shown a procedure to describe electrolytes by means of a commercial TCAD
for semiconductor devices (Sentaurus Device, which does not natively support the elec-
trolyte environment, Sec. 4.6). Despite the successful results, the inherent limitations of
TCAD prevent this approach to be widely applicable to all classes of biosensors. This
further justifies our need of developing an ad-hoc simulator like ENBIOS.

In Chap. 5 we study the response of a nanoelectrode array biosensor to spherical mi-
croparticles and compare the simulation results with measurements mostly carried out
at the University of Twente by the group of prof. S. Lemay (Sec. 5.3). The agreement
between simulations and measurements is excellent, essentially without fitting parame-
ters. This is a remarkable confirmation of the adequacy of the chosen model for the
problem at hand. Our study has confirmed by theory and experiment that high frequency
measurements can indeed probe particles beyond the static screening length. In addition,
we have shown that the nanoelectrode array is capable of discriminating between dielectric
and conductive particles. These remarkable findings open a new scenario in the field of
nanoelectronic biosensors. Simulations confirmed their usefulness for the extraction of
quantitative information on the analytes from the measurements.
In Sec. 5.4 we have validated, by means of simulations, an analytical model for the fre-
quency dependent admittance change at a nanoelectrode due to a small spherical particle.
The model provides extremely useful physical insight and predicts a response proportional
to the particle volume and complex conductivity and to the magnitude of the electric field
in the location of the particle normalized to the applied voltage. Remarkably the model
also predicts a sign change of ∆G and ∆C for conductive particles, due to a balance
between drift and diffusion current components. This model suggests a large number of
possibilities for the engineering of nanoelectrode biosensors, but unfortunately, limita-
tions of present hardware did not allow us to verify experimentally the prediction of a
sign change in the response.
The simulations allowed us to test the performance of ENBIOS for the analysis of realistic
complex systems. The results motivated the proposition of an original simulation scheme
(Sec. 5.5) to greatly reduce the computational burden due to the fine meshing of Electrical
Double Layers by replacing them with circuit lumped elements.
We have also explored the nanoelectrode biosensor response to small spherical parti-
cles, which can represent large globular proteins or viruses (Secs. 5.7-5.6), and to DNA
molecules (Sec. 5.8), including orientation effects. We found that, unless the strand or
particle adheres to the electrode, modest changes in capacitance should be expected as
a result of orientation, mostly at low frequency. These simulations confirmed once more
the potential advantage of high frequency operation, namely:

1. the ability to overcome the static screening and the independence of the response
of salt concentration;

2. the very good theoretical predictability of the response, even in the presence of
non-idealities such as surface charges;

3. the insensitivity to hardly controllable parameters such as free charges;

4. the additivity of the response with respect to the number of particles, at least for a
small number of them;

5. a greater freedom to engineer the biosensor, in order to take advantage of the fact
that the region sensitive to the analyte is not limited to the sensor surface;
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6. the identification of optimum detection frequencies and critical cut-off frequencies.

This thesis led us to unambiguously clarify what should exactly be considered as high-
frequency range. We have concluded that the electrolyte dielectric relaxation cut-off
frequency fc is a general property of all the considered biosensor systems, regardless of
geometry and condition of the electrodes’ surface. The frequency fc is high (≈ 300 MHz)
at physiological salt concentration compared to state of the art impedance spectroscopy
systems [84] but not unreachable for integrated CMOS nanoelectronic circuits where par-
asitics can be reduced. Working above fc gives the benefits 1.-5. above.
The static Debye screening is partly overcome also above the cut-off frequency fs, which
is typically much lower than fc and, furthermore, geometry dependent; hence, device de-
sign dependent. In fact, in the field of impedance spectroscopy it is common to work
up to frequency in the neighbourhood of fs [84], at least at low salt concentration. We
have however demonstrated that fs is remarkably dependent on the geometry and on
the physical details of the electrodes surface compared to the electrolyte properties, in
particular, on the product between the double layer capacitance and the bulk electrolyte
resistance. In real biosensor systems this could be an issue, since electrochemical phe-
nomena at the electrodes’ surface and deviations from simple theory may occur, leading
to a not well-controlled behaviour in the frequency range between fs and fc where the
admittance changes the most versus frequency. Furthermore, benefits 1.-4. in the above
list do not hold in this regime.

In Chap. 6 we study nanowire-based pH- and bio-sensors operated in the AC regime.
We have performed measurements on real devices in collaboration with CEA/LETI (dr.
Thomas Ernst) and EPFL (prof. Carlotta Guiducci). Due to large parasitics, however,
we could not explore the intrinsic NW behaviour above approximately 100 kHz, which
is much larger frequency than in many EIS systems but not large enough to overcome
fc at high salt concentration. We also carried out pH ladder measurements (Sec. 6.1)
which show that, depending on the chosen frequency, the pH effect may be visible in the
magnitude of the admittance, in its phase or in both. Also this observation opens a new
and largely unexplored set of possibilities for the design of pH sensors.
The salt concentration affects the nanowire admittance in the frequency range between
a few kHz and few hundreds of kHz. We have unexpectedly found that the nanowire
trans-capacitance in this intermediate frequency range decreases with salt concentration,
while the gate-source capacitance increases as predicted by all the models in Chap. 3.
Since the same behaviour is found in identical structures without nanowire, we conclude
that this anomaly should be attributed to the parasitics. In particular, the anomalous
frequency behaviour may be due to the combination of two effects:

1. the source admittance that we measured is not a real admittance, but an element
of the 2-port admittance matrix of the system;

2. also in simulations (for instance Fig. 6.17) there are intermediate frequency ranges
where the capacitance is apparently decreasing with increasing salt concentration;
since in the measurement we could only look at a very small portion of the spectrum,
we may as well be in this intermediate frequency range.

An accurate lumped element circuit model and extraction procedure has been developed
for the intrinsic NW based on simulations (Sec. 6.2). The comparison between our mea-
surements and ENBIOS simulations (Sec. 6.2) is very good if we consider the presence
of parasitics, that exist also in the real system. Additional work has to be done in this
area to reach a complete and detailed understanding of the results and to benchmark the
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performance of high-frequency nanowire sensing against competitor sensing schemes. For
the latter step, consideration of layout constraints and parasitics of a realistic detector
seems a mandatory step to this end.
Finally, we have investigated by means of simulation the response of a nanowire to small
spherical particles, representative of large globular proteins (Sec. 6.3). We have again
observed that a high frequency signal can provide distinct advantages in order: 1) to
increase the response by overcoming the screening; 2) to be very weakly dependent on
the exact position of the particle, on its charge and on salt concentration. The magni-
tude of the response to a single biomolecule is comparable to the lowest detection limits
experimentally proven to date. This is a promising finding in view of the goal to achieve
single molecule detection, but more work will be necessary in the future to explore how
this threshold compares to noise level and signal to noise ratio limitations.

As an indication for future work, we briefly underline that nanoelectronic biosensors
are likely to be on the edge of widespread diffusion in several new fields of application.
The development of quantitative analytical tools based on general purpose, customizable
integrated devices heavily relies upon the ability to improve our understanding of the
transduction chain via modelling and simulation, and on the demonstration of a robust
transduction principle suited to deliver signals with large signal to noise ratio in the
variable and unstable environments where biomolecules are contained. In this respect,
integrated electronic biosensor platforms, and in particular micro- and nanoelectrode im-
pedimetric arrays, can provide all the required parallelism, compensation, and calibration
hardware and software to obtain reliable data with sufficient statistics.
A brief and incomplete list of problems which have not been adequately addressed with
reference to high-frequency impedance spectroscopy in general and nanoelectrode sensors
in particular is the following:

• Scaling laws of nanoelectrode biosensor, verified by means of simulation.

• Simulations with a realistic description of complex biomolecules, including charge
effects.

• Statistical and noise analysis of nanoelectrode response to multiple randomly dis-
tributed molecules.

• Non-linear analysis with arbitrary time-domain signal.

• Modelling of surface dipoles and surface chemical reactions in AC regime for tech-
nologically relevant materials.

• Study of non planar nanoelectrode geometries and surface roughness.

• Accurate compact models with and without biomolecules to assist the design of
readout circuits.
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