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1. ANATOMY OF THE CORNEA 

 

One-sixth of the outer layer of the eye forms the cornea, which is a transparent spherically 

shaped structure that serves as the outer window of the eye and covers the iris, pupil and 

anterior chamber.  The cornea is the most important structure of the ocular surface that 

allows light entering the eye to focus onto the retina for good visual acuity, together with 

the crystalline lens. It accounts for almost 2/3 of the refractive optical power. 

The cornea is mostly made up of connective tissue, composed of a thin layer of 

epithelium on the surface, a monolayer of endothelium facing the posterior inside part of 

the eye and a mid portion stroma in between. The transparency of the cornea is mainly 

because there are no blood vessels and very little cells within the stroma. Moreover, the 

morphology of the collagen fibers within the stroma are arranged in such away to preserve 

transparency. Infection, lesions, inflammation and other nocive factors can disrupt this 

delicate homeostasis within the cornea and even cause neovascularization, which can 

lead to opacification and resulting vision loss. Although the cornea is free from blood 

vessels, it contains the highest concentration of nerve fibers of any body structure, making 

it extremely sensitive to pain.  The nerve fibers enter from the margins of the cornea and 

radiate toward the center.  These fibers are associated with numerous pain receptors that 

have a very low threshold.   

 

The cornea is composed of 5 layers, which include (from anterior to posterior):  

1. Epithelium  

2, Bowman’s membrane  

3. Stroma  

4. Descemet’s membrane  

5. Endothelium  



 

 

 

• Corneal epithelium:  

The embryological derivation of the corneal epithelium is from the surface ectoderm at 

about 6 weeks of gestation. A healthy epithelium is needed to maintain a proper refractive 

surface, and protect the eye against infection and structural damage. It is composed of a 

thin epithelial multicellular tissue layer made of non-keratinized, non-secretory, stratified 

squamous epithelium cells, about 4-6 layers thick and about 40-50 µm in thickness. These 

cells are fast-growing and easily regenerated and need to be kept constantly lubricated; a 

function served by tears. The tear film is important in maintaining a healthy anterior 

surface. Irritation and edema of the corneal epithelium disrupts the smoothness of the air-

tear film interface, which is the most significant component of the refractive power of the 

eye, thereby reducing visual acuity. The corneal epithelium cells are continuous with the 

conjunctival epithelium, and are shed constantly on the exposed layer and regenerated by 

multiplication in the basal layer.  

 Corneal epithelium cells undergo complete turn over that includes involution, 

apoptosis and desquamation every 7-10 days. The most superficial layers of epithelium 

form 2-3 flat layers formed of polygonal cells, which have extensive microvilli and 



microplicae on the anterior surface. The cells are joined by tight junction complexes that 

restrict tears from going past the intercellular junctions. Routine ocular surface assessment 

in a clinical setting involves tests with dyes like fluorescein and rose Bengal, which are 

repelled and do not remain on a healthy and intact epithelium surface.  

               

 Immune active macrophages derived from the bone marrow are found in the limbal 

area of the peripheral epithelium. These cells can be recruited to the center of the cornea 

in response to lesion, inflammation and graft rejection. These Langerhan’s cells express 

human lymphocyte antigens on the surface. 

 Wing cells are found under the superficial layer. The name of these cells derives 

from the particular stretched slightly flattened shape. They are held together by tight 

intercellular junctions.  

The basal cells are found beneath and comprise the deepest epithelium corneal 

layer. This single-cell layered is composed of columnar epithelium that are about 20  µm in 

height. These cells are capable of mitosis. The only other cells capable of mitosis in the 

corneal epithelium are the stem cells found in the limbus region in the periphery. The wing 

and superficial epithelium cells derive from this population of cells. Gap junctions and 

zonulae adherens line the lateral intercellular junction. They are attached to the underlying 

basement membrane by an extensive hemidesmosomal system, which aid in preventing 

epithelium detachment. Recurrent erosion syndrome, persistent epithelium defects, 

epithelium edema and other clinical manifestations can occur if this bond system is 

compromised. 



 The basement membrane, which is about 0.05 µm thick,  is formed by an 

extracellular matrix secreted by the basal cells. Basement membrane regeneration upon 

lesion requires about a month and a half. During this period, the bond between membrane 

and overlying epithelium cells and underlying Bowman is fragile and can be disrupted 

during the healing process. Type IV collagen and laminin are the major components of a 

healthy basement membrane, however, high levels of fibronectin can be found in response 

to acute epithelium lesions and inflammation.   The basement membrane adheres to the 

underlying Bowman’s membrane with the aid of anchoring fibrils and plaques.  

 

                 

 

• Bowman's layer: 

The Bowman's membrane (also known as anterior limiting lamina or anterior elastic 

lamina) was discovered by Sir William Bowman (1816–1892), an English physician, 

anatomist and ophthalmologist. It is composed of a smooth layer of irregularly arranged 

collagen fibers, mainly type I collagen fibrils located between the superficial epithelium and 

the stroma that helps the cornea maintain its shape and acts as a tough layer that protects 

the corneal stroma. This layer is about 8-14 μm thick. Scarring and corneal opacities can 

occur if the Bowman's membrane is damaged.  



• Stroma: 

The stroma (or substantia propria)  is the thickest layer of the cornea located behind 

Bowman's layer and in front of Descemet's membrane. It represents approximately 90% of 

the total corneal thickness and gives the cornea its strength. This thick, transparent middle 

layer consists of regularly arranged collagen fibers in addition to sparsely distributed 

interconnected keratocytes, which are the cells needed for general repair and 

maintenance. The collagen fibers are parallel and superimposed. The corneal stroma 

consists of numerous  layers, composed of about 200-300 lamellae of parallel collagen 

fibrils in the centre that increase peripherally and reach nearly 500 lamellae at the limbus. 

Each fibril is about 1.5-2.5μm in size, and composed mainly of type I collagen. The 

spacing between collagen fibrils in the stroma must be within 200 nm to permit proper 

stromal architecture and transparency. It is thought that the particular lattice arrangements 

of the collagen fibrils in the stroma is what provides tissue transparency, due to light 

scatter by individual fibrils that gets cancelled by destructive interference from the 

scattered light from other individual fibrils  

The stromal collagen fibrils are surrounded by proteoglycans consisting of keratan 

sulfate and dermatan sulfate (chondroitin sulfate B). These proteoglycans have an 

important structural function and help regulate hydration. The orientation of the lamellae 

are different, however, tend to be all parallel to the corneal surface. In the central part of 

the cornea, the majority of the collagen fibrils are orientated in the inferior-superior and 

nasal-temporal directions, whereas at the limbus, they are orientated circumferentially, 

providing greater resistance to forces perpendicular to the axes of the fibrils.  

Keratocytes are the predominant cell type found between lamellae of the stroma 

and play a role in maintaining its organization. These elongated flattened cells from which 

the collagen fibrils are produced during development, are in contact with the matrix and 

other cells by long cytoplasmatic extensions. When edema develops in the stroma due to 



trauma, disease, inflammation or hypoxia, these cells can be activated and some of the 

fibrils lose their usual uniform caliber, become displaced and fluid accumulates between 

the lamellae, causing loss of transparency. 

 

 

 

• Descemet's membrane: 

Also known as posterior limiting membrane, Descemet's membrane separates the 

endothelium from the stroma. This elastic membrane derived from the endothelium cells, 

thickens with age and is composed of a thin acellular layer that serves as the basement 

membrane of the corneal endothelium. It is composed of an anterior layer with a banded 

appearance and a posterior layer with an amorphous texture. Descemet's membrane  is 

composed mainly of collagen type IV & I fibrils, and is about 5-20μm thick, depending on 

the subject's age.  

 



• Endothelium: 

The corneal endothelium consists of a single layer of cuboidal mitochondria-rich cells 

approximately 5μm thick. The normal healthy cornea endothelium density at birth is about 

3500–5000 cells/mm2, which tends to decrease with age, trauma, inflammation, pathology 

and surgery. These cells have little or no self-renewing potential. Unlike the corneal 

epithelium, the cells of the endothelium do not regenerate. Instead, they stretch to 

compensate for dead cells, causing a reduction of the overall endothelium cell.  

One of the main roles of the endothelium is that it is responsible for regulating fluid 

and solute transport between the aqueous humor and corneal stromal compartments. The 

endothelium has intracellular and membrane-bound ion transport systems that establish 

an osmotic gradient from a relatively hypo-osmotic stroma to a hypertonic aqueous. This 

osmotic gradient allows movement from the stroma to the aqueous to maintain a 

homeostasis permitting a constant percentage of water in the stroma of about 75%, which 

is essential for the corneal clarity and transparency. If the endothelium can no longer 

maintain a proper fluid balance, stromal swelling due to excess fluids and subsequent loss 

of transparency will occur. This may cause corneal edema and interference with the 

transparency of the cornea, thereby reducing visual capacity.   

 



2. OCULAR SURFACE WOUND HEALING 

 

The corneal wound healing response is based on a complex cascade of events that 

involves cytokine mediated interactions between the different components of the cornea 

and the immune system. In brief, the cascade of events is brought on by ocular surface 

damage, which can cause epithelium loss and keratocyte apoptosis and necrosis. This 

activates early epithelial repair and induces keratocyte proliferation and activation. Some 

keratocytes undergo myofibroblast differentiation and migration. This is followed by 

infiltration due to inflammatory response and stromal remodeling. Epithelial surface closure 

is usually reached. In time, myofibroblasts and inflammatory cells undergo apoptosis and 

necrosis, and keratocytes gradually return to a normal state over time.     

The process of repair commences in response to corneal injury, which initiates quite 

rapidly within the first hours. The lesion can induce cytokine release from the injured 

epithelium and epithelial basement membrane. These factors include interleukin (IL)-1 

tumor necrosis factor (TNF) alpha, bone morphogenic proteins (BMP) 2 & 4, epidermal 

growth factor (EGF), platelet derived growth factor (PDGF). Some of these cytokines 

interact with nearby keratocytes, which induces apoptosis and regulated cell death. 

IL-1 is a major cytokine in activating the cascade of events. IL-1 alpha and IL-1 beta 

mRNAs and proteins are produced in the corneal epithelium, keratocytes and corneal 

fibroblast. Immunocytochemistry studies have shown that there are no signs of IL-1 alpha 

or beta in keratocytes of healthily corneas, and exposure to IL-1 can induce keratocytes to 

produce IL-1 by an autocrine mechanism. IL-1 protein can be detected in apoptotic 

keratocytes or myofibroblasts  and in tears of eyes with ocular surface damage, 

inflammation, infection and severe dry eye syndrome. If the epithelium and basal 

membrane are intact, the cytokine cannot interact and bind to stromal keratocyte IL-1 

receptors to activate these cells. IL-1 also regulates hepatocyte growth factor (HGF) and 



keratinocyte growth factor (KGF). HGF and KGF are produced by activated keratocytes 

and myofibroblasts and are involved in the proliferation, motility, and the differentiation of 

epithelial cells. IL-1 also upregulates the expression of enzymes by keratocytes, such as 

collagenases and metalloproteinases, which cause remodeling of collagen during corneal 

wound healing. IL-1 and TNF alpha induce keratocytes and corneal epithelial cells to 

produce chemokines such as IL-8, monocyte chemotactic protein (MCP)-1. PDGF is 

another important cytokine released by the epithelial cells and involved in the early phases 

of wound healing. PDGF modulates corneal fibroblast proliferation, chemotaxis, and 

differentiation. 

 The cascade of lesion-induced cytokines initiate early stromal keratocyte apoptosis 

and necrosis, which can continue for 7-10 days after trauma. A variety of epithelial injuries 

can induce this process, which include mechanical de-epithelization,  iatrogenic corneal 

surgical procedures, infection, trauma, and chemical burns. Apoptosis can be identified 

with immunohistochemical preparations using TdT-mediated dUTP nick end labeling 

(TUNEL assay).  

 

     

  



Growth factors that modulate epithelial healing like HGF and EGF tend to increase 

in the lacrimal gland, which could serve as an additional source of cytokine production that 

regulate proliferation, migration and differentiation during the early wound healing. 

Epithelial cells and exposed keratocytes can be influenced by cytokines in the tear film 

derived from the lacrimal gland, the conjunctiva or even the conjunctival vessels. 

 During the early phases of epithelial healing  that occur within the first few days, the 

various growth factors and the cytokines begin to induce new basement membrane 

formation and cause surface epithelium to replicate, migrate and gradually cover the 

exposed ocular surface. The epithelial stem cells located at the limbus begin move from 

the periphery in a sideways fashion, together with the basal cells that move vertically to the 

apical layers. This follows the same pattern of normal epithelium turnover.  

 

 

The continual apoptosis , necrosis and pro-inflammatory process cause activation of 

residing stromal keratocytes, which begin to proliferate, migrate and induce myofibroblast 

formation. Myofibroblasts, presumed derivatives of keratocytes after induction with TGF-

beta, have contractile alpha-smooth muscle actin and can be seen under the basement 



membrane in the anterior stroma even weeks after lesion. Activation of these fibroblasts 

can cause reduced stromal transparency and corneal haze due to collagen and 

extracellular matrix remodeling through production of collagen, glycosaminoglycans, 

collagenases, gelatinases and matrix metalloproteinases (MMP). Myofibroblast 

cytokine TGF-β is also involved in stimulating corneal scarring, by binding to specific cell 

surface protein receptors.   

Inflammatory cell infiltration is an important process induced soon after lesion. IL-1 

and TNF-alpha on the epithelium and keratocytes triggers cytokine release and stromal 

infiltration by macrophages, monocytes, T cells and polymorphonuclear cells. These 

inflammatory cells  arrive from peripheral blood vessels and tear film. Studies have shown 

that fibroblasts produce monocyte chemotactic and activating factor (MCAF) in vitro when 

stimulated by IL-1 or TNF.  

The stroma undergoes remodeling during the phases of wound healing and repair. 

The cascade of events cause a breakdown and synthesis of collagen and other 

components of the stroma. This cross-link between collagen fibers gradually develop to 

stabilize the lesion in the months following injury. Newly formed collagen fibers do not 

follow the normal stroma architecture, in addition to the presence of abnormal extra 

cellular matrix (ECM) proteoglycans and collagen types. Remodeling over months and 

years transforms the repaired tissue to approximate normal corneal organogenesis. The 

altered architecture and components that make up the remodeled cornea renders it less 

transparent, which may cause permanent corneal scarring. Culture studies have shown 

that the cells that produce the collagenases during the  remodeling phases are fibroblasts, 

PMNs and macrophages. The parallel layers of collagen lamellae normally found in 

healthy corneas begin to reform over across the injured region. Electron microscopic 

analysis show that collagen fibril progressively become more regular in size and 

arrangement. During these phases of remodeling, matrix degrading enzymes ( MMP) play 



a key role in degrading abnormal ECM components formed after wound healing. They are 

produced by resident and invading inflammatory cells, and are secreted in the form of 

inactive proenzyme that need to be activated. Fibroblast collagenase, for example, is 

involved in the degradation of native types collagen I, II & III. Stromalysin can specifically 

cleave proteoglycans, fibronectin and laminin.  

Inflammatory, myofibroblast and fibroblast cells gradually leave the cornea or 

undergo apoptosis and keratocytes return to a quiescent state. Complete wound healing 

with resulting corneal transparency is possible if the trauma is not too severe and if all the 

factors and mechanisms involved in this cascade of events function properly.   

 

 

 

 



3. ADIPOSE TISSUE  

 

• Embryology 

During the first month of pregnancy, the developing embryo starts to grow and take on a 

form that will determine the complete formation of the entire body. The differentiation 

process begins in the first month after the spermatozoa has fertilized the egg, and rapidly 

progresses during the fetal period. Organogenesis, which involves a series of organized 

integrated processes that transforms an amorphous mass of cells into a complete organ in 

the developing embryo, gives rise to three germ layers from which all the bodily organs 

and tissues then develop: 

 

1. Ectoderm, which differentiates into epidermis, hair, nails, tooth enamel, glands, 

epithelia of the mouth, parotid gland, nasal and tear duct epithelia, cornea and 

conjunctiva epithelium, various parts of the nervous system (spine, peripheral 

nerves and brain), lymph nodes, and blood components.  

 

2. Mesoderm that forms mesenchyme (connective tissue), mesothelium, non-

epithelial blood corpuscles and coelomocytes. The tissues that arise from this layer 

include skeleton of the body, connective tissue of the gut, peritoneum, derma, 

adipose tissue, kidneys, urinary system, gonads (testicles and ovaries), 

reproductive organs, heart, vessels, and muscle. 

 

3. Endoderm gives rise to the gastrointestinal tract, liver, pancreas, endocrine glands, 

respiratory tract, thyroid, prostate, urethra, trachea, larynx, spermatozoa and 

oocyte. 

 



 

 

The complexity and variety of cellular expression derived from these three layers are 

due to the activation and expression of different genes in cells that derive from the same 

genome. Specific genetic expression, which is dependent on intracellular and extracellular 

factors, gives rise to the production of specific proteins. During embryonic development, 

cells take on a specific cellular line, thus become committed to differentiate and produce 

specific proteins. Once committed, most cells continue toward a specific lineage to 

develop into one of the four main tissues that make up the human body, which include: 

 

I. Epithelial tissue: characterized by the presence of polyhedral cells distributed in 

layers that are tightly in contact with each other, which form mechanical and 

functional intercellular complexes junctions. Moreover, these cells are in close contact 

with an epithelium-connective sheet known as the basal lamina. Epithelial tissue is 

usually free of capillaries, however, have the capacity to proliferate. 

 

II. Connective tissue: contains abundant extracellular fluid and fibers between cells. 

This tissue is highly vascularised and has a high capacity to proliferate. 

 

III. Muscle tissue: formed by cells containing microfilaments that are highly in contact 

with each other and have contractile ability. 



 

IV. Nervous tissue: made of cells with characteristic prolonged cytoplasm, thus 

permitting morphological and functional intertwining connections between nerve cells, 

glia and muscle.  

 

 

• Characteristics  

Adipose tissue is a specialized loose connective mesoderm-derived tissue composed of 

adipocytes. The main function of this tissue includes the major storage site for fat in the 

form of triglycerides. There are two different forms of adipose tissue found in mammals; 

white and brown adipose tissue. The presence, amount, and distribution vary in different 

species and individuals.  

White adipose tissue (or sometimes considered as yellow) serves three functions: heat 

insulation, mechanical protection, and most importantly, source of energy. About 50% of 

the distribution can be found in the form of subcutaneous adipose tissue, located directly 

below the skin. It is an especially important heat insulator in the body, which is dependent 



upon the thickness of this fat layer. About 45% surrounds internal organs, providing a 

cushioning protection during abrupt and harsh movements. The remaining 5% is in contact 

with muscle tissue. As the major reservoir of storage, fat provides energy. It is an efficient 

way to store excess energy, especially considering it contains very little water; thus more 

energy can be derived from a gram of fat than from a gram made up of carbohydrates or 

proteins.  

The primary function of white fat tissue is to store triglyceride in periods of energy 

excess and to release energy in the form of free fatty acids when needed. Fat tissue also 

plays an important role in numerous processes through its secretory products and 

endocrine functions, which play a role in immunological responses, vascular diseases and 

appetite regulation. Leptine is a peptide hormone primarily made and secreted by mature 

adipocytes, which effects appetite, body weight regulation, fertility, reproduction and 

hematopoiesis. Adipose tissue is also an important site for estrogen biosynthesis and 

steroid hormone storage. In addition, this tissue secretes a variety of peptides, cytokines 

and complement factors, which act in an autocrine and paracrine manner to regulate 

adipocyte metabolism and growth, as well as endocrine signals to regulate energy 

homeostasis. 

 

 

 



Brown adipose tissue can rarely be found in human adults. It is normally present in new-

born children. It is also found in small animals and hibernating mammals. The darker color 

is due to the rich vascularisation and densely packed mitochondria. In non-hibernating 

animals, brown adipose tissue is metabolically less active, although cold exposure can 

activate it. In hibernating animals and human new-born babies, it plays an important role in 

regulating body temperature and thermogenesis. Brown adipose tissue can directly 

release energy in the form of heat due to the metabolism of the mitochondria.  

 

 

 

• Cytology 

White adipose tissue is composed mostly of lipid-filled cells called adipocytes, which are 

found amongst collagen fibers. Adipose tissue also contains stromal-vascular cells 

including fibroblastic connective tissue cells, leukocytes, macrophages, and pre-

adipocytes. The adipose cell appears as a round ring structure that encloses a large lipid 

drop with a peripherally displaced nucleus.  These unilocular cells range in size from 25 to 

200 microns. This large lipid droplet does not appear to contain any intracellular 

organelles. Mitochondria can be found near the nucleus. The cell cytoplasm contains a 

small amount of rough endoplasmic reticulum, very discrete amounts of smooth 

endoplasmic reticulum, and numerous ribosomes. The Golgi apparatus and mitochondria 

are not highly represented. Electron microscope analysis shows that the external surface 



is covered with reticular fibers composed of glycoprotein, which is in close contact with the 

adipose vascular system. Each adipocyte in the white adipose tissue is in contact with at 

least one capillary. This blood supply provides sufficient support for the active metabolism, 

which occurs in the thin rim of cytoplasm surrounding the lipid droplet. 

Approximately 60 to 80% of the weight of white adipose tissue is lipid, mostly 

composed of triglyceride. Small amounts of free fatty acids, diglyceride, cholesterol, 

phospholipid, cholesterol ester and monoglyceride are also present. The fatty acids that 

make up the lipid component include myristic, plamitic, palmitoleic, stearic, oleic, and 

linoleic acid. The remaining weight of white adipose tissue is composed of water, which 

makes up about 5 to 25% and trace amounts of protein that make up about 2 to 3%. 

 

 

 

• Lineage and differentiation 

Adipocytes are considered to originate from fibroblast-like precursor cells, in which 

differentiation is influenced by appropriate stimulatory conditions. The criteria used to 

identify adipocytes include the intracellular capability of lipid accumulation. Studies 

suggest that the adipocyte tissue derives from embryonic stem cell precursors that have 

the capacity to differentiate into the mesodermal cell types, which include differentiation 



into adipocytes, chondrocytes, osteoblasts, and myocytes. Adipoblasts, which are the 

earliest unipotential cells, can commit to the adipogenic lineage and become 

preadipocytes. These cells can differentiate into mature adipocytes that are able to 

synthesize and store lipids when placed in the proper environmental conditions. The early 

molecular events that promote mesenchymal precursor cells to the adipogenic lineage are 

not well known. The expansion of white adipose tissue throughout the body is due to an 

increase in adipocyte cell size and number.  

During tissue development, committed preadipocytes withdraw from the cell cycle, stop 

proliferating and undergo adipocyte differentiation upon reaching confluence. Adipocyte 

differentiation is characterized by the selective expression of specific genes, which occur 

mainly at the transcription level that give rise to the specific adipocyte phenotype. Several 

hormones and growth factors have shown to play a role in adipocyte differentiation by 

activation of specific receptors, which mediate differentiation signals through a cascade of 

intracellular events. Insulin like growth factors have been shown to be essential regulators 

of fat cell formation, differentiation and growth. Glucocorticoids have been used in 

numerous studies to induce differentiation of cultured preadipocyte cell lines and primary 

preadipocytes. Dexamethasone, for example, is believed to operate through activation of a 

nuclear glucocorticoid receptor that regulates transcription. Estrogen and progesterone 

have an effect on preadipocyte replication in vitro and adipogenesis. Retinoic acid has 

shown to influence differentiation and maturation of preadipocytes. Growth hormones and 

thyroid hormone seem to accelerate the differentiation into mature adipocytes.  

 

• Adipose derived stem cells (ADSC) 

In the past several years, numerous studies have shown the existence of 

multipotent adult progenitor cells in various tissues and locations throughout the 

body, such as skeletal muscle, bone marrow, synovial tissue, and periostium. In the 



past ten years, studies have reported that human adipose tissue also contains a 

population of multipotent stem cells, which can be isolated in large amounts from 

liposuction or biopsy, and expanded in culture. When exposed to the proper growth 

conditions in vitro, these adipose derived stem cells (ADSC) can successfully 

differentiate into various mesenchymal cell lineage, which include adipogenic, 

osteogenic, angiogenic, chondrogenic, myogenic, cardiomyogenic, and neurogenic. 

 

 

 

In general, stem cells are very different from other mature cells found throughout 

the body, in that the show endless capacity of cell multiplication. When stem cells 

divide, the daughter cells maintain the same potential of the mother cells, thus the 

stem cell depot can be conserved in the tissue without going into depletion. These 

cells can give rise to numerous cell copies, which in turn can take on a distinct cell 

differentiation according to micro-environmental factors. Another important aspect 

is that these calls are multipotent, thus can be induced to differentiate into cells that 

are of different origin. By using different culture mediums, hormones and growth 



factors, these cells can be conditioned to form different cells lines in vitro. Although 

stem cells have similar characteristics, various types of stem cells from varying 

origin can be found in different organs; these cells have different phenotypes that 

produce specific proteins and can thus be distinguished by specific biochemical 

markers.    

 

 

 

The precise lineage of adipose tissue is not completely know, however, like 

muscle and bone, it is generally regarded that adipose tissue derives from a 

mesodermal origin. Studies have reported that initial origins can be traced back to 

the neural crest phases during embryologic development, thus from both a 

neurectoderm and mesoderm descent. Histological studies on primitive organ 

development have shown that early clusters of adipocytes emerge from bulks of 

mesenchymal cells related to the development of the local blood system network, 

thus vascularisation plays an important role in adipose tissue formation. 

Angiogenesis and adipogenesis appear to be coordinated in space and time. 



Adipose precursor cells in fact express surface markers that are also found on 

immature endothelial cells. Some authors have hypothesized that ADSC could 

differentiate from a variety of sources, including various vascular cell types found 

within the white adipose tissue, but this issue still remains debatable. 

The cell surface phenotypes of ADSC are quite similar to bone marrow-derived 

mesenchymal stem cells, in that both cell types express similar mesenchymal stem 

cell related surface markers. These distinct cells, however, exhibit unique 

characteristics and differences in gene expression. In vitro studies have also shown 

that under osteogenic conditions, ADSC can express genes and proteins 

associated with an osteoblast phenotype. In vitro differentiation studies have also 

seen this to be true for neuronal lineage, myoblasts, cardiomyocytes, hematopoietic 

cells, and corneal keratocytes.  

 

 

     For many years, bone marrow derived stem cells have been considered as the 

prime source of mesenchymal stem cells for clinical applicability for cell-based 

therapies and tissue engineering purposes. Over the past several years, however, 

autologous ADST derived from lipoaspirate have shown to be an advantageous 

source of stem cells considering they can be readily harvested in large numbers 

with low donor morbidity. These mesenchymal cells exhibit the ability of self-



renewal and ability to differentiate in multiple lineages. Unlike stem cells retrieved 

from bone marrow, umbilical cord blood, peripheral blood and other tissues, 

adipose tissue serves as a large reservoir of mesenchymal stem cells that have 

shown to be 100 fold more numerous in comparison to other autologous sources.  

 

     Numerous studies and clinical trials in the past decade have reported the safety, 

efficacy and therapeutic advantages in clinical applications, which can be found in 

all areas of medicine including plastic surgery, orthopedic surgery, cardiology, oral 

and maxillofacial surgery, cardiology, and neurological applications. Current 

scientific literature has just begun to report the therapeutic applications of ADSC in 

ophthalmology, and the clinical applications in this field look promising.  
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5. INTRODUCTION AND AIM OF THE EXPERIMENTAL STUDY   

 

The cornea provides a protective barrier and clear optical pathway for the visual system, 

representing two thirds of the eye’s refractive power.1 This avascular and transparent 

structure is composed of three layers, which include the outer most non-keratinized 

stratified epithelium, stroma and single-layered endothelium. The corneal epithelium is 

about 5 to 7 layers thick and makes up the anterior ocular surface together with the 

conjunctiva, which are both constantly lubricated with the tear film that provides adequate 

trophism and antibacterial protection. The thin layered endothelium lies behind the 

Descemet membrane and is in contact with the aqueous humor of the anterior chamber 

with active pumping functions that maintain corneal homeostasis. The stroma accounts for 

about 90% of the cornea and can reach up to 500 micron in humans. It is composed of 

dense collagenous tissue with keratocytes, which are normally quiescent and are 

responsible for secreting the extracellular matrix. Most corneal diseases and trauma 

involve the epithelium and stroma, and include immune disorders, chronic inflammation, 

infection, iatrogenic procedures (i.e. laser refractive surgery), corneal dystrophies, 

mechanical and chemical injuries, limbal stem cell deficiency and ectatic diseases. These 

ocular disorders can lead to severe inflammation, Stevens-Johnson syndrome, persistent 

epithelium defects, neovascularization, conjunctivalization, persistent corneal opacities 

and scarring, which all lead to permanent vision loss.2, 3  

The stroma is one of the most important layers involved in corneal wound healing. It 

provides strength and refractive power, providing a transparent optical medium due to the 

parallel aligned collagen fibrils composed of collagen types I and V, which are associated 

with several proteoglycans (i.e. keratocan, lumican, and mimecan)  that make up the 

stromal extracellular matrix (ECM) and cells that secrete them, mainly keratocytes.1, 4, 5 

These principle cells of the stroma are flat and dendritic in morphology, are positive for 



markers (i.e. CD34 and aldehyde-3-dehydrogenase or ALDH), and produce collagen, 

keratin sulfate proteoglycans (KSPK), and other ECM factors that can be used as specific 

keratocyte-specific markers.6 These mesenchymal derived cells that make up the stroma 

are normally mitotically quiescent after embryonic development; collagen synthesis 

decreases in adults while the synthesis of KSPK remains high, and the homeostasis of 

these ECM components provides proper fibril and ECM architecture and corneal 

transparency.5 Studies have shown that loss of stromal transparency is related to reduced 

KSPK and ALDH.7-9 Trauma, burns, inflammation, iatrogenic procedures, infections and 

ocular pathologies activate stromal wound healing, which induces keratocytes to lose their 

dendritic morphology and differentiate into fibroblasts and/or myofibroblasts. These 

activated cells secrete altered ECM components with reduced KSPK, which disrupt the 

collagen fibril and ECM architecture, resulting in reduced transparency and stromal 

scarring.10 The degree of lesion determines how the cornea heals, which is why mild 

stromal damage can lead to new collagen fibril and ECM production while still allowing 

transparency to be maintained. Severe corneal injuries and several ocular pathologies can 

induce altered repairing mechanisms, which cause permanent scaring and infiltration due 

to inflammation that can also give rise to ocular surface tissue and keratocyte loss.1 

Corneal opacification is the second major cause of blindness worldwide after 

cataract, which affect more than 8 million individuals.11 The most common intervention for 

restoring corneal clarity and function is full thickness penetrating or lamellar keratoplasty, 

however, there are numerous limits that include scarce donor-quality tissue, elevated 

surgical costs, graft failure and immune rejection.5 Alternative surgical techniques include 

amniotic membrane transplantation and conjunctival limbal autograft from the healthy 

fellow eye, but surgical outcomes and limitations are similar to keratoplasty.1 Non surgical 

medical treatments are usually geared towards inhibition of inflammation and moderating 

the cascade of events related to an active immune response. Alternative topical methods 



that are currently being used in clinics have shown to enhance ocular surface wound 

healing, and include autologous serum12 and autologous plasma rich in growth factors.13, 14 

These eye drops made from the patient’s whole blood are rich in nutrients, growth factors, 

vitamins and neuropeptide, which provide epitheliotrophic, antimicrobial and anti-

inflammatory factors that are thought to be responsible for the therapeutic effect. Studies 

have reported that autologous drops seem to improve corneal epithelial healing in patients 

with severe dry eyes, recurrent erosion syndrome, persistent epithelial defects, chronic 

inflammation, and adjunctive treatment in ocular surface reconstruction,12-14 however, 

there is limited data regarding their wound healing effects on stromal scarring and 

damage.   

The use of stem cells in regenerative medicine has generated considerable interest 

in the past years. Friedenstein was the first to report fibroblast shaped cells in bone 

marrow that were capable of differentiating into various lineages of the mesoderm in the 

late 1960’s and named them mesenchymal stem cells (MSC).15 It was later discovered that 

MSC cell populations with similar properties reside in almost all human tissues.16 Studies 

by Zuck et al were the first to report a MSC population with similar characteristics to those 

found in the bone marrow from human adipose tissue.17 These adipose derived stem cells 

(ADSC) were shown to have the capability of differentiating into multiple mesodermal cell 

type, had clonogenicity properties, were pluripotent, capable of lineage-specific activity 

and expressed multiple CD marker antigens and proteins similar to those observed on 

bone marrow MSC.17, 18 The interest in ADSC  has greatly increased considering that it is 

easy to obtain large quantities of autologous tissue in a rapid minimally invasive 

liposuction procedure that requires only local anesthesia. Moreover, ADSC are 100 times 

more abundant in adipose tissue than MSC in bone marrow.19 Numerous clinical trials in 

the past decade have reported the use of ADSC to treat acute and chronic diseases 



afflicting various organs and tissues, including bone, heart, central nervous system, 

gastrointestinal tract, bone marrow, liver, pancreas and skin.20-22  

Arnalich-Montiel et al were the first to report the successful use of ADSC obtained 

from processed human lipoaspirate for corneal stroma repair in a rabbit model.6 Human 

ADSC were delivered to a surgical pocket made 50 microns deep within the stroma. The 

transplanted cells were shown to be safe, non-immunogenic, preserved corneal 

transparency and able to differentiate into functional keratocytes that produced type I & VI 

collagens and expressed ALDH and cornea-specific proteoglycan keratocan. Other studies 

have shown the inhibition of inflammation and angiogenesis in treating chemically burned 

rat corneas with MSC obtained from human bone marrow3 and rat primary cell lines.2  

Surgical techniques can be applied to potentially deliver ADSC to the corneal 

stroma, however, this may induce further iatrogenic damage to an already injured cornea 

and the procedure does not seem feasible or cost-effective. Studies regarding tissue 

engineering and scaffolds are ongoing, yet still not clinically applicable. The purpose of our 

study was to assess the topical use of ADSC derived from human processed lipoaspirate 

in treating ocular surface damage. The study included data from experiments performed 

from 2009 to 2011 in Udine and Calabria (Italy) and Oviedo (Spain). Cornea lesion 

experiments and histological assessments were first performed prior to establishing the 

best chemical burn model to be used in our wound healing study. Rats underwent 

chemical burn lesions and randomly assigned to different treatment groups. Additional 

experiments were performed in mice eyes using a laser induced corneal lesion model. 

Clinical and histological assessments were compared between groups to determine 

biosafety, immunogenicity and efficacy of human derived ADSC in treating induced 

epithelial and stromal wounds in animal corneas.    

 

 



6. MATERIAL AND METHODS 

 

Animals 

Nineteen male Albino Wistar rats (280–330 g) and 40 black mice C57BL/6 (30-40 g) were 

used in the experiments. Animals were housed with a 12-h light–dark cycle with ad libitum 

access to food and water. Animal care and experiments were carried out in accordance 

with the guidelines of the Italian Ministry of Health for Animal care (DM 116/1992) and the 

Association for Research in Vision and Ophthalmology Research on the Use of Animals in 

Ophthalmology and Vision Research and approved by the Institutional Animal Care and 

Use Committee.  

Prior to induction of lesion and treatments, animals were anesthetized by 

intraperitoneal injection of 10 mg/kg zolazepam and 10 mg/kg xylazine hydrochloride.   

Topical anesthesia was induced by 0.4% oxibuprocain eye drops (Novesina, Novartis, 

Varese, Italy). For the rat experiments, 6 animals were sacrificed by cervical dislocation 

after induction of the chemical lesion to assess histology of corneal damage, while the 

remaining 13 animals were sacrificed at 74 hours after induction of the ocular surface 

lesion. For the mice model, 16 of the 33 animals were sacrificed on day 3, while the 

remaining 17 on day 8. All animal eyes were enucleated and fixed in 4% 

paraformaldehyde in phosphate buffered saline (PBS) at room temperature, then rinsed 

and stored in PBS at 4°C until further processing.  

 

Isolation and preparation of adipose derived stem cells 

Human subcutaneous abdominal adipose tissue was obtained from healthy patients (aged 

27-62 years) undergoing elective lipoaspiration surgery with informed oral and written 

consent under a protocol approved by the Institutional Review Board (IRB) of the 

University of Udine, in accordance with the guidelines of the Tenets of the Declaration of 



Helsinki. Patients were screened and resulted negative for HIV, hepatitis B and C virus, 

and syphilis. 

ADSC were obtained from the stromal vascular fraction obtained from lipoaspirates 

and cultured as previously described.23, 24 Briefly, the stromal vascular fraction (SVF) was 

obtained centrifuging the lipoaspirates at 3,000g for 3 minutes. The SVF was subsequently 

dissociated in Jocklik modified Eagle’s medium (JMEM; Sigma-Aldrich, St. Louis, MO) 

containing 400 U/mL of collagenase type 2 (Sigma-Aldrich, St. Louis, MO) for 20 minutes 

at 37°C. The collagenase enzymatic activity was stopped with the addition of 0.1% bovine 

serum albumin (BSA; Sigma-Aldrich, St. Louis, MO) in JMEM. Samples were centrifuged 

for 10 minutes at 600 g, then pellets were resuspended and filtered through a 40-µm pore-

sized membrane. Filtered cells (2x106 cells per dish) were plated into 100-mm human 

fibronectin (Sigma-Aldrich, St. Louis, MO) coated dishes in expansion medium composed 

as follow:23 60% low glucose Dulbecco's Modified Eagle Medium (DMEM; Invitrogen, 

Carlsbad, CA), 40% MCDB-201(Sigma-Aldrich, St. Louis, MO), 1 mg/mL linoleic acid-BSA, 

10-9 mol/L dexamethasone (MP Biomedicals, Solon, OH), 10-4 M ascorbic acid-2 

phosphate (Sigma-Aldrich, St. Louis, MO), 1Xinsulin-transferrin-sodium selenite (Sigma-

Aldrich, St. Louis, MO), 2% fetal bovine serum (FBS; StemCell Technologies, Vancouver, 

Canada), 10 ng/mL of human platelet-derived growth factor-bb and10 ng/mL of human 

epidermal growth factor (both from Peprotech EC, London, UK). Colonies developed in 

primary culture and reached near confluency in approximately 1 week. Medium was 

replaced every 3-4 days. Cells were detached with 0.25% trypsin-EDTA (Sigma-Aldrich, 

St. Louis, MO) and replated at a density of 2x103/cm2 once reached at 70-80% confluence. 

Adherent cells obtained after the second subculture, which corresponds to the third 

passage of cells, were used for the experiment.  

Cells were isolated by the use of the selective medium. Stemness of these cells 

was demonstrated in vitro in accordance to our previous study 23, 24 on the basis of: 



mesenchymal stem cell like surface immunophenotype; expression of Oct-4, Nanog and 

Sox2 proteins and multipotency, shown by the ability to differentiate into derivatives of all 

three germ layers. 

 

Flow cytometry 

Proliferating cells were detached with 0.25% trypsin-EDTA (Sigma-Aldrich) and, after a 20 

minutes recovery phase, were incubated with either properly conjugated primary 

antibodies: CD10, CD13, CD29, CD49a, CD49b, CD49d, CD90, CD73, CD44, CD59, 

CD45, CD271, CD34, (BD Biosciences), CD105, KDR, CD66e (Serotech), CD133 

(Miltenyi Biotec), E-cadherin (Santa Cruz Biotechnology), ABCG-2 (Chemicon 

International). Properly conjugated isotype matched antibodies were used as a negative 

control. The analysis was performed by CyAn (Dako Cytomation). 

 

Immunofluorescence 

Cells cultured either in expansion or in differentiation medium were fixed in 4% buffered 

paraformaldehyde for 20 minutes at room temperature (R.T.). For intracellular stainings, 

fixed cells were permeabilized for 8 minutes at R.T. with 0.1% Triton X-100 (Sigma-

Aldrich) before exposing them to primary antibodies. In order to block unspecific binding of 

the primary antibodies, cells were incubated with 10% donkey serum in PBS for 30 min. 

Primary antibody incubation was performed over-night at 4°C using following dilutions: 

Oct-4 (Abcam, 1:150); Sox-2 (Chemicon, 1:150); Nanog (Abcam, 1:150); Cytokeratins 7, 

8, 18, 19 (Biogenex, 1:20); ß3-tubulin (Abcam, 1:1000); Smooth Muscle Actin (Dako, 

1:50), Connexin 43 (Santa Cruz, 1:40); α-Sarcomeric Actin (Sigma, 1:100), and Gata4 

(Santa Cruz, 1:100). To detect primary antibodies, A488 and A555 dyes labeled secondary 

antibodies, diluted 1:800, were employed (Molecular Probe, Invitrogen). 0.1 μg/ml DAPI 

(Sigma) was used to identify nuclei. Vectashield (Vector) was used as mounting medium. 



Epifluorescence images were obtained utilizing a live cell imaging dedicated system 

consisting of a Leica DMI 6000B microscope connected to a Leica DFC350FX camera 

(Leica Microsystems, Wetzlar, Germany). 

 

Multilineage differentiation 

Hepatocytic differentiation was induced growing cells for two weeks at high density onto 

fibronectin coated dishes in a medium containing 0.5% FBS, 10 ng/ml FGF-4 and 20 ng/ml 

HGF (both from Peprotech EC, London, UK). After this period, FGF-4 and HGF were 

substituted for 20 ng/ml OncostatinM for another 14 days (Peprotech EC, London, UK). 

Muscle cell differentiation was achieved plating 0.5 to 1x104/cm2 cells in expansion 

medium containing 5% FCS (Sigma-Aldrich, st. Louis, MO, USA), 10 ng/mL bFGF, 10 

ng/mL VEGF, and 10 ng/mL IGF-1 (all from Peprotech EC, London, UK), but not EGF. 

Cells were allowed to become confluent and cultured for up to 4 weeks with medium 

exchanges every 4 days. For neurogenic differentiation, cells were plated in DMEM-high 

glucose (Invitrogen, Carlsbad, CA, USA), 10% FBS (Sigma-Aldrich, st. Louis, MO, USA). 

After 24 h medium was replaced with DMEM-high glucose, 10% FBS containing B27 

(Invitrogen, Carlsbad, CA, USA), 10 ng/ml EGF and 20 ng/ml bFGF (both from Peprotech 

EC, London, UK). After 5 days, cells were washed and incubated with DMEM containing 5 

g/ml insulin, 200 �M indomethacin and 0.5 mM IBMX (all from Sigma-Aldrich, St. Loius, 

MO, USA), in the absence of FBS for 5-10 days. At the end of every treatment, cells were 

fixed either with 4% buffered paraformaldehyde. 

 

Blood serum 

Human serum was prepared in accordance to the Azienda Ospedaliero Universitaria 

Santa Maria della Misericordia protocol. In brief, 500 ml of whole blood from one healthy 

young male donor (42 years old) was collected into sterile 9 mL tubes after written 



informed consent. The patient was screened and resulted negative for HIV, hepatitis B and 

C virus, and syphilis. The containers were left standing in an upright position to ensure 

clotting for at least 30 minutes at room temperature, then centrifuged at 2,000 g for 10 

minutes. The supernatant serum was removed under sterile conditions in a laminar flow 

hood with sterile disposable syringes. The vials were frozen and left to thaw for 24 hours 

before treatment use.   

 

Chemical corneal wound in rats 

After intraperitoneal and topical anesthesia, 19 rats were subject to corneal damage using 

a chemical burn model.2, 3, 25 In accordance to the 3R statement of the European 

Community (reduce, replace, refine) that encourages the use of fewer experimental 

animals, and to compare treatments on the same animals to reduce inter-animal variability, 

both eyes were used in the experiment. To induce the chemical burn, a 3-mm diameter 

circular filter paper soaked in NaOH was applied to the center of the cornea for 30 

seconds then quickly extensively irrigated with Hank's Balanced Salt Solution (HBSS) for 

60 seconds. The aim of the study was to induce corneal damage to the epithelium and 

anterior  stroma, thus a first set of experiments was performed on 6 animals to assess 

corneal damage after chemical burn with 0.5 N (right eye) and 0.2 N (left eye) NaOH. 

Based on histological results, the protocol with 0.2 NaOH for 30 seconds was then used to 

generate a central corneal lesion in 13 rats for the main experiment.  

 

Laser corneal wound in mice 

After intraperitoneal and topical anesthesia, both eyes of 40 mice were subject to corneal 

damage by laser induced photorefractive keratectomy (PRK).26 To induce the epithelial 

and stromal laser lesion, each eye was placed under an Apex Plus excimer laser (Summit, 



Waltham, MA) and ablated using a 2-mm diameter central optic zone and a depth of 45-50 

microns; the laser began nasally and progressed temporally.  

 

Treatment regimen in rats 

All animals were treated with topical eye drops of azythromycin 1.5% (Azyter, Laboratoires 

Thea, Clemrmont-Ferrand, France) for antimicrobial prophylaxis 2 times daily for 3 days 

after lesion.26 Twenty-six eyes of 13 rats were divided in five treatment groups (n=5 eyes 

per group), which included: control, stem cells, serum, stem cells + serum, and adipose 

tissue. Control eyes received only antibiotic eye drops. The other 4 groups also received 

topical treatment applied 3 times a day for 3 consecutive days. Topical drops were 

administered with a delay of at least 5 minutes between applications for multiple treatment 

regimens. Stem cell topical eye drops were prepared daily with 1x105 cells suspended in 

25µL HBSS/treatment.6 The serum group received topical application of 25 µL human 

serum. The stem cell+serum group were treated with both topical eye drops. Raw 

lipoaspirate tissue (0.1 ml) was applied to the ocular surface in the adipose group.  

 

Treatment regimen in mice 

All animals were treated with topical eye drops of azythromycin 1.5% (Azyter, Laboratoires 

Thea, Clemrmont-Ferrand, France) for antimicrobial prophylaxis 2 times daily for 3 days 

after lesion.26 Eighty eyes of 40 rats were divided in four treatment groups (n=20 eyes per 

group), which included: control, stem cells, basic serum, plasma rich in growth factor 

(PGRF). Data from the PGRF were intended and collected for a different ongoing study of 

our group, thus not included for direct comparison with this study. Control eyes received 

only antibiotic eye drops. The other 3 groups also received topical treatment applied 3 

times a day for 5 consecutive days. Topical drops were administered with a delay of at 

least 5 minutes between applications for multiple treatment regimens. Stem cell topical eye 



drops were prepared daily with 1x105 cells suspended in 25µL HBSS/treatment.6 The 

serum group received topical application of 25 µL human serum. The PGRF group 

received topical application of 25 µL PGRF prepared in accordance to a protocol from a 

previous study from one of the coauthors (JM).13 

 

Ocular surface evaluation in rat eyes 

Upon topical anesthesia, each treated eye was examined with a stereo biomicroscope 

before application of topical treatment at 20, 28, 45, 50 and 74 hours after lesion to assess 

corneal inflammation, opacities and other anterior surface complications (i.e. infection, 

perforation, etc.). Assessment time points were chosen based on laboratory and 

equipment availability to provide at least one data collection per day during the three days 

of treatment. Fluorescein sodium solution was used to evaluate the degree of the corneal 

epithelial defect. The defect size was determined by 2 masked graders. It was expressed 

in as a semi-quantitative estimate of percentage of fluorescein positive remaining area 

under blue light in comparison with the initial lesion area using a transparent slide with an 

outline of the original circular 3 mm diameter lesion. Graders gave independent masked 

estimates, which were adjudicated by a third grader in cases of discordance. Eyes were 

graded on a scale of 0 to 10 based on ranges of 10% that were rounded up to the nearest 

tenth, thus grade 1 showed a remaining fluorescein area that was approximately 1 to 10% 

of the total area; grade 2 showed an area of about 11 to 20%, etc. (Table 1 legends). The 

corneal surface was also examined for smoothness, clarity, and presence of 

neovascularization. Each animal’s anterior segment was photographed with a Canon 

Coolpix, 5.0 megapixel camera with and without fluorescein at each clinical assessment.  

 

Ocular surface evaluation in mice eyes 



Upon topical anesthesia, each treated eye was examined with a stereo biomicroscope 

before application of topical treatment at 30, 54, 78, 100 and 172 hours after lesion (also 

referred to in this study as day 1, 2, 3, 4 and 7, respectively). This was done at each time 

point to assess corneal inflammation, opacities and other anterior surface complications 

(i.e. infection, perforation, etc.). Assessment time points were chosen based on laboratory, 

technician and equipment availability. Fluorescein sodium solution was used to evaluate 

the degree of the corneal epithelial defect. Each animal’s anterior segment was 

photographed with a Leica EC3 digital camera equipped with a Leica S6D magnifier and 

12.5x objective (Leica Microsystems, Wetzar, Germany) with and without fluorescein at 

each clinical assessment. The defect area was determined by the fluorescein positive 

remaining area under blue light (1mm=240 pixels) using Image J software (National 

Institutes of Health, Bethesda, MD). The corneal surface was also examined for 

smoothness, clarity, and presence of neovascularization.  

 

Histological examination 

Eyes were fixed in 4% paraformaldehyde and included in paraffin. The specimens were 

cut into 5 µm-thick tissue sections with a microtome and subjected to routine hematoxylin 

and eosin staining. Sections were examined under light microscope. Extent of epithelium 

and stromal damage was assessed for the first experimental rat eyes sacrificed at the time 

of corneal lesion. All other remaining rat eyes were enucleated after 74 hours. With 

regards to the 33 mice, 32 eyes of 16 animals were enucleated after 78 hours; while the 

remaining 34 eyes of 17 mice were enucleated at the end of the study at 172 hours post-

lesion. Histopathological investigation included assessment of epithelium regeneration, 

presence of inflammation, and structural integrity of fibroblasts.14 Representative images 

were collected by Leica DMD108 digital microimaging network instrument (Leica, Milan, 

Italy) using a 10X objective (numerical aperture 0.25).  



 

Statistical analysis 

Normality of the data distribution was assessed with the Kolmogorov-Smirnov test. Data 

were expressed as median ± standard deviation. Differences of the data amongst groups 

were analyzed with SPSS 20.0 (SPSS Inc, Chicago, ILL) for Windows program using 

Kruskal-Wallis and Friedman test. Multiple comparisons were performed with Dunnett’s 

test. A P value of <0.05 was considered to be statistically significant. 

 

7. RESULTS 

 

ADSC were obtained from human adipose tissue aspirates following a protocol optimized 

by Beltrami’s group for the isolation and in vitro expansion of human multipotent adult stem 

cells.23 As previously shown for multipotent adults stem cells obtained from human liver, 

bone marrow, heart and peripheral blood, ADSC expressed the pluripotent state-specific 

transcription factors Oct-4, Nanog and Sox 2 (Figs. 1A-D) and were characterized by a 

mesenchymal stem cell immunophenotype. When assessed by flow-cytometry, ADSC 

highly expressed CD90, CD105, CD73, however, were mainly negative for the 

hematopoietic markers CD34 and CD45 (Fig. 1E). Importantly, ADSC displayed 

multipotency, being able to differentiate into mature cell types of all the three germ layers. 

Specifically, when exposed to the proper differentiation inducing conditions, ADSC were 

able to give rise to endodermic (Figs. 1F&G), mesodermic (Figs. 1H&I) and ectodermic 

derivatives (Figs. 1J&K). 

As shown in the histological sections in Figures 2A&B, the normal rat cornea 

surface had a smooth, regular and integral epithelium. The lesion induced by 0.2 N NaOH 

shown in Figures 2C&D caused segmented de-epithelization, Bowman layer damage and 

patchy anterior stromal damage. Figures 2E&F show that the 0.5 N NaOH induced 



complete ulceration and damage to the anterior and mid stroma. Based on these 

histological findings and the fact that animals were treated for only 3 days before being 

sacrificed, we used the 0.2 N NaOH model to induce a rather mild ocular surface damage. 

The lesion was performed uneventfully in all rat eyes. Immediately after the 

chemical burn, the treated areas had a uniform, hazy ground-glass appearance. There 

was no sign of neovascularization or perforation in all eyes. Two animals (#10 & 11) died 

of hypothermia at 20 hours after anesthesia. A total of 11 animals (22 eyes) were 

considered in the statistical analysis. Partial re-epithelization was seen in all rats at the first 

time point at 20 hours. All eyes were completely epithelized by 74 hours, with the 

exception of 3 control eyes (#3-5). Table 1 shows all raw data regarding the percent of 

fluorescein positive epithelium defect at each time point for each rat eye. The stem cell, 

serum and stem cell+serum groups showed significantly smaller defect areas at each time 

point when compared with the control and adipose groups (Table 2 & Fig. 3, P<0.05), with 

the exception of the comparisons between stem cells+serum and adipose groups at 20 

hours, and between stem cells and adipose groups at 45 hours, which were not significant. 

No differences were found amongst stem cells, serum and stem cell+serum groups at any 

time point, except at 28 hours in which the epithelial defect area appeared smaller in the 

stem cell group compared to the others (Table 2 & Fig. 3). Eyes treated with stem cells 

and/or serum reached complete re-epithelization in less than 50 hours, with the exception 

of 1 stem cell treated eye (Figs. 3&4).  

Inter-individual differences were seen between rat eyes, even amongst eyes with 

the same treatment (Table 1&2). To limit this variability, rats #1 to 5 were treated with stem 

cells on the right eye and control on the left (Table 1 & Fig. 4). The stem cell treated eyes 

showed faster wound healing with smaller defect areas at each time point, with differences 

that were significant (Table 2 & Fig. 4; P<0.05).  



Qualitative histology assessment was performed in 11 rat eyes at 74 hours after 

lesion (3 control, 3 stem, 2 serum, 1 stem + serum and 2 adipose). With regards to 

epithelium regeneration, the control eyes showed parakeratosis with epithelium 

discontinuation and ongoing epithelium regeneration (Fig. 5A). Slight parakeratosis was 

seen in 1 stem cell and 1 serum treated eye. Whole layer epithelium regeneration was 

observed in all stem cell treated eyes (Fig 5B). All control eyes showed mild inflammation 

with marked infiltration. All other eyes showed no inflammation and little cellularity, with the 

exception of 1 eye treated with stem + serum that showed minimal inflammation. A 

moderate number of activated fibroblasts were seen in all 3 control eyes and adipose 

treated eyes. 1 serum treated eye and 1 stem cell treated eye showed a minimal number 

of activated fibroblasts. The epithelium of the stem cell eyes consisted of multiple layers 

and less infiltration closely resembling the native corneal epithelium (Fig. 5B).    

The power of the study in calculating a difference amongst groups of 10% of the 

percentage of fluorescein epithelium defect, considering 5 groups and 5 eyes per group, 

was only 11 %. The rat experiments needed to include 45 eyes per each group to provide 

a power of 80%.   

With regards to the mice experiments, the PRK lesion was performed uneventfully 

in all eyes. Immediately after the laser ablation, the treated areas had a whitish uniform, 

hazy appearance. There was no sign of neovascularization or perforation in all eyes. 

Three animals (#24, 29 & 39) died of hypothermia at 30 hours after anesthesia, and four 

animals (#6, 12, 38 & 28) were found dead in the cages (probably due to natural causes) 

before the endpoint on the 7° day. A total of 33 of 40 animals (66 eyes) were considered in 

the statistical analysis: 16 (32 eyes) underwent treatment for 3 days and sacrificed at 78 

hours and the remaining 17 animals (34 eyes) completed the 5-day treatment regimen and 

then sacrificed at 172 hours.  



Partial re-epithelization was seen in all rats at the first time point at 30 hours. All 

eyes were completely re-epithelized by 100 hours (Table 3 & Fig. 6). After the first day, the 

fluorescein positive corneal lesion area was significantly smaller in the stem cells groups 

than the control eyes (Table 3 & Fig. 7; p<0.05); on the second day, it was significantly 

larger in the controls, yet comparable between stem cell and serum treatment groups 

(Table 3 & Fig. 7; p<0.02). No differences were found amongst groups on the other days.  

Inter-individual differences were seen between rat eyes, even amongst eyes with 

the same treatment. To limit this variability, several mice were treated with stem cells on 

the right eye and control on the left. The stem cell treated eyes tended to show faster 

wound healing with smaller defect areas at most of the earlier time points in all these eyes. 

Figure 8 shows examples of the fluorescein positive areas at each time point for these 

eyes.  

 

8. DISCUSSION 

 

In this study, we have shown that ADSC obtained from human processed lipoaspirate 

enhance corneal wound healing after chemical burn and laser ablation when compared to 

traditional topical therapy. The percent of epithelium fluorescein positive damage in eyes 

treated with stem cells (with or without serum) was smaller at each time point, which was 

statistically significant when compared to the control and adipose treated rat eyes (Table 

2) and control mice eyes (Table 3). Stem cell treated eyes reached complete epithelium 

closure faster than the control and adipose treated eyes (Fig. 3 & 6). In order to limit inter-

individual difference, both eyes of the same rat were compared, in which the right eye was 

treated with stem cells and the left eye was used as a control (Fig. 4). The data from this 

direct comparison showed a faster and better epithelial wound healing in the stem cell 

group. The preliminary data from the rat histological assessment showed that the stem cell 



treated corneas had complete re-epithelization after 3 days, with less inflammatory cells 

and limited atypical fibroblast structure compared with the control eyes, which tended to 

have a more discontinuous and disorganized epithelium and stromal morphological 

appearance with greater infiltration (Fig. 5). The re-epithelization data and histology 

suggest enhanced corneal wound healing with stem cells.  

Existing literature on inducing chemical corneal damage is vague and rather 

variable with respect to chemical agents to induce damage, concentration, method, and 

exposure time.2, 3, 25, 27-29 Considering our treatment regimen consisted of only 3 days, the 

intent of our study was to assess treatment after an ocular surface wound of the corneal 

epithelium and anterior stroma without obstructing recovery and limiting complications. 

This was done to avoid inducing a damage that could perforate the cornea, cause 

neovascularization, extend to the limbus or induce severe corneal scarring. Considering 

the lesion induced by 0.2 N NaOH (Figs. 2C&D) caused mild damage to the epithelium 

and anterior stroma, while 0.5 N NaOH induced complete ulceration and mid stromal 

damage (Figs 2E&F), and the animals were treated for only three days before sacrificing 

them, we used the 0.2 N NaOH model to induce a rather mild ocular surface damage. 

The designs of our experiments were directed at comparing current topical 

treatments used in day-to-day clinics with ADSC. The control group was treated with 

antibiotics for routine prophylaxis. Considering animals were treated and assessed within a 

period of 74 hours, azythromycin (Azyter) was chosen based on the efficacy, safety and 

beneficial antimicrobial prophylaxis offered by topical application 2 times daily for only 3 

days.26 Autologous serum and plasma rich in growth factors have been used in the past 

few years in treating ocular surface disorders such as persistent epithelial defects, severe 

dry eyes, chronic inflammation and autoimmune disorders.12-14 The therapeutic benefits 

from these autologous blood derivatives include nutrition for the ocular surface, growth 



factors, epitheliotrophic and antimicrobial support, and anti-inflammatory factors. The 

serum group received topical application of 25 µL human serum.  

Stem cell topical eye drops were prepared daily with 1x105 cells suspended in 25µL 

of Hank’s balanced salt solution (HBSS)/treatment. The aim of the study was to apply a 

concentrated amount of stem cells that could be applied by topical drops. We chose this 

concentration of cells based on the availability of stem cells, and on the limited literature 

that report concentrations that range from 3x105 cells suspended in HBSS,6 2.5x104 cells 

suspended in 2µL HBSS,4 and 2 x105 cells suspended in 200µL.2 We chose to prepare the 

stem cell drops daily and apply them 3 times a day for 3 days similar to the other treatment 

regimens. The stem cells appeared to be viable and healthy under light microscope 

analysis after 20 hours in suspension in HBSS, however, histological and biochemical 

analysis was not performed to confirm this.      

Our data showed that the rat and stem cell treated group had slightly better and 

faster re-epithelization than the serum treated group in the initial phases (Table 2, Fig. 3), 

even though the differences were not significant, especially considering the small number 

of eyes in this preliminary study. This was also the case for the mice experiments that 

showed statistically smaller lesions after day1 in the stem cell group, which was 

comparable to the serum treated eyes but less than that observed in the control group on 

days 2 and 3 (Table 3, Fig. 7). The serum group, stem group and combined group in the 

rat experiments appeared to give similar superficial wound healing response, however, this 

needs to be confirmed in further experiments with larger cohort that are treated and 

assessed over longer time periods. Moreover, in addition to re-epithelization, corneal haze 

and stromal opacities need to be considered in the assessment of overall corneal wound 

healing to determine and compare the global effect of different types of treatment. Our 

preliminary results do not justify treatment with a slightly more invasive stem cells 

technique compared to blood serum. If the true advantage of stem cell therapy lies in 



enhanced stromal wound healing and less scarring and intrastromal opacities, then the 

slightly more invasive procedure of lipoaspiration to isolate autologous stem cells 

compared to simply drawing blood for serum may be justified. This issue has partially been 

addressed in our studies currently underway, in which histological stromal comparisons 

were considered in a larger group of animals that were treated for a longer time period.  

It also important to note that our animal model included the use of human derived 

stem cells and plasma, which may have induced a variety of antigen immune responses 

and may have played a role in the wound healing effect in the single and combined 

treatment regimens. There did not seem to be an additive effect with the combined stem 

and serum group in the rat eyes, which may have been due a greater antigen-induced 

immune affect brought on by 2 the different human factors applied to the rat eye, however, 

the cohort is much too small to draw any valid conclusions. We are attempting to isolate 

autologous animal derived lipoaspirates and serum for future studies to better represent 

the human mode of treatment.  

A point should also be made about the use of the topical anesthesia, which was 

used daily to assess the fluorescein stained areas and may have played a role on inducing 

slight ocular surface damage and delayed wound healing. The negative affects of the 

repeated use of these drops, however, may have influenced the cohort in a similar fashion 

considering that all eyes, regardless of treatment regimen, underwent the same number of 

ocular surface assessments with the local anesthesia.   

There did not appear to be any therapeutic benefits in the adipose treated rat group, 

which had comparable results to the control eyes (Table 2, Fig. 3). This may partially be 

explained by the low concentration of ADSC in the raw lipoaspirate and because the thick 

lipid based tissue may have actually mechanically blocked new epithelium migration and 

delayed the normal epithelium closure. Moreover, the non-purified human heterogeneous 



lipoaspirate may have induced a pro-inflammatory response from the bulbar and lid 

conjunctiva.    

Our study was based on the use of ADSC for corneal wound healing because of the 

numerous potential benefits from utilizing this cell therapy approach. A large quantity of 

these autologous cells can rapidly be obtained and harvested from an easily accessible 

reservoir, which requires mini-invasive procedures under local anesthesia. The frequency 

of these multipotent cells normally found in numerous tissues throughout the body is much 

higher in adipose tissue; more than a 100 fold higher amount of cells in adipose tissue 

when compared to the amount of MSC obtained from bone marrow.19 Higher numbers of 

primary cells may entail the need of less passages for isolation and harvesting, thus 

limiting the risk of culture-induced chromosomal abnormalities and infection. Moreover, 

numerous studies and phase I and II clinical trials22 in the past decade have reported the 

promising clinical utility of ADSC in a wide variety of tissue regeneration models, ranging 

form plastic surgery fillers,30 muscle,31 bone32 and heart.23, 33  

The physiological roles of ADSC are diverse and promising in tissue regeneration 

and wound healing. Numerous studies have focused on the use of MSC from bone 

marrow to treat various pathologies and disorders in the past 40 years, however, it was the 

work by Zuk et al in 2002 that showed a large reservoir of functional MSC in adipose 

tissue.17 ADSC isolated from the stroma-vascular fraction of adipose tissue obtained from 

lipoaspirate have been shown to meet the minimal set of 4 criteria proposed by the 

Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular 

therapy34 used to define functional human MSC, which include: plastic-adherency in 

standard culture conditions;17, 18, 24 ability for osteogenic, adipogenic and chondrogenic 

differentiation;17, 18, 24 the expression of specific CD markers (i.e. CD10, CD 13, CD 29, 

CD44, etc.),17, 23, 24, 35 and the lack of certain hematopoietic and leukocyte antigen markers 

(i.e. CD45, CD14, CD16, etc).17, 35 Several molecular and biochemical characterization 



studies have shown that ADSC derived from lipoaspirates are capable of multiple 

mesodermal lineage differentiation, considering that several lineage specific genes and 

proteins for bone, fat, cartilage, muscle and neural-like tissue can be induced in vitro with 

selective medium cultures.17, 18 In addition to their extensive proliferation potential and 

multilineage differentiation, ADSC can interact and affect the immune system response to 

injury, by the down-regulation of proinflammatory factors and production of several trophic 

factors.2, 16, 36 Several reports have shown the immunoregulatory properties of MSC, which 

include the inhibition of T-cells,37 increase in tumor necrosis factor (TNF) from dentritic 

cells,38 increase in regulatory T-cells,38 block of antigen producing cell maturation,39 

increase in immunosuppressive cytokine interleukin (IL)-10 and TNF-β and decrease in IL-

2.2 The endocrine function of adipose tissue is evident through the secretion of numerous 

growth factors (GF) like epidermal GF, vascular endothelial GF, basic fibroblast GF, 

keratinocyte GF and platelet derived GF.35  

There are limited studies in current literature regarding the use of ADSC in ocular 

surface and stromal wound healing. Arnalich-Montiel et al were one of the first groups to 

publish a study using human ADSC to regenerate the cornea stroma in a rabbit model a 

few years ago.6 The experiments involved inserting ADSC obtained from human 

lipoaspirate in an intrastromal pocket created with a femtosecond laser. The first set of 

experiments showed that the harvested stem cells exhibited multipotency, in that they 

could be harvested into chondrogenic and osteogenic lineages. Clinical and histological 

assessment proved that the transplanted cells were safe, caused no immune reaction,40 

maintained corneal transparency and did not show any clinical differences with the control 

eye. The transplanted multipotent ADSC acquired a dendritic morphology similar to 

keratocytes and appeared to behave like regular rabbit corneal stroma cells in situ,  being 

able to produce collagen I &VI but not collagen III & IV, which are typical characteristics of 

keratocytes.41 Polymerase chain reaction (PCR) experiments showed that these 



transplanted cells exhibited human keratocan and ALDH expression, which are typical in 

corneal cells, and were not found in the control group. The authors justly concluded that 

ADSC could be a viable cell source for stromal repopulation and repair in corneal 

pathologies.  

In vitro reports have provided immunohistochemical and molecular evidence that 

ADSC cultured in specific keratocyte-differentiation conditions can adopt a keratocyte 

phenotype, which can synthesize and secrete cornea specific keratocan mRNA and 

keratocyte specific proteins.5 Du et al showed that isolated human corneal stem cells 

injected in murine corneas restored stromal defects and maintained corneal transparency.4 

The ability of ADSC to remodel tissue in a manner consistent with normal organogenesis 

could explain the reduced amount of scarring and residual opacities during the wound 

healing process. Rat immunofluorescent studies involving chemically damaged corneas 

treated with human bone marrow MSC plated on amniotic membrane showed the 

therapeutic effect of treatment may have been associated with the inhibition of 

inflammation and inflammation-related angiogenesis after transplantation.3 MSC obtained 

from rat primary cell lines also exhibited anti-inflammatory and anti-angiogenic activity in 

chemically burned rat corneas.2 The study showed that both the MSC and culture medium 

derived from MSC reduced corneal inflammation and neovascularization, decreased IL-2 

and IFN, increased IL-10 and IL-6, reduced infiltration of CD4+ cells and upregulated the 

expression of thrombospondin-1, which the authors attributed to probable paracrine 

mechanisms, cell-to-cell contact, and the continuous secretion of soluble factors and 

cytokines from MSC and activated cells in situ.2  

The presence of corneal limbal stem cells (LSC) was first discovered in the late 

1980’s.42 These slow-cycling subpopulation of epithelial basal cells located in the 

peripheral limbus of the cornea were found to have a substantial proliferating capacity. 

Autologous and allogenic LSC transplants are surgical option,43 however, donor tissues 



are limited and autologous transplants may give rise to iatrogenic damage to the healthy 

fellow eye or at times the fellow eye is not healthy. Tissue engineering pertains to LSC as 

a cell source for epithelial reconstruction, thus may have limiting therapeutic effects on 

damaged stroma. Recent studies have reported the presence of MSC in the human limbal 

biopsies having similar immunophenotype and immunocytochemical markers to those 

present in bone marrow derived MSC.44 Choong et al. showed that isolated corneal 

keratocytes having fibroblastoid morphology expressing similar CD antigens to bone 

marrow MSC could be isolated from finely chopped human cornea tissues.  

With regards to the clinical use of ADSC for ocular surface wounds in humans, a 

case report has recently been published by a group in Greece.4545 A young male patient 

with stable keratoconus showed post-traumatic corneal epithelial defect in his right eye. 

Several months of traditional therapy was not effective in treating the persistent sterile 

corneal ulcer. He was scheduled for penetrating keratoplasty due to risk of corneal 

perforation and severe stromal opacity that reduced central visual acuity, which was 

20/100. In the meantime, the patient agreed to undergo an experimental treatment 

involving topical application of autologous ADSC, which was obtained by lipoaspiration of 

subcutaneous adipose tissue from the lumbar area. The ADSC were isolated from the 

lipoaspirate and applied to the bottom of the ulcer, followed by closure of the lid with a 

pressure eye patch for 24 hours. Corneal healing was observed after 11 days. At six 

months after treatment, the patient still did not require surgery, visual acuity was improved 

to 20/40, central corneal thickness was 476 µm, and corneal transparency improved with 

mild residual anterior stromal opacification.   

We included the extremely low power of our rat study in the results section to 

indicate that a rather large group of animals are needed to give results that are significant. 

Although the mice experiments were based on a larger group of animals, additional eyes 

needed to be included to reveal slight statistical differences (if any) pertaining to epithelium 



repair throughout time, especially between stem cell and serum treated eyes. Moreover, 

future studies assessing corneal stromal haze and histological repair over longer time 

periods (several weeks and months) are surely needed to determine if the main 

advantages of the slightly more invasive autologous adipose stem cell approach outweigh 

the benefits of serum or traditional antibiotic treatments. Our study confirmed the biosafety, 

immunogenicity and efficacy of stem cells, which proved to be comparable to the serum 

treatment and surely better than the control eyes treated solely with traditional topical 

antibiotics. The aim of this preliminary study was to assess the probable therapeutic 

affects of ADSC without having to sacrifice a large group of animals, especially 

considering the extremely limiting information currently available in literature. The data 

presented in this study are not intended to assess statistically significant results, however, 

to provide helpful insights to guide future studies in this field.   

In conclusion, our preliminary study is limited by the small number of animals 

considered, the brief period time for treatment and clinical assessment, semi-quantitative 

data and the non-extensive histological evaluation. The literature available regarding the 

use of ADSC in corneal wound healing is very limited, thus extensive prior studies are 

needed to provide the groundwork and experimental basis in this field. Studies are 

presently underway in our lab, which involve a greater number of eyes assessed over a 

longer time period. Epithelial recovery, inflammation, corneal haze, and quantitative 

histological assessments are currently being compared between the different treatment 

arms. The aim in our future studies are to determine whether or not the mid to long term 

healing processes that determine stromal haze and loss of corneal transparency can be 

positively influenced by the presence of topically applied ADSC. These cells are 

multipotent and have the potential to differentiate towards a keratocyte stromal lineage, 

thus theoretically appear to be a promising therapeutic alternative and advantageous 

compared to treatments currently utilized in clinical practice. Moreover, the concentration 



of stem cells, viability of cells in isolated medium, number of applications per day and 

duration of treatment still need to be determined if this novel therapy proves to be 

beneficial.  

Although the exact mechanisms underlying the beneficial effects of this cell therapy 

are unknown, our preliminary results suggest that the topical application of ADSC may 

enhance corneal epithelial wound healing. The mechanisms behind ADSC may range from 

ADSC transdifferentiation and substitution of non-functional or abnormal keratocytes, 

limbal stem cell repopulation, paracrine mechanisms, cell-to-cell contact and signaling, 

stimulation of residing MSC, production of soluble cytokines and factors that promote 

normal tissue organogenesis. Future studies are definitely needed to better understand the 

potential therapeutic benefits offered by ADSC that are already being used in a variety of 

clinical studies involving different organs and human pathologies. The clinical use of ADSC 

looks promising, especially considering the abundant and easily accessible reservoir of 

autologous tissue, relatively low health costs involved, and the use of cells that show 

multipotency, and anti-inflammatory and trophic characteristics, which may promote proper 

corneal epithelium and stromal wound healing.               
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10. TABLES 

 

Legends for 
fluorescein groups 

Grading 
scale 

% fluor. 
positive 
interval     

0 0 
1 1-10 
2 11-20 
3 21-30 
4 31-40 
5 41-50 
6 51-60 
7 61-70 
8 71-80 
9 81-90 
10 91-100 

 

 

 

Table 1. Estimated percent of fluorescein positive 
epithelium defect (10% intervals) at each time point 

for each rat treatment group  
 

group rat #/eye 20h 28h 45h 50h 74h
control 1L 7 4 3 1 0 
control 2L 7 5 3 1 0 
control 3L 6 5 4 2 1 
control 4L 5 4 4 2 1 
control 5L 7 4 3 1 1 
stem 1R 5 1 0 0 0 
stem 2R 6 2 1 0 0 
stem 3R 4 2 1 1 0 
stem 4R 2 1 2 0 0 
stem 5R 4 2 1 0 0 

serum 6R 5 3 3 0 0 
serum 7R 4 3 1 0 0 
serum 8R 6 4 1 0 0 
serum 9R 2 2 1 0 0 

stem+serum 6L 6 1 1 0 0 
stem+serum 7L 5 4 0 0 0 
stem+serum 8L 4 1 0 0 0 
stem+serum 12L 5 5 1 0 0 

adipose 9L 4 3 1 1 0 
adipose 12R 7 7 1 1 0 
adipose 13L 6 6 1 1 0 



 

Table 2. Percent of fluorescein positive epithelium defect (10% intervals) for each rat group at 
each time point 

   control stem cells  serum stem+serum adipose  p  
time   (median±SD) (median±SD) (median±SD) (median±SD) (median±SD) value*  

          
20 h  7 ± 0.89 4 ± 1.5 4.5 ± 1.71 5 ± 0.82 6 ± 1.52 0.097 
28 h  4 ± 0.56 2 ± 0.55 ^^ 3 ± 0.82 2.5 ± 2.06 6 ± 2.08 0.025 
45 h  3 ± 0.55^^^ 1 ± 0.7 0 ± 1.0 0.5± 0.58 1 ± 0 0.008 
50 h  1 ± 0.55 0 ± 0.45^^ 0 ± 0^^ 0 ± 0^^ 1 ± 0 0.002 
74 h  1 ± 0.55^^^ 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0.031 

          
p value§ 0.0001 0.0001 0.0001 0.0001 0.0001   
SD= standard deviation; * = Kruskal-Wallis test; § = Friedman test; ^ = significantly higher in comparison with stem 
cell and serum groups; ^^ = significantly lower in comparison with control and adipose groups; ^^^ = significantly 
higher in comparison with the other groups; legends for fluorescein intervals listed in Table 1. 

 

 



 

Table 3. Median fluorescein positive corneal lesion area (mm2) 
in mice for each group over time 

Time after 
lesion controls basic serum stem cells p  

Day (hours) (median±SE) (median±SE) (median±SE) value* 
      

Day 1 (30h) 1.25 ± 0.80a 0.90 ± 0.68 0.83 ± 0.42 0.048 
Day 2 (54h) 0.26 ± 0.39b 0.07 ± 0.40 0.08 ± 0.20 0.018 
Day 3 (78h) 0.05 ± 0.29 0.04 ± 0.32 0.01 ± 0.14 0.127 

 Day 4 (100h) 0.00 ± 0.05 0.00 ± 0.00 0.00 ± 0.03 0.202 
 Day 7 (172h) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.000 

p value^ 0.0001 0.0001 0.0001  
* = Kruskal-Wallis test; ^ = Friedman test; a = significantly higher than stem 

cells group; b = significantly higher than the other groups 
  

 



11. FIGURES 

 

Figure 1 

 

Figure 1: ADSC expressed Oct-4 (green fluorescence; A), Nanog (red fluorescence; B) 
and Sox-2 (yellow fluorescence; C). Quantification of pluripotent state-specific transcription 
factor expression (D). Data are presented as mean±standard deviation. Representative 
flow cytometry histograms of ADSC (E). Plots show isotype control IgG-staining profile 
(green histogram) versus specific antibody staining (red histogram). Multipotency of ADSC 
(F-K). Endodermic differentiation (F&G). Cells cultured for in a medium added with HGF 
and FGF-4 became positive for cytokeratins 8-18-19 (green fluorescence; F) and for 
GATA-4 (green dots; G). Myocyte differentiation (H&I). A low fraction of ADSC in 
differentiation medium express the myocyte-specific filament SMA (green fluorescence; I), 
while the large part of the cells express a-sarcomeric actin in the cytoplasm (red 
fluorescence; H) and connexin-43 on the cell surface (green fluorescence; H). 
Neuroectodermic differentiation (J&K). ADSC in neurogenic medium acquired the 
expression of neuron specific enolase (yellow fluorescence; J) and tubulin beta-3 
(magenta fluorescence; K). Nuclei are depicted by the blue fluorescence of DAPI staining. 



Figure 2 

   

2A                2B 

        
2C                 2D 

   

2E                  2F 

Figure 2: Light microscope findings on normal and chemically wounded rat corneas. The 
epithelium layer appears as a dark band positioned on the top side of each figure. Normal 
rat cornea surface with no lesion had a smooth, regular and integral epithelium (A&B). The 
chemical burn with 0.2 N NaOH for 30 seconds caused de-epithelization, Bowman layer 
damage and patchy anterior stromal damage (C&D). Chemical burn with 0.5 L NaOH for 
30 seconds induced complete ulceration and damage to the anterior and mid stroma 
(E&F). 
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Figure 3: Median epithelium defect area (grouped in 10% intervals) over time expressed 
as a percent of fluorescein positive area remaining at each time point for each treatment 
group in the rat eyes. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 



Figure 4 
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Figure 4: Percent of epithelium defect area (grouped in 10% intervals) over time for 
control (left eyes shown in black solid lines) and stem cell treated (right eye shown in grey 
dotted lines) eyes for rats #1-5. 

 

 

 

 

 

 

 

 

 

 



 

Figure 5 

   5A 

         5B 

Figure 5: Light microscope findings of corneal epithelium  wound healing after 74 hours 
for control eye (A) and stem cell treated eyes (B) stained with hematoxylin and eosin 
(x100). The epithelium is shown as the darker stained tissue on the top side of each figure. 
Stem cell treated corneas showed complete re-epithelization, with less inflammatory cells 
and limited atypical fibroblast structure compared with the control eyes. 

 

 

 



Figure 6 

0

1

2

1° day 2° day 3° day 4° day 7° day

Controls Basic serum Stem cells

C
or

ne
al

le
si

on
ar

ea
 (m

m
2 )

Fluorescein intragroups comparison

 

Figure 6: Intergroup comparisons of median epithelium defect area over time for each 
treatment group in the mice eyes. 
 
 

 

 

 

 

 

 

 

 

 

 

 



Figure 7 
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Figure 7: Box plots of median epithelium defect area over time at each time point for each 
treatment group in the mice eyes. 

 

 
 
 
 
 
 
 
 
  

 

 

 

 

 

  



Figure 8 
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Figure 8: Fluorescein positive areas at each time for animals # 1, 2, 3 & 17. For 
intraindividual comparisons, the right eye (red squares) of each animal was treated with 
stem cells and the left eye (blue triangles) was treated with the control regimen. The stem 
cell eyes tended to show better epithelial wound healing than the control eyes in the first 3 
days with smaller fluorescein areas and faster total re-epithelization.  
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