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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte

1
Introduction

This thesis is concerned with the analysis of generalized labelled Markov processes, that is, dynam-
ical systems with continuos state space, interacting with the environment by means of input labels
and producing measurable events by means of transitions to a measurable set of successor states.
The term “generalized” is used to stress the fact that transition events can be measured by formal
measures on a generic measurable space, without assuming a priori that these are of a certain type,
e.g., (sub)probability measures, finite measures, or σ-finite measures. The adjective “Markovian”
is usually employed in the probabilistic setting; here it just indicates that the transitions depend
entirely on the present state and not on the past history of the system.

We will model Markov processes coalgebraically, in the category of measurable spaces and
measurable functions, following the lines of Desharnais et al. [36, 40, 18] and recent books of
Panangaden [69] and Doberkat [42, 43] that contain most of the research on probabilistic systems.

The general goal is to make a step forward in the analysis of Markov processes. Unlike many
results in the literature, in this thesis we have made great efforts in order to develop the whole
theory of Markov processes without assuming particular properties of the measurable state space.
In particular, we will never assume that the state space is either Polish or analytic, but we forced
ourselves to work only with generic measurable spaces.

Why continuous states? In recent years continuos data have become very important in com-
puter science, especially when one consider real physical models, and dynamical systems evolving
in a continuous state, by involving continuous parameters such as concentrations, temperature,
pressure, distances, etc. These systems arise in biology, engineering, security (e.g., of wireless
networks, telecommunications, etc.) and, of course, in many other fields. Sometimes the use of
continuous data cannot be avoided without affecting the behavior of the model: there are situa-
tions in which the discretization of continuous parameters may totally change the response of the
model. Concrete interesting examples can be found in [18].

Due to the complexity of such models, computer scientists tried to to provide techniques to
help the analysis and the reasoning on continuous state systems. This is best done with the help
of formal methods, that is, mathematically based languages, techniques and tools for specifying,
describe and verify systems. When designing a system, the ultimate goal is to make it operate
reliably, despite its complexity. Formal methods are used more and more in industry, not only for
verification but also for the preliminary specification of the models. Both these techniques have
been proven to greatly improve the product quality.

1.1 Bisimulation for Labelled Markov Processes

The notion of bisimulation is central in the study of concurrent systems. In the case of nondeter-
ministic labelled transition systems (strong) bisimilarity of Milner and Park [65, 70] is the basic
equivalence equating systems exhibiting the same behavior. Intuitively, two systems are bisimilar
if they match each other’s moves, in this sense that each of the systems cannot be distinguished
from the other by any external observer. For discrete probabilistic transition systems the basic
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2 1. Introduction

process equivalence is probabilistic bisimilarity of Larsen and Skou [63]. The main difference re-
gards transition probabilities which have to be taken into account in the behavior of the system.
Intuitively, two states are bisimilar if we get the same probability after we have added up the
transition probabilities to all the states in an equivalence class of bisimilar states. The adding up
is crucial, since the probabilities are not just another labels.

When one moves to probabilistic systems over continuous state spaces, the notion of bisimilarity
becomes surprisingly difficult, and many technical problems suddenly arise due to the continuous
nature of the state space. The first notion of bisimulation for labelled probabilistic Markov pro-
cesses, that is, probabilistic systems with generic measurable space of states, has been given cate-
gorically by Blute et al. [18] as a span of zig-zag morphisms, that is, measurable surjective maps
respecting the transition structure of the Markov process. Since from the beginning, it turned out
to be very difficult to prove that the induced notion of bisimilarity is an equivalence relation. This
problem was solved by a very involved construction due to Edalat [45] which, although, requires
that one works with a Polish or, more generally, an analytic space structure. Under these assump-
tions they were able to prove that bisimilarity is an equivalence and moreover, they gave a neat
logical characterization of it [36], resulting in a very simple logic. In subsequent works [37, 38] the
definition of bisimulation has been characterized in more plain mathematical terms, without the
need of notions from category theory. This characterization mimics the definition of Larsen and
Skou for discrete systems, but few measure-theoretic conditions have been imposed to deal with
the fact that not all sets need to be measurable. However, this characterization was given assuming
that the bisimulation relation is already an equivalence, hence they do not cover all possible cases.

In [31], Danos et al. introduced a notion alternative to that of bisimulation, the so called event
bisimulation. This definition is dual to that of bisimulation as it has been given in [18] in the
sense that spans are replaced by cospans. With this definition, equivalence for event bisimilarity
is always guaranteed and, moreover, they were able to characterize event bisimilarity by the logic
without any assumption of analyticity of the state space. This notion have been proven to be
equivalent to standard (or state) bisimilarity in the case of analytic spaces.

In this thesis we prove that bisimilarity for Markov processes over generic measurable spaces
is an equivalence. Our proof does not assume any Polish or analytic structure on the state space,
hence solves the problem posed in [18, 36]. The proof of equivalence is given in terms of a charac-
terization of bisimulation that generalizes that given in [37, 38] to generic binary relations. This
characterization is proven to be in one-to-one correspondence with the abstract coalgebraic notion
of bisimulation of Aczel and Mendler, hence all the results extend to the coalgebraic setting. In
virtue of the proof of equivalence, it is reasonable to ask if the concepts of bisimilarity and event
bisimilarity coincide in general, without assuming analyticity on the state space. Unfortunately, as
it has been proven by Terraf in [80], this is not the case. Nevertheless, we will see that bisimilarity
is contained in event bisimilarity, thus that one of the two inclusion still holds, even without assum-
ing analyticity. The proof of this result is shown coalgebraically, establishing a formal adjunction
between the category of bisimulations and that of cocongruences (actually, only a subcategory of
the latter). To the best of our knowledge, also this result is new and, together with the counterex-
ample given in [80], concludes the comparison between these two notions of equivalence between
Markov processes over generic measurable spaces.

1.2 Structural Operational Semantics for Markov Processes

The operational semantics of a programming language accounts for a formal description of the
behavior of programs, specifying the way they should be executed and the kind of behavior which
should be observed. To a programming language can also be given a more abstract mathematical
representation by means of a denotational semantics. Concretely, to each expression of the language
is assigned a denotation, i.e., an object in a mathematical domain. In this respect, each program is
represented by a function over denotations that maps each input into the corresponding output. An
important property of denotational semantics is that it should be compositional, i.e., the denotation
of a program expression can be constructed by the denotation of its sub-expression. This allows
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/)
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1.2. Structural Operational Semantics for Markov Processes 3

inductive reasoning on the structure of programs, and provides a general way to prove properties
of these.

Every semantics gives rise to a notion of equivalence between programs, i.e., semantical equiv-
alence, which equates programs having the same semantics. It is always a good practice to give to
programming languages both an operational and denotational semantics, and this should be done
ensuring that the respective semantical equivalences coincide. This property is usually denoted as
full abstraction. A denotational semantics is fully abstract with respect to a certain operational
semantics whenever it holds that two expressions have the same denotation if and only if they are
behavioral equivalent. This means that they cannot be distinguished by an external observer that
looks at their executions in all possible environments. Full abstraction, usually guarantees that the
operational semantics is compositional in the sense that behavioral equivalent subprograms can be
substituted without affecting the overall behavior of the system containing them.

Compositionality is usually met when the semantics of the program language terms depends
only on the semantics of its subcomponents. Such property is the mantra of Plotkin’s structural
operational semantics (SOS) [71], which is one of the most applied tools for giving operational
semantics to recursively defined process description languages when the operational semantics is
given in terms of labelled transition systems (deterministic or not). Labelled transition systems are
defined by means of a set of derivation rules that allows for a simple description of the transitions
of a labelled transition system following the syntactic structure of the terms of the programming
language. The great success of the SOS paradigm is mainly due to the fact that many important
semantic properties, such as congruence for bisimilarity, can be established simply by inspecting
the syntactic format of the rules. Depending on the format of the derivation rules, operational
semantics can be more expressive than others. The most popular rule formats for labelled transition
systems are the so called GSOS format [17] and the tyft/tyxt rule format [51], but there are many
other in the literature each with their own specific features (see [2] for a survey).

In recent years, SOS specification systems have been also developed for stochastic and proba-
bilistic systems, due to their important applications to performance evaluation, systems biology,
etc [55, 21, 54, 41]. For example, Bartels [15] have investigated rule formats both for simple discrete
probabilistic systems and Segala systems, and Klin and Sassone [61, 60] proposed rule formats for
stochastic systems with discrete state space and, more generally, for weighted transition systems.
However, these formats still do not cover the case of continuous-state probabilistic and stochastic
systems, like calculi with spatial/geometric features introduced in last years [24, 12]. In these
models, the behaviour of the system may be influenced by continuous data, which therefore is
part of the state of the system. Typical examples are quantitive informations such as density,
volumes, concentrations, and spatial informations, such as the position of processes and where
transitions take place; e.g., in wireless networks distance may affect data access, or in biological
models diffusion alters the signaling pathways, etc.

Working with continuous data is not simple in general, and even very simple process algebras
may become extremely difficult to be described in terms of probabilistic transition systems. Con-
sider, for example this simple yet paradigmatic calculus of agents, where CCS-like synchronizations
are affected by the concentrations of the agents in the system

P,Q ::= 0 | α.P | P ‖ Q | c of P where c ∈ R≥0 and α ∈ A ∪A ∪ {τ}

where 0 denotes the null process, α.P denotes the action prefix, P ‖ Q denotes the parallel
composition, and c of P denotes the system with continuous number c ∈ R≥0 of occurrences of
P . The idea we aim to model is that the rate of execution of an action a ∈ L must depend on the
availability of the agents that may perform this action. Of course, we want also to be faithful with
the intuitive idea that after an action has been performed the occurrence of that action must be
removed from the system. So, the problem is how to specify the semantics of a process like c of P .
Any discrete semantic would force us to decide a priory which is the quantity of P to be consumed
in c of P , with a rule of the form

x
α[r]−−−→ x′

c of x
α[c′·r]−−−−−→ c′ of x′ ‖ (c− c′) of x
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4 1. Introduction

where r denotes the execution rate of the stochastic α-transition in the premise, and c′ denotes
the concentration of the agent consumed by the transition. Any fixed choice of c′ ≤ c would be
unreasonable in a continuos state semantics, since the uniform probability of choosing the exact
value of c′ in the interval [0, c] would be always zero. The only satisfactory choice is to change the
format of the transitions, in order to give an actual continuous state operational semantics to the
calculus.

The operational models we are interested in are, therefore, Markov processes, so that, the notion
of interest is no longer a measure on a discrete space, but a measure over a generic measurable
space. This leads to transitions of the form t

α−−→ µ, where t is the current state of the system,
α ∈ L is an action label representing the interactions with an external environment, and µ is an
actual measure over a measurable space of process terms, measuring the the possible outcomes of
P . Regarding our example above the semantics can be given by the following rule

x
α−−→ µ

c of x
α−−→ c · (U [0, c]× µ× δx) ◦ (λ(c′, x′, x). c′ of x′ ‖ (c− c′) of x)−1

where U [0, c](E) =
∫

[0,c]∩E
1
c dx, for any measurable set E in R≥0, denotes the uniform probability

distribution over the interval [0, c]∩E, δx is the Dirac distribution at x, µ×ν the product measure,
and the lambda term (on the right) in the conclusion denotes a (measurable) function taking three
arguments an returning a process term.

Semantics with a similar transition format have been considered already by Cardelli and Mar-
dare in [26, 10] for dealing with specific equational stochastic systems. However, differently from
the case of discrete processes, the SOS specification given in [26, 10] are rather ad hoc, and they
are not based on any general framework for operational descriptions.

In traditional GSOS format, the target of a transition is a term built from the components of
the source process, and their corresponding semantics. In our settings, the target of a transition is
not a term, but a measure over a generic measurable space, hence the derivations of rules becomes
more complicated. We cope with this problem proposing transitions of the form t

α−−→ µ where µ is
no more a measure but a syntactic expression intended to denote a measure, which we call measure
term. The syntax of measure terms, and their interpretation as actual measures, is part of the
operational specification: a specification is given by a set of rules together with a description of
how measures must be combined. Has one may aspect, not all measure interpretations guarantees
that bisimilarity is a congruence. Sufficient conditions for ensuring well-behaved interpretation can
be established rather easily working at the algebraic and coalgebraic level.

Bialgebraic framework. An abstract formulation of well-behaved SOS specification formats
has been proposed by Turi and Plotkin [83, 82], who built a strong bridge between this approach
and denotational semantics: the so called bialgebraic framework. The key intuition is that rule
specification systems can be formulated in terms of certain natural transformations, called dis-
tributive laws. The models for these distributive laws are bialgebras, that is, a pair consisting of a
T -algebra α : TX → X and a D-coalgebra β : X → DX on the same carrier and such that they
are related by a distributive law λ : TD ⇒ DT of a monad T over a comonad D as follows:

TX X DX

TDX DTX

α β

λX

Tβ Dα

Intuitively, the monad T represents the syntax of the programming language and the comonad
D models the shape of computations. The algebra α : TX → X and coalgebra β : X → DX,
respectively, denote the denotational and operational models of the system, and the distributive
law λ : TD ⇒ DT explains how the syntax distributes over the computations, that is to say, how
the computation of syntactic operator depends on the executions of its arguments. Bialgebras form
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1.3. Behavioral Pseudometrics and Algorithms 5

a category, where any unique morphism from the initial object represent a denotational semantics,
and any unique morphism to the final one an operational semantics. Hence, one can always find a
canonical fully-abstract semantics: the universal morphism from the initial to the final bialgebras.

The main advantages of this abstract categorical formulation are that it allows for a deeper
understanding of the semantical theory leaving out all the technical details due to the specific
model at hand, and, more importantly, it permits to instantiate the general framework to different
kinds of systems behaviors.

We will see that our Measure GSOS specification format induces a distributive law that fits the
bialgebraic framework of Turi and Plotkin, so that we will be able to give a universal fully-abstract
semantics to Markov processes. Since all morphisms respect the operations of the term language,
the universal semantics is compositional and as a trivial consequence, both behavioral equivalence
and (state) bisimilarity over Markov processes are congruences with respect to our rule format.

1.3 Behavioral Pseudometrics and Algorithms

When one focuses on quantitative behaviors it becomes obvious that any notion of equivalence is
too strict, even that of bisimilarity or behavioral equivalence. Indeed, in many situations it is still
of interest knowing whether two systems that may differ by a small perturbation in the continuous
parameters have “sufficiently” similar behaviors. This motivated the development of the metric
theory for Markov process, initiated by Desharnais et al. [39] and greatly developed and explored by
van Breugel, Worrell, and others [88, 87]. It consists in proposing a pseudometric which measures
the behavioral similarity of the systems. This pseudometric, of course, must be consistent with
behavioral equivalence, that is, two systems must be at distance zero if and only if they exhibit
the same behavior. Moreover, working with distances rather than equivalence relations, allows one
also to adapt the notion of similarity between systems according to the problems we have to deal
with. For example, the pseudometric proposed by Desharnais et al. is parametric in a discount
factor λ ∈ (0, 1] that controls the significance of the future in the measurement. Having a discount
factor λ < 1 amounts to make the future behavior of the system less significant; if λ = 1 the future
is not discounted and any transition in the present or in the future have the same relevance.

Since van Breugel et al. have presented a fixed point characterization of the bisimilarity pseu-
dometric, several iterative algorithms have been developed in order to compute approximations of
the pseudometric up to any degree of accuracy [46, 88, 87]. Recently, Chen et al. [28] proved that,
for finite Markov chains the bisimilarity pseudometrics can be computed exactly in polynomial
time. The proof consists in describing the pseudometric as the solution of a linear program that
can be solved using the ellipsoid method. Although the ellipsoid method is theoretically efficient,
“computational experiments with the method are very discouraging and it is in practice by no means
a competitor of the, theoretically inefficient, simplex method”, as stated in [75]. Unfortunately, in
this case the simplex method cannot be used to speed up performances in practice, since the linear
program to be solved may have an exponential number of constraints.

In this thesis we propose an efficient on-the-fly algorithm for computing exactly the pseudomet-
ric of Desharnais et al. [39]. This algorithm is inspired by a characterization of the undiscounted
pseudometric given in [28] based on the notion of coupling of Markov chains, which we extend to
generic discount factors. The advantage of using an on-the-fly approach consists in the fact that we
do not need to exhaustively explore the state space nor to construct and store the data structure
entirely, we will only need those fragments that are really demanded by the local computation.

The efficiency of our algorithm has been evaluated empirically on a consistent set of randomly
generated MCs. The results show that our algorithm performs better than the iterative algorithms
proposed, for instance in [46, 28].
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6 1. Introduction

1.4 Structure of the Thesis and Contributions

We summarize below the content and main contributions of each chapter.

Chapter 2. It introduces the basic preliminaries on category theory and measure theory, and
it is mainly aimed at fixing the notation and the terminology that will be used in the rest of the
thesis. All the material in this chapter are not original and can be found in any (good) textbook on
category theory and measure theory. The only originality is in the exposition of the results, which
are summarized to be used as a short (nevertheless, complete) reference for non-expert readers.

The last section summarizes the definitions and the main properties that are specific to the
category of measurable spaces and measurable maps. This section will be often referred to along
the thesis, since many definitions will serve in many chapters.

Chapter 3. It contains material already existing in the literature, and is aimed to collect the
main results on the theory of universal algebras and coalgebras.

In particular, it recalls the definitions of algebra and coalgebra for a functor, and the categorical
generalizations of the concepts of congruence, bisimulation and cocongruence. Moreover, we also
recall the abstract definitions of induction and coinduction in relation with the notion of initial
algebra and final coalgebra for a functor. These concepts are then also related to the notions of
free and cofree constructions provided by the universal properties of adjoint functors.

Chapter 4. We provide general techniques for proving the existence and also to characterize
initial and final objects in the category of algebra and coalgebras, respectively.

The main contributions of this chapter are (i) a proof for the existence of initial algebras for
the class of polynomial functors in the category of measurable spaces, (ii) the proof of existence of
final coalgebras for the class of measure functors which are specific to the category of measurable
spaces, and (iii) an alternative and general construction for initial algebras and final coalgebras
that uses the axiomatic properties of factorization systems in relation to initial and final sequences
for an endofunctor. As a side result, we slightly generalize a well-known theorem of stabilization
for the final sequence due to Worrell [92, Theorem 4.6].

All the categorical constructions provided in this chapter are given attempting at never assume
specific properties of the category of sets, hence many definitions and results may be found a bit
counterintuitive for people not used to categorical abstraction. These efforts, however, return in
terms of the generality of the constructions, that apply in categories notoriously difficult to handle,
such as Top (the category of topological spaces and continuous functors), UMet (the category
of ultrmetric spaces), PMet (the category of pseudometric spaces), and Meas (the category of
measurable spaces and measurable maps).

Chapter 5. We present a theory of generalized labelled Markov processes which brings together
under a unique framework probabilistic and stochastic Markov processes of [36] and [26]. The
main contributions are (i) an exact and faithful characterization of the coalgebraic bisimulation for
Markov processes in “plain” mathematical terms (ii) the proof that bisimilarity on Markov pro-
cesses over generic measurable spaces is an equivalence, and (iii) a formal coalgebraic analysis on the
relations between the bisimulation and cocongruence on labelled Markov processes, done establish-
ing a formal adjunction between the category of bisimulations and (a subcategory) cocongruences.
This adjunction is then proved to induce an equivalence between two suitable subcategories of
bisimulations and cocongruences. A consequence of this equivalence is that bisimilarity (i.e., the
final object in the category of bisimulations) is well-behaved with respect to behavioral equivalence
(i.e. the final cocongruence). Moreover, this establishes sufficient conditions for a bisimulation to
“coincide” with a cocongruence. Remarkably, all is proven without assuming that the state space
of Markov processes is analytic. These results together with the counterexample due to Terraf [80],
that proves that state bisimilarity does not coincides to event bisimilarity for Markov processes
over generic measurable spaces, conclude the comparison between these two notions of equivalence.
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1.4. Structure of the Thesis and Contributions 7

Chapter 6. In this chapter we consider the problem of modeling syntax and semantics of both
probabilistic and stochastic processes with continuous states, i.e. generalized Markov processes.

The main contributions are (i) the definition of a syntactic rule format that allows for an easy
description of well-behaved semantics for continuos state probabilistic and stochastic Markov pro-
cesses, (ii) a proof that this rule format induces an abstract GSOS distributive law of a monad over
a copointed functor in Meas that adheres the bialgebraic framework of Turi and Plotkin [83], and
(iii) a technique for the definition of measures terms interpretations, that is, natural transforma-
tions in Meas aimed at giving denotation to measure terms, i.e., expressions specifically designed
for describing measures over generic measurable spaces which are employed by the syntactic rule
format.

As an example application, we model a CCS-like calculus of processes placed in an Euclidean
space. The approach we follow in this case can be readily adapted to other quantitative aspects,
e.g. Quality of Service, physical and chemical parameter in biological systems, etc.

Chapter 7. This chapter deals with the problem of exactly computing bisimilarity distances
between discrete-time Markov chains introduced by Desharnais et al. [39].

The main contribution consists in the definition and implementation of an efficient on-the-fly
algorithm which, unlike other existing solutions, computes exactly the distances between given
states and avoids the exhaustive state space exploration. Our technique successively refines over-
approximations of the target distances using a greedy strategy which ensures that the state space
is further explored only when the current approximations are improved. The efficiency of our
algorithm is supported by experimental results, showed in the last section of the chapter, which
prove that our algorithm improves, in average, the the execution time of the approximated iterative
algorithms.

These results are the fruit of a collaboration with Giovanni Bacci, Radu Mardare and Kim G.
Larsen, and have been supported by Sapere Aude: DFF-Young Researchers Grant 10-085054 of
the Danish Council for Independent Research, by the VKR Center of Excellence MT-LAB and by
the Sino-Danish Basic Research Center IDEA4CPS.
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte
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2
Preliminaries

2.1 Category theory: definitions and notation

In this section, we recall the basic definitions from category theory that will be used in the thesis. In
the following we will assume some familiarity with the notions of category, functors, natural trans-
formations, and commutative diagrams. As a reference we recommend to consult the textbooks
by Mac Lane [64] or Borceux [19], but shorter introductions are good as well.

Limits and Colimits. Category theory is the study of universal properties. The most primitive
universal property is initiality. An object X in a category C is initial if for every object Y in C
there exists a unique arrow i : X → Y . Every notion in category theory can be dualized reversing
the direction of the arrows. For example, the notion dual to that of initial object is final object,
that is, an object X in C such that for every object Y in C there exists a unique arrow f : Y → X.

Other universal objects are products and coproducts. The binary product between two objects
X and Y is C is a triple (X × Y, πX , πY ) consisting of an object X × Y in C and a pair of arrows
πX : X × Y → X and πY : X × Y → Y , called projections, such that, for every other pair of
arrows f : Z → X and g : Z → Y , there exists a unique arrow 〈f, g〉 : Z → X × Y such that,
f = πX ◦ 〈f, g〉 and g = πY ◦ 〈f, g〉. A binary coproduct between two objects X and Y in C is a
triple (X +Y, inX , inY ) consisting of an object X +Y in C and a pair of arrows inX : X → X +Y
and inY : Y → X + Y , called injections, such that, for every other pair of arrows f : X → Z
and g : Y → Z, there exists a unique arrow [f, g] : X + Y → Z such that, f = [f, g] ◦ inX and
g = [f, g] ◦ inY . These properties are represented diagrammatically as follows:

Z

X X × Y Y

f g

〈f, g〉

πX πY

X X + Y Y

Z

f g
[f, g]

inX inY

where dashed lines denote unique arrows.

Other kind of universal objects are pullback and pushouts. The pullback of a pair of arrows
f : X → C and g : Y → C is a triple (P, pX , pY ) consisting of an object P and arrows pX : P → X
and pY : P → Y such that f ◦ pX = g ◦ pY and, for any pair of arrows qX : Q→ X and qY : Q→ Y
such that f ◦ qX = g ◦ qY , there exists a unique morphism h : Q → P such that qX = pX ◦ h and
qY = pY ◦ h. The pushout of a pair of arrows f : C → X and g : C → Y is a triple (K, kX , kY ),
with an object K and arrows kX : X → K and kY : Y → K such that kX ◦ f = kY ◦ f and, for
any pair of arrows qX : X → Q and qY : Y → Q such that qX ◦ f = qY ◦ f , there exists a unique
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10 2. Preliminaries

morphism h : K → Q such that qX = h ◦ kX and qY = h ◦ kY . Diagrammatically:

Q

P Y

X C

pY

pX g

f

h

qX

qY
C Y

X K

Q

kY

kX

g

f

h

qY

qX

All the above universal objects are just particular cases of the more general notions of limit and
colimit over a diagram. Formally, a diagram of type J in C is a functor D : J→ C. Intuitively, J
can be thought of as an index category and D as a mapping to morphisms in C patterned on J.

Definition 2.1.1 (Limit cone) Let D : J → C be a diagram. A cone over D is a collection
(hX : U → DX)X∈J of morphisms in C, such that, for every arrow f : X → Y in J, it holds
Df ◦ hX = hY . A cone (hX : U → DX)X∈J is a limit, if for any cone (kX : V → DX)X∈J over
D there exists a unique arrow u : V → U , such that hX ◦ u = kX , for all objects X in J.

Definition 2.1.2 (Colimit cocone) Let D : J→ C be a diagram. A cocone over D, is a collec-
tion (hX : DX → U)X∈J of morphisms in C, such that, for every arrow f : X → Y in J, it holds
hX = hY ◦Df . A cocone (hX : DX → U)X∈J is a colimit, if for any cocone (kX : DX → V )X∈J
over D there exists a unique arrow u : U → V , such that u ◦ hX = kX , for all objects X in J.

Examples of limits are final objects, products, and pullbacks, and of colimits initial objects,
coproducts, and pushouts. Limits and colimits over D : J→ C are said small if the index category
J has a proper set of objects. A category C is complete if it has all small limits, cocomplete if is
has all small colimits.

Adjoint functors. There are various definitions for adjoint functors. Their equivalence is ele-
mentary but not trivial at all. We recall some of them: via unit and counit laws, via universal
morphisms, and via isomorphism of homsets.

Definition 2.1.3 (Adjunction) An adjunction between two functors F : C→ D and G : D→ C
consists of two natural transformations η : IdC ⇒ GF and ε : FG ⇒ IdD, respectively called unit
and counit of the adjunction, satisfying the following composition laws:

F FGF

F

Fη

idF
εF

G GFG

G

ηG

idG
Gε

We write (η, ε) : F a G, or simply F a G, when there is an adjunction between F and G. This is
also described by saying that F is the left adjoint of G, or G is the right adjoint of F .

An alternative characterization can be given in terms of universal morphisms. In particular, it
turns out that each component of η, the unit of the adjunction, is a G-initial arrow and, dually, each
component of the counit ε is an F -final arrow. The existence of unique initial and final morphisms
is used in the so called free and cofree universal construction of morphisms, respectively.

Theorem 2.1.4 (Universal morphisms) Let F : C → D and G : D → C be two functors.
Then, (η, ε) : F a G is equivalent to the following statements:



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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2.1. Category theory: definitions and notation 11

i. Free construction: for any pair of objects X in C, Y in D, and any arrow f : X → GY in C,
there exists a unique arrow f# : FX → Y in D such that the following diagram commutes

C D

X GFX FX

GY Y

ηX

f
Gf# f#

F

G

ii. Cofree construction: for any pair of objects X in C, Y in D, and any arrow f : FX → Y in
D, there exists a unique arrow f [ : X → GY in C such that the following diagram commutes

D C

FX X

Y FGY GY
εY

f
Ff[ f[

G

F

Moreover, F a G is equivalent to have a natural isomorphism between arrows of type FX → Y
and X → GY , for all objects X in C and Y in D. This can be formalized via the homset (bi)functor
HomC : Cop ×C→ Set, defined by

HomC(X,Y ) = {f | f : X → Y C-morphism}
HomC(f, g)(h : X → Y ) = g ◦ h ◦ f : X ′ → Y ′ .

for all objects X, Y in C and arrows f : X ′ → X, g : Y → Y ′ in C. Indeed, the composites
HomD(F, Id) := (F op× IdD) ◦HomD and HomC(Id,G) := (IdopC ×G) ◦HomC describe the type
of morphisms we are looking for. Formally:

Theorem 2.1.5 (Isomorphism of homsets) Let F : C → D and G : D → C be two functors.
Then, F a G if and only if there exists a natural isomorphism θ : HomD(F, Id)⇒ HomC(Id,G).
Explicitly, for all f : X ′ → X in C and g : Y → Y ′ in D, the diagram below commutes

HomD(FX, Y ) HomC(X,GY )

HomD(FX ′, Y ′) HomC(X ′, GY ′)

θX,Y

∼=

θX′,Y ′

∼=

HomD(Ff, g) HomC(f,Gg)

Monads and Comonads. Monads are one of the most general mathematical tools. For instance,
every algebraic theory, that is, every set of operations satisfying equational laws, can be seen as a
monad; and algebraic theories are only a minor source of monads. In fact, every “canonical” (or
universal) construction between two categories give rise to a monad.

Definition 2.1.6 (Monad) A monad in C is a triple (T, η, µ) of a functor T : C → C and two
natural transformations η : Id⇒ T and µ : TT ⇒ T , called the unit and multiplication respectively,
such that the three diagrams below commute

T TT

T

ηT

id µ

TT T

T

Tη

idµ

TTT TT

TT T

Tµ

µ

µT µ
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte

12 2. Preliminaries

The first two diagrams represent the unit laws of the monad, and the third the multiplication law
of the monad.

Intuitively, a monad (T, η, µ) on C can be understood as a monoid in the category of endofunctors
on C, the “operation” µ being the associative multiplication of the monoid and η its unit.

Definition 2.1.7 (Comonad) A comonad in C is a triple (D, ε, ξ) of a functor D : C→ C and
two natural transformations η : D ⇒ Id and ξ : D ⇒ DD, called the counit and comultiplication
respectively, such that the three diagrams below commute

D

D DD
εD

id ξ

D

DD D
Dε

idξ

D DD

DD DDD

ξ

Dξ

ξ ξD

The first two diagrams represent the counit laws of the comonad, and the third the comultiplication
law of the comonad.

Dually to the case of monads, comonads (D, ε, ξ) in C can intuitively be understood as comonoids in
the category of endofunctors on C, the “operation” ξ is an associative de-constructor, decomposing
the structure given in the shape of the functor D into the (de)-composite DD, and ε the counit (or
destructor). Comonads have been extensively used in the definitions of non-well-funded dynamical
data structures, such as directed containers, infinite streams, infinite trees, etc.

An important result, which will be extensively used in the rest of the thesis, is that every
adjunction between two categories gives rise to both a monad and a comonad.

Theorem 2.1.8 Let C and D be two categories, F : C → D and G : D → C be adjoint functors
(η, ε) : F a G. Then, the triple (GF, η,GεF ) is a monad and the triple (FG, ε, FηG) a comonad.

Monic spans and Epic cospans. The categorical generalization of relations R ⊆ X × Y in
Set in an arbitrary category C, are monic spans between objects X and Y in C, that is, triples
(R, f, g) with R an object in C and f : R→ X, g : R→ Y a pair of C-morphisms, such that they
are jointly-monic (i.e., given any pair of morphisms h, k : Z → R in C, it holds that f ◦ h = f ◦ k
and g ◦ h = g ◦ k implies h = k). Note that, in categories with binary products, (R, f, g) is a
mono span if and only if the canonical morphism 〈f, g〉 : R → X × Y is monic, i.e., R is a proper
sub-object of X × Y .

The dual notion is given by epic cospans, that is, triples (K, f, g) with K an object in C, and
f : X → K, g : Y → K a pair of morphisms in C, such that they are jointly-epic (i.e., given any
pair of morphisms h, k : K → Z in C, it holds that h◦f = k ◦f and h◦g = k ◦g implies h = k). In
categories with binary coproducts, (K, f, g) is an epic cospan if and only if the canonical morphism
[f, g] : X + Y → K is epic, i.e., K is a proper quotient of X + Y . In Set, epic cospans over the
sets X and Y are in one-to-one correspondence with quotients (X + Y )/E and their canonical
injections, where E is an equivalence relation on X + Y .

Factorization systems. The categorical generalization of the notion of subset is that of sub-
object, that is a monic arrow X ′ → X, so that the object X ′ is said a sub-object of X. Dually,
the generalization of set-quotients is given by the notion of quotients, that is epic arrows X → X ′,
and in this case the object X ′ is said a quotient of X.

In certain situations, the above notions of sub-object and quotient are too strong and sometimes
inadequate. These can be further generalized (and relaxed) using factorization systems. The idea
behind the definition of a factorization system is to axiomatize the essential properties of sub-
objects and quotients, so that they could be found also in categories with “too few” monic or epic
arrows.



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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2.1. Category theory: definitions and notation 13

Definition 2.1.9 (Factorization system) A pair (L,R) of classes of morphisms in C is a fac-
torization system if it obeys the following axioms:

(i) L and R are closed under composition with isomorphisms;
(ii) every morphism f in C factors as f = ρ ◦ λ, for some ρ ∈ R and λ ∈ L;

(iii) each lifting problem, i.e., a commutative square ρ ◦ f = g ◦ λ, where ρ ∈ R and λ ∈ L, has
a unique solution d, that is, an arrow such that the following diagram commutes:

A B

C D

λ ∈ L

ρ ∈ R

f g
d (lifting problem)

Example 2.1.10 Typical examples of factorizations systems are the following.

(i) (Epic,Monic) is a factorization system on Set, where Epic is the class of epic arrows (hence,
surjective set-maps) and Monic is the class of monic arrows (hence, injective set-maps). In
particular, in Set all epic arrows are also extreme and strong epic, and all monic arrows are
also extreme and strong monic.

(ii) (Epic,Monic) forms a factorization system on Grp, the category of groups and homomor-
phisms between them. The class Epic is composed by all surjective homomorphisms, and
Monic by all injective homomorphisms. This factorization system, in particular, is a “lift”
of the factorization system in Set along the obvious forgetful functor U : Grp → Set that
maps a group (X, ·) to its underlying set X, forgetting the group operation · : X ×X → X.

(iii) The category Top, of topological spaces and continuous maps, has many factorization systems
that “lift” the epic-monic factorization system in Set. e.g., quotients and injections form a
factorization system on Top and so do surjections and subspace embeddings.
In Top, there is a further factorization system (L,R), where L does not consist of epimor-
phisms: just take R as of the class of closed subspace embeddings and L as the class of dense
maps.

Remark 2.1.11 In “sufficiently complete” categories, certain factorization systems come for free.
In categories with intersections and finite limits, extremal epimorphisms and monomorphisms form
a factorization system, and do so epimorphisms and extremal monomorphisms in categories with
intersections and equalizers. Here the intersection of a family of monomorphisms (‘subobjects’)
mi : Bi → A, indexed over a set I, is the limit of the obvious associated diagram.

Remark 2.1.12 In a complete and well-powered category C, take R as the class of monomor-
phisms, and L as the class of strong epimorphisms. Then, the pair (E ,M) defines an orthogonal
factorization system on C (see [19, Prop. 4.4.2 and 4.4.3]).

Orthogonal factorization systems enjoy several properties, which we will recall after having
introduced some preliminary (standard) notations.

Given classes of morphisms L and R, we say that L is orthogonal to R, written L ⊥ R, if for
all lifting problems ρ ◦ f = g ◦ λ, with λ ∈ L and ρ ∈ R, there exists a unique solution. Note, that
for a factorization system (L,R) it always holds that L ⊥ R. Let also denote by L⊥ and R⊥ the
following classes of morphisms

L⊥ = {m ∈MorphC | L ⊥ m} , R⊥ = {m ∈MorphC | m ⊥ R} .

Then, the following alternative characterization for factorization systems holds.

Proposition 2.1.13 (L,R) is a factorization system iff the following conditions are satisfied:

(i) every morphism f in C factors as f = ρ ◦ λ, for some ρ ∈ R and λ ∈ L;
(ii) L = R⊥ and R = L⊥.
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14 2. Preliminaries

Of course, this can be taken as an alternative definition of factorization system. What is important
here, is that L = R⊥ means that in order to prove that a morphism l is in L it suffices to prove that
it is orthogonal to any morphism in R. An obvious corollary is that each class of a factorization
system determines the other.

Both classes of the morphisms of a factorization system enjoy a cancellation property:

Lemma 2.1.14 If (L,R) is a factorization system, then L has the right cancellation property and
R the left cancellation property, that is

g ◦ f ∈ L ∧ f ∈ L =⇒ g ∈ L g ◦ f ∈ R ∧ g ∈ R =⇒ f ∈ R

Lemma 2.1.15 If (L,R) is a factorization system, then L ∩R is the class of all isomorphisms.

The classes L and R enjoy many closure properties. In the following we recall some of them.

Lemma 2.1.16 If (L,R) is a factorization system, then L and R are closed under compositions.

The classes L and R of morphisms of a factorization system in C behaves well with colimits
and limits (taken in the category of arrows of C).

Theorem 2.1.17 If (L,R) is a factorization system in C, then L is closed under all colimits and,
dually, R is closed under all limits.

That is, if C has coproducts and f, g ∈ L, then f + g ∈ L, where f + g is the coproduct of arrows.
Dually, if C has products, f, g ∈ R implies that f × g ∈ R, where f × g is the product of arrows.

Lemma 2.1.18 (Closure under pullback and pushouts) Let (L,R) be a factorization sys-
tem in a category C with pullback and pushouts. Then L is closed under pushouts and, dually, R
is closed under pullbacks i.e., if the two diagrams below are respectively a pushout and a pullback,
then if λ ∈ L and ρ ∈ R, then also λ′ ∈ L and ρ′ ∈ R.

C B

A K

λ

λ′

P B

A C

ρ′

ρ

Lemma 2.1.19 (Closure under transfinite compositions & precompositions) Let α be a
non-empty ordinal, regarded as a category, and F : α → C is a colimit preserving functor and
G : αop → C is a limit preserving functor. Assume (L,R) is a factorization system in C, then for
every limit ordinal β ≤ α the following implications hold

{F (δ → γ) | δ ≤ γ < β} ⊆ L =⇒ F (0→ β) , (transfinite composition)

{G(γ → δ) | δ ≤ γ < β} ⊆ R =⇒ G(β → 0) . (transfinite precomposition)

Remark 2.1.20 Moreover, note that all the closure properties that have been considered so far
in this section are all satisfied by monomorphisms and epimorphisms, hence we can say that
factorization systems is the right axiomatization that extends the properties of monomorphisms
and epimorphisms.

Union and intersections in factorization systems. We already seen that factorization sys-
tems generalize the concepts of subject and quotient for an object. Here we see how the concepts
of union and intersection of subobjects and counion and cointersection of quotients are generalized
to generic factorization systems. These constructions can be found in [19, Section 4.2].

Given and object Z in a category C with factorization system (L,R), the collection of all
L-morphisms with domain Z, and the collection of all R-morphisms with codomain Z form two
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/)
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2.2. Measure Theory 15

categories, denoted by L(Z) and R(Z), respectively, with morphisms f : (Z
λ1−→ X) → (Z

λ2−→ Y )

in L(Z) and g : (X
ρ1−→ Z)→ (Y

ρ2−→ Z) in R(Z) such diagrams below commute in C

Z

X Y
f

λ1 λ2

X Y

Z

g

ρ1 ρ2

Note that, by Lemma 2.1.14, f ∈ L and g ∈ R. With an abuse of notions objects (Z
λ−→ X) in L(Z)

and (X
ρ−→ Z) in R(Z) will be identified simply by X. This natation does not make confusion since

it holds that, two objects X and Y are isomorphic iff there exist a pair of morphisms f : X → Y
and g : Y → X. This follows noticing that f ◦ g and idY fit as the unique solution of the same
lifting problem, and the same thing happen to g ◦ f and idX , so that f and g are inverses.

Definition 2.1.21 (Union and intersection) Let (R,L) be a factorization system in C. The
union of a family of objects in R(Z), is their coproduct in R(Z) (if it exists), and the intersection
of a family of objects in R(Z), is their product in R(Z) (if it exists).

Therefore, unions and intersections are universal objects in R(Z). The existence of unions and
intersections is ensured by the existence of coproducts and (generalized) pullbacks in the underlying
category: assume (L,R) is a factorization system in a category C with pullbacks and coproducts,
then the union and intersection of X and Y in R(Z) is respectively given by U and I

I Y

X Z

ρ′Y

ρ′X

ρY

ρX

X X + Y Y

U

Z
ρX ρY

λU

ρU

inX inY

where in the diagram on the left (I, ρ′X , ρ
′
Y ) is the pullback of the pair (ρX , ρY ), and in the diagram

on the right ρU ◦ λU is the (L,R) factorization of the (unique) arrow [ρX , ρY ] from the coproduct
X + Y . Indeed, by Lemma 2.1.18, the composites λX ◦ λ′X = λY ◦ λ′Y are in R, hence I is an
object in R(Z) and it is the intersection of X and Y (with projections given by λ′X and λ′Y ) by the
universal properties of pullbacks. Similarly, U is the union of X and Y (with injections λU◦ ∈X
and λU ◦ inY ) by the universal property of the coproduct.

The above can be easily dualized in the case of L(Z), where we have the following definitions
of counion and cointersection of collections of objects in L(Z).

Definition 2.1.22 (Counion and cointersection) Let (R,L) be a factorization system in C.
The counion of a family of objects in L(Z), is their coproduct in L(Z) (if it exists), and the
cointersection of a family of objects in L(Z), is their product in L(Z) (if it exists).

Of course, by a dual argument, counions and cointersections exist in L(Z) if the underlying
category has pullbacks an products.

2.2 Measure Theory

In this section, we recall the basic definitions of measurable space, measurable functions, and
measure, and we provide all the tools which will be used in the thesis for dealing with measurable
spaces and measures on them. This introductory exposition is very far from been exhaustive,
henceforth if some notations or definitions are not sufficiently clear, we suggest to consult the
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte
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textbooks by Halmos [53] or Dudley [44], but shorter introductions are still adequate, such as
the lecture notes by Tao [79] or the introductory chapters in the books by Panangaden [69] and
Dokerkat [42].

Definition 2.2.1 (Measurable Space) A measurable space is a pair (X,Σ), where X is a set
and Σ is σ-algebra on X, that is, a collection of subsets of X satisfying the following conditions:

(S.1) ∅ ∈ Σ;
(S.2) if E ∈ Σ, then Ec = X \ E ∈ Σ;
(S.3) if E0, E1, E2, . . . ∈ Σ, then

⋃
n∈NEn ∈ Σ;

A subset E ⊆ X is measurable in (X,Σ) if E ∈ Σ.

From these axioms, it follows that the σ-algebra is also closed under countable intersections (by
applying De Morgan’s laws), moreover, by (S.1) and (S.2), X is always measurable in (X,Σ). The
concept of σ-algebra generalizes the more well-known concept of boolean algebra, which requires only
closure under complements and finite unions. Indeed, by padding a finite union into a countable
union by using the empty set, we see that every σ-algebra is a boolean algebra.

Every set X can be always endowed with two canonical σ-algebras: the discrete σ-algebra
P(X), i.e., the collection all subsets of X, and the indiscrete σ-algebra, i.e., the collection of
subsets whose only members are ∅ and X. The discrete and indiscrete σ-algebras are, respectively,
the finest and the coarser σ-algebras which any set can be endowed with. Formally, let X be a
set, and denote by S(X) the family of all the σ-algebras on X. The set S(X) can be naturally
partially ordered by subset inclusion (for which the discrete and indiscrete σ-algebras are the top
and the bottom elements, respectively). The following proposition shows that S(X) is closed under
arbitrary intersections, so that S(X) is a complete lattice:

Proposition 2.2.2 (Intersection of σ-algebra) Let X be a set and S an arbitrary large family
of σ-algebras on X. Then

⋂
S is a σ-algebras for X.

Proof. We have to check that
⋂
S satisfies the conditions (S.1), (S.2), and (S.3) of Definition 2.2.1.

But since all σ-algebras in S satisfy those conditions, and each element in
⋂
S belongs to all the

elements of S, (S.1), (S.2), and (S.3) are obviously satisfied by
⋂
S as well.

Corollary 2.2.3 S(X) is a complete lattice with respect to subset inclusion.

Proof. For any given family of σ-algebras S ⊆ S(X), the greatest lower bound is given by
⋂
S,

which is in S(X) by Proposition 2.2.2. The least upper bound for S, is just the greatest lower
bound of the set of all upper bounds, i.e.,

⋂
{Σ | Σ′ ⊆ Σ, for all Σ′ ∈ S}, which is again in S(X)

by Proposition 2.2.2.

Since the intersection plays the rôle of the greatest lower bound operator, one may be tempted to
think that the least upper bound is given by the “union of σ-algebras”. However, the union is not
even a σ-algebra in general, as shown in Example 2.2.4 below:

Example 2.2.4 (Union of σ-algebras) Let X = {x1, x2, x3}, and Σ1,Σ2 ∈ S(X) be given by

Σ1 = {∅, {x3}, {x1, x2}, X} , Σ2 = {∅, {x1}, {x2, x3}, X} .

The union Σ1 ∪ Σ2 is not a σ-algebra. Indeed we have that {x1} ∈ Σ1 ∪ Σ2 and {x3} ∈ Σ1 ∪ Σ2

but {x1, x3} /∈ Σ1 ∪ Σ2, hence (S.3) is not satisfied.

Proposition 2.2.2 allows one to consider the smallest σ-algebra satisfying a generic property
as the intersection of all the σ-algebras on X satisfying it. In particular, we have the following
definition:
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/)
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2.2. Measure Theory 17

Definition 2.2.5 (Generated σ-algebra) Let F be a family of sets in X. We define σ(F) to
be the intersection of all the σ-algebras that contain F , explicitly

σ(F) =
⋂
{Σ ∈ S(X) | F ⊆ Σ}. (generated σ-algebra)

If Σ is such that Σ = σ(F), then we say that Σ is generated by F and that F is its generator.

Important examples of generated σ-algebras are the Borel σ-algebras, that is, the σ-algebras gen-
erated by the open (or closed) sets of a topological or metric spaces. For example, R with the
Euclidean metric is turned into a measurable space by means of it Borel σ-algebra. This construc-
tion is so common that when R is considered as a measurable space and no particular σ-algebra
has been specified for it, it is always meant to be the Borel σ-algebra generated by the open balls
Bε(r) = {r′ ∈ R | |r − r′| < ε}, for all r ∈ R and real radius ε > 0.

Remark 2.2.6 The Borel σ-algebra on R can be generated also by the following collection of sets:

(i) open/closed balls with real radius;
(ii) compact subsets;
(iii) left/right open/closed intervals for all real numbers;
(iv) open/closed balls with rational radius;
(v) left/right open/closed intervals for all rational numbers.

Remarkably, the last item considers only a countable family of sets. These results do not hold in
general for any metric space, but only for those which are separable or compact.

Definition 2.2.7 (Measurable function) Let (X,ΣX) and (Y,ΣY ) be two measurable spaces.
A function f : X → Y is measurable if, for any E ∈ ΣY , f−1(E) = {x ∈ X | f(x) ∈ E} ∈ ΣX .

When σ-algebras are generated by some family of subsets, checking measurability for a function
is made easier by the observation:

Lemma 2.2.8 Let (X,ΣX) and (Y,ΣY ) be measurable spaces, and assume that ΣY is generated
by F . Then f : X → Y is measurable if and only if f−1(F ) ∈ ΣX holds for all F ∈ F .

The following two propositions are useful when one is dealing with measurable functions.

Proposition 2.2.9 Let X and Y be sets, F be some collection of subsets of Y , and f : X → Y be
a function. Then f−1(σ(F)) = σ(f−1(F)).

Proof. A key fact that will be used in the proof is that the pre-image operation commutes with
respect to all σ-algebra operations: if f : X → Y and Ai, A,B ⊆ Y , for all i ∈ I, then

(i) f−1(
⋃
i∈I Ai) =

⋃
i∈I f

−1(Ai);
(ii) f−1(A \B) = f−1(A) \ f−1(B); in particular f−1(Y \A) = X \ f−1(A).

We prove the two inclusions separately.
(⊇) Since σ(f−1(F)) is, by definition, the intersection of all σ-algebra over X containing

f−1(F), the inclusion can be proved just showing that f−1(σ(F)) is a σ-algebra and that it contains
f−1(F). Since F ⊆ σ(F), we have f−1(F) ⊆ f−1(σ(F)). To prove that f−1(σ(F)) is a σ-algebra
we have to show that it contains the empty set ∅, and that is closed by countable unions and comple-
ments. ∅ = f−1(∅), and since ∅ ∈ σ(F), we have ∅ ∈ f−1(σ(F)). Assume F1, F2, . . . ∈ f−1(σ(F)),
then, for each n ∈ N, there exists An ∈ σ(F), such that Fn = f−1(An). Since σ(F) is closed
by countable unions,

⋃
n∈NAn ∈ σ(F), and in particular f−1(

⋃
n∈NAn) ∈ f−1(σ(F)). By (i)

above, f−1(
⋃
n∈NAn) =

⋃
n∈N f

−1(An), thus
⋃
n∈N Fn ∈ f−1(σ(F)). Closure under complements

is proved similarly, using (ii).
(⊆) To prove the inclusion it suffices to show that D = {A ⊆ Y | f−1(A) ∈ σ(f−1(F))}

is a σ-algebra containing F . Indeed, if it is so, σ(F) ⊆ D, hence, by definition of D, we have
f−1(σ(F)) ⊆ σ(f−1(F)). The inclusion F ⊆ D, follows since F ∈ σ(F). It remains to prove that
D is a σ-algebra. ∅ ∈ D, since ∅ = f−1(∅), and ∅ ∈ σ(f−1(F)). Let A1, A2, . . . ∈ D, then, for all
n ∈ N, f−1(An) ∈ σ(f−1(F)). By (i) and the fact that σ(f−1(F)) is closed by countable unions,
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte

18 2. Preliminaries

we have f−1(
⋃
n∈NAn) =

⋃
n∈N f

−1(An) ∈ σ(f−1(F)), therefore
⋃
n∈NAn ∈ D. Assume A ∈ D,

then f−1(A) ∈ σ(f−1(F)). By (ii) and the fact that σ(f−1(F)) is closed under complements,
f−1(Y \A) = X \ f−1(A) ∈ σ(f−1(F)), therefore Y \A ∈ D.

Proposition 2.2.10 Let X and Y be sets, F be some collection of subsets of X, and f : X → Y
be a function. Then σ({A ⊆ Y | f−1(A) ∈ F}) = {A ⊆ Y | f−1(A) ∈ σ(F)}.

Proof. Let K = {A ⊆ Y | f−1(A) ∈ F} and ΣY = {A ⊆ Y | f−1(A) ∈ σ(F)}. We show
that σ(K) = ΣY proving the two inclusions simultaneously. Since F = f−1(K), we have that
σ(F) = σ(f−1(K)). By Proposition 2.2.9, σ(f−1(K)) = f−1(σ(K)), hence σ(F) = f−1(σ(K)).
The following sequence of equivalences

A ∈ ΣY ⇐⇒ f−1(A) ∈ σ(F) ⇐⇒ f−1(A) ∈ f−1(σ(K)) ⇐⇒ A ∈ σ(K) ,

proves the equality.

Given a measurable space (Y,ΣY ), it happens frequently that for a set X and a function
f : X → Y , one wants to equip X with a σ-algebra ΣX making f measurable. Also the dual case
is of interest, that is, when the map has opposite direction. This can always be done in a canonical
way considering the initial and final σ-algebras with respect to the function f :

Proposition 2.2.11 (Initial σ-algebra w.r.t. f) Let f : X → Y be a function and let (Y,ΣY )
be a measurable space. The collection {f−1(E) | E ∈ ΣY } form a σ-algebra on X. In particular,
it is the smallest σ-algebra on X making f measurable.

Particular cases are subspace embeddings: for a measurable space (X,Σ), the inclusion i : X ′ ↪→ X
becomes measurable for a subset X ′ ⊆ X, when X ′ is endowed with the σ-algebra {X ′∩E | E ∈ Σ},
which, in particular, is the the initial σ-algebra w.r.t. i. In this case i is called (subspace) embedding.

Proposition 2.2.12 (Final σ-algebra w.r.t. f) Let f : X → Y be a function and let (X,ΣX)
be a measurable space. The collection {A ⊆ Y | f−1(A) ∈ ΣX} form a σ-algebra on Y . In
particular, it is the largest σ-algebra on Y making f measurable.

Examples are the quotient spaces: for a measurable space (X,Σ), the function q : X → X/∼
mapping elements in X to the equivalence classes [x]∼, for ∼ ⊆ X ×X an equivalence relation on
X, can be rendered measurable if we equip X/∼ with the final σ-algebras w.r.t. q. In this case q
will be called quotient and (X/∼) quotient space.

Initial and final σ-algebras generalize in an obvious way to families of maps. Let (Yi,ΣYi) be
measurable spaces and f : X → Yi be maps, for all i ∈ I. The initial σ-algebra on X w.r.t. to
{f : X → Yi | i ∈ I}, is given by σ(

⋃
i∈I{f

−1
i (E) | E ∈ ΣYi}). Dually, for (Xi,ΣXi) measurable

spaces and f : X → Yi maps, for all i ∈ I, the final σ-algebra on Y w.r.t. {f : Xi → Y | i ∈ I}
is defined as

⋂
i∈I{A ⊆ Y | f−1

i (A) ∈ ΣXi}, i.e., the σ-algebra generated by the sets A ⊆ Y for

which f−1
i (A) is a measurable in (X,Σ), for all i ∈ I.

Lemma 2.2.13 Let (X,ΣX), (Y,ΣY ), and (Z,ΣZ) be measurable spaces and f : X → Y a map.

(i) if ΣX is initial w.r.t. f , a map g : Z → X is measurable iff the composite f ◦ g is so;
(ii) if ΣY is final w.r.t. f , a map h : Y → Z is measurable iff the composite h ◦ f is so.

An exhaustive definition of a σ-algebra may be complicated, and it is often advantageous to
work with a generating collection. However, the lack of an explicit representation of the elements
of a generated σ-algebra requires more efforts in handling such measurable sets. A very powerful
tool used in these situations is the monotone class theorem.

Definition 2.2.14 (Monotone class) A collection M of subsets of X is a monotone class if the
following conditions hold, for all A0, A1, A2, . . . ∈M,

(i) if A0 ⊆ A1 ⊆ A2 ⊆ . . ., then
⋃
n∈NAn ∈M;

(ii) if A0 ⊇ A1 ⊇ A2 ⊇ . . ., then
⋂
n∈NAn ∈M.
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2.2. Measure Theory 19

Clearly any σ-algebra is a monotone class. The intersection of monotone classes is again a monotone
class, thus we can talk about the monotone class generated by a collection of sets F just as we did
in Definition 2.2.5, and we denote it by m(F).

Proposition 2.2.15 Any σ-algebra is a monotone class and if a monotone class is also a boolean
algebra, then it is a σ-algebra.

Theorem 2.2.16 (Monotone class theorem) If A is a boolean algebra, then m(A) = σ(A).

Measures. An important concept related to measure theory is that of measure space.

Definition 2.2.17 (Measure space) Let (X,Σ) be a measurable space. A map µ : Σ → [0,∞]
is a measure on (X,Σ) if it obeys to the following axioms:

(i) µ(∅) = 0;
(ii) whenever E0, E1, E2, . . . ∈ Σ is a countable collection of disjoint measurable sets, then

µ(
⋃
n∈NEn) =

∑
n∈N µ(En).

In this case the triplet (X,Σ, µ) is called measure space.

Note the distinction between a measure space and a measurable space. The latter has the capability
to be equipped with a measure, but the former is actually equipped with a measure.

There are some distinctions on the types of measure one is used to work with. A measure
µ on (X,Σ) is said of probability provided that µ(X) = 1; of subprobability if µ(X) ≤ 1; finite
if µ(X) < ∞; σ-finite if X =

⋃
n∈NAn, for some countable collection {An ⊂ X | n ∈ N}, and

µ(An) < ∞, for all n ∈ N. Note that, σ-finiteness is weaker than simple finiteness, indeed it is
not required that the whole space has finite measure, rather, it is just required that there exists a
countable cover of it that for which each patch has finite measure. Clearly, a probability measure
is also of subprobability, that, in turn, is finite and σ-finite.

Example 2.2.18 We recall some notable measures and operations on them.

Dirac measure: Let x ∈ X and Σ be an arbitrary σ-algebra on X. The map δx : Σ→ [0,∞]
defined by δx(E) = χE(x), where χA : X → {0, 1} is the characteristic function of A ⊆ X, is
a measure on (X,Σ) and is called the Dirac measure at x.

Zero measure: The constant zero map 0 : Σ→ [0,∞] is a measure for any measurable space
(X,Σ), and it is called the zero measure.

Linear combinations of measures: Let µ, ν : Σ → [0,∞] be measures on (X,Σ), then the
map µ + ν : Σ → [0,∞], defined by (µ + ν)(E) = µ(E) + ν(E) is also a measure, as is
cµ : Σ→ [0,∞], defined as (cµ)(E) = c · µ(E), for c ∈ [0,∞].
In the same way, any finite linear combination of measures µ1, µ2, . . . , µn on (X,Σ)

c1µ1 + c2µ2 + · · ·+ cnµn : Σ→ [0,∞] E 7→ c1µ1(E) + c2µ2(E) + · · ·+ cnµn(E)

is a measure on (X,Σ).
Countable combinations of measures: Let µ0, µ1, µ2, . . . be a countable collection of mea-

sures on (X,Σ), then the map
∑
n∈N µn : Σ→ [0,∞] defined as

(
∑
n∈N µn)(E) =

∑
n∈N µn(E) ,

is a σ-additive map, hence it is a measure on (X,Σ). Note that, when X has at most a
countable number of elements, then any measure can be expressed as a countable linear com-
bination of the form

∑
x∈X cxδx, for some suitable set {cx ∈ [0,∞] | x ∈ X} of coefficients.

This characterization does not hold if X is more than countable.

Proposition 2.2.19 (Countable subadditivity) Let (X,Σ) be a measurable space, µ be a mea-
sure on it, and E0, E1, E2, . . . a countable collection of measurable set on (X,Σ), then

µ(
⋃
n∈NEn) ≤

∑
n∈N µ(En) .
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Proposition 2.2.20 (Monotone convergence) Let (X,Σ) be a measurable space, µ be a mea-
sure on it, and E0, E1, E2, . . . a countable collection of measurable set on (X,Σ), then

(i) if E0 ⊆ E1 ⊆ E2 ⊆ . . . , then

µ(
⋃
n∈NEn) = limn→∞ µ(En) = supn∈N µ(En) ;

(ii) if E0 ⊇ E1 ⊇ E2 ⊇ . . . , and µ(En) <∞, for some n ∈ N, then

µ(
⋂
n∈NEn) = limn→∞ µ(En) = infn∈N µ(En) .

The two properties above are respectively called upward and downward convergence. Note that,
the downward convergence fails if the hypothesis that µ(En) <∞ for at least one n ∈ N is dropped.

Outer measures, pre-measures, and product measures So far we have focused on specific
properties of countably additive measures. Now we consider the problem of constructing measures
satisfying particular properties. One of the most powerful tools is the Charathéodory extension
theorem, which allows one to construct measures from any outer measure.

One can in turn construct outer measures from another concept known as a pre-measure. With
these tools, one can start constructing many more measures, such as Lebesgue-Stieltjes measures,
product measures, and Hausdorff measures.

Definition 2.2.21 (Outer measure) An outer measure on a set X is a map µ∗ : P(X)→ [0,∞]
defined on all subsets of X, which obeys the following axioms:

(i) µ(∅) = 0;
(ii) if A ⊆ B, then µ∗(A) ≤ µ∗(B);

(iii) if A0, A1, A2, . . . is a countable collection of subsets of X, then µ(
⋃
n∈NAn) ≤

∑
n∈N µ(An).

Outer measures are also known as exterior measures. Note that, outer measures are weaker than
measures in that they are merely countably subadditive, rather than countably additive. On the
other hand, they are able to measure all subsets of X, whereas measures can only measure a
σ-algebra of measurable sets.

Definition 2.2.22 (Charathéodory measurability) Let µ∗ be an outer measure on a set X.
A set E ⊆ X is said to be Carathéodory measurable with respect to µ∗ if, for every set A ⊆ X,
the following holds:

µ∗(A) = µ∗(A ∩ E) + µ∗(A \ E) .

Roughly speaking, Carathéodory measurable sets are those sets which can “split” any other set
and still get finite additivity for the outer measure. So, one may say that these are those sets who
behave nicely with respect to the outer measure.

Remark 2.2.23 Null sets (or negligible sets), i.e., sets A such that µ∗(A) = 0, are always
Charathéodory measurable.

There is a general construction which produces a σ-algebra and a measure defined on it from
an outer measure. This is the Carathéodory extension theorem:

Theorem 2.2.24 (Carathéodory extension theorem) Let X be a set and µ∗ be an outer mea-
sure defined on X. Denote by Σ the collection of all subsets which are Carathéodory measureble
w.r.t. µ∗. For all E ∈ Σ, define µ(E) = µ∗(A), then (X,Σ, µ) is a measure space.

Note that the theorem above states also that the collection of Carathéodory measurable sets is
a σ-algebra and, moreover, that such a σ-algebra is the one on which the outer measure can be
restricted to produces an actual measure.

A general situation that one often has to cope with, is that the σ-algebra is already given
(usually generated by some family of sets) and that the measure must be defined on such a σ-
algebra and not on the one produced by the Carathéodory extension theorem. This problem, can
be solved having resort to boolean algebras and to the notion of pre-measure.
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Definition 2.2.25 (Pre-measure) A pre-measure on a boolean algebra A is a finitely additive
measure µ0 : A → [0,∞] with the additional property that whenever A0, A1, A2, . . . is a countable
disjoint collection sets in A such that

⋃
n∈NAn ∈ A, then

µ0(
⋃
n∈NAn) =

∑
n∈N µ0(An) .

Roughly speaking, pre-measures are those finitely additive measures on a boolean algebra which
may be extended to a σ-additive measure on A (note that

⋃
n∈NAn is not automatically in A,

since A is closed only under finite unions).
Clearly, the condition for a pre-measure to be already σ-additive is a necessary condition in

order to extend it to a σ-additive measure. Using the Carathéodory extension theorem, it can be
shown that this necessary condition is also sufficient. More precisely, we have

Theorem 2.2.26 (Hahn-Kolmogorov theorem) Any pre-measure µ0 : A → [0,∞] on a boo
lean algebra A on X can be extended to a measure µ : σ(A)→ [0,∞] on (X,σ(A)).

Let us call the measure µ constructed in the above theorem the Hahn-Kolmogorov extension of
µ0. However, notice that, this extension is not unique in general. Unicity can be ensured requiring
that the pre-measure is σ-additive.

Theorem 2.2.27 (Unicity) If µ0 is a σ-finite pre-measure on a boolean algebra A. Then any
extension of µ0 on σ(A) is unique.

A well known example of measure defined using the Hahn-Kolmogorov extension theorem is
the product measure. In the following example we give its definition and sketch its construction.

Example 2.2.28 (Product measure) Given two measurable spaces (X,ΣX) and (Y,ΣY ), one
can define the product space (X,ΣX) × (Y,ΣY ) = (X × Y,ΣX ⊗ ΣY ), where ΣX ⊗ ΣY is the
σ-algebra generated by the rectangles E × F ⊆ ΣX × ΣY . This σ-algebra is the smallest one that
makes the canonical projections πX : X × Y → X and πY : X × Y → Y measurable.

Given two measures µ : ΣX → [0,∞] and ν : ΣY → [0,∞] on (X,ΣX) and (Y,ΣY ), respectively,
one can define a measure µ× ν : ΣX ⊗ ΣY → [0,∞] on (X × Y,ΣX ⊗ ΣY ) such that

(µ× ν)(E × F ) = µ(E)ν(F ) for all E ∈ ΣX and F ∈ ΣY .

The above measure is called product measure, and has the property that its left and right marginal
are such that (µ× ν) ◦ π−1

X = ν(Y )µ and (µ× ν) ◦ π−1
Y = µ(X)ν. The product measure is defined

first as a pre-measure on the boolean algebra A of all finite unions of measurable rectangles
E × F ⊆ ΣX × ΣY , and then is extended to the σ-algebra generated by A using the Hahn-
Kolmogorov theorem. It easy to see that σ(A) is exactly the product σ-algebra ΣX ⊗ΣY , so that,
µ× ν is a well-defined measure on (X × Y,ΣX ⊗ ΣY ).

Notice that, in general, its definition is not unique. Uniqueness for the product measure can
be ensured requiring that the measures µ and ν are both σ-finite.

2.3 The category of measurable spaces

Measurable spaces and measurable maps forms a category, denoted by Meas. This category is
complete and cocomplete: limits and colimits are obtained as in Set and endowed, respectively,
with initial and final σ-algebra with respect to their cone and cocone maps. Explicitly, the product
X × Y has as underlying set the cartesian product of the underlying sets and σ-algebra generated
by the rectangles E × F for E ∈ ΣX , F ∈ ΣY (it is exactly the product space!). The coproduct
X + Y , has as underlying set the disjoint union of the underlying sets and σ-algebra generated by
the insertion maps.

There is an obvious forgetful functor U : Meas → Set forgetting the σ-algebra structure of
the measurable spaces. This functor is faithful, and has a left adjoint D : Set → Meas which
assigns to each set X the discrete σ-algebra P(X). Therefore U preserves all limits —this is why
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the underlying set of the product of measurable spaces is the cartesian product of their underlying
sets. The forgetful functor U also has a right adjoint I : Set → Meas which assigns to each set
the indiscrete σ-algebra. Therefore U preserves also all colimits.

Functors. For a set A and a measurable space X, the exponential space XA has as underlying set
the set of all functions from A to X, and it is endowed with the initial σ-algebra with respect to the
family of function {eva : XA → X | a ∈ A} of the evaluation maps at a, defined as eva(f) = f(a),
for all f : A→ X in XA. This definition can be extended to a functor IdA : Meas→Meas, called
exponent functor, acting on object as X 7→ XA and arrows f 7→ f ◦ −. Notice that, since XA is
equipped with the initial σ-algebra making all evaluation maps at elements of A measurable, also
fA is measurable.

Since Meas is complete and cocomplete there also the products and coproduct endofunctors.
Explicitly, given F,G : Meas → Meas two endofunctors, the product functor F × G acts on
objects by X 7→ FX ×GX and on arrows by f 7→ Ff ×Gf , while, the coproduct functor F + G
by X 7→ FX +GX and f 7→ Ff +Gf , i.e, each square in

FX (F ×G)X GX

FY (F ×G)Y GY

πFX πGX

Ff Gf

πFY πGY

(F ×G)f

FX (F +G)X GX

FY (F +G)Y GY

inFX inGX

Ff Gf

inFY inGY

(F +G)f

commutes, for all arrows f : X → Y .
Completeness and cocompleteness of allows to consider the class of polynomial endofunctors,

that is, the smallest class of endofunctors containing the identity Id, the constant functor for all
measurable spaces X, and closed under binary product and coproduct.

Another important class of functors that will be used in the thesis are the measure functors. Let
(X,Σ) be a measurable space and ∆(X,Σ) be the set of all measures µ : Σ→ [0,∞] on (X,Σ). For
each measurable set E ∈ Σ, there is a canonical evaluation function evE : ∆(X,Σ)→ [0,∞], defined
by evE(µ) = µ(E), for each measure µ ∈ ∆(X,Σ), and called evaluation at E. By means of these
evaluation maps, ∆(X,Σ) can be organized into a measurable space (∆(X,Σ),Σ∆(X,Σ)), where
Σ∆(X,Σ) the initial σ-algebra with respect to {evE | E ∈ Σ}, i.e., the smallest σ-algebra making evE
measurable w.r.t. the Borel σ-algebra on [0,∞], for all E ∈ Σ. This definition can be extended to
a functor ∆: Meas→Meas acting measurable spaces (X,ΣX) and arrows f : (X,ΣX)→ (Y,ΣY )
as follows, for µ ∈ ∆(X,Σ)

∆(X,Σ) = (∆(X,Σ),Σ∆(X,Σ))

∆(f)(µ) = µ ◦ f−1

Note that, since f is measurable, f−1(E) ∈ ΣX , for any E ∈ ΣY , so that (µ◦f−1) is a well-defined
measure on (Y,ΣY ). Functoriality of the definition can be checked easily.

We identify four subclasses of measures, and each of these can be easily extended to a functor
as we did above:

probability mesures: ∆1(X,Σ) = {µ ∈ ∆(X,Σ) | µ(X) = 1} ,
subprobability mesures: ∆≤1(X,Σ) = {µ ∈ ∆(X,Σ) | µ(X) ≤ 1} ,
finite mesures: ∆<∞(X,Σ) = {µ ∈ ∆(X,Σ) | µ(X) <∞} ,
σ-finite mesures: ∆σ(X,Σ) = {µ ∈ ∆(X,Σ) | µ is σ-finite} .

Obviously, ∆1(X,Σ) ⊆ ∆≤1(X,Σ) ⊆ ∆<∞(X,Σ) ⊆ ∆σ(X,Σ) ⊆ ∆(X,Σ), and, more importantly,
any property that is satisfied by a certain class of measures is preserved in all its subclasses. Thus,
if in the exposition we will require some particular property which is not satisfied by all classes of
measures, we will conventionally use the biggest subclass for which the property holds and assume
that all the results are valid in all its subclasses (e.g., ∆(X,Σ) denotes that no assumptions on the
measures are required, ∆σ denotes that the measures are required to be σ-finite, and so on).
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Remark 2.3.1 The functor ∆1 : Meas →Meas is the so called Giry functor (actually monad).
As noticed in [68, 57], the σ-algebra we have defined for ∆1(X,Σ) can also be generated by the
following collection of sets

{Lr(E) | E ∈ Σ, r ∈ [0, 1] ∩Q} ,

where Lr(E) = {µ ∈ ∆1(X,Σ) | µ(E) ≥ r}.

Remark 2.3.1 can extended to all measures as the following (folklore?) lemma shows.

Lemma 2.3.2 Let ∆(X,Σ) be the set of measures on (X,Σ). Then the following families of sets
generate the same σ-algebra

(i) F0 = {ev−1
E (O) | E ∈ Σ, O Borel-open in [0,∞]}

(ii) F1 = {Lr(E) | r ∈ [0,∞) ∩Q, E ∈ Σ};
(iii) F2 = {B[s]r(E) | s, r ∈ [0,∞) ∩Q, E ∈ Σ}.

where Lr(E) = {µ ∈ ∆(X,Σ) | µ(E) ≥ r} and B[s]r(E) = {µ ∈ ∆(X,Σ) | µ(E) ∈ (s− r, r + s)}.

Proof. The Borel σ-algebra on [0,∞] can be generated both by the intervals of the form [r,∞)
or of the form (s − r, r + s), for s, r ∈ [0,∞). Therefore, the thesis follows by Proposition 2.2.9,
noticing that Lr(E) = ev−1

E ([r,∞)) and B[s]r(E) = ev−1
E ((s− r, r + s)).

Notice that σ(F0) is exactly the initial σ-algebra with respect to {evE | E ∈ Σ}, hence

Σ∆(X,Σ) = σ(F0) = σ(F1) = σ(F2) .

The following result will be very useful in the thesis.

Lemma 2.3.3 Let A be a boolean algebra and (X,ΣX) a measurable space with σ-algebra ΣX
generated by A. Then σ(F) = σ(G) where, Lr(E) = {µ ∈ ∆<∞(X,ΣX) | µ(E) ≥ r}, and

F = {Lr(E) | E ∈ ΣX and r ∈ Q ∩ [0,∞)} , G = {Lr(A) | A ∈ A and r ∈ Q ∩ [0,∞)} .

Proof. We will prove the two inclusions separately.
σ(G) ⊆ σ(F): Since σ(G) is the smallest σ-algebra that contains G, to prove the inclusion it suffices
to show that G ⊆ σ(F). By definition of generated σ-algebra F ⊆ σ(F), and A ⊆ σ(A) = ΣX .
From this it is clear that G ⊆ F , and therefore that G ⊆ σ(F).

σ(F) ⊆ σ(G): This inclusion is less trivial. Let D = {E ∈ ΣX | Lr(E) ∈ σ(G)}. Notice that
A ⊆ D, indeed, for every r ∈ Q ∩ [0,∞) and A ∈ A, Lr(A) ∈ G ⊆ σ(G). So that, if we were
able to show that D is a σ-algebra, ΣX = σ(A) = D and by definition of D this will imply that
σ(F) ⊆ σ(G). So, let us prove that D is a σ-algebra. Since A ⊆ D and A is a boolean algebra,
by the monotone class theorem (Theorem 2.2.16) it is enough to show that D is a monotone
class. Assume E0 ⊇ E1 ⊇ E2 ⊇ . . . be a decreasing countable collection of elements in D, i.e.,
Lr(E) ∈ σ(G). We show Lr(

⋂
n∈NEn) =

⋂
n∈N Lr(E), thus that

⋂
n∈NEn ∈ D.

(⊆) Since, for all k ∈ N,
⋂
n∈NEn ⊂ Ek, we have that Lr(

⋂
n∈NEn) ⊆ Lr(Ek), therefore

Lr(
⋂
n∈NEn) ⊆

⋂
n∈N Lr(E).

(⊇) Let µ ∈
⋂
n∈N Lr(E), hence, for all n ∈ N, µ(En) ≥ r. This means that r is a lower bound

for {µ(En) | n ∈ N}. By Lemma 2.2.20 and since all measures are assumed to be finite,
µ(
⋂
n∈NEn) = infn∈N µ(En), so that µ(

⋂
n∈NEn) ≥ r, thus µ ∈ Lr(

⋂
n∈NEn).

Assume E0 ⊆ E1 ⊆ E2 ⊆ . . . be an increasing countable collection of elements in D, that is,
Lr(E) ∈ σ(G). We show Lr(

⋃
n∈NEn) =

⋂
k>0

⋃
n∈N Lr− 1

k
(E), which implies

⋂
n∈NEn ∈ D.

This follows from the following sequence of equivalent statements:

µ ∈ Lr(
⋃
n∈NEn) ⇐⇒ µ(

⋃
n∈NEn) ≥ r (by def. Lr(E))

⇐⇒ limn∈N µ(En) (by Lemma 2.2.20)

⇐⇒ ∀k > 0 .∃n ∈ N .µ(En) ≥ r − 1
k (by convergence)

⇐⇒ ∀k > 0 .∃n ∈ N .µ ∈ Lr− 1
k

(En) (by def. Lr(E))
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⇐⇒ ∀k > 0 .µ ∈
⋃
n∈N Lr− 1

k
(En) (by union)

⇐⇒ µ ∈
⋂
k>0

⋃
n∈N Lr− 1

k
(En) (by intersection)

Remark 2.3.4 The proof of Lemma 2.3.3 requires the measures to be finite in order to apply
Lemma 2.2.20(ii) that otherwise fails to hold.

Factorization systems. The category Meas “lifts” in several ways the (Epic,Monic) factor-
ization system in Set. Here we consider two of these factorizations systems, which are defined by
factorizations through subspace embeddings and measurable quotient maps.

Consider a set function f : X → Y and the two factorizations depicted below

X Y

f(X)

f

f ′ i

X Y

X/∼

f

q∼ f ′′

where f(X) is the image of X under f , i : f(X) ↪→ Y its canonical inclusion set-map, X/∼ the
quotient w.r.t. ∼ = {(x, x′) ∈ X ×X | f(x) = f(y)}, and q∼ : X → X/∼ the canonical quotient
set-map, mapping the elements in x ∈ X to their equivalence classes [x]∼.

In Set this two factorizations are the vey same thing, indeed f(X) and X/∼ are isomorphic.
Things change when we consider f : X → Y as a measurable map between the spaces (X,ΣX) and
(Y,ΣY ). Ideally, for any measurable map we want to produces measurable factorizations, i.e., we
need to equip the sets f(X) and X/∼ with a σ-algebra that makes the maps i, q∼, f ′, and f ′′

measurable. This can be done adopting the initial and final σ-algebra constructions. Indeed, by
Lemma 2.2.13, if we endow f(X) with the initial σ-algebra with respect to i, and X/∼ with the
final σ-algebra with respect to q∼, we have that also f ′ and f ′′ are measurable, since f is so. With
these σ-algebras, the map i : f(X)→ Y is a subspace embedding, and the function q∼ : X → X/∼
is a measurable quotient. Note that, now, f(X) and X/∼, considered as measurable spaces, are no
more isomorphic which each other, therefore the two factorizations are different.

These constructions actually “lift” the (Epic,Monic) factorization system in Set, in the sense
that the maps given as the solution of any lifting problem in Set is inherited in Meas since its
measurability is ensured by initiality and finality of the σ-algebras of the embedding and quo-
tient, respectively, again by Lemma 2.2.13. We will denote these two factorization systems by
(Epic,Emb) and (Quot,Monic), where Emb denotes the class of measurable embeddings, and
Quot the class of measurable quotients.
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3
Algebras and Coalgebras

In this chapter we review the main concepts of the theory of universal algebras and coalgebras,
with the aim to show the connection with denotational and operational semantics for recursively
defined process description languages. In contrast with standard introductory expositions, where
the theory is presented in the setting of Set, here we develop the theory in purely categorical
terms, that is, in a way that is independent on the category at hand. This is done in view of how
we will employ this theory in the rest of the thesis. For a canonical introductory presentation we
recommend [56, 74, 72].

3.1 Algebras and congruences

This section recalls the basic definitions and introduces the notation. Along the exposition we
provide formal examples relating algebras and denotational semantics for a term language. Then
we proceed reviewing all the classical results and categorical constructions which will be used in
the rest of the thesis.

Definition 3.1.1 (F -algebra) Let F : C→ C be an endofunctor. An F -algebra is a pair (X,α),
where X is an object in C, said carrier, and α : FX → X is an arrow in C, said algebra structure.

In computer science, algebras are typically used to give an abstract categorical formalization
to denotational semantics. In the following example we show how interpretations of signatures are
elegantly modeled as algebras.

Example 3.1.2 (Operator interpretations as algebras) A signature is a pair (Σ, ar), where
Σ is a set of operator symbols and ar : Σ → N is an arity function. An interpretation of this
signature on a set X of denotations is a collection of operators (JσK : Xar(σ) → X)σ∈Σ.

Any signature (Σ, ar) gives rise to a Set-functor S =
∐
σ∈Σ Id

ar(σ) acting on objects X and
arrows f : X → Y , respectively, as

SX = {〈σ, (x1, . . . , xar(σ))〉 | σ ∈ Σ, and x1, . . . , xar(σ) ∈ X} ,
Sf =

[
〈σ, (x1, . . . , xar(σ))〉 7→ 〈σ, (f(x1), . . . , f(xar(σ)))〉

]
.

(3.1.1)

where 〈σ, (x1, . . . , xar(σ))〉 denotes inXσ (x1, . . . , xar(σ)) ∈ SX.

Any S-algebra (X,α) can be turned into an interpretation (α ◦ inXσ : Xar(σ) → X)σ∈Σ. Con-
versely, by the universal property of coproducts, any interpretation (JσK : Xar(σ) → X)σ∈Σ defines
an S-algebra structure

∐
σ∈ΣJσK : SX → X. In fact, we have just defined a correspondence between

S-algebras and interpretations for the signature (Σ, ar), given by

(X,α) 7→ (α ◦ inXσ )σ∈Σ (JσK : Xar(σ) → X)σ∈Σ 7→ (X,
∐
σ∈ΣJσK)
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which is clearly bijective as shown by the following commutative diagrams

Xar(σ) SX

X

inXσ

α ◦ inXσ
α =

∏
σ∈σ(α ◦ inXσ )

Xar(σ) SX

X

inXσ

JσK

∐
σ∈ΣJσK

Note that, this construction can be carried over into any category with products and coproducts,
so that signatures can be interpreted also in categories different from Set.

Definition 3.1.3 (F -homomorphism) Let F : C→ C be an endofunctor and (X,α) and (Y, β)
be F -algebras. An arrow f : X → Y in C is a F -homomorphism between (X,α) and (Y, β) if the
following diagram in C commutes:

FX FY

X Y

Ff

f

α β

We continue Example 3.1.2 showing that homomorphisms between interpretations correspond
to algebra homomorphisms for the Set-functor associated with the signature.

Example 3.1.4 (Homomorphism between interpretations) Let (Σ, ar) be a signature and
(JσKX : Xar(σ) → X)σ∈Σ and (JσKY : Y ar(σ) → Y )σ∈Σ be two interpretations for the operators in
Σ. A function h : X → Y is an homomorphism between interpretations if, for all σ ∈ Σ,

h
(
JσKX(x1, . . . , xar(σ))

)
= JσKY (h(x1), . . . , h(xar(σ))) . (3.1.2)

Consider the endofunctor S : Set → Set and the bijection between interpretations for (Σ, ar)
and S-algebras defined in Example 3.1.2. We show that homomorphisms between interpretations
correspond to S-homorphisms. To see this, note that Equation (3.1.2) corresponds to say that the
following diagram commutes

Xar(σ) Y ar(σ)

X Y

har(σ)

h

JσKX JσKY

Therefore, by the universal property of coproducts, it can be shown that h is an S-algebra
homomorphism between (X,

∐
σJσKX) and (Y,

∐
σJσKY ). Conversely, any S-algebra homomor-

phism h : (X,αX) → (Y, αY ) is an homomorphism between the signatures (αX ◦ inXσ )σ∈Σ and
(αY ◦ inYσ )σ∈Σ, since

h
(
(αX ◦ inXσ )(x1, . . . , xar(σ))

)
= (αY ◦ inYσ )(h(x1), . . . , h(xar(σ))) ,

which corresponds to the condition of being an S-homomorphism.

Definition 3.1.5 (F -congruence) Let F : C → C be an endofunctor. A monic span (R, f, g)
in C between X and Y is a F -congruence between F -algebras (X,α) and (Y, β) if there exists a
(unique) algebra structure γ : FR→ R on R making the following diagram in C commute

FX FR FY

X R Y

Ff Fg

α γ β

f g
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3.1. Algebras and congruences 27

that is, making f and g morphisms of F -algebras.

The following example shows how F -congruences can be indeed considered as the right cate-
gorical generalization of congruential relations with respect to a signature.

Example 3.1.6 (Congruence with respect to a signature) Let (Σ, ar) be a signature and
(JσKX : Xar(σ) → X)σ∈Σ, (JσKY : Y ar(σ) → Y )σ∈Σ be two interpretations. A relation R ⊆ X × Y
is a congruence with respect to (Σ, ar) if, for all σ ∈ Σ and (x1, y1), . . . , (xar(σ), yar(σ)) ∈ R it holds(

JσKX(x1, . . . , xar(σ)), JσKY (y1, . . . , yar(σ))
)
∈ R ,

that is, the relation R respects the operator interpretations. Congruences for a signature (Σ, ar)
correspond to S-congruences for the functor S : Set→ Set defined in Example 3.1.2.

Any congruence R ⊆ X × Y as above defines an S-algebra structure γ : SR→ R as follows

γ
(
〈σ,
(
(x1, y1), . . . , (xar(σ), yar(σ))

)
〉
)

=
(
JσKX(x1, . . . , xar(σ)), JσKY (y1, . . . , yar(σ))

)
∈ R .

By definition of γ and S we have that

πX ◦ γ
(
〈σ,
(
(x1, y1), . . . , (xar(σ), yar(σ))

)
〉
)

= JσKX(x1, . . . , xar(σ))

=
∐
σ∈ΣJσKX

(
〈σ, (x1, . . . , xar(σ))〉

)∐
σ∈ΣJσKX ◦ SπX

(
〈σ,
(
(x1, y1), . . . , (xar(σ), yar(σ))

)
〉
)

=

that is, πX : R → X is an S-algebra homomorphism between (R, γ) and (X,
∐
σ∈ΣJσKX) and,

similarly, also πY : R → Y is an S-homomorphism between (R, γ) and (Y,
∐
σ∈ΣJσKY ). Therefore

the (monic) span (R, πX , πY ) is an S-congruence.
Conversely, given an S-congruence (R, πX , πY ) between S-algebras (X,αX) and (Y, αY ), we

show that R is a congruence between the interpretations (α ◦ inXσ )σ∈Σ and (α ◦ inYσ )σ∈Σ. Assume
(x1, y1), . . . , (xar(σ), yar(σ)) ∈ R, then, using the fact that γ is an S-homomorphism, we have

πX ◦ γ
(
〈σ,
(
(x1, y1), . . . , (xar(σ), yar(σ))

)
〉
)

= αX ◦ SπX
(
〈σ,
(
(x1, y1), . . . , (xar(σ), yar(σ))

)
〉
)

= αX(〈σ, (x1, . . . , xar(σ))〉)
= αX ◦ inXσ (x1, . . . , xar(σ)) ,

Similarly, πY ◦ γ
(
〈σ,
(
(x1, y1), . . . , (xar(σ), yar(σ))

)
〉
)

= αY ◦ inYσ (y1, . . . , yar(σ)). Therefore the pair
(αX ◦ inXσ (x1, . . . , xar(σ)), αY ◦ inYσ (y1, . . . , yar(σ))) belongs to R.

Examples 3.1.2, 3.1.4, and 3.1.6 should have convinced the reader of the usefulness of F -algebras
as good theoretical tools to reason about (denotational) semantics. Moreover, the high level of
abstraction provided by the categorical language allows for simpler further generalizations of the
results in different domain settings.

The category of F -algebras

For any endofunctor F : C → C, it is easy to check that F -algebras and F -homomorphisms form
a category, denoted by F -alg. Composition of arrows is inherited from the underling category C,
so that, associativity is always guaranteed to hold.

Notably, the category of F -algebra lifts all limits from the underlying category C, so that if C
is complete, so is F -alg. This allows to define derived structures such as products, equalizes, and
pullbacks. For example, the binary product of the F -algebras (X,αX) and (Y, αY ) is given by

FX F (X × Y ) FY

X X × Y Y

αX αYαX×Y

FπX FπY

πX πY
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28 3. Algebras and Coalgebras

where the structure map αX×Y is the uniquely given by the universal property of the product
X × Y in C, and we denote it by (X,αX) × (Y, αY ) = (X × Y, αX×Y ). Notice that, the carrier
of the product of F -algebras corresponds exactly to product of the carriers in C. This holds in
general, that is, the carrier of a limit in F -alg is the limit in C.

The case is different for colimits. Coproducts of F -algebras need not exist, but when they do,
their carrier will often have to be different from the coproduct of the carriers in C. One may
be lucky, in that the functor F preserves a certain type of colimit. In that case, this type of
colimit exists for F -algebras and it is constructed as in C. In general though, the functors usually
fail to preserve arbitrary colimits, and often this isx the case for functors needed to model most
applications of interest.

3.2 Initial Algebra and Induction

The lack of general colimits in F -alg does not represent a problem when algebras are used to
give semantics to programming languages. However, one colimit is generally required to exist:
the initial object. This universal object is so important in the theory of universal algebras that it
deserves its own name.

Definition 3.2.1 (Initial F -algebra) Let F : C→ C be an endofunctor. An initial F -algebra is
an initial object in F -alg, i.e., an F -algebra (A, ι) such that for any F -algebra (X,α) there exists
a unique F -homomorphism from (A, ι) to (X,α).

The following result is classical and depends only on the universal property of initial objects.

Theorem 3.2.2 (Lambek’s lemma) Initial F -algebras (A, ι) are fixed points for F : C → C,
that is, ι : FA→ A is an isomorphism in C.

If one sees categories as generalized preorders and endofunctors as monotone functions, algebras
for a functor correspond to prefixed points and initial algebras as the least fixed point.

Of course initial algebras do not need to exist in general, but when they exist they give a
useful induction proof principle. Indeed, every algebra structure α : FX → X of an arbitrary
endofunctor F with initial algebra (A, ι), can be inductively extended to an arrow α# : A → X
by taking the unique algebra arrow from the initial algebra to the algebra (X,α). Notably, this
principle generalizes the standard set-theoretical mathematical induction based on the notion of
well-founded relation, which is briefly recalled below in the particular case of natural numbers.

Recursion on natural numbers. Probably, one of the most known induction proof principle
is that on natural numbers. Induction can be performed on N using the well-foundedness of the
canonical order relation on it. Formally, we have the following recursion theorem:

Theorem 3.2.3 (Recursion Theorem) Given a set X, an element x ∈ X and a function
g : X → X, there exists a unique function f : N→ X such that for all numbers n ∈ N

f(0) = x and f(n+ 1) = g(f(n)) .

The value x of the function f at 0 (i.e., the least element w.r.t. the order relation) is the base of
the induction and g defines the inductive step. The fact that standard mathematical constructions
are inductive reflects the common assumption that the axioms of set theory include the axiom
of foundation which postulates that the set membership relation is well-founded. The axiom of
foundation allows an inductive construction of sets starting from the empty set (the base) and
recursively applying the powerset operator. Induction on natural numbers is just a particular case
of that on ordinal numbers, usually identified as transfinite induction.

Notably, the recursion theorem can be taken as the definition of natural numbers. That is, every
set N with a distinguished element z ∈ N and a unary “successor” operation s : N → N such that
the recursion theorem holds, is isomorphic to the natural numbers. The existence and uniqueness
of the function f , asserts the universal property characterizing natural numbers: initiality.
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3.2. Initial Algebra and Induction 29

We shall see how initial arrows subsume an induction proof principle. The next example relates
recursion on natural numbers with the universal property of initial algebras.

Example 3.2.4 Consider the Set-endofunctor 1 + Id, then, by the universal property of the
coproduct, an algebra (X,α) for 1 + Id is given by a set X together with a distinguished element
x ∈ X and a function g : X → X (i.e., the structure map is the coproduct pairing α = [x, g], where
x ∈ X is seen as the constant function x : 1→ X from the singleton set to X). Assume that there
exists an initial algebra (N, [e, s]) for 1 + Id, then for any given algebra (X, [x, g]) there exists a
unique function f : N → X such that the following diagram commutes

1 +N 1 +X

N X

1 + f

f

[e, s] [x, g]

Spelling out of the above commutative diagram, we have that f must obey to the the following
equations:

f(e) = x and f(s(n)) = g(f(n)) .

This correspond to the recursion theorem on natural natural numbers (see Theorem 3.2.3), therefore
existence and uniqueness of the function f implies that the initial algebra (N, [e, s]) is isomorphic
to (N, [0, (1 + ·)]), thus the latter is initial too.

This may convince the reader how the recursion theorem on natural numbers is nothing but
initiality on the category of algebras for the functor 1 + Id.

An other classical induction proof principle is that of “structural induction on terms”. The
next example shows that this principle is again an instance of initiality in the category of algebras
for some functor. Next we give all the details.

Example 3.2.5 (Structural induction on terms) Let (Σ, ar) be a signature and X a set of
variables. The set of terms TX (freely) generated over the variables in X and the signature (Σ, ar)
is the smallest set satisfying the following axioms and rules, for all x ∈ X and σ ∈ Σ

x ∈ TX and
t1, . . . , tar(σ) ∈ TX
σ(t1 . . . tar(σ)) ∈ TX

The structural recursion theorem states that, given any interpretation h : X → Y on the set
variables and any interpretation (JσK : Y ar(σ) → Y ) of the signature, there exists a unique function
f : TX → Y such that, for all x ∈ X, σ ∈ Σ, and t1, . . . , tar(σ) ∈ TX

f(x) = h(x) and f(σ(t1, . . . , tar(σ))) = JσK(f(t1), . . . , f(tar(σ))) . (3.2.1)

We already seen in Example 3.1.2 that interpretations for (Σ, ar) are algebras for the Set-functor
S =

∐
σ∈Σ Id

ar(σ). The above “extended interpretations” with variables in X are just algebras for
the functor X + S. For instance, an interpretation as above corresponds to the (X + S)-algebra
(Y, [h,

∐
σ∈ΣJσK]). The set of terms TX can be naturally endowed with an (X+S)-algebra structure

[ηX , ψX ] : X + STX → TX, where ηX : X → TX and ψX : STX → TX are defined as follows

ηX(x) = x and ψX(〈σ, (t1, . . . , tar(σ))〉) = σ(t1 . . . tar(σ)) ,

for all x ∈ X, σ ∈ Σ, and t1, . . . , tar(σ) ∈ TX.

The statement of the structural recursion theorem corresponds to say that for any (X + S)-
algebra of the form (Y, [h,

∐
σ∈ΣJσK]) there exists a unique function f : TX → Y such that the
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following diagram commutes (note that, it corresponds to Equation (3.2.1)):

X + STX X + SY

TX Y

X + f

f

[ηX , ψX ] [h,
∐
σ∈ΣJσK]

that is, f is nothing but an (X+S)-homomorphism between (TX, [ηX , ψX ]) and (Y, [h,
∐
σ∈ΣJσK]).

Since any algebra (X+S)-algebra can be turned into an isomorphic algebra of the prescribed form
(see Example 3.1.2), the existence and uniqueness of the homomorphism f makes (TX, [ηX , ψX ])
an initial algebra.

The abstraction into categorical terms allows to find inductive proof principles in many different
settings (e.g. changing the category or the functor of reference). Indeed, it is only required the
existence of initial algebras, then the proof principle comes for free.

3.2.1 From Initial Algebras to Adjunctions and back

Any universal construction gives rise to an adjunction and, conversely, any adjunction provides
useful free universal constructions.

From the category F -alg of algebras for some functor F : C → C to the underlying category
C, there is a natural forgetful functor UF : F -alg→ C mapping an F -algebra (X,α) to its carrier
X and an F -homomorphism f : (X,α)→ (Y, β) to the arrow f : X → Y in C. In case the forgetful
functor UF : F -alg → C has a left adjoint, namely, the functor LF : C → F -alg, the category
of F -algebras admits a free construction: given any object X in C, any F -algebra (Y, β) and
morphism f : X → Y = UF (Y, β) in C, there exists a unique F -homomorphism f# such that the
following diagrams commute

C F -alg

X UFLFX LFX

UF (Y, β) (Y, β)

ηX

f
UF f# f#

LF

UF

where η : Id⇒ UFLF is the unit of the adjunction.

Next, we show that the existence of the left adjoint LF and of initial algebras for some (class
of) functors are strictly related with each other.

From initial algebras to adjunctions

Let F : C→ C be a functor in a category C with binary coproducts. Assume, moreover, that for
any object X in C the functor X + F has initial algebra (AX , ιX). Under these assumptions we
can define a functor LF : C → F -alg, which will be proved to be the left adjoint of the forgetful
functor UF : F -alg→ C.

Before proceeding with the definition of LF , we give the following correspondence lemma.

Lemma 3.2.6 Let X be an object in C and F : C → C be an endofunctor. An arrow f : A → B
is an homomorphism between the (X+F )-algebras (A,αA) and (B,αB) if and only if the following



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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diagram in C commutes:

X A FA

B FB

αA ◦ inAX

αB ◦ inBX

αA ◦ inAFA

αB ◦ inBFB

f Ff

where inAX and inAFA are the left and right injections of the coproduct X + FA, respectively, and
inBX , inBFB the left and right injections of X + FB.

Proof. One direction of the correspondence follows by definition of the coproduct functor (X+F )
which makes the left squares of the two following diagrams commute:

X X + FA A

X X + FB B

inAX αA

inBX
αB

idX X + Ff f

FA X + FA A

FB X + FB B

inAFA αA

inBFB
αB

Ff X + Ff f

The other direction holds noticing that αA = [αA◦inAX , αA◦inAFA] and αB = [αB ◦inBX , αB ◦inBFB ],
so that the diagram given in the statement of the lemma makes f an (X + F )-homomorphism
between (A,αA) and (B,αB).

Note that, any (X+F )-algebra (A,αA) can be turned into an F -algebra (A,αA ◦ inAFA), so that by
the lemma above any (X+F )-homomorphism becomes an F -homomorphism along this translation.

Let us define the functor LF : C→ F -alg. For any object X in C, the initial (X + F )-algebra
(AX , ιX) associated with it can be turned into an F -algebra (AX , ψX), with algebra structure
ψX : FAX → AX given by the composite ιX ◦ inXFAX . We take this as the definition of LF on
objects X in C:

LFX = (AX , ψX = ιX ◦ inXFAX )

Let X and Y two objects in C and f : X → Y be an arrow between them. From the initial
(Y + F )-algebra (AY , ιY ) we define an (X + F )-algebra on AY with algebra structure given by
the composite ιY ◦ (f +FidAY ) : X +FAY → AY . By initiality of (AX , ιX), there exists a unique
(X+F )-homomorphism f# : AX → AY making the following diagrams commute (by Lemma 3.2.6)

X AX FAX

Y AY FAY

ιX ◦ inXX ψX

ιY ◦ inYY ψY

f f# Ff (3.2.2)

In particular, f# is an F -homomorphism between LFX = (AX , ψX) and LFY = (AY , ψY ). Thus,
the following definition for LF on morphisms is well given:

LF (f : X → Y ) = f# : (AX , ψX)→ (AY , ψY ) .

To prove that this definition is functorial, i.e., LF idX = idFLX and LF g ◦ LF f = LF (g ◦ f), one
just has to exploit the universal property of the initial algebra.

To prove that LF is indeed the left adjoint of UF , we provide the unity η : Id ⇒ UFLF and
counit ε : LFUF ⇒ Id of the adjunction. These are defined component-wise as follows, for X in C
and (X,α) in F -alg,

ηX = ιX ◦ inXX : X → UFLFX = AX , ε(X,α) = [idX , α]# : LFUFX = (AX , ψX)→ (X,α) ,
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32 3. Algebras and Coalgebras

where [idX , α]# is the unique arrow given by initiality between the (X+F )-algebras (AX , ιX) and
(X, [idX , α]), making the following diagrams commute (by Lemma 3.2.6):

X AX FAX

X FX

ιX ◦ inXX

idX

ψX

α

[idX , α]# F [idX , α]#

Notice that by the commutativity of the left square of the diagram above (seen, alternatively, as a
diagram in C or in F -alg) the following equalities hold, for all X in C and (X,α) in F -alg:

UF ε(X,α) ◦ ηUF (X,α) = idUFX εLFX ◦ LF ηX = idLFX

It only remains to prove the naturality of the definitions of η and ε. As for η, naturality is given by
the commutativity of the left square of Diagram (3.2.2). Note, moreover, that the right square of
Diagram (3.2.2) states that ψX is natural in X as a natural transformation ψ : FUFLF ⇒ UFLF .
Naturality of ε follows by initiality and by the fact that ψ is natural.

The above construction can be summarized are follows.

Theorem 3.2.7 Let F : C → C be a functor in a category C with binary coproducts. If for any
object X in C the functor X + F has initial algebra, then the forgetful functor UF : F -alg → C
has a left adjoint LF : C→ F -alg.

From adjunctions to initial algebras

We have already seen at the beginning of this section that if the forgetful functor UF : F -alg→ C
has a left adjoint, namely, the functor

LF : C→ F -alg X 7→ (AX , ψX : FAX → AX) ,

then, F -alg comes with a principle of free construction, which can be restated as:

C F -alg

X AX AX FAX

Y Y FY

= UFLFX

= UF (Y, β)

ηX

f
f# = UF f#

ψX

β

f# Ff#

LF

UF

(3.2.3)

where η : Id⇒ UFLF is the unit of the adjunction.
The algebra LFX = (AX , ψX) is usually called free F -algebra over X, and since left adjoints

preserves all colimits, the existence of initial F -algebras is guaranteed if the underlying category
C has an initial object 0. Formally we can state the following theorem.

Theorem 3.2.8 (Existence of initial F -algebras) Let F : C → C be a functor on a category
with initial object 0. If the forgetful functor UF : F -alg → C has a left adjoint LF : C → F -alg,
then LF0, the free F -algebra over 0, is initial.

Combining Theorems 3.2.7 and 3.2.8, we have that an initial algebra (A0, ι0) for the functor
0 + F gives rise to an initial algebra (A0, ψ0) for F , with algebra structure ψ0 = ι0 ◦ in0FA0

. Of
course, this happens in case the category C has both initial object 0 and binary coproducts. Note
that, the existence of an adjunction LF a UF does not require the existence of binary coproducts
in C, therefore the principle presented in Theorem 3.2.8 is more general.
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3.2. Initial Algebra and Induction 33

The adjunction (η, ε) : LF a UF generates a (free) monad over C, defined as

TF = (UFLF , η, UF εLF )

called the monad freely generated by F . By a little abuse of notation the composite functor
UFLF : C → C is usually simply denoted by TF : C → C, the unit η by ηF , and multiplication
UF εLF by µF . If F is clear from the context the monad will be denoted simply by (T, η, µ).

Notably, any monad freely generated by a functor F : C→ C comes with a structural induction
proof principle, formalized as follows.

Definition 3.2.9 (Structural induction) Let F : C → C be a functor and (TF , ηF , µF ) be the
monad freely generated by F . Then, for any object X in C, arrow f : X → Y , and F -algebra
(Y, β), there exists a unique arrow f# : TFX → Y making the following diagrams commute

X TFX FTFX

Y FY

ηFX

f

ψX

β

f# Ff#

where ψX : FTFX → TFX is the free F -algebra structure over X. The arrow f# is said the (free)
inductive extension of β along (the valuation) f .

Note that, the diagram in the above statement is nothing but Diagram (3.2.3). Indeed it is just a
restatement of the principle of free construction given by the adjunction LF a UF from which the
monad is generated.

Moreover, the structural induction proof principle of Definition 3.4.7 extends to a definition
principle for natural transformations:

Lemma 3.2.10 Let F,G,H : C→ C be functors and (TF , ηF , µF ) be the monad freely generated
by F . Then, any two natural transformations φ : G ⇒ H and ϕ : FG ⇒ H uniquely define a
natural transformation ρ : TFG⇒ H, making the following diagrams commute

G TFG FTFG

H FH

ηFG ψG

φ
ρ Fρ

ϕ

where ψ : FTF ⇒ TF is the natural transformation induced by free F -algebras structures over the
objects in C. The natural transformation ρ is said the (free) inductive extension of ϕ along φ.

Proof. We define ρ component-wise. For any object X in C, we define ρX as the unique (free)
inductive extension of ϕX along the valuation φX . Naturality of ρ can be established with the
uniqueness aspect of the structural induction proof principle for the monad (TF , ηF , µF ).

Remark 3.2.11 If the category C has binary coproducts and, for each object X in C, the functor
X + F has initial algebra (AX , ιX), then (TF , ηF , µF ), the monad freely generated by F , can be
defined directly without passing first through the adjunction LF a UF .

Indeed, the mapping X 7→ AX is functorial, with action on arrows f : X → Y given by f 7→ f#,
where f# : AX → AY is the unique arrow making Diagram 3.2.2 commute. So that one defines
TF : C→ C as follows:

TFX = AX TF f = f#
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34 3. Algebras and Coalgebras

The unit ηF : Id ⇒ TF is defined component-wise by ηX = ιX ◦ inXX (note that, it correspond to
the unit of the adjunction LF a UF ) and the multiplication µF : TFTF ⇒ TF is defined as the
inductive extension of ψ : FTF ⇒ TF along the identity natural transformation idTF : TF ⇒ TF :

TF TFTF FTFTF

TF FTF

ηTF ψTF

idTF

µF FµF

ψ

The commutativity of the triangle on the left, shows that ηF and µF satisfy the left unit law. As
for the right unit law, exploit the uniqueness of the inductive extension, noticing that both idTF
and the composite µF ◦ TF ηF fit as the unique inductive extension of ψ along ηF . Similarly, one
can prove the associativity law by showing that both µFTF ◦µF and TFµF ◦µF fit as the inductive
extension of ψ along µF .

We conclude this section showing that the monad freely generated by any syntactic Set-functors
gives rise to the monad of freely generated terms.

Example 3.2.12 (Terms Monad) Let (Σ, ar) be a signature and S =
∐
σ∈Σ Id

ar(σ) be the
syntactic Set-functor associated to the signature. In Example 3.2.5 we showed that for any set X
the functor X+S has initial algebra (TX, [ηX , ψX ]), where TX is the set of terms freely generated
by the signature (Σ, ar) over the variables in X, and the algebra structure is given by

ηX(x) = x and ψX(〈σ, (t1, . . . , tar(σ))〉) = σ(t1 . . . tar(σ)) ,

for all x ∈ X, σ ∈ Σ, and t1, . . . , tar(σ) ∈ TX. By Remark 3.4.9, we can define a monad (TS , ηS , µS)
with functor TS : Set→ Set given by

TSX = TX

TS(f : X → Y ) = f# : TX → TY

TSf(x) = f(x)

TSf(σ(t1, . . . tar(σ))) = σ(TSf(t1), . . . , TSf(tar(σ)))

for all x ∈ X, σ ∈ Σ, and t1, . . . , tar(σ) ∈ TX; unit ηSX = ηX : X → TX (the insertion-of-variables
function); and multiplication µSX : TTX → TX (the operation which allows one to plug terms into
contexts) inductively defined as follows

µSX(t) = t

µSX(σ(C1, . . . Car(σ))) = σ(µS(C1), . . . , µS(Car(σ)))

for all t ∈ TX, σ ∈ Σ, and C1, . . . , Car(σ) ∈ TTX (i.e., contexts).

3.2.2 Algebras for a Monad

We saw that when the the forgetful functor UF : F -alg→ C has a left adjoint LF : C→ F -alg, the
functor F : C → C admits a free monad (TF , ηF , µF ) generated by it. Moreover, the adjunction
gives rise to a construction of free F -algebra LFX = (TFX,ψX) for any object X in C, whose
algebra structures are natural in the sense that ψ = (ψX : FTFX → TFX)X∈C is a natural
transformation. This gives rise to a natural transformation θ : F ⇒ TF defined as the composite

θ = ψ ◦ FηF F FTF TF
FηF ψ
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The naturality of θ allows us to transform any TF -algebra (X,α) to an F -algebra (X, θX ◦α), and
any TF -homomorphism to an F -homomorphism, by naturality of θ, in the following way

TFX X

TFY Y

α

β

TF f f 7→

FX TFX X

FY TFY Y

θX

θY

α

β

Ff TF f f (3.2.4)

This transformation is functorial, i.e., it extends to a functor K : TF -alg→ F -alg.

We will see that this functor takes part into an isomorphism between categories, where TF -alg
will be the Eleinberg-Moore category for the monad (TF , ηF , µF ), i.e., the category of algebras for
the monad (TF , ηF , µF ).

Definition 3.2.13 (Eleinberg-Moore algebra) Let (T, η, µ) be a monad in C. An algebra of
the monad (T, η, µ) is a T -algebra (X,α) such that the two diagrams below commute, which we call
the unit and multiplication laws of the algebra, respectively.

X TX

X

ηX

αidX

TX TTX

X TX

µX

α

α Tα

The category of all algebras for the monad (T, η, µ) and T -homomorphisms between them, is said
the Eleinberg-Moore category for (T, η, µ), and it is denoted by (T, η, µ)-alg.

The unit and multiplication laws can intuitively be explained saying that the algebra structure
α must respect the structure of the monad. By an abuse of notation we will denote (T, η, µ)-alg
simply as T -alg, when it is clear from the contexts that T belongs to a monad.

Lemma 3.2.14 Let F : C → C be a functor, (TF , ηF , µF ) be the monad freely generated by F ,
and θ : F ⇒ TF be the natural transformation induced by ψ : FTF ⇒ TF , the free algebra natural
transformation. Then ψ = µF ◦ θTF .

Proof. The thesis follows by definition of µF (see also Remark 3.4.9) and by the unit law for
(TF , ηF , µF ), which make commute the right square and the left triangle of the following diagram,
respectively

FTF FTFTF TFTF

FTF TF

FηFTF ψTF

ψ

id
FµF µF

Then ψ = µF ◦ θTF follows, since, by definition, θ = ψ ◦ FηF .

Next we show that the category of F -algebras is isomorphic to that of Eilenberg-Moore algebras
for the monad (TF , ηF , µF ) freely generated by F .

Lemma 3.2.15 (F -alg ∼= TF -alg) Let F : C→ C be a functor, (TF , ηF , µF ) be the monad freely
generated by F . Then, the categories F -alg and TF -alg are isomorphic.
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Proof. We define the functors K : TF -alg → F -alg and H : F -alg → TF -alg, then we prove
they are inverse of each other. Let (X,α), (Y, β) be (TF , ηF , µF )-algebras and (P, h), (Q, k) be
F -algebras, then we define the two functors as follows

K : TF -alg→ F -alg

K(X,α) = (X, θX ◦ α)

K(f : (X,α)→ (Y, β)) = f

H : F -alg→ TF -alg

H(P, h) = (P, h∗)

H(g : (P, h)→ (Q, k)) = g

where θ : F ⇒ TF is the natural transformation induced by ψ : FTF ⇒ TF and ηF : Id ⇒ TF ,
and h∗ is defined as the inductive extension of h along idP , as follows

P TFP FTFP

P FP

ηFP ψP

h

idP
h∗ Fh∗

Diagram (3.2.4) proves thatK is well defined. As forH we need to prove the unit and multiplication
law of the algebra. The unit law follows by definition (left triangle in the above diagram). The
multiplication law follows since both h∗ ◦ µFP and h∗ ◦ TFh∗ fit as the unique extension of h along
ηFP . The F -homomorphism g : (P, h) → (Q, k) is proved to be a TF -homomorphism by showing
that both k∗ ◦ Tg and g ◦ h∗ fit as the unique inductive extension of ψQ along g. Functoriality of
H follows similarly, exploiting again the universal property of structural induction. It remains to
show that K and H are inverses of each other. On arrows is clear. As for objects, we have

KH(P, h) = (P, h∗ ◦ θP ) , HK(X,α) = (X, (θX ◦ α)∗) ,

thus, we need to show h∗ ◦ θP = h and (θX ◦α)∗ = α. These are proved by the following diagrams:

TFP FTFP FP

P FP

FηFPψP

h

FidP
h∗ Fh∗

θP X TFX FTFX

TFTFX

X TFX FX

ηFX

idX

ψX

α Fα

θXα

θTFXµFX

Tα

The diagram on the left commutes by definition of h∗, the one on the right by Lemma 3.2.14,
naturality of θ, and by unit and multiplication laws for α. In particular, this diagram shows that α
is the inductive extension of θX ◦α along the identity idX , so that, by uniqueness it must coincide
with (θX ◦ α)∗.

Remark 3.2.16 (On the Beck’s theorem) The category of Eleinberg-Moore algebras is one
of the most studied in the theory of universal algebras and, more in general, in the theory of
categories. Its importance is due to the Beck’s theorem [] which revealed the strict relationship
between monads and adjunctions. In fact, not only every adjunction gives rise to a monad, but
also, conversely, every monad spits into an adjunction. In general, there are many categories D
such that a monad in C spits into an adjunction from C to D, but there are two canonical ones,
namely, the initial and the final ones in a suitable sense. The final one is the Eleinberg-Moore
category for the monad.



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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3.3 Coalgebras and bisimulations

We recall the definition of coalgebra for a functor, a notion dual to that of algebra for a functor
(Definition 3.1.1), which has been proved to be a very useful tool for modeling dynamic systems
abstractly. The advantages of this approach is that once we have found that the systems we are
interested in are coalgebras of some functor, several meaningful notions and results immediately
become available. For instance, an abstract notion of bisimulation.

In this section, coalgebraic bisimulation will be discussed at length since we want to make the
point that some of the peculiarities of bisimulation are due to the fact that the structure of the
(largest) bisimulation is in general not uniquely determined. This will prepare to the notion of
cocongruences and behavioral equivalences, for which the structure is uniquely determined.

Definition 3.3.1 (F -coalgebra) Let F : C→ C be a functor. An F -coalgebra is a pair (X,α),
consisting of an object X in C, carrier, and an arrow α : X → FX in C, coalgebra structure.

We often call the functor F used to define a class of coalgebras a behaviour functor. We do so only
to stress the rôle of F , not to restrict the type of functors under consideration.

Definition 3.3.2 (F -homomorphism) Let F : C→ C be an endofunctor and (X,α) and (Y, β)
be F -coalgebras. An arrow f : X → Y in C is a F -homomorphism between (X,α) and (Y, β) if
the following diagram in C commutes:

X Y

FX FY

Ff

f

α β

The following example shows how labelled transition systems and homomorphisms between
them can be elegantly modeled as coalgebras.

Example 3.3.3 (Labelled transition systems) For a non-empty set of labels L, an L-labelled

transition system (LTS) is a pair (X, { a−→}a∈L) consisting of a set of states X and an L-indexed

collection of labelled transition relations
a−→ ⊆ X×X. An homomorphism between two L-labelled

transition systems (X, { a−→}a∈L) and (Y, { a−→}a∈L) is a map h : X → Y such that, for all a ∈ L
and x, x′ ∈ X

x
a−→ x′ in X implies h(x)

a−→ h(x′) in Y

that is, h respects the structure of the system.
Notice that, any relation R ⊆ X ×X can be represented as a function R̃ : X → P(X), where

P(X) is the powerset of X and the correspondence, for all x, x′ ∈ X, is given by

x R x′ ⇐⇒ x′ ∈ R̃(x) .

Thus, L-labelled transition systems correspond to coalgebras for the Set-functor PL : Set→ Set,
acting on objects X and arrows f : X → Y , respectively, as

PLX = {g | g : L→ P(X)}
PLf(g)(a) = {f(y) | y ∈ g(a)}

for all a ∈ L and g : L→ P(X). Indeed, given an L-labelled transition system (X, { a−→}a∈L) and
a PL-coalgebra (X,α), we get the following correspondence, for all a ∈ L

x
a−→ x′ ⇐⇒ x′ ∈ α(x)(a) .

It is immediate to check that any homomorphism between labelled transition systems is also a
PL-homomorphism between the corresponding coalgebraic translations, and vice versa.
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Definition 3.3.4 (F -bisimulation) Let F : C → C be an endofunctor. A monic span (R, f, g)
in C between X and Y is a F -bisimulation between F -coalgebras (X,α) and (Y, β) if there exists
a (not necessarily unique) coalgebra structure γ : R → FR on R making the following diagram in
C commute

X R Y

FX FR FY

f g

α βγ

Ff Fg

that is, making f and g morphisms of F -coalgebras.

The requirement that (R, f, g) is a mono span generalizes R ⊆ X×Y in Set to arbitrary categories.
Notice that, this notion is similar, but not dual to that of a F -congruence (cf. Definition 3.1.5).

Historical note. The abstract coalgebraic definition of bisimulation given above is due to Aczel
and Mendler [4], but the notion of bisimulation first appeared in modal logic under the name of
p-morphism [76] and zigzag relation [84, 85]. Then, it became notorious after it was successfully
applied in concurrency theory by Park [70] and Milner [65, 66]. Bisimulations were used by Aczel [3]
to define equality for non-well founded sets and to prove existence of final coalgebras.

In the coalgebraic context, many different generalized notions of bisimulation have been pro-
posed. The fist work trying to relate them in a formal way is [78]. There Staton identified four
definition of bisimulations and gave conditions for the behaviour functor and the underlying cate-
gory under which they coincide.

For labelled transition systems, there is a well-known notion of (strong) bisimulation. In the
next example we are going to show that notion of bisimulation on labelled transition systems
exactly corresponds to the coalgebraic one, via the translation we have see in Example 3.3.3.

Example 3.3.5 (Bisimulation on LTSs) Let (X, { a−→X}a∈L) and (Y, { a−→Y }a∈L) be LTSs. A
relation R ⊆ X × Y is a bisimulation relation if, whenever (x, y) ∈ R, then for all a ∈ L

• if x
a−→X x′, then there exists y′ ∈ Y , such that y

a−→Y y′ and (x, y) ∈ R;

• if y
a−→Y y′, then there exists x′ ∈ X, such that x

a−→X x′ and (x, y) ∈ R.

This definition is a particular case of the generalized coalgebraic notion of Definition 3.3.4. Con-
sider the “labelled powerset functor” PL : Set→ Set and the PL-coalgebras (X,αX) and (Y, αY )

corresponding to (X, { a−→X}a∈L) and (Y, { a−→Y }a∈L), respectively, given as in Example 3.3.3:

x
a−→X x′ ⇐⇒ x′ ∈ αX(x)(a) , y

a−→Y y′ ⇐⇒ y′ ∈ αY (y)(a) .

To prove that the monic span (R, πX , πY ) is PL-bisimulation we have to provide a PL-coalgebra
structure γ : R→ PLR on R such that αX ◦ πX = PLπX ◦ γ and αY ◦ πY = PLπY ◦ γ. We do this
as follows, for (x, y) ∈ R and a ∈ L

(x′, y′) ∈ γ((x, y))(a) ⇐⇒ x
a−→X x′ and y

a−→Y y′

Note that, γ is well-defined since we are guaranteed that (x′, y′) ∈ R by the assumption that R is
a bisimulation. The equality αX ◦ πX = PLπX ◦ γ is proved by following equivalences

(x′, y′) ∈ PLπx ◦ γ(x, y)(a) ⇐⇒ (x′, y′) ∈ PLπX(γ((x, y)))(a)

⇐⇒ (x′, y′) ∈ {πX(x′, y′) | (x′, y′) ∈ γ((x, y))(a)}

⇐⇒ (x′, y′) ∈ {πX(x′, y′) | x a−→X x′ and y
a−→Y y′}
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⇐⇒ x′ ∈ {x′ | x a−→X x′}
⇐⇒ x′ ∈ αX(x)(a)

⇐⇒ (x′, y′) ∈ αX(πX(x, y))(a)

⇐⇒ (x′, y′) ∈ αX ◦ πX(x, y)(a) ,

Similarly, also αY ◦ πY = PLπY ◦ γ holds, thus (R, πX , πY ) is a PL-bisimulation.
Conversely, assume (R, πX , πY ) is a PL-bisimulation with coalgebra structure γ : R → PLR.

Assume (x, y) ∈ R, a ∈ L, and x
a−→X x′. Then, by αX ◦ πX = PLπX ◦ γ and definition of

αX it follows that, there exists y′ ∈ Y such that (x′, y′) ∈ R and (x′, y′) ∈ γ((x, y))(a). From

αY ◦ πY = PLπY ◦ γ, we have that y′ ∈ αY (y)(a), therefore y
a−→Y y′. This proves the first

condition for R to be a bisimulation. The second one follows similarly.

Note that, the mediating coalgebra structure γ in Definition 3.3.4 is not necessarily uniquely
determined. The following example, taken from [72], make this clear.

Example 3.3.6 (Non-uniqueness) Consider the powerset functor P : Set → Set, acting on
objects X and arrows f : X → Y , respectively, as follows, for X ′ ⊆ X

PX = P(X)

Pf(X ′) = f(X ′) = {f(x′) | x′ ∈ X ′} .

Let (X,α) be a coalgebra for P : Set → Set defined as X = {x0, x1, x2} and with coalgebra
structure α : X → PX depicted below

x0

x1 x2

α(x0) = {x1, x2}
α(x1) = ∅
α(x2) = ∅

Clearly the largest bisimulation on (X,α) is R = {(x0, x0), (x1, x1), (x2, x2), (x1, x2), (x2, x1)}, but
there is no unique coalgebra structure on R as shown by the following two examples:

(x1, x1) (x0, x0) (x2, x2)

(x1, x2) (x2, x1)

(x1, x1) (x0, x0) (x2, x2)

(x1, x2) (x2, x1)

Uniqueness of the coalgebraic structure depends on the behavior functor. Indeed, if the functor
(strongly) preserves pullbacks, the structure must be uniquely determined by the universal prop-
erty. In the example above, this does not work since the powerset functor P only weakly preserves
pullbacks, thus for the structure it is only guaranteed the existence but not its uniqueness.

The category of F -coalgebras

For any endofunctor F : C→ C, it is easy to check that F -coalgebras and F -homomorphisms form
a category, denoted by F -coalg. Note that, F -coalg is not the proper dual of F -alg, but they can
be considered dual in a weak sense.

For example, we saw that F -alg lifts all limits from the underlying category C, and “dually”
the category of F -coalgebra lifts all colimits in C, thus, if C is complete, so is F -coalg. This
allows to define derived structures such as coproducts, coequalizes, and pushouts. For example,
the coproduct of the F -coalgebras (X,αX) and (Y, αY ) is given by

X X + Y Y

FX F (X + Y ) FY

αX αYαX+Y

inX inY

FinX FinY
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where the structure map αX+Y is the one uniquely determined by the universal property of the
coproduct X + Y in C, and we denote it by (X,αX) + (Y, αY ) = (X + Y, αX+Y ). Notice that,
the carrier of the coproduct of F -coalgebras corresponds exactly to the coproduct of the carriers
in C. This holds in general, that is, the carrier of a colimit in F -coalg is the colimit in C.
Categorically speaking, this amounts to say that the forgetful functor UF : F -coalg→ C, forgetting
the coalgebraic structure of the objects, creates and preserves colimits.

As for limits, it is different. Products and equalizers of F -coalgebras need not exist, but when
they do, their carrier will often have to be different from the product of the carriers in C. If the
behavior functor F preserves a certain type of limit, the same type of limit exist for F -coalgebras
and it is constructed as in C. In general, though, the behavior functors usually employed in
applications, fail to preserve arbitrary limits, an it would be extremely limiting to restrict the
attention to such a class of functors.

Historical note. The existence of limits does not only depend on the type of the behaviour
functor. For example, considering Set as underlying category, Worrell was able to show in [91]
that F -coalg is complete, that is, products and equalizers exist, provided that behaviour functor
F : Set → Set weakly preserves pullbacks and is bounded. Worrell’s proof uses the theory of
monads and some further category theoretic machinery. A shorter and more elementary proof of
the same result was proposed by Gumm et al. in [52], which at the same time extended the result
by removing the assumption that the functor F should weakly preserve generalized pullbacks.
In doing so, they redefined the notion of boundedness for a functor, and showed that terminal
coalgebras, more generally, arbitrarily large cofree coalgebras, exist in F -coalg, whenever F is
bounded in their sense.

A note on largest bisimulations

We discuss two (canonical) ways to obtain largest bisimulations. The first requires that some
suitable classes of morphisms in the base category are split, the second that the behavior functor
preserves weak pullbacks. Of course, these requirements are not always met, but when they do
largest bisimulations aways exist. These constructions are taken from [62].

Union of bisimulations. Bisimulations on X and Y consist of monic spans (R, f, g). In case
base category C has binary products, monic spans (R, f, g) are in one-to-one correspondence with
monomorphisms of type R→ X × Y . The largest bisimulation on X and Y may be defined as the
(generalized) union of all bisimulations on X and Y .

There are several ways to describe the notion of union categorically. An axiomatic approach is
via factorization systems (see the last part of Section 2.1). To this end one have to assume that:

(i) C has a faction system (L,Monic), for some suitable class of morphisms L;

(ii) C is well-powered, i.e., each object in C has, up to isomorphism, only a set (and not a proper
class) of subobjects;

(iii) C has small coproducts and binary products;

(iv) the morphisms in L are right invertible.

Well-poweredness for C is required in order to take coproducts over all bisimulations, and right
invertible arrows in L are asked in order endow R with a suitable coalgebra structure.

Proposition 3.3.7 (Union of bisimulations [62]) Let C be a well-powered category with small
coproducts, binary products, and (L,Monic)-factorizations such that the morphism in L are right
invertible. Then, for all functors F : C → C, and F -coalgebras (X,α) and (Y, β), the largest
bisimulation between them exists and it is given by (R, πX ◦ ρ, πY ◦ ρ), where ρ : R→ X × Y is the
union of B = {〈r′1, r′2〉 : R′ → X × Y | (R′, r′1, r′2) F -bisimulation on (X,α) and (Y, β)}.
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte

3.3. Coalgebras and bisimulations 41

Proof. Let Monic(X × Y ) be the category of monic morphism with codomain X × Y . Since C
has binary products, this category is equivalent to the category of monic spans between X and Y .
The union ρ : R→ X ×Y in Monic(X ×Y ) of all monic spans in B exists since C has coproducts
and a factorization system (L,Monic), and by the fact that, the collection B, by well-poweredness
of C, is is a proper set (up-to-isomorphsim), so that

∐
R′∈B R

′ exists in C. This is formally given
by the following diagram. ∐

R′∈B R
′ R

R′ X × Y

inR′

〈r′1, r
′
2〉

λ ∈ L

ρ
h

where ρ ◦ λ is the (L,Monic)-factorization of the unique arrow h such that h ◦ in′R = 〈r′1, r′2〉 for
all 〈r′1, r′2〉 : R′ → X × Y in B, given by the universal property of coproducts. It remains to show
that R can be endowed with a coalgebra structure γ : R→ FR that renders it a bisimulation. By
assumption λ has right inverse r, that is, λ ◦ r = idR. So that we define γ = Fλ ◦ σ ◦ r, where
σ is the coalgebra structure of the coproduct of the coalgebras over B. It is routine to check that
both πX ◦ρ and πY ◦ρ are F -homomorphisms from (R, ρ) to (X,α) and (Y, β), respectively. Hence
(R, πX ◦ρ, πY ◦ρ) is an F -bisimulation between (X,α) and (Y, β). Moreover it is the “largest” one
since, for all R′ ∈ B, λ ◦ in′R is a morphism between coalgebras.

Remark 3.3.8 The above proposition is a slight generalization of a classical result due to Rut-
ten [72, Theorem 5.5], which was proved in Set. In fact, Set is the bests category in which this
approach can the used. Indeed, it has an (Epic,Monic)-factorization system, and in this setting
the most requiring assumption, i.e. asking for right invertible arrows in the left-class of morphisms,
is met (if the axiom of choice is assumed to be valid). In general, it difficult to find factorization
systems satisfying these prerequisites, indeed, to the best of our knowledge, this result has been
applied only in Set.

Weak pullback preserving functors. If the category F -coalg has terminal object 1 we expect
that the kernel of the unique morphism from a coalgebra (X,α) to the terminal object 1 is the
largest bisimulation on (X,α). This holds if pullbacks from the base category C are lifted to the
category of coalgebras. Such a lifting is possible if pullbacks in C can be (canonically) endowed
with a coalgebra structure and this happens, for example, if the behaviour functor weakly preserves
them.

Proposition 3.3.9 ([62]) Let C be a category with pullbacks and F : C→ C be a functor weakly
preserving them. Let (X,α) and (Y, β) be F -coalgebras and 1 be a terminal object in F -coalg.
Then, (R, π1, π2) is the largest F -bisimulation on (X,α) and (Y, β) if and only if the following
diagram in C is a pullback.

R Y

X UF1

π2

π1

UF !X

UF !Y

Actually, the assumption that C has all pullbacks and that they are weakly preserved by F could
be weakened. Indeed, only the pullback in the diagram of the statement is needed. Moreover, the
existence of the a terminal object is not really needed: a weakly terminal one would be sufficient.

Remark 3.3.10 In Proposition 3.3.9, requiring that the functor weakly preserves pullbacks serves
only to guarantee the existence of a (not uniquely determined) structure map. In [62], Kurz noted
that the proof of Proposition 3.3.9 makes hidden use of split epimorphisms: if (P, p1, p2) is a
pullback of a cospan (X, f, g), and (R, r1, r2) is a weak pullback for the same cospan, then the
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unique morphism h : R → P given by the universal property of the pullback is epic and its right
inverse gives rise to the non-unique morphism into the weak pullback. This reveals the connection
between Propositions 3.3.9 and 3.3.7.

3.4 Final coalgebras and Coinduction

In Section 3.2 we have seen that the existence of initial algebras give rise to a generalized induction
proof principle. Similarly, the existence of terminal objects in the category of coalgebras, induces
an abstract proof principle, dual the notion of induction: coinduction. Historically, this proof
principle is less know then induction, and a practical explanation for this could be that it cannot
be encoded in the classical Zermelo-Fraenkel set theory, unless the anti-foundation axiom is taken
in place of the axiom of foundation [3].

Definition 3.4.1 (Final F -coalgebra) Let F : C → C be an endofunctor. A final F -coalgebra
is a terminal object in F -coalg, i.e., an F -coalgebra (Z, ω) such that for any F -coalgebra (X,α)
there exists a unique F -homomorphism from (X,α) to (Z, ω).

The following is the dual of Theorem 3.2.2.

Theorem 3.4.2 (Lambek’s lemma) Final F -coalgebras (Z, ω) are fixed points for F : C → C,
that is, ω : Z → FZ is an isomorphism in C.

Intuitively, final coalgebras can be explained using notions from the theory of preordered sets,
indeed, categories can be seen as generalized preorders and endofunctors as monotone functions.
In this way coalgebras correspond to postfixed points and final coalgebras as greatest fixed points.

Of course, final coalgebras do not need to exists in general. For example there is no final
coalgebra for the powerset functor P : Set→ Set. This is a consequence of Lambek’s lemma and
Cantor’s theorem, which says that there is no set X such that X ∼= P(X). Things work differently
if instead of all subsets one restricts to only the finite subsets, that is, if we consider the finite
powerset functor Pω : Set→ Set, which takes objects X and arrows f : X → Y , respectively, to

PωX = {X ′ ⊆ X | |X ′| < ω}
Pωf(X ′) = f(X ′) = {f(x′) | x′ ∈ X ′} ,

where X ′ ⊆ X is such that |X ′| < ω. This functor admits a final coalgebra, and more generally,
final coalgebras exist for all κ-bounded versions Pκ : Set → Set of the powerset functor, that is,
when the cardinality of the subsets is limited to a fixed (limit) cardinal κ. These are all examples
of Set-bounded functors, that is, functors F for which there exists a global bound to the size of
the carrier set of any one-generated F -coalgebras (see Rutten [72] for further details).

The coinduction proof principle is particularly useful when one wants to define operations on
coalgebraic structures such as, labelled transition systems (see Example 3.3.3), deterministic and
non-deterministic automata, infinite streams, etc. In the following example we show a simple
application of the coinduction proof principle on infinite streams.

Example 3.4.3 (Coinduction on infinite streams) A stream system for an alphabet of sym-
bols A is a pair (X, t), where X is a set of states and t : X → A×X is a transition function, i.e.,
it is a coalgebra for the functor A× Id : Set→ Set.

The set Aω of infinite streams of symbols in A is the largest set satisfying the following rules

a ∈ A s ∈ Aω

as ∈ Aω

This set can be naturally endowed with an (A × Id)-coalgebra structure 〈hd, tl〉 : Aω → A × Aω
where hd : Aω → A and tl : Aω → Aω are, respectively, the head and tail functions, defined
respectively as follows, for all a ∈ A and s ∈ Aω

hd(as) = a , tl(as) = s .
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The function 〈hd, tl〉 is an isomorphism and, in particular, (Aω, 〈hd, tl〉) is the final coalgebra for
A× Id (see [73] for a detailed coalgebraic analysis of stream systems).

Consider a simple alternating composition operation alt : Aω × Aω → Aω, acting on infinite
streams as follows:

alt(a1a2a3 · · · , b1b2b3 · · · ) = a1b1a2b2a3b3 · · ·

To define alt formally by coinduction, one uses the finality of (Aω, 〈hd, tl〉), and pick an (A× Id)-
coalgebra on the set Aω ×Aω, to be though as the “conductive step”

h : Aω ×Aω → A× (Aω ×Aω) h(s1, s2) =
(
hd(s1), (s2, tl(s1))

)
and define alt as the unique map making the following diagram commute:

Aω ×Aω Aω

A× (Aω ×Aω) A×Aω

h 〈hd, tl〉

alt

A× alt

Note that, to define the function alt coinduction is essential, indeed simple (or structural) induction
cannot be applied to define it, and any other operation on Aω.

3.4.1 From Final Coalgebras to Adjunctions and back

In this section, we dualize the results we saw in Section 3.2.1 in the case of algebras. Since all
proofs are similar and need only to be dualized, we do not provide them. Our aim is just to reveal
the duality of the two approaches and to investigate how cofree constructions, provided by right
adjoints, give rise to a more structured coinduction proof principle over cofree comonads.

In case the forgetful functor UF : F -coalg → C has a right adjoint, namely, the functor
RF : C → F -coalg, the category of F -coalgebras admits a cofree construction: given any ob-
ject Y in C, any F -coalgebra (X,α) and morphism f : UF (X,α) = X → Y in C, there exists a
unique F -homomorphism f [ such that the following diagrams commute

C F -coalg

UF (X,α) (X,α)

Y UFRFY RFYεY

f
UF f

[ f[

RF

UF

where ε : UFRF ⇒ Id is the counit of the adjunction.

Similar to the case of algebras, the existence of the right adjoint RF and of final coalgebras for
some (class of) functors are strictly related with each other.

From final coalgebras to adjunctions

Let F : C→ C be a functor in a category C with binary products. Assume, moreover, that for any
object X in C the functor X × F has final coalgebra (ZX , ωX). Under these assumptions we can
define the right adjoint of the forgetful functor UF : F -coalg→ C, namely, RF : C→ F -coalg.

For the coalgebras for the functor X × F , we have the following correspondence lemma.
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Lemma 3.4.4 Let X be an object in C and F : C→ C be an endofunctor. An arrow f : A→ B is
an homomorphism between the (X×F )-coalgebras (A,αA) and (B,αB) if and only if the following
diagram in C commutes:

A FA

X B FB

πAX ◦ αA

πBX ◦ αB

πAFA ◦ αA

πBFB ◦ αB

f Ff

where πAX and πAFA are the left and right projections of the product X × FA, respectively, and πBX ,
πBFB the left and right projections of X × FB.

Any (X×F )-coalgebra (A,αA) can be turned into an F -coalgebra (A, πAFA ◦αA), hence, by the
lemma above, any (X×F )-homomorphism is an F -homomorphism with respect to this translation.

We define RF : C→ F -coalg, for any object X in C and arrow f : X → Y , as follows

RFX = (ZX , δX = πXFZX ◦ ωX)

X ZX FZX

Y ZY FZY

πXX ◦ ωX δX

πYY ◦ ωY δY

f RF f = f[ Ff

where (ZX , ωX) is the final (X × F )-coalgebra associated with X, and f [ : ZX → ZY is the
unique final (X × F )-homomorphism making the above diagram commute (cf. Lemma 3.4.4). In
particular, f [ is an F -homomorphism between RFX = (ZX , δX) and RFY = (ZY , δY ), thus RF is
well defined. Functoriality is readily proved exploiting the universal property of final coalgebras.

The functor RF right adjoint to UF , with unity η : Id ⇒ LFUF and counit ε : UFRF ⇒ Id
defined component-wise as follows, for X in C and (X,α) in F -coalg,

η(X,α) = 〈idX , α〉[ : (X,α)→ (ZX , δX) = LFUF (X,α) , εX = πXX ◦ ωX : UFRFX = ZX → X ,

where 〈idX , α〉[ is the unique arrow given by finality, making the following diagram commute (by
Lemma 3.4.4):

X FX

X ZX FZX

idX

εX

α

δX

〈idX , α〉[ F 〈idX , α〉[

Theorem 3.4.5 Let F : C → C be a functor in a category C with binary products. If for any
object X in C the functor X × F has final algebra, then the forgetful functor UF : F -coalg → C
has a right adjoint RF : C→ F -coalg.

From adjunctions to final coalgebras

The existence of a right adjoint to the forgetful functor UF : F -coalg→ C, namely, the functor

RF : C→ F -coalg X 7→ (ZX , δX : ZX → FZX) ,
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induces a principle of cofree construction, which can be (re)stated as

C F -coalg

X X FX

Y ZY ZY FZY

= UF (X,α)

= UFRFY
εY

f
f[ = UF f

[ f[ Ff[

α

δX

RF

UF

(3.4.1)

where ε : UFRF ⇒ Id is the counit of the adjunction.
The coalgebra RFX = (ZX , δX) is usually called cofree F -coalgebra over X, and since right

adjoints preserves all limits, the existence of final F -coalgebras is guaranteed if the underlying
category C has an terminal object 1.

Theorem 3.4.6 (Existence of final F -coalgebras) Let F : C→ C be a functor on a category
with terminal object 1. If the forgetful functor UF : F -coalg → C has a right adjoint RF : C →
F -coalg, then RF1, the cofree F -coalgebra over 1, is final.

The adjunction (η, ε) : UF a RF generates a (cofree) comonad over C, defined as

DF = (UFRF , ε, UF ηRF )

called the comonad cofreely generated by F . By a little abuse of notation the composite functor
UFRF : C → C is tipically denoted by DF : C → C, the counit ε by εF , and comultiplication
UF ηRF by ξF . If F is clear from the context the comonad will be denoted simply by (D, ε, ξ).

Definition 3.4.7 (Structural coinduction) Let F : C→ C be a functor and (DF , εF , ξF ) be the
comonad cofreely generated by F . Then, for any object Y in C, arrow f : X → Y , and F -coalgebra
(X,α), there exists a unique arrow f [ : Y → DFX making the following diagram commute

X FX

Y DFY FDFY

f

εY

α

δY

f[ Ff[

where δY : DFY → FDFX is the cofree F -coalgebra structure over Y . The arrow f [ is said the
(cofree) coinductive extension of α along (the co-valuation) f .

Notice that, the diagram in the above statement is nothing but Diagram (3.4.1).

Lemma 3.4.8 Let F,G,H : C→ C be functors and (DF , εF , ξF ) be the comonad cofreely generated
by F . Then, any two natural transformations φ : H ⇒ G and ϕ : H ⇒ FH uniquely define a natural
transformation ρ : H ⇒ DFG, making the following diagram commute

H FH

G DFG FDFG

φ

εG

ϕ

δG

ρ Fρ

where δ : DF ⇒ FDF is the natural transformation induced by cofree F -coalgebras structures over
the objects in C. In this case, ρ is said the (cofree) coinductive extension of ϕ along φ.
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Remark 3.4.9 Notably, the comultiplication ξF : DF ⇒ DFDF fits as the coinductive extension
of δ : DF ⇒ FDF along the identity natural transformation idDF : DF ⇒ DF , i.e., it makes the
following diagram commute

DF FDF

DF DFDF FDFDF

idDF

εDF

δ

δDF

ξ Fξ

This property is very useful in proofs, since it gives a simple universal characterization of the
comultiplication if it belongs to a comonad cofreely generated by some functor.

We conclude this section showing an example of comonad cofreely generated by functor.

Example 3.4.10 (Infinite Streams Comonad) Let A an alphabet of symbols, and X a set of
state variables. For any set X, the functor X × (A× Id) : Set→ Set has final coalgebras.

By Theorem 3.4.5, it follows that the forgetful functor U(A×Id) : (A × Id)-coalg → Set has a
right adjoint R(A×Id) : Set → (A × Id)-coalg mapping objects X in Set to (ZX , δX), the cofree
(A× Id)-coalgebra over X, and arrows f : X → Y to the coinductive extensions of δX over f ◦ εX ,
where ε is the counit of the adjunction.

The carrier ZX , of the cofree (A× Id)-coalgebra over X, is the set (X×A)ω of infinite streams
over the enriched alphabetX×A, and the coalgebra structure δX : (X×A)ω → A×(X×A)ω is given
by δX = 〈hdX , tlX〉, where tlX : (X×A)ω → (X×A)ω is the tail function, and hdX : (X×A)ω → A
is the half-head function (cf. Example 3.4.3). In this respect, we can define the comonad (D, ε, ξ)
cofreely generated by A× Id explicitly as follows, for all a ∈ A, x ∈ X, and s ∈ (X ×A)ω,

D : Set→ Set

DX = (X ×A)ω

D(f : X → Y )((x, a)s) = (f(x), a)Df(s)

εX((x, a)s) = x

ξX((x, a)s) = ((x, a)s, a)ξX(s) .

Note that, both the action on morphisms of D and the comultiplication are given applying the
structural coinduction proof principle of Definition 3.4.7 (cf. also Remark 3.4.9).

3.4.2 Coalgebras for a Comonad

In Section 3.2.2, we showed that when an endofunctor F : C→ C admits free algebra constructions,
then we can define the monad (TF , ηF , µF ) freely generated by F . In particular the category of
F -algebras and of Eilenberg-Moore algebras for (TF , ηF , µF ) are isomorphic. Dually, we can
prove that the category of Eilenberg-Moore coalgebras for the comonad cofreely generated by F is
isomorphic to F -coalg.

Definition 3.4.11 (Eilenberg-Moore coalgebra) Let (D, ε, ξ) be a comonad in C. A coalge-
bra of the comonad (D, ε, ξ) is a D-coalgebra (X,α) such that the two diagrams below commute,
which we call the counit and comultiplication laws of the coalgebra, respectively.

X

X DX
εX

α
idX

X DX

DX DDX
ξX

α

α Dα

The category of all coalgebras for the comonad (D, ε, ξ) and D-homomorphisms between them, is
said the Eleinberg-Moore category for (D, ε, ξ), and it is denoted by (D, ε, ξ)-coalg.
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The counit and comultiplication laws say that the coalgebra structure α respects the structure of
the comonad. By an abuse of notation we will denote (D, ε, ξ)-coalg simply as D-coalg, when it
is clear from the contexts that D belongs to a monad.

Let (DF , εF , ξF ) be the comonad freely generated by F : C → C. We define the natural
transformation ν : DF ⇒ F as the composite

ν = Fε ◦ δ DF FDF F
δ Fε

The naturality of ν allows us to transform any DF -algebra (X,α) to an F -algebra (X,α◦νX), and
any DF -homomorphism to an F -homomorphism, by naturality of ν, in the following way

X DFX

Y DFY

α

β

f DF f 7→

X DFX FX

Y DFY FY

α

β

νX

νY

f DF f Ff

This transformation is functorial, i.e., it extends to a functor K : DF -coalg→ F -coalg. Moreover
we have that K takes part into the following isomorphism of categories:

Lemma 3.4.12 (F -coalg ∼= DF -coalg) Let F : C→ C be a functor, (DF , εF , ξF ) be the comonad
cofreely generated by F . Then, the categories F -coalg and DF -coalg are isomorphic.

3.5 Cocongruences and Behavioral Equivalences

In Section 3.3, we have seen that seeking for the the largest bisimulation is problematic in general,
and one has to require either that behavior functor preserves weak pullbacks, or that the base
category has factorization systems with right invertible morphisms. (Propositions 3.3.9 and 3.3.7).
Aiming at a general development of universal coalgebra without having recourse to such strong
assumptions on the base category and on functors, it has been proposed a better behaved alternative
to the notion of bisimulation: cocongruence. Cocongruences replace monic spans in the definition
of bisimulation with the dual notion of epic cospans.

In this section, we recall the definitions of cocongruence and behavioral equivalence, and we
give evidence of how these notions can actually take the place of bisimulation. As a consequence
we show why the property of a behavior functor to preserve weak pullbacks is convenient but not
necessary. All the results and examples recalled in this section are due to Kurz [62].

Definition 3.5.1 (F -Cocongruence) Let F : C → C be a functor. An epic cospan (K, f, g) in
C between X and Y is an F -cocongruence between F -coalgebras (X,α) and (Y, β) if there exists
a (unique) coalgebra structure κ : K → FK on K making the following diagram in C commute

X K Y

FX FK FY

f g

α βκ

Ff Fg

that is, making f and g morphisms of F -coalgebras.

To explain this definition assume the base category is Set. Given an F -cocongruence (K, f, g) on
(X,α) and (Y, β) we can define the relation ∼K ⊆ X × Y as x ∼K y, if and only if, f(x) = g(y).
Actually, the set ∼K together with the canonical projections is the pullback of (f, g). Note that,
(K,κ) is the coalgebra which results from identifying the states related by ∼K . These arguments
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48 3. Algebras and Coalgebras

are valid in any category with pullbacks, but note that the definition of cocongruence is more
general since it does not assume the existence of pullbacks in the category.

However, even without the use of pullbacks, we can still have a relational notion of cocongruence
via monic spans respecting the structure of the cocongruence.

Definition 3.5.2 (Span associated with F -cocongruence) Let F : C→ C be a functor, and
(K, f, g) be an F -cocongruence between F -coalgebras (X,α) and (Y, β). A monic cospan (R, s, t)
between X and Y is associated with (K, f, g) if the following diagram commutes in C.

R

X K Y

FX FK FY

s t

f g

α βκ

Ff Fg

Note that, for the object R it is not required any coalgebra structure, hence it is merely a relation
between the carriers X and Y and not between their coalgebras. Any span derived from a pullback
is monic, so that, in case the base category has pullbacks there is a universal (actually, final) monic
span associated to the F -cocongruence. In [78], this notion is referred to as kernel bisimulation,
in order to emphasize its universal property. It should be mentioned that many authors prefer
this definition to the more general of cocongruence because it can be compared with the notion of
bisimulation, so that one can say that a bisimulation is a “cocongruence” and viceversa.

Definition 3.5.3 (Behavioral Equivalence) Let F : C→ C be a functor. An arrow e : X → E
between F -coalgebras (X,α) and (E, ε) is an F -behavioral equivalence if it is an epimorphism.

Note that, behavioral equivalences e : X → E are exactly cocongruences of the form (E, e, e). The
name “equivalence” is chosen according to the fact that in Set the induced relation ∼E is always
and equivalence. This argument works in general in any category with kernel pairs, which can be
considered as the categorical generalization of equivalence relations.

Historical note. The name “cocongruence” is due to Kurz, and it was chosen due to the fact
that cocongruences are dual to congruences for algebras. Behavioral equivalences are essentially
Aczel and Mendler’s congruences but the term “behavioral equivalence” gives a better intuition of
its meaning and it does not conflict with other uses of the term “congruence”.

To the best of our knowledge, Kurz was the fist who recognized the use of cocongruences as an
alternative notion to bisimulations. Later, cocongruences have been adopted by various authors
and now they are recognized as the alternative to bisimulations, at least when largest bisimulations
do not exist. Bartels et al. [16] used cocongruences in order to find reflections of bisimilarities in
a hierarchy of coalgebras for discrete state probabilistic systems. Their use, however, only eased
the proofs and was not really necessary. Later, Danos et al. [31] proposed cocongruences (called
event bisimulations or probabilistic cocongruences) as the right alternative to bisimulations in the
study of labelled Markov processes, that is, probabilistic systems with continuous state spaces. The
use of congruences allowed them to give a logical characterization of probabilistic “bisimilarity”
(actually, behavioral equivalence) without having recourt to specific properties of polish or analytic
spaces. In previous works, the logical characterization was proved only in the case of analytic spaces
which allow for the construction of semi-pullbacks [45], used to prove the existence of the largest
bisimulation.

Proposition 3.5.4 ([62]) Let C be a category with pullbacks and F : C → C be a functor pre-
serving weak pullbacks. Then, F -cocongruences give rise to F -bisimulations via pullbacks.
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Proof. Let (X,α) and (Y, β) be F -coalgebras and (K, f, g) be an F -cocongruence between them
which coalgebra structure κ : K → FK. Consider the pullback for the pair (f, g) in C, namely,
(R, r1, r2), which, by the universal property of pullbacks, is a monic span. To prove it is an F -
bisimulation we have to provide an F -coalgebra structure γ : R → FR. To do so, consider the
following diagram

FR FY

R Y

X K

FX FK

Fr2

Fr1

Ff

Fg

r2

r1 g

f

γ

α

β

κ

for which the outer square is a weak pullback, since F preserves weak pullbacks, thus γ exists and
makes (R, p1, p2) be an F -bisimulation between (X,α) and (Y, β).

Hence, the (final) monic span associated with the cocongruence derived via pullback, is also a
bisimulation, provided that the behavior functor weekly preserves pullbacks. This suggests the
notion of bisimulation associated with a cocongruence.

Definition 3.5.5 (Associated Bisimulation) Let F : C → C be a functor and (K, f, g) be an
F -cocongruence between (X,α) and (Y, β). An F -bisimulation (R, s, t) between (X,α) and (Y, β)
is associated with (K, f, g) if its cospan is so.

Proposition 3.5.4 also holds for behavioral equivalences (indeed, the proof works in the same way
imposing f = g), so that, we will also talk of bisimulations associated with behavioral equivalences.

To explain the difference between bisimulations and behavioral equivalences, in the following
example we consider a functor which does not preserve weak pullback, the Aczel-Mendler functor,
called in this way since it first appeared in [4].

Example 3.5.6 Consider the Aczel-Mendler functor AM : Set → Set defined on objects X and
arrows f : X → Y as follows, for x, y, z ∈ X

AM(X) = {(x, y, z) ∈ X3 | |{x, y, z}| ≤ 2}
AM(f)((x, y, z)) = (f(x), f(y), f(z))

Coalgebras for this functor can be seen as a kind of deterministic automata taking three types
of inputs, namely, 1, 2, and 3, and performing a deterministic transitions to a successor state
according to the type of input it has been received. As an example, consider the coalgebra (X,α)
defined as below

x1 x21/2

3

2/3

1

X = {x1, x2}

α(x1) = (x1, x1, x2)

α(x2) = (x1, x2, x2)

The restriction on the cardinality imposed by the behavior functor can be thought as a constraint
in the implementation of these kind of automata, i.e., in every state at least two inputs have to
give rise to the same successor.

For an example of behavioral equivalence that is not a bisimulation consider the (final) coalgebra
(Z, ω) given by Z = {∗} (the final object in Set) and ω(∗) = (∗, ∗, ∗). The unique map to the
singleton set, ! : X → Z, is a surjection and, hence, an epimorphism in Set. This means that
! : X → Z is a behavioral equivalence on (X,α), and, since (Z, ω) is final, it is the largest one.
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Since !(x1) = ∗ = !(x2), x1 and x2 are behavioral equivalent, but their are not bisimilar. Indeed,
if it would exist an AM -bisimulation relating x1 and x2 it will have a coalgebra structure that on
(x1, x2) will be of the following form

(x1, x2)

(x1, x1) (x1, x2) (x2, x2)

1
2

3

which is not possible due to the cardinality constraint imposed by AM .
This shows that bisimulations may fail to capture behavioral equivalence. This phenomenon

is due to the fact that the functor AM imposes constraints which cannot be satisfied by a largest
bisimulation. On the other hand, from a behavioral point of view, this constraint is not observable,
which is represented by the fact that the largest behavioral equivalence does exist.

The Aczel-Mendler functor can also be used to show that bisimulation may fail to give rise to
a smallest bisimulation containing it.

Example 3.5.7 Let AM : Set→ Set be the Aczel-Mendler functor defined as in Example 3.5.6.
Consider the AM -coalgebra (X,α) defined as follows

x1 x2 x3

1/3

2

1/2/3 1

2/3

X = {x1, x2, x3}

α(x1) = (x1, x2, x1)

α(x2) = (x2, x2, x2)

α(x3) = (x3, x2, x2)

Note that the relations R = {(x1, x2)} and S = {(x2, x3)} are both AM -bisimulations, respectively,
with coalgebra structures ρ : R→ AM(R) and σ : S → AM(S) defined as follows

ρ((x1, x2)) = ((x1, x2), (x1, x2), (x1, x2)) , σ((x2, x3)) = ((x2, x3), (x2, x3), (x2, x3)) .

And their union is a bisimulation too, however there is no bisimulation equivalence containing.
Indeed, if there were such an equivalence, it should contain the pair (x1, x3) at which the coalgebra
structure would have been of the following form

(x1, x3)

(x1, x3) (x2, x2) (x1, x2)

1
2

3

hence, violating the cardinality constraint imposed by AM .

Example 3.5.7 shows also that bisimulations are not closed under composition.
If one considers cocongruences in place of bisimulations the theory works smoothly. Indeed,

the existence of largest behavioral equivalences is guaranteed in case the category of coalgebras
has final objects, or more generally when the base category has cointersections. Moreover, if
the underlying category has pushouts, then cocongruences are also closed by composition. These
arguments, together with what we have seen in Examples 3.5.7 and 3.5.7, give evidence of why
cocongruences should be preferred instead of bisimulations in case the behavior functor does not
preserve weak pullbacks.
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4
Initial Algebras and Final Coalgebras

via Factorization Systems

Remarks and notation: We assume the reader have elementary knowledge about ordinal num-
bers and transfinite induction. Ordinal numbers will be ranged over by α, β, γ, κ, . . . and the class
of ordinal numbers will be denoted by Ord. By a little abuse of notation, Ord will also denote
the category of ordinal numbers with arrows α→ β iff α ≤ β, and by α we will also denote the full
sub-category of Ord of all ordinal numbers less or equal than α. For a functor F : Ord→ C, we
define the functor F �α : α→ C as the composite ι ◦F , where ι : α ↪→ Ord is the inclusion functor.

4.1 Initial and Final Sequences

In this section we recall the definition of initial and final sequences for an endofunctor. These
structures, which are dual to each other, were first explicitly given by Barr [13] in order to inves-
tigate the relationship between the initial and final coalgebra, and in order to provide sufficient
conditions for a functor to be algebraically compact (i.e., when the unique arrow from the initial
algebra to the final coalgebra is an isomorphism). These sequences have been successfully used
in order to infer properties about the initial algebra and final coalgebra and, moreover, to pro-
vide sufficient conditions for a functor to admit such initial and terminal objects (see for example,
Barr [14], Adàmek [9, 8, 7, 6], Smyth and Plotkin [77], and Worrell [94, 92]).

4.1.1 Initial Sequences Leads to Initial Algebras

In this section we recall the definition and the main results about initial sequences. The expo-
sition is slightly nonstandard and puts the light on some results which were implicit in previous
presentations (e.g., in [13, 9]).

Definition 4.1.1 (Initial Sequence) Let C be a category with initial object 0 and colimits of
ordinal-indexed diagrams, and assume T : C → C be an endofunctor on C. The initial sequence
of T is a limit-preserving functor A : Ord→ C such that, for all ordinals γ ≤ β,

i. A(0) = 0;
ii. A(β+1) = TA(β);

iii. A(γ+1→ β+1) = TA(γ → β).

The initial sequence is said to stabilize at some α ∈ Ord, if A(α→ α+1) is an isomorphism.

Note that, for all limit ordinals β, (γ → β)γ<β is a colimit in Ord, and since A preserves colimits,
(A(γ → β))γ<β is a colimit in C for the diagram A�α.
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Historical note. In [13], Barr gave a more direct construction of the initial sequence as an
ordinal-indexed sequence of objects (Aβ)β∈Ord with arrows (fγβ : Aγ → Aβ)γ≤β , uniquely defined
by the following conditions, for δ ≤ γ ≤ β:

(IS-1) Aβ+1 = TAβ ;

(IS-2) fγ+1
β+1 = Tfγβ ;

(IS-3) fββ = idAβ :

(IS-4) fγβ ◦ fδγ = fδβ ;

(IS-5) if β is a limit ordinal, the cocone (fγβ : Aγ → Aβ)γ<β is a colimit.

The sequence is defined by transfinite induction on α ∈ Ord, defining Aα and fβα : Aβ → Aα, for
all β ≤ α, and checking at each stage that conditions (IS-1)–(IS-5) hold for the portion of sequence
already defined.

First step: Let α = 0. The sequence begins with A0 = 0 and f0
0 = idA0 .

Isolated step: Let α = α′ + 1 and assume by inductive hypothesis that Aα′ and the arrows fγα′
have been given and satisfy (IS-1)–(IS-5), for all γ < α′. We define Aα = TAα′ , and the
arrows fβα are defined by induction on β ≤ α. We distinguish three cases. If β = α, then we

define fβα = idAα . If β is a successor ordinal, say β = β′ + 1, then we define fβα = Tfβ
′

α′ . If
β is a limit ordinal, (fγβ : Aγ → Aβ)γ<β is a colimit, by (IS-5). By inductive hypothesis on
β, we can consider (fγα : Aγ → Aα)γ<β , which turns out to be a compatible cocone by (IS-2)
and (IS-4). Now, we define fβα as the unique map factorizing the cocone.

Limit step: Let α be a limit ordinal. By inductive hypothesis we are given all arrows fγβ , for
γ ≤ β < α, which, indeed, form a chain. We define Aα to be the colimit of this chain and
(fβα : Aβ → Aα)β<α are its injections.

An initial sequence constitutes an ordinal-index diagram A : Ord → C in C, and it turns out
that for any T -algebra (X,h) one can define a cocone over it.

Lemma 4.1.2 ([13]) Assume A : Ord → C be the initial sequence of T , and (X,h) be a T -
algebra. Then, there is a cocone (hα : A(α) → X)α∈Ord from A to X, such that, for any ordinal
α, the following diagram commutes:

TX X

A(α+1) A(α)

h

Thα hα

Proof. We define hα : A(α)→ X by transfinite induction on α ∈ Ord, checking at each step that
hα = h ◦ Thα ◦A(α→ α+1) and hβ = hα ◦A(β → α), for all β ≤ α.

We define h0 : A(0) = 0→ X as the unique arrow from the initial object, therefore, by unique-
ness, h0 = h ◦ Th0 ◦ A(0 → 1) holds. Assume by inductive hypothesis that, for all β ≤ α, the
arrows hβ are given, and they are such that hβ = h ◦Thβ ◦A(β → β+1) and hβ = hα ◦A(β → α).

define hα+1 , h ◦ Thα. From this it follows that

hα+1 = h ◦ Thα (by def. hα+1)

= h ◦ T (h ◦ Thα ◦A(α→ α+1)) (by inductive hp.)

= h ◦ T (h ◦ Thα) ◦ TA(α→ α+1) (by funct. T )
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= h ◦ Thα+1 ◦ TA(α→ α+1) (by def. hα+1)

= h ◦ Thα+1 ◦A(α+1→ α+2) ; (by def. A)

hα+1 = hα+1 ◦A(α+1→ α+1), since A(α+1→ α+1) = idA(α+1), and, for all β ≤ α,

hβ = hα ◦A(β → α) (by inductive hp.)

= h ◦ Thα ◦A(α→ α+1) ◦A(β → α) (by inductive hp.)

= h ◦ Thα ◦A(β → α+1) (by funct. A)

= hα+1 ◦A(β → α+1) . (by def. hα+1)

Let α be a limit ordinal, and assume by inductive hypothesis that, for all β < α, the arrows hβ are
given, and they are such that hβ = h ◦ Thβ ◦A(β → β+1) and hβ = hα ◦A(β → α). By definition
of initial sequence, (A(β → α))β<α is a colimit over A�α, and by (the second part of the) inductive
hypothesis we have that (hβ : A(β)→ X)β<α is a cocone over A�α. From this, we define hα as the
unique arrow such that hβ = hα ◦ A(β → α), for all β < α. Trivially, hα = hα ◦ A(α → α), since
A(α→ α) = idA(α). We have that, for all β < α,

hβ = h ◦ Thβ ◦A(β → β+1) (by inductive hp.)

= h ◦ T (hα ◦A(β → α)) ◦A(β → β+1) (by inductive hp.)

= h ◦ Thα ◦ TA(β → α) ◦A(β → β+1) (by funct. T )

= h ◦ Thα ◦A(β+1→ α+1) ◦A(β → β+1) (by def. A)

= h ◦ Thα ◦A(β → α+1) (by funct. A)

=
(
h ◦ Thα ◦A(α→ α+1)

)
◦A(β → α) . (by funct. A)

By uniqueness of the colimiting arrow, the above proves that hα = h ◦ Thα ◦A(α→ α+1).

Definition 4.1.3 (Initial co-projection) Let T : C → C be a functor, (X,h) be a T -algebra,
and A : Ord→ C be the initial sequence of T . An arrow k : A(α)→ X is an initial co-projection
at α for (X,h), if the following diagram commutes:

TX X

A(α+1) A(α)

h

Tk k

Given a T -algebra (X,h), Lemma 4.1.2 states that each arrow in the (canonical) cocone
(hα : A(α) → X)α∈Ord for (X,h) over the initial sequence A, is an initial co-projection. It turns
out that, for any ordinal α and T -algebra (X,h), initial co-projections at α for (X,h) are unique.

Lemma 4.1.4 (Uniqueness of initial co-projections) Let T : C → C be a functor, (X,h) be
a T -algebra, A : Ord → C be the initial sequence of T , and (hα : A(α) → X)α∈Ord be the cocone
for (X,h) over A given by Lemma 4.1.9. If k : A(α)→ X is an initial co-projection at α for (X,h),
then k = hα.

Proof. For β ≤ α, let kβ = k ◦ A(β → α). We will show by transfinite induction on β, that
kβ = hβ , for all β ≤ α. Certainly k0 = h0 since their domain is the initial object. Assume by
inductive hypothesis that kβ = hβ , then we have

kβ+1 = k ◦A(β+1→ α) (by def. kβ+1)

= h ◦ Tk ◦A(α→ α+1) ◦A(β+1→ α) (by hp.)

= h ◦ Tk ◦A(β+1→ α+1) (by funct. A)

= h ◦ Tk ◦ TA(β → α) (by def. A)
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= h ◦ T (k ◦A(β → α)) (by funct. T )

= h ◦ T (kβ) (by def. kβ)

= h ◦ T (hβ) (by inductive hp.)

= hβ+1 . (by def. hβ+1)

Assume β is a limit ordinal and, by inductive hypothesis, that kγ = hγ , for every γ < β. By
definition of kγ and by the fact that (hγ : A(γ) → X)γ≤α is a cocone over A�α, we have that
kγ = k ◦ A(γ → α) and hγ = hα ◦ A(γ → α). Therefore, by inductive hypothesis, we obtain
k ◦A(γ → α) = hα ◦A(γ → α). By functoriality of A, this implies that

k ◦A(β → α) ◦A(γ → β) = hα ◦A(β → α) ◦A(γ → β) .

This holds for all γ < β, and since (A(γ → β))γ<β is a colimit over A�β, by uniqueness of
the colimiting arrow, we have k ◦ A(β → α) = hα ◦ A(β → α). Thus, by definition of kβ and
compatibility of the cocone, we conclude that kβ = hβ .

Remark 4.1.5 Uniqueness of initial co-projections was not explicitly recognized in [13]. Indeed,
in [13, Theorem 1.2], uniqueness for the arrows in initial co-projections was only proved assuming
their targets are isomorphisms in the initial sequence. Lemma 4.1.4 extends this result and drop
the assumption of existence of isomorphisms in the initial sequence. Thank to this lemma, the
proof of [13, Theorem 1.2] can be made easier (a restatement of it is given in Theorem 4.1.6).

Initial sequences gives sufficient conditions for the existence of initial algebras. Indeed, if the
initial sequence of T stabilizes at some ordinal α, then there exists an initial T -algebra.

Theorem 4.1.6 ([13]) Let α be an ordinal number, and suppose the initial sequence A of T
stabilizes at α, then (A(α), A(α→ α+1)−1) is an initial T -algebra.

Proof. Let (X,h) be a T -algebra. By Lemma 4.1.2, there exists a cocone (hβ : A(β)→ X)β∈Ord

over A. Moreover, hα = h ◦ Thα ◦ A(α→ α+1). Since, by hypothesis, A(α→ α+1) is an isomor-
phism, hα is a homomorphism of T -algebras from (A(α), A(α → α+1)−1) to (X,h). Therefore,
(A(α), A(α→ α+1)−1) is weakly terminal. Uniqueness follows by Lemma 4.1.4.

Remark 4.1.7 One may be tempted to think that if there exists an initial algebra for some
endofunctor T , then the initial sequence must lead to it. This is not true in general, even for
categories which are complete and cocomplete, as noted by Barr [13].

For example, let C be the category whose objects are all ordinals, ordered by inclusion, plus one
more object > greater than all the ordinals. Then C is complete and cocomplete. Let T : C→ C
be the endofunctor defined by T (α) = α+1, when α is an ordinal, and T (>) = >. Then, the initial
sequence of T consists of all the ordinals and never stabilizes. There is only one T -algebra, namely
(>, id>), and it is initial.

4.1.2 Final Sequences leads to Final Coalgebras

In this section, we dualize the definitions and results given in Section 4.1.1 for initial sequences,
yielding the notion of final sequence, and providing sufficient conditions for the existence of final
coalgebras. Note that, the proofs of all the results are omitted since they are straightforward
dualizations of those given in the previous section.

Definition 4.1.8 (Final Sequence) Let C be a category with final object 1 and limits of ordinal-
indexed diagrams, and assume T : C → C be an endofunctor on C. The final sequence of T is a
limit-preserving functor Z : Ordop → C such that, for all ordinals γ ≤ β,

i. Z(0) = 1;
ii. Z(β+1) = TZ(β);

iii. Z(β+1→ γ+1) = TZ(β → γ).
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The final sequence is said to stabilize at some α ∈ Ord, if Z(α+1→ α) is an isomorphism.

A final sequence constitutes an ordinal-index diagram Z : Ordop → C in C, and it turns out
that for any T -coalgebra (X,h) one can define a cone over it.

Lemma 4.1.9 Assume Z : Ordop → C be the final sequence of T , and (X,h) be a T -coalgebra.
Then, there is a cone (hα : X → Z(α))α∈Ord over Z, such that, for any ordinal α, the following
diagram commutes:

X TX

Z(α) Z(α+1)

h

hα Thα

The dual notion of initial co-projection is final projection.

Definition 4.1.10 (Final projection) Let T : C→ C be a functor, (X,h) be a T -coalgebra, and
Z : Ordop → C be the final sequence of T . An arrow k : X → Z(α) is a final projection at α for
(X,h), if the following diagram commutes:

X TX

Z(α) Z(α+1)

h

k Tk

For a given T -coalgebra (X,h), Lemma 4.1.9 ensures that each arrow in the (canonical) cone
(hα : X → Z(α))α∈Ord for (X,h) over the final sequence Z is a final projection. Dualizing
Lemma 4.1.2, we have that final projections are unique.

Lemma 4.1.11 (Uniqueness of final projections) Let T : C → C be a functor, (X,h) be a
T -coalgebra, Z : Ordop → C be the final sequence of T , and (hα : X → Z(α))α∈Ord be the cone for
(X,h) over Z given by Lemma 4.1.9. If k : X → Z(α) is a final projection at α for (X,h), then
k = hα.

Theorem 4.1.12 ([13]) Let α be an ordinal number, and suppose the final sequence Z of T sta-
bilizes at α, then (Z(α), Z(α+1→ α)−1) is a final T -coalgebra.

By Theorem 4.1.12, for an endofunctor T : C→ C, a final T -coalgebra may be obtained looking
for an isomorphism in the final sequence Z of T . Consequently, this result motivates the search
for conditions for the final sequence to stabilize.

Probably one of the most known requirements for stabilization is that the endofunctor T is
κ-continuous for some limit ordinal κ, that is, it preserves limits for any diagram D : κop → C.

Lemma 4.1.13 (κ-continuity [8]) Let κ be a limit ordinal, T be a κ-continuous endofunctor in
C, and Z : Ordop → C be the final sequence of T . Then, Z stabilizes at κ.

Proof. We have to prove that Z(κ+1 → κ) is an isomorphism. By definition of final sequence,
(Z(κ→ γ))γ<κ is a limit cone over Z�κ. Since T is κ-continuous, we have also that (TZ(κ→ γ))γ<κ
is a limit cone over TZ�κ. By definition for Z, we have TZ(κ→ γ) = Z(κ+1→ γ+1), for any γ ≤
κ, hence (Z(κ+1→ γ+1))γ<κ is a limit cone over TZ�κ. However, by the fact that (Z(κ→ γ))γ<κ
is a limit cone over Z�κ, also (Z(κ→ γ+1))γ<κ is a limit cone over TZ�κ. Since limits are unique
up to isomorphism, any arrow k : Z(κ+1) → Z(κ) such that Z(κ+1 → γ+1) = Z(κ → γ+1) ◦ k,
for all γ < κ, must be an isomorphism. By functoriality of Z, we have that, for all γ < κ,
Z(κ+1→ γ+1) = Z(κ→ γ+1) ◦ Z(κ+1→ κ), therefore Z(κ+1→ κ) is an isomorphism.
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Note that, the proof works even if the functor T just preserves limits over Z�κ, so the lemma can
be weakened accordingly.

Historical note. Technically, Lemma 4.1.13 is due to Adámek and Koubek [8], but it was implicit
in earlier works by Barr [13] and by Smyth and Plotkin [77], although only stated for ω-continuous
functors. This result was applied by Adámek and Koubek for proving that the powerset functor
Pω : Set→ Set has a final coalgebra. Notably, they proved that Pω is not ω-continuous, but only
ω1-continuos, so the generalization was strictly needed.

In many situations, proving κ-continuity for a functor is not an easy task, and often the functors
one wants to deal with do not satisfy such a property. However, under mild assumptions on the
underlying category C and on the functor, the existence of the final coalgebra can be proved looking
for monic arrows along the final sequence instead of isomorphisms.

Lemma 4.1.14 (Preserve monics) Let T : C→ C be an endofunctor in a well-powered category
C, and Z : Ordop → C be the final sequence of T . If T preserves monics and, for some ordinal κ,
Z(κ+1→ κ) is monic, then Z stabilizes.

Proof. Since C is well-powered, it suffices to prove that for all ordinals α ≥ κ, the arrows Z(α→ κ)
are monic. Indeed, there is only a proper set of sub-objects of Z(κ) up to isomorphism, thus there
must exists an ordinal κ′ ≥ κ such that Z(κ′+1 → κ′). We prove the statement by transfinite
induction on α ≥ κ. Base case: if α = κ then Z(α → κ) = Z(κ → κ) = idZ(κ) hence is monic.
Inductive step: assume, by inductive hypothesis that Z(α→ κ) is monic. Then the following holds

Z(α+1→ κ) = Z(κ+1→ κ) ◦ Z(α+1→ κ+1) (by func. Z)

= Z(κ+1→ κ) ◦ TZ(α→ κ) (by def. Z)

Since Z(κ+1→ κ) is monic and T preserves monomorphisms, Z(α+1→ κ) is a composite of monic
arrows, hence is monic. Limit step: assume α is a limit ordinal and, by inductive hypothesis, that
for all β such that κ ≤ β < α, the arrows Z(β → κ) are monic. Since, monomorphisms are closed
by transfinite pre-composition, to prove that Z(α → κ) is monic it suffices to prove that, for all
ordinals δ such that κ ≤ δ ≤ β, Z(β → δ) is monic. We proceed by transfinite induction on δ. The
base case δ = κ, follows by the inductive hypothesis on α. For the inductive step, assume that
Z(β → δ) is monic. We have that

Z(δ+1→ κ) ◦ Z(β → δ+1) = Z(β → κ) ◦ Z(β+1→ δ+1) (by func. Z)

= Z(β → κ) ◦ TZ(β → δ) (by def. Z)

By inductive hypothesis on δ, Z(β → δ) is monic, and since T preserves monic arrows, TZ(β → δ)
is monic. By inductive hypothesis on α, both Z(δ+1 → κ) and Z(β → κ) are monic, hence by
right cancellability Z(β → δ+1) is monic. Finally, assume δ to be a limit ordinal and, by inductive
hypothesis, that for all γ such that κ ≤ γ < δ, the arrows Z(β → γ) are monic. By functoriality
of Z we have

Z(δ → κ) = Z(γ → κ) ◦ Z(δ → γ)

By inductive hypothesis on α, both Z(δ → κ) and Z(γ → κ) are monic, hence by right cancellability
also Z(δ → γ) is monic. From this, and by right cancellability again, also Z(β → δ) is monic, since
the following holds

Z(β → γ) = Z(δ → γ) ◦ Z(β → δ)

and Z(β → γ) is monic by inductive hypothesis on δ.
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Historical note. The proof of Lemma 4.1.14 was implicit in [92, Corollary 3.3], where the
existence of a monic arrow in the final sequence and the fact that the category C is well-powered
was implied assuming C to be locally presentable. In the statement of [92, Corollary 3.3], the
functor was even required to be accessible (i.e., to preserve limits of κ-filtered diagrams). However,
this requirement is not strictly needed for the proof, and it was required only for applying a stronger
result, namely [92, Proposition 3.2], which could be avoided.

The assumption of well-poweredness of C in Lemma 4.1.14 is very mild, and examples of non-well-
powered categories are often quite unnatural. For examples of non-well-powered categories one
could consider partially ordered classes: a partially order set (or class) (X,≤) can be interpreted
as a category with objects the elements in X and arrows between two objects if and only if they
are related by ≤. In this way each arrow is a monomorphism (there is only one arrow between two
specified objects), therefore if it has top element, its sub-objects are in bijection with the collection
of objects which can be a a proper class. The category Ordop is such an example.

The other two prerequisites in Lemma 4.1.14 are stronger, in particular, requiring that the
final sequence reaches a monic arrow. However, these assumptions can be weakened in the case
the underlying category C has factorization systems.

Lemma 4.1.15 Assume (L,R) be a factorization system for the category C. Let C be R-well-
powered, T be an endofunctor on C, and Z be the final sequence of T . If T preserves R-morphisms
and, for some ordinal κ, Z(κ+1→ κ) is an R-morphism, then Z stabilizes.

Proof. Since C is R-well-powered, it suffices to prove that for all ordinals α ≥ κ, Z(α→ κ) ∈ R.
We proceed by transfinite induction on α ≥ κ. Base case: if α = κ then Z(α → κ) = Z(κ →
κ) = idZ(κ) ∈ R. Inductive step: assume, by inductive hypothesis that Z(α → κ) ∈ R. Then the
following holds

Z(α+1→ κ) = Z(κ+1→ κ) ◦ Z(α+1→ κ+1) (by func. Z)

= Z(κ+1→ κ) ◦ TZ(α→ κ) (by def. Z)

Since Z(κ+1 → κ) is in R and T preserves R-morphisms, by Lemma 2.1.16, Z(α+1 → κ) ∈ R.
Limit step: assume α is a limit ordinal and, by inductive hypothesis, that for all β such that
κ ≤ β < α, the arrows Z(β → κ) are in R. Since, the class R is closed under transfinite pre-
composition (Lemma 2.1.19), to prove Z(α→ κ) ∈ R it suffices to show that, for all ordinals δ such
that κ ≤ δ ≤ β, Z(β → δ) ∈ R. We do that by transfinite induction on δ. The base case δ = κ,
follows by the inductive hypothesis on α. For the inductive step, assume that Z(β → δ) ∈ R. We
have that

Z(δ+1→ κ) ◦ Z(β → δ+1) = Z(β → κ) ◦ Z(β+1→ δ+1) (by func. Z)

= Z(β → κ) ◦ TZ(β → δ) (by def. Z)

By inductive hypothesis on δ, Z(β → δ) ∈ R, and since T preservesR-morphisms, TZ(β → δ) ∈ R.
By inductive hypothesis on α, both Z(δ+1 → κ) and Z(β → κ) are R-morphisms, hence, by
Lemma 2.1.14, Z(β → δ+1) ∈ R. Assume δ be a limit ordinal and, by inductive hypothesis, that
for all γ such that κ ≤ γ < δ, the arrows Z(β → γ) are in R. By functoriality of Z we have

Z(δ → κ) = Z(γ → κ) ◦ Z(δ → γ)

By inductive hypothesis on α, both Z(δ → κ) and Z(γ → κ) are R-morphisms, hence, by
Lemma 2.1.14, Z(δ → γ) is in R. From this, and by Lemma 2.1.14 again, also Z(β → δ) is
in R since, by functoriality, Z(β → γ) = Z(δ → γ) ◦ Z(β → δ), and Z(β → γ) ∈ R by inductive
hypothesis on δ.

Lemma 4.1.15 is not a proper generalization of Lemma 4.1.14. Indeed the hypotheses of the former
do not imply that of the latter; and, since any category admits (Morph, Iso) as a factorization
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system and all functors preserve isomorphisms, the lemma can always be applied (vacuosly). How-
ever, when the factorization system (L,R), is such that Monic 6= R, Lemma 4.1.15 can be applied
even in the case the functor T do not preserve monic arrows but a different class R of morphisms.
In Section 4.1.3 we show a paradigmatic example of a functor for which Lemma 4.1.14 does not
work, but Lemma 4.1.15 do.

Note that, although the combination of Lemma 4.1.15 and Theorem 4.1.12 ensures the existence
of a final T -coalgebra, we have no bounds on the cardinal at which the final sequence stabilizes.

Remark 4.1.16 Even though not explicitly stated, all the results we have seen so far can be easily
dualized in the case of initial sequences and functors preserving either epic arrows or the left class
of a factorization system.

4.1.3 Final coalgebra for ∆<∞ : Meas→Meas

In this section, we prove the existence of final coalgebras for the functor ∆<∞ : Meas→Meas, that
has been introduced in Section 2.3. To this end, we consider the final sequence Z : Ordop →Meas
for ∆<∞ and prove stabilization for it using Lemma 4.1.15. Remarkably, Lemma 4.1.14 cannot be
applied to ∆<∞ since it does not preserve monic arrows. Therefore this turns out to be a good
example for showing the effectiveness of Lemma 4.1.15 in contrast to Lemma 4.1.14.

Recall from Section 2.3 that, (Epic,Emb) is factorization system in Meas, the category of mea-
surable spaces and measurable functions, where Epic denotes the class of epic morphisms (i.e., sur-
jective measurable functions) and Emb is the class of measurable embeddings, that is injective mea-
surable functions f : (X,ΣX)→ (Y,ΣY ) such that ΣX = {f−1(E) | E ∈ ΣY }, that is, ΣX is initial
w.r.t. f . The functor ∆<∞ acts on measurable spaces as (X,ΣX) 7→ (∆<∞(X,ΣX),Σ∆<∞(X,ΣX)),
where ∆<∞(X,Σ) is the set of finite measures on (X,ΣX) and Σ∆σ(X,ΣX) is the smallest σ-algebra
making all evaluation maps evE : ∆σ(X,ΣX)→ [0,∞) measurable, for E ∈ ΣX ; and on measurable
functions f : (X,ΣX)→ (Y,ΣY ) as ∆<∞f(µ) = µ ◦ f−1, for all µ ∈ ∆<∞(X,ΣX).

Since Meas is complete and cocomplete, the final sequence Z : Ordop → Meas for ∆<∞ is
well-defined. Moreover, Meas is Emb-well-powered, and ∆<∞ preserves embeddings. Thus, in
order to apply Lemma 4.1.15 we “only” need to prove that the final sequence eventually reaches
an embedding. Next we show that Z reaches the required embedding after ω steps, that is,
Z(ω+1→ ω) ∈ Emb, where ω denotes the first limit ordinal.

Lemma 4.1.17 (σ-algebra of Z(ω+1)) Let Z : Ordop →Meas be the final sequence for ∆<∞.
Then, the σ-algebra ΣZ(ω+1) on Z(ω+1) is generated by the following collection of subsets

F = {ev−1
Z(ω→n)−1(E)([r,∞)) | r ∈ [0,∞) ∩Q and E ∈ ΣZ(n)} .

Proof. By definition of final sequence, (Z(ω → n))n<ω is a limit cone over Z�ω, therefore Z(ω)
has initial σ-algebra w.r.t. its cone, that is ΣZ(ω) = σ({Z(ω → n)−1(E) | E ∈ ΣZ(n), n < ω}).
We show that the family A = {Z(ω → n)−1(E) | E ∈ ΣZ(n), n < ω} is a boolean algebra. The
empty set ∅ is contained in A, since Z(ω → n)−1(∅) = ∅, for all n < ω. Assume A ∈ A, then there
exists n < ω and E ∈ ΣZ(n) such that A = Z(ω → n)−1(E). The following hold by definition of
pre-image

Z(ω) \A = Z(ω) \ Z(ω → n)−1(E) = Z(ω → n)−1(Z(n) \ E) .

Since Z(n) \ E ∈ ΣZ(n), then Z(ω) \ A ∈ A. Assume A,B ∈ A, then there exits m,n < ω,
Em ∈ ΣZ(m), and En ∈ ΣZ(n) such that A = Z(ω → m)−1(Em) and B = Z(ω → n)−1(En)
Without loss of generality assume that m ≤ n. Then we have

A = Z(ω → m)−1(Em) = (Z(n→ m) ◦ Z(ω → n))−1(Em) (by func. Z)

= Z(ω → n)−1 ◦ Z(n→ m)−1(Em) (by inverse images)

= Z(ω → n)−1
(
Z(n→ m)−1(Em)

)
. (by composition)
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From this we derive the following equality

A ∪B = Z(ω → n)−1
(
Z(n→ m)−1(Em)

)
∪ Z(ω → n)−1(En)

= Z(ω → n)−1
(
Z(n→ m)−1(Em) ∪ En

)
.

Since Z(n→ m) is measurable Z(n→ m)−1(Em) ∈ ΣZ(n), hence Z(n→ m)−1(Em)∪En ∈ ΣZ(n).
Therefore A ∪ B ∈ A. From these we conclude that A is a boolean algebra. Now, the thesis
follows by Lemma 2.3.3, noticing that by definition of final sequence, Z(ω+1) = ∆<∞Z(ω), and
Lr(E) = ev−1

E ([r,∞)).

The first step to prove that Z(ω+1→ ω) is an embedding, is to show that σ-algebra on Z(ω+1)
is initial with respect to Z(ω+1→ ω). This is proved by the following proposition.

Proposition 4.1.18 Let Z : Ordop →Meas be the final sequence for ∆<∞. Then, the σ-algebra
on Z(ω+1) is initial w.r.t. Z(ω+1→ ω), that is ΣZ(ω+1) = {Z(ω+1→ ω)−1(E) | E ∈ ΣZ(ω)}.

Proof. Let E = {Z(ω+1 → ω)−1(E) | E ∈ ΣZ(ω)}. The inclusion E ⊆ ΣZ(ω+1) follows since
Z(ω+1→ ω) is measurable. As for the reverse inclusion, we know, by Lemma 4.1.17, that ΣZ(ω+1)

is generated by the following collection of subsets

F = {ev−1
Z(ω→n)−1(E)([r,∞)) | r ∈ [0,∞) ∩Q and E ∈ ΣZ(n)} .

Since E is already a σ-algebra, to prove σ(F) ⊆ E , we only need to show that F ⊆ E . This is done
noticing that, for all n < ω, r ∈ [0,∞) and E ∈ ΣZ(n)

ev−1
Z(ω→n)−1(E)([r,∞)) = {µ ∈ Z(ω+1) | µ(Z(ω → n)−1(E)) ≥ r} (by inverse image)

= {µ ∈ Z(ω+1) |
(
∆<∞Z(ω → n)(µ)

)
(E) ≥ r} (by def. ∆<∞)

= {µ ∈ Z(ω+1) |
(
Z(ω+1→ n+1)(µ)

)
(E) ≥ r} (by def. Z)

=
(
evE ◦ Z(ω+1→ n+1)

)−1
([r,∞)) (by def. evE and inv. image)

=
(
evE ◦ Z(ω → n+1) ◦ Z(ω+1→ ω)

)−1
([r,∞)) (by func. Z)

= Z(ω+1→ ω)−1
(
Z(ω → n+1)−1 ◦ ev−1

E ([r,∞))
)
. (by inverse)

Clearly, ev−1
E ([r,∞)) ∈ ΣZ(n+1), so that Z(ω → n+1)−1(ev−1

E ([r,∞))) ∈ ΣZ(ω) follows by measur-

ability of Z(ω → n+1). This proves ev−1
Z(ω→n)−1(E)([r,∞)) ∈ E , therefore F ⊆ E .

The last step is to show that Z(ω+1→ ω) is injective.

Proposition 4.1.19 (Injective) Let Z : Ordop → Meas be the final sequence for ∆<∞. Then
Z(ω+1→ ω) is injective.

Proof. By definition of final sequence, (Z(ω → n))n<ω is a limit cone over Z�ω, therefore Z(ω) is
equipped with the initial σ-algebra w.r.t. its cone, that is ΣZ(ω) is generated by

A = σ({Z(ω → n)−1(E) | E ∈ ΣZ(n), n < ω}) .

By definition of final sequence Z(ω+1) = ∆<∞Z(ω). Let µ, ν ∈ ∆<∞Z(ω) be to measure on Z(ω),
and assume Z(ω+1 → ω)(µ) = Z(ω+1 → ω)(ν). We have to show that µ = ν. Since µ and ν
are clearly σ-finite, and they are also pre-measures on the boolean algebra A (see the proof of
Lemma 4.1.17), by Lemma 2.2.27 it suffices to show that µ and ν agree on all subsets in A. This
is shown below, for all n < ω and E ∈ ΣZ(n)

µ(Z(ω → n)−1(E)) = ∆<∞Z(ω → n)(µ)(E) (by def. ∆<∞)

= Z(ω+1→ n+1)(µ)(E) (by def. Z)

= Z(ω → n+1) ◦ Z(ω+1→ ω)(µ)(E) (by func. Z)
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= Z(ω → n+1) ◦ Z(ω+1→ ω)(ν)(E) (by hp.)

= Z(ω+1→ n+1)(ν)(E) (by func. Z)

= ∆<∞Z(ω → n)(ν)(E) (by def. Z)

= ν(Z(ω → n)−1(E)) . (by def. ∆<∞)

Therefore, Z(ω+1→ ω) is injective.

Theorem 4.1.20 The functor ∆<∞ : Meas→Meas has final coalgebra.

Proof. Meas has terminal object and limits for ordinal indexed diagrams, thus the final sequence
Z : Ordop → Meas for ∆<∞ is well-defined. (Epic,Emb) is a factorization system in Meas,
moreover, by Emb ⊆ Monic and the fact that Meas is well-powered, it follows that it is also
Emb-well-powered. By Propositions 4.1.18 and 4.1.19 we have Z(ω+1 → ω) ∈ Emb, so that,
by Lemma 4.1.15, the final sequence stabilizes. The existence of ∆<∞-coalgebra follows by Theo-
rem 4.1.12.

Remark 4.1.21 The general case ∆: Meas→Meas does not fit the proof we have provided for
Proposition 4.1.19 since two measures which are not σ-finite may agree on all the elements of a
generator of the σ-algebra but still differ on some measurable set. This case is very subtle and it
is always very difficult to prove equality over generic measures over generated σ-algebras, without
assuming σ-finiteness. A possible route to a proof of equality could be by transfinite induction
on the generation steps that leads to the actual σ-algebra. Indeed, any family of sets can be
turned into a σ-algebra by making a transfinite number of closures under complementations and
countable unions (at least ω1 steps are needed). Although this is a plausible strategy, it is always
very difficult to treat the limit steps. Another route could be by using the π-λ-theorem, but this
requires a different characterization of the σ-algebra on Z(ω). We already tried these strategies
without any success, so we are still wondering if we need to find different ordinals greater then ω
for proving the existence of embeddings in the final sequence for ∆.

Moreover, also the case ∆σ : Meas →Meas does not fit the proof of Proposition 4.1.17 since
it makes use of Lemma 2.3.3 which holds only assuming the measures are finite.

Remark 4.1.22 (Final coalgebra for L-labelled Markov kernels) It easy to see that the
whole constructions in this section apply also to the composite functor ∆L

<∞ : Meas → Meas,
for any set L. Hence also for this functor there exits a final coalgebra. The existence of such
a terminal object in the category of coalgebras for ∆L

<∞ will be indispensable in Chapter 6 in
order to have a principle of coinduction on ∆L

<∞-coalgebras, that is, L-labelled Markov kernels
(see Section 5.2).

Historical note. In [86], van Breugel et al. consider the functor ∆L
≤1 : Meas → Meas of

subprobabilities over a measurable space. Given a countable set L, the construction of the final
coalgebra of the functor ∆L

≤1 is performed using the the connection of the final sequence for

this functor with the one for the labelled probabilistic powerdomain V L : ωCoh → ωCoh in the
category of ω-coherent domains (i.e., topological spaces over ω-continuous dcpo which are compact
in their Lawson topology). Furthermore, they proved that the final coalgebra can be regarded as
a Polish space, in the category of metric spaces and continuous maps. Their approach gives better
insights on the carrier of the final coalgebra, relating it which different structures such as domains
with Lawson topologies on them, and Polish metric spaces. However, the entire construction is
very complicated and needs one to jump from a category to an other, and moreover it does not
give any general proof technique to prove the existence of final coalgebras for different behaviour
functors.

Another proof for the existence of final coalgebras for ∆1 : Meas→Meas is due to Viglizzo and
Moss in [68] where the existence of final coalgebras was proved for any functor constructed as the
finite composition of constant functors, identity functors, binary product and coproduct functors,
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and ∆1 (the so called class of measurable polynomial endofunctor in Meas). Their construction
uses modal logics: the elements of the final coalgebra are theories (sets of modal formulas) satisfied
by states in all possible coalgebras. Viglizzo [90] also provided another construction of a final
coalgebra for the same class of functors, avoiding the logic in favor of final sequences. Still the
connection their results and ours is very hard to be formalized.

4.1.4 Initial algebras for polynomial endofunctors on Meas

In this section, we prove the existence of initial algebras for polynomial endofunctors on Meas
(see Section 2.3 for their definition). To this end, we consider initial sequences A : Ord →Meas
and the dual of Lemma 4.1.15 to prove stabilization of the initial sequence:

Lemma 4.1.23 Assume (L,R) be a factorization system for the category C. Let C be L-cowell-
powered, T be an endofunctor on C, and A be the initial sequence of T . If T preserves L-morphisms
and, for some ordinal κ, A(κ→ κ+1) is an L-morphism, then A stabilizes.

On Meas, there are many factorization systems that “lift” the factorization system on Set,
e.g., quotients and injections (Quot,Monic), surjections and embeddings (Epic,Emb), etc. (see
Section 2.3). However, in order to apply Lemma 4.1.23 we cannot choose the former factorization
system. Indeed, polynomial functors in Meas do not preserve quotients (it is well known that
binary products fail to do so), but they do preserve surjections. Hence, this is also a good example
to show the flexibility of the approach.

Since Meas is complete and cocomplete, the initial sequence A : Ord → Meas for any poly-
nomial functor P : Meas → Meas is well-defined. Moreover, Meas is cowell-powered, and P
preserves epimorphism (i.e., measurable surjections). Thus, we only need to prove that the initial
sequence eventually reaches an epimorphism, and we will show that this happens exactly after ω
steps, that is, A(ω → ω+1) ∈ Epic.

Proposition 4.1.24 Let A : Ord → Meas be the initial sequence for a polynomial endofunctor
P : Meas→Meas. Then A(ω → ω+1) is an epimorphism.

Proof. For any polynomial functor in P : Meas→Meas there exists an associated a polynomial
endofunctor P ′ : Set→ Set, such that P ′U = UP , where U : Meas→ Set is the obvious forgetful
functor. We prove that UA : Ord→ Set is the initial sequence for P ′. Clearly, since both A and
U preserves colimits, also UA preserves them. Moreover, for all ordinals γ ≤ β the following holds

UA(0) = U0 = 0

UA(β+1) = UPA(β) = P ′UA(β)

UA(γ+1→ β+1) = UPA(γ → β) = P ′UA(γ → β) .

Therefore UA : Ord → Set is a well-defined initial sequence for P ′. Recall that polynomial
functors in Set are ω-cocontinuous, that is, preserves colimits of ω-sequences. Therefore the initial
sequence UA of P ′ stabilizes at ω, thus, UA(ω → ω+1) is an isomorphism and, in particular, also
an epimorphism. Since U reflects epimorphism to Meas, A(ω → ω+1) is an epic arrow.

The above proof technique works in many situations, for example it can be applied also to
categories different from set such as Top, UMet, PMet, etc. The need of reducing problem to
consider an associated initial sequence in Set is needed because it is not known if all polynomial
endofunctors do preserve colimits of ω-sequences in Meas (the same holds for Top). However
the approach is quite elegant and still leads to the the existence of initial algebras for measurable
polynomial endofunctors.

Theorem 4.1.25 (Initial algebra) Any polynomial endofunctor in Meas has initial algebra.
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4.2 An Alternative Final Coalgebra Construction

In this section, we provide an alternative characterization of final coalgebras out of weakly final
ones, which are easier to be found then proper final objects. At first sight, this may not appear
a new result, since it is standard that final objects can be obtained taking the coequalizer of all
the endomorphisms of a weakly final one. However, adopting this characterization for the final
object needs that one already knows all the endomorphisms of the weakly final object —which
are often hard to be determined— and that the underlying category has generalized coequalizers.
Moreover, even when all this informations are known, this characterization of a final object is
highly non-constructive and it may be difficult to work with it.

Our proposal makes use of the final sequence, but rather than trying to determine bounds for
stabilization, we use it to provide unique projection for weakly final coalgebras into it (cf. Defini-
tion 4.1.10) in order to obtain final coalgebras constructively and without assuming the category
has coequalizers. This can be done assuming that the underlying category has a factorization
system (L,R) with R ⊆ Monic, and that the final sequence has an R-morphisms. Moreover,
we propose a general construction that allows to obtain weakly final coalgebras under the (very
mild) additional assumption that the underlying category has R-unions. Interestingly, the entire
construction can be made functorial, in particular, we will be able to define a quotient functor
QL : T -coalg → T -coalg, mapping a T -coalgebra to its L-quotient with respect to its canonical
projection into the final sequence.

Definition 4.2.1 (Final quotient) Assume C has factorization system (L,R), T : C→ C be a
functor, and Z : Ordop → C be the final sequence of T . Given a T -coalgebra (X,h) and a final
projection k : X → D(α) for it, we say that a T -coalgebra (Qh, qh) is a final L-quotient at α for
(X,h), if the following diagrams commute:

X Qh Z(α)

TX TQh Z(α+1)

h qh

Tλ Tρ

λ ∈ L ρ ∈ R

k

Tk

where ρ ◦ λ is a (L,R)-factorization for k.

Under some assumption on the functor and on its final sequence, each coalgebra has a unique
quotient into the final sequence, up to isomorphism.

Lemma 4.2.2 Assume C has factorization system (L,R), T : C → C preserves R-morphisms,
and Z : Ordop → C be the final sequence of T . If Z(α+1 → α) ∈ R, for some ordinal α, then
(X,h) has a unique final L-quotient at α.

Proof. By Lemma 4.2.2 and Lemma 4.1.9, there exists a unique final projection at α for (X,h),
say k : X → Z(α). Assume k = ρ ◦ λ be an (L,R)-factorization for it. By hypothesis, T preserves
R-morphisms, hence Tρ ∈ R. Since Z(α+1 → α) ∈ R and R is closed by composition, we have
Z(α+1→ α) ◦ Tρ ∈ R. By hypothesis k = Z(α+1→ α) ◦ Tk ◦ h, therefore the diagram below is
a lifting problem for λ ∈ L and Z(α+1→ α) ◦ Tρ ∈ R with unique solution qh.

X Qh

TQh Z(α+1) Z(α)

Tλ ◦ h

λ

ρ

Tρ

qh
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This defines a T -coalgebra (Qh, qh), and the same diagram proves that it is a final L-quotient for
(X,h). Uniqueness (up-to-isomorphism) follows by uniqueness of the (L,R)-factorization.

The above lemma can be made even stronger if we assume that the factorization system (L,R) is
such that R ⊆ Monic. This will be used in the next theorem which allows us to characterize a
final coalgebra as the final L-quotient for a weakly final coalgebra.

Theorem 4.2.3 (Final coalgebra as a final quotient) Assume the category C has factoriza-
tion system (L,R) such that R ⊆Monic, T : C→ C preserves R-morphisms, and Z : Ordop → C
is the final sequence of T . If Z(α+1 → α) ∈ R, for some ordinal α, and (W,w) is a weakly final
T -coalgebra, then the final L-quotient at α for (W,w) is a final T -coalgebra.

Proof. Assume (Qw, qw) be the unique final L-quotient at α for (W,w) defined as in Lemma 4.2.2:

W Qw Z(α)

TW TQw Z(α+1)

w qw

Tλ Tρ

λ ρ

wα

Twα

Let (X,h) be a T -coalgebra, then, by weak finality of (W,w), there exists a T -homomorphism
f : (X,h) → (W,w). Since λ is a T -homomorphism between (W,w) and (Qw, qw), we have that
λ◦ f is a T -homomorphism from (X,h) to (Qw, qw). This proves weak finalilty. As for uniqueness,
let f, g : (X,h)→ (Qw, qw) be two morphisms of T -coalgebras. Consider the two composites λ ◦ f
and λ ◦ g. Since both are projections at α for (X,h) into Z, by Lemma 4.1.11, we have that
λ ◦ f = λ ◦ g. Since λ ∈ R and R ⊆Monic, by left cancellabilty of monomorphisms we conclude
that f = g.

Notably, Theorem 4.2.3 provides a constructive characterization for a final coalgebra. Indeed, our
approach gives an actual definition rather than just a characterization: the projection is unique
(Lemma 4.2.2) and it is canonically defined for any functor (Lemma 4.1.9); moreover, the carrier
of the final coalgebra is uniquely determined by the factorization of the projection (which is unique
up to isomorphism) and the structure map is the unique solution of a lifting problem.

4.2.1 A weakly final coalgebra construction

If the category has a factorization system (L,R) with R ⊆Monic, and the final sequence eventu-
ally reaches an R-arrow, then, in order to apply Theorem 4.2.3 one needs a weakly final coalgebra.
In this section we provide a very simple construction which only additionally requires that the
underlying category has coproducts and is R-well-powered. This approach is very general and
applies to a wide class of categories and functors.

Proposition 4.2.4 (Weakly final coalgebra) Assume C has coproducts and a factorization
system (L,R), T : C → C preserves R-morphisms, and Z : Ordop → C be the final sequence
of T such that Z(α+1 → α) ∈ R, for some ordinal α. If C is R-well-powered a weakly final
coalgebra exists and it is given as the coproduct of all final L-quotients at α.

Proof. Let (X,h) be a T -coalgebra and (Qh, qh) be its final L-quotient defined as in Lemma 4.2.2,
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so that the following diagram commutes:

X Qh Z(α)

TX TQh Z(α+1)

h qh

Tλh Tρh

λh ∈ L ρh ∈ R

hα

Thα

Notice that Qh is anR-subobject of Z(α) and this holds for any T-coalgebra (X,h). By hypothesis,
C is R-well-powered, therefore Q = {(Qh, qh) | (X,h) is a T -coalgebra} is a proper set of T -
coalgebras and we are allowed to take its coproduct

∐
(Q,q)∈Q(Q, q), which is well defined, since C

has coproducts and T -coalg lift them.
∐

(Q,q)∈Q(Q, q) is readily seen to be weakly final, since for

any T -coalgebra (X,h) the following diagrams commute

X Qh
∐
hQh

TX TQh T
∐
hQh

λh inQh

Tλh TinQh

h qh

hence inQh ◦ λh is a T -homomorphism from (X,h) to
∐

(Q,q)∈Q(Q, q).

Corollary 4.2.5 Under the assumptions of Proposition 4.2.4 and assuming R ⊆Monic, the final
coalgebra is the R-union of the final L-quotients of all T -coalgebras.

Proof. Immediate from Proposition 4.2.4, Theorem 4.2.3, and the characterization of R-union
as the L-quotient of a coproduct (see Definition 2.1.21 for details about generalized unions in
categories with factorization systems).

Historical note. Weakly final coalgebras have always been subject of research since they give
“estimates” of the final coalgebra. A canonical final coalgebra can be found in the final sequence
as the left inverse of some arrow in it (we will see this in more detail in Section 4.2.3). In Set
any monic arrow with non empty domain has left inverse, hence to obtain a weakly final coalgebra
one only needs to prove that the final sequence eventually reaches a monic arrow at some ordinal
cardinal. Moreover, since any Set-endofunctor preserves monomorphism the construction given
in Theorem 4.2.3 applies very easily in this settings. However, this is a very particular case and
does not hold in other categories, such as CMet (complete metric spaces), UMet (ultra-metric
spaces), POSet (partially ordered sets), Meas (measurable spaces), Top (topological spaces), etc.
for which our generalization with factorization systems is really useful.

Other sources for weakly final coalgebras are right invertible natural transformations. Indeed,
if a final coalgebra (W,w) exists for an endofunctor H, this can be turned into a weakly final one
(W, θW ◦w) for the functor T , where θ : H ⇒ T has right inverse in each component. A reasonable
proof sketch is provided by the following diagram, where (X,h) is any T -coalgebra, r is the right
inverse of θX and f : (X, r ◦ h)→ (W,w) is the final H-homomorphism to (W,w):

X TX HX TX

W HW TW

h r θX

idTX

w

∼=
θW

f Hf Tf



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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This situation is very useful when one is dealing with finitary Set-endofunctors F , for which there
always be right invertible natural transformations (also known as quotients) θ : FΣ ⇒ F from
an associated syntactic endofunctor FΣ [9]. Indeed, syntactic Set-endofunctors always have final
coalgebras (also with a nice characterization) and right inverses for the components can be found
requiring that each component of θ is an epimorphism. However, also in this case, right invertible
arrows are always difficult to be found in categories different from Set.

4.2.2 The quotient functor

In this section, we show that in categories with factorization system (L,R) with R ⊆ Monic,
and such that the final sequence Z : Ordop → C for an endofunctor T : C → C is well defined,
to any T -coalgebra can be assigned its final L-quotient at α (cf. Definition 4.2.1), provided that
T -preserves R-morphisms and Z(α+1 → α) ∈ R. Remarkably, this mapping is functorial and
yields to the so called final L-quotient functor QL : T -coalg→ T -coalg.

Proposition 4.2.6 (Quotient functor) Let Z : Ordop → C be the final sequence of an endo-
functor T on a category C with factorization system (L,R) with R ⊆ Monic. If T preserves
R-morphisms and Z(α+1 → α) ∈ R, for some α, then the functor QL : T -coalg → T -coalg
acting on T -coalgebras (X,h) and T -homomorphisms f : (X,h)→ (Y, k) as follows

QL(X,h) = (Qh, qh) QLf = ϕh

where (Qh, qh) is the unique final L-quotient at α for (X,h) given as in Lemma 4.2.2 (cf. definition
diagram below on the left), and ϕh : QL(X,h) → QL(Y, k) is the unique solution to the lifting
problem below on the right

X Qh Z(α)

TX TQh Z(α+1)

h qh

Tλh Tρh

λh ∈ L ρh ∈ R

hα

Thα

X Qh Z(α)

Y Qk Z(α)

f ϕf

λk ∈ L ρk ∈ R

λh ∈ L ρh ∈ R

hα

kα

is well defined.

Proof. QL is clearly well-defined on objects. Let f : (X,h) → (Y, k) be an arrow in T -coalg,
QL(X,h) = (Qh, qh) and QL(Y, k) = (Qk, qk). We have to prove that QLf = ϕf : Qh → Qk is a
T -homomorphism between (Qh, qh) and (Qh, qk), that is, Tϕf ◦ qh = qk ◦ ϕf . To this end notice
that the following holds:

A(α+1→ α) ◦ Tρk ◦ Tϕf ◦ qh = A(α+1→ α) ◦ T (ρk ◦ ϕf ) ◦ qh (by func. T )

= A(α+1→ α) ◦ Tρh ◦ qh (by def. ϕf )

= ρh (by def. qh)

= ρk ◦ ϕf (by def. ϕf )

= A(α+1→ α) ◦ Tρk ◦ qk ◦ ϕf (by def. ρk)

Since T preserves R-morphisms and R is closed under composition, we have that the composite
A(α+1 → α) ◦ Tρk ∈ R. By R ⊆ Monic and left cancellability of monomorphisms, we have
Tϕf ◦ qh = qk ◦ ϕf . Therefore ϕf is a T -homomorphism.



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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Fuctoriality is easily proved. Let f : (X,h) → (Y, k) and g : (Y, k) → (Z, l) be morphisms
in T -coalg. By definition ρh = ρl ◦ QL(g ◦ f), ρh = ρk ◦ QL(f), and ρk = ρl ◦ QL(g), therefore
ρl◦QL(g◦f) = ρl◦QL(g)◦QL(f). Since ρl ∈ R ⊆Monic, by left cancellability of monomorphisms,
we have QL(g ◦ f) = QL(g) ◦ QL(f). Consider QLid(X,h). By definition, ρh ◦ QLid(X,h) = ρh,
therefore ρh ◦ QLid(X,h) = ρh ◦ idX . Again, by left cancellability of ρh ∈ R ⊆ Monic, we have
QLid(X,h) = idX , from which follows QLid(X,h) = id(X,h).

Remark 4.2.7 (L,R)-factorizations of morphisms are unique only up to isomorphism, hence for
a given T -coalgebra (X,h), the associated T -coalgebra (Qh, qh) is uniquely determined only up
to isomorphism. However, under the hypothesis of Proposition 4.2.6, one can fix any (L,R)-
factorization hα = ρh ◦ λh, and still the L-quotient functor is well-defined. Moreover, note that
functoriality crucially depends on the assumption that all R-morphisms are monic.

Remark 4.2.8 Theorem 4.2.3 may be restated in terms of the L-quotient functor QL, simply
saying that any weakly final coalgebra (W,w) gives rise to a final coalgebra QL(W,w). Similarly,
Corollary 4.2.4 can be restated saying that the final coalgebra is given as the union of (set) all
coalgebras which are images under QL.

4.2.3 Bound for stabilization of the final sequence

When the final sequence Z : Ordop → C of T reaches a left invertible arrow Z(α+1→ α) at some
ordinal α, it turns out that its left inverse is the structure map of a weakly final coalgebra. If one,
then, additionally assumes that C has a factorization system (L,R) with R ⊆Monic, T preserves
R-morphisms, and Z(α+1→ α) ∈ R, by Theorem 4.2.3, the above result yields a final coalgebra.

Remarkably, under the same assumptions we can prove that the final sequence stabilizes after
α + α steps. Our proof is inspired by a stabilization result for final sequences of ω-accessible
Set-functors due to Worrell [92]. Differently from [92, Theorem 4.6], our proof works out without
assuming specific properties of Set-arrows, so that its application is no more limited to Set.

Lemma 4.2.9 (Left inverse is weakly final) Let Z : Ordop → C be the final sequence of T .
If, for some ordinal α, Z(α+1→ α) has left-inverse l : Z(α)→ Z(α+1), then (Z(α), l) is a weakly
final T -coalgebra.

Proof. Let (X,h) be a T -coalgebra. By Lemma 4.1.9, there exists a cone (hβ : X → Z(β))β∈Ord

such that, for all ordinal β, hβ is a final projection at β, hence hα = Z(α+1→ α) ◦Thα ◦ h. From
this we have

l ◦ hα = l ◦ Z(α+1→ α) ◦ Thα ◦ h (by post-composition)

= idZ(α+1) ◦ Thα ◦ h (by left inverse)

= Thα ◦ h . (by identity)

Therefore hα is a T -homomorphism from (X,h) to (Z(α), l).

Corollary 4.2.10 Assume the category C has factorization system (L,R), such that R ⊆Monic,
T : C→ C preserves R-morphisms, and Z : Ordop → C be the final sequence of T . If Z(α+1→ α)
is an R-morphism and has left inverse l : Z(α) → Z(α+1), then the final L-quotient at α for
(Z(α), l) is a final T -coalgebra.

Proof. It follows immediately from Lemma 4.2.9 and Theorem 4.2.3.

If the final sequence has a left invertible arrow at some ordinal α, we have that it stabilizes at
α+α steps. In order to prove this, we need the following proposition.
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Proposition 4.2.11 (Worrell [93], Proposition 3.4.6) Let T : C→ C be an endofunctor with
final sequence Z : Ordop → C, α ∈ Ord, and (Z(α), l) be a T -coalgebra such that l is the left
inverse of Z(α+1→ α). Then,

lα ◦ Z(α+α→ α) = Z(α+α→ α) ,

where (lβ : Z(α)→ Z(β))β∈Ord is the cone over Z for (Z(α), l) defined as in Lemma 4.1.9.

Proof. We show by transfinite induction on β ≤ α that

∀β ≤ α . lβ ◦ Z(α+β → α) = Z(α+β → β) .

By unicity of the final arrow, l0 ◦ Z(α → α) = Z(α → 0). Assume, by inductive hypothesis, that
lβ ◦ Z(α+β → α) = Z(α+β → β), then we have

lβ+1 ◦ Z(α+β+1→ α) = T lβ ◦ l ◦ Z(α+β+1→ α) (by def. lβ+1)

= T lβ ◦ l ◦ Z(α+1→ α) ◦ Z(α+β+1→ α+1) (by func. Z)

= T lβ ◦ Z(α+β+1→ α+1) (by left inverse)

= T lβ ◦ TZ(α+β → α) (by def. Z)

= T (lβ ◦ Z(α+β → α)) (by func. T )

= TZ(α+β → β) (by inductive hp.)

= Z(α+β+1→ β+1) . (by def. Z)

Let β be a limit ordinal, and assume lγ ◦Z(α+γ → α) = Z(α+γ → γ), for all γ < β. By definition
of final sequence, (Z(β → γ))γ<β is a limit cone over Z�β, and since, for all γ < β, we have that
Z(β → γ) ◦ lβ = lγ , the composite lβ ◦ Z(α+β → α) is the unique arrow such that

Z(β → γ) ◦ lβ ◦ Z(α+β → α) = lγ ◦ Z(α+β → α) ,

for all γ < β. Thus, from the following equality

Z(β → γ) ◦ Z(α+β → β) = Z(α+β → γ) (by func. Z)

= Z(α+γ → γ) ◦ Z(α+β → α+γ) (by func. Z)

= lγ ◦ Z(α+γ → α) ◦ Z(α+β → α+γ) (by inductive hp.)

= lγ ◦ Z(α+β → α) , (by func. Z)

follows that lβ ◦ Z(α+β → α) = Z(α+β → β).

Theorem 4.2.12 Assume the category C has factorization system (L,R), such that R ⊆Monic,
T : C→ C preserves R-morphisms, and Z : Ordop → C be the final sequence of T . If Z(α+1→ α)
is an R-morphism with left inverse l : Z(α)→ Z(α+1), then Z stabilizes at α+α.

Proof. We show that Z(α+α+1 → α) is an isomorphism. Assume (Ql, ql) be the unique final
L-quotient at α for (Z(α), l) defined as in Lemma 4.2.2 by the following commutative diagram,
where ρ ◦ λ is the (L,R)-factorization of lα:

Z(α) Ql Z(α)

Z(α+1) TQl Z(α+1)

l ql

Tλ Tρ

λ ∈ L ρ ∈ R

lα

Tlα
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Note that, by Corollary 4.2.10, (Ql, ql) is a final T -coalgebra.

By Lemma 4.1.9, (Ql, ql) can be extended to a cone (qβl : Ql → Z(β))β∈Ord over Z such that
the upper square of the following diagram commutes:

Ql TQl

Z(α+α) Z(α+α+1)

Z(α) Z(α+1)

ql

qα+α
l Tqα+α

l

The bottom square commutes by functoriality of Z, therefore Z(α+α → α) ◦ qα+α
l is a final

projection at α for (Ql, ql). By definition, also ρ is a final projection at α for (Ql, ql), so that, by
Lemma 4.1.11, Z(α+α→ α)◦qα+α

l = ρ. By Proposition 4.2.11, lα ◦Z(α+α→ α) = Z(α+α→ α),
therefore the following equalities hold (recall that lα = ρ ◦ λ):

Z(α+α→ α) = ρ ◦ λ ◦ Z(α+α→ α) and Z(α+α→ α) ◦ qα+α
l = ρ .

By hypothesis, Z(α+1 → α) ∈ R and T preserves R-morphisms, therefore Z(α+α → α) ∈ R
(any right-class R of a factorization system is closed by transfinite composition). By definition,
also ρ ∈ R, so that Z(α+α) is isomorphic to Ql (they are R-subobjects of each other). From this
and Lambek lemma it follows that Z(α+α+1 → α+α) is an isomorphism, with inverse given by
Tqα+α

l ◦ ql ◦ λ ◦ Z(α+α→ α).

Remark 4.2.13 As already mentioned at the beginning of this section, this result is inspired by
the proof of [92, Theorem 4.6], thus a comparison of the two approaches is obligatory.

In [92], Worrell showed that the final sequence of an α-accessible Set-functor always stabilizes
at α + α steps. In his proof, the isomorphism is found providing an injective and right invertible
(hence surjective) map. A detailed look at his proof reveals that his method can be applied only if
the underlying category is Set or, more generally, if it has a (StrongMonic,Epic)-factorization
system. In the proof of Theorem 4.2.12 we do not assume the existence of right inverses for
epimorphisms, so that our proof technique can be extended to categories different from Set.

This is a remarkably strong result, but it requires an equally strong assumption, i.e., that the
final sequence reaches a left invertible arrow. In fact, to verify the existence of a left inverse is
almost as difficult as to verify that the arrow is an isomorphism, unless the base category at hand
has stronger properties, such as Set where any monomorphism with non-empty domain has right
inverse.
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5
Markov processes coalgebraically

In this chapter, we present a theory of generalized labelled Markov processes, that is, dynamical
systems with continuos state space, interacting with the environment by means of input labels and
producing measurable events by means of transitions to a measurable set of successor states. The
term “generalized” is used to stress the fact that transition events can be measured by generic
measures on the state space, without assuming a priori that these are of a certain type (e.g.,
(sub)probability measures, finite measures, or σ-finite measures). In these terms, probabilistic and
stochastic Markov processes of [36] and [26] are particular instances of ours. For these dynamical
structures we define a notion of bisimulation which generalizes both Larsen and Skou definition [63],
given for probabilistic discrete state systems; Desharnais et al. [36], for subprobabilistic processes
over analytic spaces; and Cardelli and Mardare [26, 25], for finite-rate stochastic processes over
analytic spaces.

One of the two main technical contributions of the chapter is the proof that bisimilarity on
generalized Markov processes is an equivalence. Equivalence for bisimilarity have been already
proved by Desharnais et al. in [36], but only assuming that the state space of the Markov processes
is analytic. Their proof uses very involved category theoretic constructions in order to prove that
the Giry functor (actually monad) [48] on the category of analytic spaces weakly preserves (what
they called) semi-pullbacks [45], and hence that these kind of limits can be lifted to the category of
coalgebras for that functor. Later in [42, 43], Doberkat proposed a relatively simpler proof of the
same result for stochastic relations, and thus for Markov processes, on Polish and analytic spaces.
His proof followed after a deeper analysis of the semi-pullback construction of Edalat [45], and uses
tools from descriptive set theory that give techniques for inverting measurable functions. None of
this proves that bisimilarity of labelled Markov processes on generic measurable spaces is not an
equivalence. Our proof does not need to assume that the state space is analytic, hence generalizes
the result to generic measurable spaces.

The proof for the equivalence is given in terms of a characterization of the coalgebraic bisim-
ulation in “plain” mathematical terms. This characterization will be proved to be in one-to-one
correspondence with the abstract coalgebraic notion hence all the results extend to the coalgebraic
setting. The main reason for switching to a different representation is that many standard tech-
niques that are usually employed in the theory of universal coalgebras require the existence of right
inverses for epimorphisms, which always exist when one is working in Set (assuming the axiom of
choice), but are very difficult to be found if one is working in different categories, such as Meas,
the category of measurable spaces and measurable maps. Remarkably, once one has adopted the
alternative characterization, the proof of equivalence becomes extremely easy, and requires very
few notions from measure theory. Thanks to this characterization we will also be able to prove
that bisimulation is closed under unions.

The other main contribution of the chapter is a formal coalgebraic analysis on the relations
between the notion of bisimulation and cocongruence on labelled Markov processes. In [31], Danos
et al. introduced a notion alternative to that of bisimulation, the so called event bisimulation, which
from the coalgebraic point of view corresponds to what we have called behavioral equivalence (see
Definition 3.5.3). They proved that, when the state spaces of the Markov processes are assumed to
be analytic, event bisimilarity and (state) bisimilarity coincide. Therefore, in virtue of the proof
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of equivalence, it is reasonable to ask if these two concepts coincides in general, without assuming
analyticity. Unfortunately, as it has been proved by Terraf in [80], this is not the case. Nevertheless,
we will see that bisimilarity is contained in event bisimilarity, thus that one of the two inclusion
still holds, even without assuming analyticity. The proof of this result is shown coalgebraically,
establishing a formal adjunction between the category of bisimulations and that of cocongruences
(actually, only a subcategory of the latter). To the best of our knowledge, also this result is new
and, together with the counterexample given in [80], concludes the comparison between these two
notions of equivalence between Markov processes over generic measurable spaces.

5.1 Labelled Markov kernels and bisimulation

In this section, we propose the definitions of generalized labelled Markov kernels and processes,
using a notation similar to [26], and the definition of bisimulation relation between them. We prove
that the induced notion of bisimilarity is indeed a bisimulation and, in particular, that it can be
characterized as the union of all bisimulations, so that, it is the largest one. Then, we prove that
bisimilarity over a (single) labelled Markov process is an equivalence relation. The combination of
these two results allows us to give a more direct characterization of bisimilarity, similar to the one
that has been proposed in [26] which was proven to be useful in proofs.

Recall from Section 2.3 the definition of the measurable space of measures: let (X,Σ) be a
measurable space and ∆(X,Σ) be the set of all measures µ : Σ→ [0,∞] on (X,Σ). From this set
we identify four particular subclasses of measures:

probability mesures: ∆1(X,Σ) = {µ ∈ ∆(X,Σ) | µ(X) = 1} ,
subprobability mesures: ∆≤1(X,Σ) = {µ ∈ ∆(X,Σ) | µ(X) ≤ 1} ,
finite mesures: ∆<∞(X,Σ) = {µ ∈ ∆(X,Σ) | µ(X) <∞} ,
σ-finite mesures: ∆σ(X,Σ) = {µ ∈ ∆(X,Σ) | µ is σ-finite} .

We denote by ∆(X,Σ), without subscript, each of the above sets (see Section 2.3 for the details
about the convention on the subscripts).

For each measurable set E ∈ Σ, there is a canonical evaluation function evE : ∆(X,Σ)→ [0,∞],
defined by evE(µ) = µ(E), for each measure µ ∈ ∆(X,Σ), and called evaluation at E. By means
of these evaluation maps, ∆(X,Σ) can be organized into a measurable space (∆(X,Σ),Σ∆(X,Σ)),
where Σ∆(X,Σ) the initial σ-algebra with respect to {evE | E ∈ Σ}, i.e., the smallest σ-algebra
making evE measurable with respect to the Borel σ-algebra on [0,∞], for all E ∈ Σ.

Definition 5.1.1 (Labelled Markov kernel) Let (X,Σ) be a measurable space and L a set of
action labels. An L-labelled Markov kernel is a tuple M = (X,Σ, {θa}a∈L) where, for all a ∈ L

θa : X → ∆(X,Σ)

is a measurable function, called Markov a-transition function. An L-labelled Markov kernel M
with a distinguished initial state x ∈ X, is said Markov process, and it is denoted by (M, x).

The adjective “Markovian” is usually employed in the probabilistic setting; here it just indicates
that the transitions depend entirely on the present state and not on the past history of the system.
Interactions among processes are represented as in process algebras: the labels in L represent all
possible interactions of processes with the environment. Depending on the type of measures one
is dealing with, there are different interpretations for a labelled Markov transition: let a ∈ L is a
label, x ∈ X is the current state of the system, and E ∈ Σ is a measurable set of X,

(i) if θa(x) ∈ ∆1(X,Σ), then θa(x)(E) represents the probability of taking an a-transition from
x to arbitrary elements in E;

(ii) if θa(x) ∈ ∆≤1(X,Σ), then θa(x)(E) is the probability of successfully taking an a-transition
from x to arbitrary elements in E, and 1−θa(x)(E) represents the probability of terminating
in some state in E from x;
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5.1. Labelled Markov kernels and bisimulation 71

(iii) if θa(x) ∈ ∆∗(X,Σ), for ∗ ∈ {“<∞”, “σ”, “ ”}, then θa(x)(E) represents the rate of an
exponentially distributed random variable characterizing the duration of an a-transition from
x to arbitrary elements in E.

Before introducing the definition of bisimulation we need some preliminary notation.

Definition 5.1.2 (R-closed pair) Let R ⊆ X×Y be relation on the sets X and Y , and E ⊆ X,
F ⊆ Y . A pair (E,F ) is R-closed if R∩ (E × Y ) = R∩ (X × F ).

Lemma 5.1.3 Let R′ ⊆ R ⊆ X × Y . If (E,F ) is R-closed, then (E,F ) is also R′-closed.

Proof. Given R∩ (E × Y ) = R∩ (X × F ), we prove R′ ∩ (E × Y ) = R′ ∩ (X × F ).
(⊆) Let (x, y) ∈ R′ and x ∈ E. By R′ ⊆ R, (x, y) ∈ R. By (E,F ) R-closed, we have y ∈ F .

(⊇) Let (x, y) ∈ R′ and y ∈ F . By R′ ⊆ R, (x, y) ∈ R. By (E,F ) R-closed, we have x ∈ E.

Lemma 5.1.4 Let R ⊆ X×X be an equivalence relation on X. If (E,F ) is R-closed then E = F ,
moreover E is an union of R-equivalence classes.

Proof. We prove only the inclusion E ⊆ F , the reverse is similar. Assume x ∈ E. By reflexivity
of R, (x, x) ∈ R. Since (E,F ) is R-closed, we have x ∈ F . To prove that E is an union of
R-equivalence classes, it suffices to show that if x ∈ E and (x, y) ∈ R, then y ∈ E. This easily
follows since E = F .

Definition 5.1.5 (Bisimulation) Let M = (X,ΣX , {αa}a∈L) and N = (Y,ΣY , {βa}a∈L) be two
generalized L-labelled Markov kernels. A relation R ⊆ X×Y is a bisimulation if, for all (x, y) ∈ R,
a ∈ L, and any pair E ∈ ΣX and F ∈ ΣY such that (E,F ) is R-closed

αa(x)(E) = βa(y)(F ) .

Two L-labelled Markov processes (M, x) and (N , y) are bisimilar, written x ∼ y, if the initial
states x and y are related by some bisimulation R ⊆ X × Y .

The states that are related by a bisimulation R must agree on the values which are measured
by Markov labelled transitions, for all R-closed pairs of measurable sets of successor states. This
amounts to ask that also the reachable states must be related by R, hence that the agreement is
preserved by all labelled Markov transitions. Intuitively, we can say that a bisimulation relates
only those states that exhibit the same behaviour.

Remark 5.1.6 Definition 5.1.5 generalizes the Larsen and Skou [63] definition of bisimulation on
discrete state probabilistic systems and, at the same time, extends both the definitions of state
bisimulation given by Desharnais et al. in [18] for (sub)probabilistic Markov processes, and that
of rate bisimulation proposed by Cardelli and Mardare [26] for stochastic Markov processes, which
have been given only considering binary relations which are already equivalence relations1. Indeed,
by Lemma 5.1.4, it is easy to see that their definitions coincides with Definition 5.1.5 above, in the
case the relations to be considered are assumed to be equivalences.

Proposition 5.1.7 (Union of bisimulations) Let F be a family of bisimulation relations on
M = (X,ΣX , {αa}a∈L) and N = (Y,ΣY , {βa}a∈L). Then

⋃
F is a bisimulation.

Proof. We have to show that if (x, y) ∈
⋃
F , then for all a ∈ L, and any pair E ∈ ΣX and F ∈ ΣY

such that (E,F ) is
⋃
F-closed

αa(x)(E) = βa(y)(F ) .

Assume (x, y) ∈
⋃
F , a ∈ L, and E ∈ ΣX and F ∈ ΣY such that (E,F ) is

⋃
F-closed. By

(x, y) ∈
⋃
F , there exists a bisimulation relation R ⊆ X × Y such that (x, y) ∈ R. Obviously

R ⊆
⋃
F thus, by Lemma 5.1.3, (E,F ) is R-closed. Since (x, y) ∈ R and R is a bisimulation

relation, we have αa(x)(E) = βa(y)(F ).

1Actually, in [31], the definition of state bisimulation is given without mentioning that the relation must be
an equivalence, but without that requirement many subsequent results do not hold (e.g. Lemmas 4.1, 4.6, 4.8,
Proposition 4.7, and Corollary 4.9). However, looking at the proofs it looks clear that they were imposing this
condition.
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Corollary 5.1.8 ∼ is the largest bisimulation relation.

Proof. By definition ∼ =
⋃
{R ⊆ X × Y | R is a bisimulation}, thus, by Lemma 5.1.7 it is a

bisimulation and in particular it is the largest one.

Theorem 5.1.9 (Equivalence) Let M = (X,Σ, {θa}a∈L) be an L-labelled Markov kernel. Then
the bisimilarity relation ∼ ⊆ X ×X on M is an equivalence.

Proof. Symmetry is trivial: if R ⊆ X×X is a bisimulation, then so is R−1 = {(y, x) | (x, y) ∈ R}.
For reflexivity, we prove that the identity relation ∆X is a bisimulation, i.e., for all x ∈ X,

a ∈ A, and measurables E,F ∈ Σ such that (E,F ) is ∆X -closed,

θa(x)(E) = θa(x)(F ) . (5.1.1)

Since ∆X is and equivalence, by Lemma 5.1.4, E = F , therefore Equation (5.1.1) holds trivially.
It remains to prove transitivity. To this end, it suffices to show that, given R1 and R2 bisimu-

lations on M, there exists a bisimulation R on M that contains the relational composition of R1

and R2, denoted by R1;R2 = {(x, z) | (x, y) ∈ R1 and (y, z) ∈ R2 for some y ∈ X}.
Let R be the (unique) smallest equivalence relation containing R1 ∪ R2. R can be defined as

R = ∆X ∪
⋃
n∈N Sn, where

S0 , R1 ∪R2 ∪R−1
1 ∪R

−1
2 Sn+1 , Sn;Sn .

It is easy to see that R1;R2 ⊆ R. We are left to show that R is a bisimulation. By Lemma 5.1.4,
it suffices to prove that for all a ∈ L, and measurable sets E,F ∈ Σ such that (E,E) is R-closed,

for all (x, y) ∈ R : θa(x)(E) = θa(y)(E) . (5.1.2)

Now, if (x, y) ∈ R, then (x, y) ∈ ∆X or (x, y) ∈ Sn for some n ≥ 0. If (x, y) ∈ ∆X then x = y hence
Equation (5.1.2) trivially holds. We show now, by induction on n ≥ 0, that for all (x, y) ∈ Sn,
Equation (5.1.2) holds.

Base case (n = 0): for all (x, y) ∈ Rj (j = 1, 2), Equation (5.1.2) holds since, by Lemma 5.1.3
andRj ⊆ R, (E,E) ∈ Σ(Rj), and by the hypothesis thatRj is a bisimulation. For all (x, y) ∈ R−1

j

(j = 1, 2) we have that (y, x) ∈ Rj , hence (5.1.2) holds too.
Inductive case (n+ 1): for n ≥ 0, the inductive hypothesis is given by

for all (x′, y′) ∈ Sn : θa(x′)(E) = θa(y′)(E) . (5.1.3)

Then, it is easy to see that Equation (5.1.2) holds for all (x, y) ∈ Sn+1: by definition, there exists
some z ∈ X such that (x, z) ∈ Sn and (z, y) ∈ Sn. Hence, applying Equation (5.1.3) twice, we get
θa(x)(E) = θa(z)(E) = θa(y)(E).

Remark 5.1.10 Remarkably, the proof above does not need any specific property or results from
the theory of measures and measurable spaces; it directly follows by the definition of bisimulation
(Definition 5.1.1) and R-closed pair (Definition 5.1.2).

As a technical remark, note that, in Theorem 5.1.9, transitivity is verified adopting a strategy
that avoids to prove that bisimulation relations are closed under composition. A reason for avoiding
it is that this would have required that (semi-)pullbacks of relations in Meas are weakly preserved
by the behaviour functor ∆: Meas → Meas (see Section 2.3). Recently, in [80] Terraf showed
that this is not the case. The proof of this result is based on the existence of a non-Lebesgue-
measurable set V in the open unit interval (0, 1), which is used to define two measures on the
σ-algebra extended with V such that they differ in this set2. In the light of this, the simplicity of
the proof of Theorem 5.1.9 is even more remarkable.

2It must be noticed that the counterexample given in [80, Theorem 12] requires one to assume that all zig-zag
morphisms (hence, ∆L

1 -homomorphisms) are surjective. Such an assumption is not generally considered valid, so
that one may argue that this is not yet the definitive counterexample.
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From Theorem 5.1.9 and Corollary 5.1.8 we have the following characterization of bisimilarity:

Proposition 5.1.11 LetM = (X,Σ, {θa}a∈L) be an L-labelled Markov kernel, then, for x, y ∈ X:

x ∼ y ⇐⇒ for all a ∈ L and E ∈ Σ such that (E,E) is ∼-closed . θa(x)(E) = θa(y)(E) ,

Proof. The implication from left to right is an immediate consequence of the fact that ∼ is an
equivalence relation (Theorem 5.1.9) and that ∼ is a bisimulation (Corollary 5.1.8). We are left to
prove the implication from right to left. To this end, assume x, y ∈ X have the following property:

for all a ∈ L and E ∈ Σ such that (E,E) is ∼-closed , θa(x)(E) = θa(y)(E) . (5.1.4)

We prove that x ∼ y showing a bisimulation R such that (x, y) ∈ R. Let R be the smallest
equivalence relation containing {(x, y)} and ∼. This can be defined as R = ∆X ∪

⋃
n∈N Sn, where

S0 , {(x, y), (y, x)} ∪ ∼ Sn+1 , Sn;Sn .

(“;” denotes relation composition). By Lemma 5.1.4, it suffices to prove that for all a ∈ L, and
E′ ∈ Σ such that (E′, E′) is R-closed

for all (x′, y′) ∈ R : θa(x′)(E′) = θa(y′)(E′) . (5.1.5)

If (x′, y′) ∈ R, then (x′, y′) ∈ ∆X or (x′, y′) ∈ Sn for some n ≥ 0. If (x′, y′) ∈ ∆X then x′ = y′,
therefore Equation (5.1.5) holds trivially. We show, by induction on n ≥ 0, that for all (x′, y′) ∈ Sn,
Equation (5.1.5) holds.

Base case (n = 0): assume (x′, y′) ∈ ∼. Since, ∼ ⊆ R, by Lemma 5.1.3, (E′, E′) is ∼-closed.
Thus, Equation (5.1.5) holds since, by Corollary 5.1.8, ∼ is a bisimulation relation. If x′ = x
(resp. x′ = y) and y′ = y (resp. y′ = x), then property (5.1.4) holds. Again, by Lemma 5.1.3 and
∼ ⊆ R, we have that (E′, E′) is ∼-closed, thus Equation (5.1.5) holds trivially.

Inductive case (n+ 1): for n ≥ 0, the inductive hypothesis is as follows

for all (x′′, y′′) ∈ Sn : θa(x′′)(E′) = θa(y′′)(E′) . (5.1.6)

Then, it is easy to see that Equation (5.1.5) holds for all (x′, y′) ∈ Sn+1. Indeed, by definition,
there exists some z ∈ X such that (x′, z) ∈ Sn and (z, y′) ∈ Sn, hence, applying Equation (5.1.6)
twice, we have θa(x′)(E′) = θa(z)(E′) = θa(y′)(E′).

5.2 Characterization of the coalgebraic bisimulation

In this section we prove that the definition of bisimilarity we have used so far coincides with the
abstract coalgebraic notion of bisimilarity. To avoid confusion between the two notions, we will
refer to the one given in Definition 5.1.5 as state bisimulation and to that in Definition 3.3.4 as
coalgebraic bisimulation. We show that any coalgebraic bisimulation induces a state bisimulation
and vice versa, hence the two notion of bisimilarity coincide. This correspondence is easy to
determine when the state bisimulation is assumed to be an equivalence, but is no more easy when
one consider generic relations R ⊆ X × Y over different sets. A similar result has been already
proposed by de Vink and Rutten in [33, 34] for probabilistic transitions system over the category
of ultrametric spaces and non-expansive maps, but the correspondence was only found under the
assumption that the relation R has a Borel decomposition. The approach we use here do not
assume any extra condition on the relation and it can be used also to drop the assumption in [34,
Theorem 5.8].

Remark 5.2.1 Unfortunately, we were not able to extend this correspondence to all the types
of Markov kernels we have considered so far. Indeed, at a certain point of the proof we have to
assume that the measures are finite. Nevertheless, we provide all results at the maximum level of
generality we were able to achieve, in the hope that someone can extend the proof and complete
the correspondence.
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In order to model generalized Markov kernels as coalgebras one needs a suitable category and
a suitable functor. The most natural choice for a category is Meas, the category of measurable
spaces and measurable functions, and for a functor is ∆: Meas→Meas (see Section 2.3).

Proposition 5.2.2 Generalized L-labelled Markov kernels are exactly the ∆L-coalgebras on Meas.

Proof. The correspondence is trivial. Given a generalized Markov kernel M = (X,ΣX , {θa}a∈L)
we define a ∆L-coalgebra (X,α) as follows, for a ∈ L

α : X → ∆LX α(a) = θa

A map α : X → ∆LX is measurable iff evE ◦ eva ◦ α is measurable, for all a ∈ L and E ∈ ΣX .
But eva ◦α = θa is measurable by definition of Markov kernel, hence α is so. Conversely, given an
∆L-coalgebra (X,α), we define a Markov kenel M = (X,ΣX , {θa}a ∈ L) as follows, where for all
a ∈ L, θa = eva ◦ α = α(·)(a). Measurability of θa follows since it is the composite of measurable
functions. It is immediate to see that the two translations are inverses of each other.

Due to this correspondence, we will make no distinction between ∆L-coalgebras and L-labelled
Markov kernels, and the translation from one model to the other will be used without reference.

Remark 5.2.3 The result above is very well-known for the case of the Giry functor ∆1 and its
subprobability variant ∆≤1. Still we recall the proof to convince the reader that the result can
extended to all the other variants of measure functors we have introduced.

The coalgebraic definition of bisimulation between coalgebras is given in terms of a monic spans
between the carriers, such that there exist coalgebra structures that make them actual cospans
between coalgebras (cf. Definition 3.3.4). In categories with binary products monic spans (R, f, g)
are in one-to-one correspondence with monic arrows R→ X ×Y . Thus, without loss of generality,
we restrict our attention only to relations R ⊆ X × Y with measurable canonical projections
πX : R → X and πY : R → Y . This will be convenient especially to make a comparison with the
results in Section 5.1.

Proposition 5.2.4 Let (R, πX , πY ) be a ∆L-bisimulation between the coalgebras (X,α) and (Y, β).
Then, R is a state bisimulation.

Proof. We prove that R ⊆ X × Y is a state bisimulation between the Markov kernels M =
(X,ΣX , {α(·)(a)}a∈L) and N = (Y,ΣY , {β(·)(a)}a∈L). Thus, we have to show that for all (x, y) ∈
R, a ∈ L and E ∈ ΣX , F ∈ ΣY such that (E,F ) is R-closed, the following equality holds

α(x)(a)(E) = β(y)(a)(F ) .

Notice first that, π−1
X (E) = (E × Y ) ∩ R and π−1

Y (F ) = (X × F ) ∩ R, so that, for R-closed pairs
(E,F ) it holds that π−1

X (E) = π−1
Y (F ). Since (R, πX , πY ) is a ∆L-bisimulation, there exists a

coalgebraic structure γ : R→ ∆LR on R making the following diagram commute

X R Y

∆LX ∆LR ∆LY

πX πY

α βγ

∆LπX ∆LπY

From the commutativity of the diagram above, we have that

α(x)(a)(E) = α(πX(x, y))(a)(E) (by def. πX)

= (α ◦ πX)(x, y)(a)(E) (composition)

= (∆LπX ◦ γ)(x, y)(a)(E) (by ∆L-homomorphism)
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= ∆πX(γ(x, y)(a))(E) (by def. IdL)

= γ(x, y)(a) ◦ π−1
X (E) (by def. ∆)

= γ(x, y)(a) ◦ π−1
Y (F ) (by (E,F ) R-closed)

= ∆πY (γ(x, y)(a))(F ) (by def. ∆)

= (∆LπY ◦ γ)(x, y)(a)(F ) (by def. IdL)

= (β ◦ πY )(x, y)(a)(F ) (by ∆L-homomorphism)

= β(y)(a)(F ) (by def. πY )

For the other half of the correspondence, i.e., that any state bisimulation is a ∆L-bisimulation,
we need some preliminary work that involves results and techniques from measure theory.

First, notice that in Definition 5.1.5, no σ-algebra is assigned to the relation R ⊆ X × Y , so
that in order to make it an object in Meas we have to provide it one. This, moreover, must be
defined such that the canonical projections will be rendered measurable. The most natural choice
is the initial σ-algebra w.r.t. πX : R → X and πY : R → Y , that is, the smallest one making the
two projections measurable. This is generated by the following family of sets

F = {(E × F ) ∩R | E ∈ ΣX and F ∈ ΣY } .

Second, we have to provide a measurable ∆L-coalgebra structure on R such that makes the
canonical projections coalgebra morphisms. To do so, we will use the following result.

Proposition 5.2.5 Let (X,ΣX) and (Y,ΣY ) be measurable spaces, R ⊆ X × Y , and ΣR denote
the σ-algebra generated by the collection of all subsets of the form, (E × F ) ∩R, for E ∈ ΣX and
Y ∈ ΣY . Then, for any measure µ : ΣX → [0,∞], there exists a measure µ̃ : ΣR → [0,∞] such that

µ̃((E × F ) ∩R) = µ(E) , for all E ∈ ΣX and Y ∈ ΣY .

Moreover, if µ is σ-finite, µ̃ is unique.

Proof. We define µ̃ has the Hahn-Kolmogorov extension (Theorem 2.2.26) of a pre-measure µ̃0

defined on a suitable boolean algebra A such that σ(A) = ΣR.

Let A be the collection of all finite unions
⋃k
i=0(Ei × Fi) ∩ R) such that k ∈ N and, for all

0 ≤ i ≤ k, Ei ∈ ΣX and Fi ∈ ΣY . Certainly, σ(A) = ΣR. To prove that A is a boolean algebra on
R, is suffices only prove that is closed under complements (it is already closed under finite union).
This is immediate by the following equality:

R \ ((E × F ) ∩R) = ((X \ E × F ) ∩R) ∪ ((E × Y \ F ) ∩R) .

Now we define µ̃0 : A → [0,∞]. Note that any set S ∈ A can always decomposed into a finite union

of pair-wise disjoint sets S =
⋃k
i=0(Ei×Fi)∩R). We then define the quantity µ̃0(S) associated to

such disjoint union S by
µ̃0(S) :=

∑k
i=0 µ(Ei) (5.2.1)

It is easy to show that this definition does not depend on how S is decomposed into a disjoint

union. To see this, note that any two representations
⋃k
i=0(Ei × Fi) ∩R) and

⋃k′
i=0(E′i × F ′i ) ∩R)

of the same set can be decomposed into a common refinement
⋃k′′
i=0(E′′i × F ′′i ) ∩ R), so that, by

the well definition of µ they must agree on it. Moreover, by construction, µ̃0 is finitely additive.
It remains to show that, if S ∈ A is the countable disjoint union of sets S0, S1, S2, . . . ∈ A, then

µ̃0(S) =
∑
n∈N µ̃0(Sn) .

Slitting up S into disjoint product sets, and restricting Sn to each of these product sets in turn, for
all n ∈ N, by finite additivity of µ̃0, we may assume without loss of generality that S = (E×F )∩R,
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for some E ∈ ΣX and F ∈ ΣY . In the same way, by breaking up each Sn into a component product
sets and using finite additivity of µ̃0 again, we may assume without loss of generality that each
Sn takes the form Sn = (En × Fn) ∩ R, for some En ∈ ΣX and F ∈ ΣY . By definition of µ̃0,
Equation (5.2.1) is rewritten as

µ(E) =
∑
n∈N µ(En) .

This holds trivially by σ-additivity of µ.

Now that we have proven that µ̃0 : A → [0,∞] is a pre-measure, we can define µ̃ : ΣR → [0,∞]
as the Hahn-Kolmogorov extension of of µ̃0, and since, ((E × F ) ∩ R) ∈ A, for all E ∈ ΣX and
F ∈ ΣY , we have

µ̃((E × F ) ∩R) = µ̃0((E × F ) ∩R) = µ(E) .

Thus the required condition is satisfied.

Proposition 5.2.6 Let R ⊆ X × Y be a state bisimulation between the (finite) L-labelled Markov
kernels (X,ΣX , {αa}a∈L) and (Y,ΣY , {βa}a∈L). Then (R, πX , πY ) is a ∆L

<∞-bisimulation.

Proof. We want to prove that (R, πX , πY ) is a ∆L
<∞-bisimulation between (X,α) and (Y, β),

where α(a) = αa and β(a) = βa, for all a ∈ L. To this end we have to equip R with σ-algebra
ΣR such that πX : R → X and πY : R → Y are measurable, and provide a measurable coalgebra
structure γ : R→ ∆L

<∞R making the following diagram commutes

X R Y

∆L
<∞X ∆L

<∞R ∆L
<∞Y

πX πY

α βγ

∆L
<∞πX ∆L

<∞πY

(5.2.2)

As for ΣR we take the initial σ-algebra w.r.t. πX : R → X and πY : R → Y , so that both
the projections are measurable. ΣR can also be characterized as the σ-algebra generated by the
collection of all finite unions of subsets of the form (E × F ) ∩ R, for E ∈ ΣX and F ∈ ΣY . Let
γ : R → ∆L

<∞R be defined as γ((x, y))(a) = α̃a(x), for all a ∈ L, (x, y) ∈ R, where α̃a is given by
Lemma 5.2.5. Therefore, γ((x, y))(a) : ΣR → [0,∞) is the (unique) measure on (R,ΣR), such that

γ((x, y))(a)((E × F ) ∩R) = α(x)(a)(E) , for all E ∈ ΣX and Y ∈ ΣY .

To prove that γ is measurable, by Lemmas 2.2.8 and 2.3.3 it suffices to show that for any finite
union of the form S =

⋃k
i=0((Ei × Fi) ∩ R), where Ei ∈ ΣX and Fi ∈ ΣY , for 0 ≤ i ≤ k,

(γ(·)(a))−1(Lr(S)) ∈ ΣR. We may assume, without loss of generality, that S =
⋃k
i=0((Ei×Fi)∩R)

is given as a disjoint union (otherwise we may represent it as a disjoint one taking a the disjoint
refinements for the sets (Ei × Fi) ∩R).

(γ(·)(a))−1(Lr(S)) = {(x, y) ∈ R | γ((x, y))(a) ∈ Lr(S)} (by inverse image)

= {(x, y) ∈ R | γ((x, y))(a)(S) ≥ r} (by def. Lr(E))

= {(x, y) ∈ R |
∑k
i=0 γ((x, y))(a)((Ei × Fi) ∩R) ≥ r} (by finite additivity)

= {(x, y) ∈ R |
∑k
i=0 α(x)(a)(Ei) ≥ r} (by def. γ)

= {(x, y) ∈ R | α(x)(a)(
⋃k
i=0Ei) ≥ r} (by finite additivity)

= {(x, y) ∈ R | α(x)(a) ∈ Lr(
⋃k
i=0Ei)} (by def. Lr(E))

= ((α(·)(a))−1(
⋃k
i=0Ei)× Y ) ∩R (by inverse image)

Since α is measurable, (α(·)(a))−1(
⋃k
i=0Ei) ∈ ΣX , so that (γ(·)(a))−1(Lr(S)) ∈ ΣR.
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Now we prove that Diagram (5.2.2) commutes. To this end, consider the following two sets:
R(·, F ) = {x ∈ X | (x, y) ∈ R and y ∈ F} and R(E, ·) = {y ∈ Y | (x, y) ∈ R and x ∈ E}, for
E ∈ ΣX and F ∈ ΣY . R(·, F ) and R(E, ·) are measurable, since following equalities hold

π−1
X (E) = (E × Y ) ∩R = (X ×R(E, ·)) ∩R = π−1

Y (R(E, ·)) , (5.2.3)

π−1
Y (F ) = (X × F ) ∩R = (R(·, F )× Y ) ∩R = π−1

X (R(·, F )) . (5.2.4)

In particular, we have also that the pairs (E,R(E, ·)) and (R(·, F ), F ) are R-closed, so that, since
R is a state bisimulation, for any (x, y) ∈ R, a ∈ L, E ∈ ΣX , and F ∈ ΣY the following hold

α(x)(a)(E) = β(y)(a)(R(E, ·)) , α(x)(a)(R(·, F )) = β(y)(a)(F ) . (5.2.5)

With this in mind, we prove the commutativity of the right square of Diagram (5.2.2):

(∆L
<∞πY ◦ γ)((x, y))(a)(F ) = γ((x, y))(a)(π−1

Y (F )) (by def. ∆L
<∞)

= γ((x, y))(a)((R(·, F )× Y ) ∩R) (by (5.2.4))

= α(x)(a)(R(·, F )) (by def. γ)

= β(y)(a)(F ) (by (5.2.5))

= (β ◦ πY )((x, y))(a)(F ) (by def. πY )

for all (x, y) ∈ R, a ∈ A, and F ∈ ΣY . Commutativity of the left square of Diagram (5.2.2) is
trivial and follows even without using Equation (5.2.5).

Remark 5.2.7 In the proof of Proposition 5.2.6 we have to impose that the measures are finite
due to the use of Lemma 2.3.3. However, all the other constructions follow without any extra con-
dition. Interestingly, if it were possible to extend Lemma 2.3.3 to generic measures, the coalgebraic
structure imposed on R may be not unique. Indeed, if the coalgebra structures α and β, are such
that, α(x)(a) and β(y)(a) are non-σ-finite, for some (x, y) ∈ R and a ∈ L, the extension provided
by Proposition 5.2.5 is not necessarily unique. However, it must be noticed that is situation is not
unusual for coalgebraic bisimulations (see Example 3.3.6).

Remark 5.2.8 (Ultrametric spaces) The coalgebraic treatment of continuous probabilistic sys-
tems originated in the work of de Vink and Rutten [33, 34] on the category of ultrametric spaces
and nonexpansive maps. They were the first to compare the notion of probabilistic bisimulation of
Larsen and Skou [63] with the abstract coalgebraic definition of Aczel and Mendler. The compari-
son between the two notions was fully achieved only in the discrete case. For the continuous case,
they were able to establish the correspondence only under the assumption that the bisimulation
relation has a Borel decomposition.

The construction given in Proposition 5.2.5 can be applied also to Borel measures, so that the
proof-strategy of Proposition 5.2.6 do not need can be employed to prove [34, Theorem 5.8] with
the benefits of dropping the assumption of the existence of Borel decompositions.

Theorem 5.2.9 (Characterization) State bisimulation and ∆<∞-bisimulation coincide.

Proof. It follows directly by Propositions 5.2.4 and 5.2.6.

5.3 Relating Cocongruences and Bisimulations

In this section, we consider the problem of relating bisimulation and cocongruences between L-
labelled Markov kernels with finite measures, hence ∆L

<∞-coalgebras. We will show sufficient
conditions under which we get a bijection between these two notions. This is done setting up
an adjunction between the category of bisimulations and (a subcategory) cocongruences between
two fixed coalgebras. This bijection is based on a standard adjunction occurring between span
and cospans in categories with pushouts and pullbacks. Our aim is to lift this adjunction to the
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categories of bisimulations and cocongruences for the functor ∆L
<∞. This lifting is very simple

to be implemented if the behaviour functor preserves weak pullbacks. However, our case is not
so lucky, since ∆L

<∞ does not enjoy such a property (see Viglizzo [89]). Nevertheless, we show
that under some assumptions (i.e., the restriction to a suitable subcategory of cocongruences) this
adjunction can still be lifted.

For sake of clarity we first recall the bijection in the simplified setting of monic span and epic
cospan in a generic category C, then, we show how to lift the construction to bisimulations and
cocongruences for the functor ∆L

<∞ : Meas→Meas.

The category MSpanC(X,Y ) has as objects monic spans (R, f, g) between X and Y in C,
and arrows f : (R, r1, r2)→ (S, s1, s2) which are morphisms f : R → S in C making the diagrams
below commute:

R S

X

f

r1 s1

R S

Y

f

r2 s2

Since the legs of each span in MSpanC(X,Y ) are jointly monic, we have that, given any two
objects, there is only one morphism between them. As a consequence, if we have that for
two monic spans (R, r1, r2) and (S, s1, s2) there exist morphisms f : (R, r1, r2) → (S, s1, s2) and
g : (S, s1, s2)→ (R, r1, r2), then they are isomorphic, with isomorphism given by f and g. Indeed,
by uniqueness, the composites f ◦ g and g ◦ f must be equal to idS and idR, respectively.

The category ECospanC(X,Y ), of epic cospans between X and Y in C, is defined analogously,
and enjoys the same properties we have discussed above in the case of monic spans. In the following,
we will often omit the subscript C when the category of reference is understood.

Assume the category C has pullbacks and pushouts. Then, given any cospan we can take
the pullback over it producing a span and, conversely, any span yields a cospan via its pushouts.
Formally, we can define two functors: Pb(X,Y ) : ECospan(X,Y )→MSpan(X,Y ) mapping each
epic span in MSpan(X,Y ) to its pullback, and Po(X,Y ) : MSpan(X,Y ) → ECospan(X,Y )
mapping each monic span in MSpan(X,Y ) to its pushout. These operations are well defined,
indeed, spans deriving from pullbacks are always monic, and cospans deriving from pushouts are
always epic. As for morphisms, let f : (R, r1, r2) → (S, s1, s2) be a morphism in MSpan(X,Y ),
then Po(X,Y )(f) is defined as the unique arrow, given by the universal property of pushout, making
the following diagram commute

R

S

X Y

X Y

R′

S′

r1 r2

f

r′1 r′2 idX

idY s1 s2

Po(f)

s′1 s′2

where Po(X,Y )(R, r1, r2) = (R′, r′1, r
′
2) and Po(X,Y )(S, s1, s2) = (S′, s′1, s

′
2). The action on arrows

for Pb(X,Y ) is defined similarly, using the universal property of pullbacks. Functoriality of Pb(X,Y )

and Po(X,Y ) follows by the universal properties of pullbacks and pushouts, respectively. When the
domain (X,Y ) of the spans and cospans in MSpan(X,Y ) and ECospan(X,Y ), respectively, are
clear from the context, the subscript in Po(X,Y ) and Pb(X,Y ) will be omitted.

For these two functors we have the following properties.

Lemma 5.3.1 Let C be a category with pushouts and pullbacks. Then, the following hold

(i) PoPbPo ∼= Po;
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(ii) PbPoPb ∼= Pb.

Proof. Both (i) and (ii) follow by the universal properties of pullbacks and pushouts. We show (i),
(ii) is similar. We need to show that there are inverse natural transformations f : Po ⇒ PoPbPo
and g : PoPbPo⇒ Po. We define them component-wise as follows. Let (R, r1, r2) be an object in
MSpan(X,Y ), and consider the diagram below

Y

R PbPo(R) Po(R) PoPbPo(R)

X

r2

r1

r′2

r′1

q2

q1

q′2

q′1

where

Po(R, r1, r2) = (Po(R), r′1, r
′
2) hence r′1 ◦ r1 = r′2 ◦ r2 (5.3.1)

PbPo(R, r1, r2) = (PbPo(R), q1, q2) hence r′1 ◦ q1 = r′2 ◦ q2 (5.3.2)

PoPbPo(R, r1, r2) = (PoPbPo(R), q′1, q
′
2) hence q′1 ◦ q1 = q′2 ◦ q2 (5.3.3)

By the universal property of pullbacks, from (5.3.1) and (5.3.2) there exists k : R→ PbPo(R) such
that q1 ◦ k = r1 and q2 ◦ k = r2. From these two equalities we have that

q′1 ◦ r1 = q′1 ◦ q1 ◦ k
= q′2 ◦ q2 ◦ k (by (5.3.3))

= q′2 ◦ r2

From this and (5.3.3), by the universal property of pushouts, there exists fR : Po(R)→ PoPbPo(R)
such that fR ◦ r′1 = q′2 and fR ◦ r′2 = q′2. Now, by the universal property of pushouts, from (5.3.2)
and (5.3.3), there exists gR : PoPbPo(R)→ Po(R) such that gR ◦ q′1 = r′1 and gR ◦ q′2 = r′2. Since
both fR and gR are opposite morphisms of epic cospans, they are necessarily inverses of each
other, thus Po(R, r1, r2) and PoPbPo(R, r1, r2) are isomorphic. Naturality of f and g follows by
the universal property of pushouts.

Proposition 5.3.2 Let C be a category with pushouts and pullbacks, then Po a Pb.

Proof. Due to the universal properties of pushouts and pullbacks, for any pair of objects (R, r1, r2)
in MSpan(X,Y ) and (S, s1, s2) in ECospan(X,Y ), it holds that,

Hom(Po(R, r1, r2), (S, s1, s2)) ∼= Hom((R, r1, r2), P b(S, s1, s2)) ,

that is, Po is left adjoint to Pb.

The unit η : Id ⇒ PbPo and counit ε : PoPb ⇒ Id of the adjunction Po a Pb, are de-
fined component-wise as follows, for all objects (R, r1, r2) in MSpan(X,Y ) and (K, k1, k2) in
ECospan(X,Y ).

R

PbPo(R)

X Y

X Y

Po(R)

Po(R)

r1 r2

η(R,r1,r2)

r′1 r′2 id

id r′′1 r′′2

idPo(R)

r′1 r′2

Pb(K)

Pb(K)

X Y

X Y

K

PoPb(K)

k′1 k′2

idPb(K)

k1 k2 id

id k′1 k′2

ε(K,k1,k2)

k′′1 k′′2
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As any adjunction, Po a Pb gives rise to a monad (PbPo, η, PbεPo) in MSpan(X,Y ) and a
comonad (PoPb, ε, PoηPb) in ECospan(X,Y ), which, by Lemma 5.3.1, are idempotent.

If the categories MSpan(X,Y ) and ECospan(X,Y ) are quotiented by isomorphism, they
can be considered as partial orders, so that the adjunction is a Galois connection, and the monad
(PbPo, η, PbεPo) and comonad (PoPb, ε, PoηPb), respectively, defines a closure operator on monic
spans and an interior operator on epic cospans.

5.3.1 The comonad PoPb and monad PbPo in Meas

In this section, we give an explicit characterization of the monad PbPo in MSpanMeas(X,Y )
and a comonad PoPb in ECospanMeas(X,Y ), for generic objects X and Y in Meas. This will
also serve as a preliminary step for determining the adjunction between ∆L

<∞-bisimulations and
(a subclass of) ∆L

<∞-cocongruences.

Since Meas has pullbacks and pushouts, the functors Pb : ECospan(X,Y )→MSpan(X,Y )
and Po : MSpan(X,Y ) → ECospan(X,Y ) are well defined, for any pair of objects X and Y .
Moreover, since Meas has both binary products and coproducts, we can identify the categories
MSpan(X,Y ) and ECospan(X,Y ), respectively, as the categories of relations R ⊆ X × Y (with
measurable canonical projections) and quotients (X+Y )/E (with measurable canonical injections),
where E is an equivalence relation on (X + Y ).

To give an explicit explicit characterization of the monad (PbPo, η, PbεPo) and comonad
(PoPb, ε, PoηPb) we first need to understand how the functors PbPo and PoPb act on objects and
arrows. To this end, recall that pullbacks and pushouts in Meas are defined as in Set and equipped
with initial and final σ-algebras with respect to the cone-projections and cocone-injections, respec-
tively. This allows us to split the characterization in two parts: one regarding the underlying sets
of the measurable spaces, and the other dealing with the σ-algebras structures. The last part, is
the easies one, since once one has the characterization of the underlying sets it just need to equip
them with the initial and final σ-algebras.

In Set, the pushout of a relation R ⊆ X ×Y is given by (X +Y )/R∗, where R∗ is the smallest
equivalence relation on X+Y containing {(inX(x), inY (y)) | (x, y) ∈ R}; the pullback of a quotient
(X + Y )/E, is given by {(x, y) ∈ X × Y | (inX(x), inY (y)) ∈ E}.

Consider the comonad PoPb, first. Let (X + Y )/E be a quotient in ECospan(X,Y ). It is
easy to see that PoPb((X + Y )/E) = (X + Y )/E. Indeed

PoPb((X + Y )/E) = Po({(x, y) ∈ X × Y | (inX(x), inY (y)) ∈ E}) = (X + Y )/R∗

where R∗ is the smallest equivalence on X+Y containing E. But since E is already an equivalence,
R∗ = E. Thus, the counit ε : PoPb ⇒ Id and comultiplication PoηPb : PoPb ⇒ PoPbPoPb are
just the “identity” natural transformations.

The case of the monad (PbPo, η, PbεPo) is a bit more involved. Let R ⊆ X × Y be a relation
in MSpan(X,Y ), then we have

PbPo(R) = Pb((X + Y )/R∗) = {(x, y) ∈ X × Y | (inX(x), inY (y)) ∈ R∗}

where R∗ is the smallest equivalence relation on X +Y containing {(inX(x), inY (y)) | (x, y) ∈ R}.
More explicitly, R∗ can be characterized as the countable union R∗ =

⋃
n∈NR

∗
n, where

R∗0 = {(inX(x), inX(x)) | x ∈ X} ∪ {(inY (y), inY (y)) | y ∈ Y }

R∗n+1 = {(inX(x), inY (y′)) | (x, y) ∈ R ∧ (inX(x′), inY (y)) ∈ R∗n ∧ (x′, y′) ∈ R} ∪
{(inY (y), inX(x)) | (x, y) ∈ R ∧ (inX(x′), inY (y)) ∈ R∗n ∧ (x′, y′) ∈ R} .

Therefore, PbPo(R) =
⋃
n∈NRn, whereRn = {(x, y) ∈ X×Y | (inX(x), inY (y)) ∈ R∗n}. Explicitly,

we have that R0 = ∅ and, for all n > 0,

R1 = R ,
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Rn+1 = {(x, y′) ∈ X × Y | (x, y) ∈ R ∧ (x′, y) ∈ Rn ∧ (x′, y′) ∈ R}

Hence, PbPo(R) = R, where R is the z-closure of R, that is, the smallest relation closed under the
following rules

(x, y) ∈ R
(x, y) ∈ R

(x, y) ∈ R (x, y′) ∈ R (x′, y′) ∈ R
(x, y′) ∈ R

(z-rule)

Notice that R = R, R ⊆ R, and if R ⊆ S, then R ⊆ S, therefore (·) is a closure operator. The
functor PbPo maps arrows f : R→ S between relations R,S ⊆ X ×Y , to f : R→ S, the z-closure
extension of f , defined inductively on Rn, in the obvious way. The unit η : Id⇒ PbPo is just the
natural inclusion, and the multiplication PbεPo : PbPoPbPo ⇒ PbPo is the “identity” natural
transformation.

As for the σ-algebra structures, PoPb assigns to a quotient (X+Y )/E in ECospan(X,Y ) the
final σ-algebra with respect to canonical injections. Note that, PoPb((X+Y )/E) and (X+Y )/E,
as measurable spaces, are not necessarily isomorphic, since the final σ-algebra on PoPb((X+Y )/E)
actually contains all the measurable sets of the quotient (X+Y )/E, but this inclusion may be strict.
Dually, the functor PbPo assigns to a relation R ⊆ X ×Y in MSpan(X,Y ) the measurable space
(R,ΣR), where R is the z-closure of R, ΣR is the initial σ-algebra with respect to the canonical
projections πX : R→ X and πY : R→ Y , that is, the σ-algebra generated by the sets (E×F )∩R,
for E ∈ ΣX and F ∈ ΣY .

5.3.2 Adjunction between Bisimulations and Cocongruences

We already seen that there is an adjunction Po a Pb between the categories of monic spans
MSpan(X,Y ) and epic cospans ECospan(X,Y ) in Meas, and that this is given as an instance
of a more general construction that applies in any category with pullbacks and pushouts. In this
section, we show that this adjunction can be partially lifted to the categories Bisim((X,α), (Y, β))
and Cocong((X,α), (Y, β)) of ∆L

<∞-bisimulations and ∆L
<∞-cocongruences. We used the term

“partially”, since the adjunction actually works only restricting the category of cocongruences to
the image given by the functor

Po : Bisim((X,α), (Y, β))→ Cocong((X,α), (Y, β)) ,

namely, Po
(
Bisim((X,α), (Y, β))

)
. This, because only for cocongruences that have been derived

from bisimulations it is possible to define a coalgebra structure making the cospan an actual
bisimulation. Moreover, we will also see that the there is an equivalence between the subcategories

PbPo
(
Bisim((X,α), (Y, β))

) ∼= PoPb
(
Cocong((X,α), (Y, β))

)
,

given as the images of the functors PbPo and PoPb, respectively. This exactly establish which the
conditions under which the concept of bisimulation and cocongruence coincide.

The first step consists in the formal definition of the categories of bisimulations and cocongru-
ences for the endofunctor ∆L

<∞ : Meas→Meas.

Category of bisimulations. Bisim((X,α), (Y, β)) has as objects bisimulations ((R, γ), f, g)
between ∆L

<∞-coalgebras (X,α) and (Y, β), and arrows f : ((R, γR), r1, r2)→ ((S, γS), s1, s2) which
are morphisms f : K → H in Meas making the following diagrams commute:

R S

∆L
<∞R ∆L

<∞S

f

γR γS

∆L
<∞f

R S

X

f

r1 s1

R S

Y

f

r2 s2

hence, f : K → H is both a morphism in ∆L
<∞-coalg and in MSpanMeas(X,Y ).
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Category of cocongruences. Cocong((X,α), (Y, β)) has objects cocongruences ((K,κ), f, g)
between ∆L

<∞-coalgebras (X,α) and (Y, β), and arrows f : ((K,κK), k1, k2) → ((H,κH), h1, h2)
are morphisms f : K → H in Meas such that the following diagrams commute:

K H

∆L
<∞K ∆L

<∞H

f

κK κH

∆L
<∞f

X

K H
f

k1 h1

X

K H
f

k2 h2

therefore, f : K → H is both a morphism in ∆L
<∞-coalg and in ECospanMeas(X,Y ).

Between these two categories we can define a functor

Po : Bisim((X,α), (Y, β))→ Cocong((X,α), (Y, β)) ,

acting on ∆L
<∞-bisimulations ((R, γR), r1, r2) has Po(((R, γ), r1, r2)) = ((K,κ), k1, k2), where

(K, k1, k2) is the pushout for the span (R, r1, r2), and κ : K → ∆L
<∞K is the unique, given by

the universal property of pushouts, making the following diagram on the left commute; and on
arrows f : ((R, γR), r1, r2) → ((S, γS), s1, s2) as Po(f), defined as the unique arrow, given by the
universal property of pushouts, making the diagram on the right commute:

R

X Y

K

∆L
<∞X ∆L

<∞Y

∆L
<∞K

r1 r2

k1 k2

α β

κ

∆L
<∞k1 ∆L

<∞k2

R

S

X Y

X Y

Po(R)

Po(S)

r1 r2

f

k1 k2 id

id s1 s2

Po(f)

h1 h2

The arrow Po(f) is obviously a morphism between the cospans (Po(R), k1, k2) and (Po(S), h1, h2),
and can be proved to be also a morphisms of coalgebras exploiting the universal property of
pushouts. Functoriality follows for similar reasons.

Remark 5.3.3 The above construction is standard an applies in any category with pushouts
independently of the choice of the behaviour functor.

It is well known that if the behavior functor preserves weak pullbacks, then cocongruences give
rise to bisimulations (Proposition 3.5.4). Unfortunately, the functor ∆<∞ does not preserves weak
pullbacks, as proved by Viglizzo in [89, 68], hence we cannot define a functor

Pb : Cocong((X,α), (Y, β))→ Bisim((X,α), (Y, β)) .

However, it turns out that if we restrict our attention only to the subcategory of cocongruences
that are images of the functor Po for some bisimulation, namely, Po

(
Bisim((X,α), (Y, β))

)
, it is

possible to define such a functor.
Let ((R, γ), r1, r2) be an object and f be an arrow in Bisim((X,α)(Y, β)), then we define

Z : Po
(
Bisim((X,α), (Y, β))

)
→ Bisim((X,α), (Y, β))

Z(Po((R, γ), r1, r2)) = ((R, γ), r1, r2)

Z(Po(f)) = f ,

where PbPo((R, γ), r1, r2) = (R, r1, r2) and PbPo(f) = f are the span and span-morphism, re-
spectively, given by the (well defined) endofunctor PbPo : MSpan(X,Y ) → MSpan(X,Y ) on
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/)
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monic spans between X and Y in Meas (recall from Section 5.3.1 that, R and f are, respectively,
the z-closure of R and the z-closure extension of f), and γ : R→ ∆L

<∞R is defined, for each r ∈ R,
a ∈ L, as the (unique) measure on (R,ΣR) such that

γ(r)(a)(〈r1, r2〉−1(E × F )) = α(r1(r))(a)(E) for all E ∈ ΣX and F ∈ ΣY ,

given by Proposition 5.2.5 (notice that, ΣR is generated by the sets 〈r1, r2〉−1(E×F ), for E ∈ ΣX
and F ∈ ΣY , hence the construction in Proposition 5.2.5 applies).

Next we show that this functor is well defined. To this end we have to prove that ((R, γ), r1, r2)
is a ∆L

<∞-bisimulation and that f is a morphism between bisimulations, i.e., a span-morphism (this
already holds by definition) and a ∆L

<∞-homomorphism.

Lemma 5.3.4 Let (X,α) and (Y, β) be two ∆L
<∞-coalgebras, (R, r1, r2) and (S, s1, s2) be spans

between X and Y in Meas, with σ-algebras ΣR and ΣS, initial w.r.t. 〈r1, r2〉 : R → X × Y and
〈s1, s2〉 : S → X×Y , respectively. Define γR : R→ ∆L

<∞R and γS : S → ∆L
<∞S, for r ∈ R, s ∈ S,

a ∈ L, as the the unique measures on (R,ΣR) and (S,ΣS) such that

γR(r)(a)(〈r1, r2〉−1(E × F )) = α(r1(r))(a)(E) for all E ∈ ΣX and F ∈ ΣY ,

γS(s)(a)(〈s1, s2〉−1(E × F )) = α(s1(s))(a)(E) for all E ∈ ΣX and F ∈ ΣY ,

following the procedure given in Proposition 5.2.5.
Then (R, γR) and (S, γS) are well-defined ∆L

<∞-coalgebras, and any morphism f : R → S be-
tween the span (R, r1, r2) and (S, s1, s2), is also ∆L

<∞-homomorphism between (R, γR) and (S, γS).

Proof. To prove that (R, γR) and (S, γS) are well defined, we need to show that γR and γS are
measurable. We prove it for γR, the other follows similarly. Note that ΣR can be generated by the
boolean algebra of all finite unions of the form S =

⋃k
i=0〈r1, r2〉−1(Ei×Fi), Ei ∈ ΣX and Fi ∈ ΣY ,

for 0 ≤ i ≤ k. Without loss of generality, all Ei × Fi can be assumed to be disjoint (otherwise
we can find a refinement that is so), thus also 〈r1, r2〉−1(Ei × Fi) must be disjoint. Hence, by
Lemmas 2.2.8 and 2.3.3 it suffices to show that for any S as above (γR(·)(a))−1(Lr(S)) ∈ ΣR.

(γR(·)(a))−1(Lr(S)) = {r ∈ R | γR(r)(a) ∈ Lr(S)} (by inverse image)

= {r ∈ R | γR(r)(a)(S) ≥ r} (by def. Lr(E))

= {r ∈ R |
∑k
i=0 γ(r)(a)(〈r1, r2〉−1(Ei × Fi)) ≥ r} (by finite additivity)

= {r ∈ R |
∑k
i=0 α(r1(r))(a)(Ei) ≥ r} (by def. γR)

= {r ∈ R | α(r1(r))(a)(
⋃k
i=0Ei) ≥ r} (by finite additivity)

= {r ∈ R | α(r1(r))(a) ∈ Lr(
⋃k
i=0Ei)} (by def. Lr(E))

= 〈r1, r2〉−1(α−1(
⋃k
i=0Ei)× Y ) (by inverse image)

Since α is measurable, α−1(
⋃k
i=0Ei) ∈ ΣX , so that (γR(·)(a))−1(Lr(S)) ∈ ΣR.

To prove that f : R→ S is a morphism between the coalgebras (R, γR) and (S, γS), we have to
show γS ◦ f = ∆L

<∞f ◦ γR. Let r ∈ R, a ∈ L, E ∈ ΣX , and F ∈ ΣY , then

(γS ◦ f)(r)(a)(〈s1, s2〉−1(E × F )) = γS(f(r))(a)(〈s1, s2〉−1(E × F )) (composition)

= α(s1 ◦ f(r))(a)(E) (by def. γS)

= α(r1(r))(a)(E) (by f span-morphism)

= γR(r)(a)(〈r1, r2〉−1(E × F )) (by def. γR)

= γR(r)(a)((〈s1, s2〉 ◦ f)−1(E × F )) (by f span-morphism)

= γR(r)(a)(f−1 ◦ 〈s1, s2〉−1(E × F )) (by comp. inverses)

= (∆L
<∞f ◦ γR)(a)(〈s1, s2〉−1(E × F )) (by def. ∆L

<∞)

Due to the uniqueness of the definition of γR and γS (see right hand sides of of lines 1 and 6 above)
this equality is sufficient to prove the equality for all measurable sets in ΣS .
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Lemma 5.3.5 ([34]) LetM = (X,ΣX , {αa}a∈L) and N = (Y,ΣY , {βa}a∈L) be L-labelled Markov
kernels, and R ⊆ X×Y be a bisimulation between them. Then the z-closure of R is a bisimulation.

Proof. Let R ⊆ X × Y be the z-closure of R. We have to show that for all (x, y) ∈ R, a ∈ A,
E ∈ ΣX and F ∈ ΣY , such that (E,F ) are R-closed,

αa(x)(E) = βa(y)(F ) .

Note that R =
⋃
n∈NRn, for R0 = R, Rn+1 = {(x, y′) | (x, y) ∈ R ∧ (x′, y) ∈ Rn ∧ (x′, y′) ∈ R}.

We proceed by induction on n ≥ 0. Base case n = 0: assume (x, y) ∈ R. Since R ⊆ R, by
Lemma 5.1.3, (E,F ) is R-closed, so that αa(x)(E) = βa(y)(F ) follows since R is a bisimulation.
Inductive case n > 0: assume (x, y) ∈ Rn+1 and by inductive hypothesis that for all (x′, y′) ∈ Rn,
αa(x′)(E) = βa(y′)(F ). By definition of Rn+1, we have that there exists x′ ∈ X and y′ ∈ Y , such
that (x, y′), (x′, y) ∈ R and (x′, y′) ∈ R. Then, by R ⊆ R, and Lemma 5.1.3, (E,F ) is R-closed,
thus αa(x)(E) = βa(y′)(F ) and αa(x′)(E) = βa(y)(F ), since R is a bisimulation. By inductive
hypothesis, αa(x′)(E) = βa(y′)(F ), therefore αa(x)(E) = βa(y)(F ).

Proposition 5.3.6 Z : Po
(
Bisim((X,α), (Y, β))

)
→ Bisim((X,α), (Y, β)) is well-defined.

Proof. It follows by Lemmas 5.3.4, 5.3.5, and Theorem 5.2.9, noticing that the coalgebra structure
map is given following the definition in Proposition 5.2.6. Functoriality follows since the functor
PbPo is so.

The functors Po and Z acts on spans and cospans and their morphisms exactly as the functors
we have introduced at the beginning of Section 5.3. This means that many properties can be lifted
also to this setting. In particular, we have that the two functors determines an adjunction:

Theorem 5.3.7 (Adjunction & equivalence) Let (X,α) and (Y, β) be ∆L
<∞-coalgebras. Then

the following functors are are adjoint, Po a Z,

Po : Bisim((X,α), (Y, β))→ Po
(
Bisim((X,α), (Y, β))

)
Z : Po

(
Bisim((X,α), (Y, β))

)
→ Bisim((X,α), (Y, β))

Moreover, the subcategories ZPo
(
Bisim((X,α), (Y, β))

)
and PoZPo

(
Bisim((X,α), (Y, β))

)
are

equivalent with isomorphism defined by Po and Z.

Proof. Due to the universal properties of pushouts, for any pair of objects (R, r1, r2) and (S, s1, s2)
in Bisim((X,α), (Y, β)) it holds that,

Hom(Po(R, r1, r2), Po(S, s1, s2)) ∼= Hom((R, r1, r2), ZPo(S, s1, s2)) ,

that is, Po is left adjoint to Z. The equivalence follows by Proposition 5.3.1(i).

Historical note. In [31], Danos et al. proposed a notion alternative to bisimulations, the so called
event bisimulation, being aware that it coincides to behavioral equivalence. Here we recall their
definition and try to make a comparison between their results in connection to Theorem 5.3.7.

Definition 5.3.8 (Event bisimulation) Let M = (X,Σ, {θa}a∈L) be a L-labelled Markov ker-
nel. A sub-σ-algebra Λ ⊆ Σ is an event bisimulation if, for all a ∈ L and E ∈ Λ, θ−1

a (E) ∈ Λ.

Any σ-algebra Σ on X induces a notion of separability in the form of an (equivalence) relation
<(Σ) ⊆ X ×X defined by <(Σ) = {(x, y) | ∀E ∈ Σ. x ∈ Σ iff y ∈ Σ}. Moreover, considering only
equivalence relations R ⊆ X×X, they denoted by Σ(R) = {E ∈ Σ | (E,E) is R-closed} the set of
measurable R-closed sets, which is readily seen to be a σ-algebra on X. The “operator” <(·) maps
σ-algebras to equivalence relations and, conversely, Σ(·) maps equivalence relations to σ-algebras.
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Therefore, under some assumptions, they can also thought of as maps between event bisimulations
and state bisimulations.

Identifying event bisimulations Λ with their associated equivalence <(Λ), they proved ([31,
Lemma 4.8]) that a state bisimulation R is an event bisimulation iff R = <(Σ(R)). Replacing
the operator Σ(·) with our functor Po, and <(·) with Z, their result is in accordance with our
restriction to the subcategory Po

(
Bisim((X,α), (Y, β))

)
for the definition of the functor Z, and

with the fact that the objects in ZPo
(
Bisim((X,α), (Y, β))

)
are in bijection with cocongruences.

We do not know whether they recognized the adjunction and equivalence of categories of Theo-
rem 5.3.7, but our results, although just informally, seems to agree with their. The main merits of
our coalgebraic exposition are, not just to have extended the results to bisimulation relations that
are not assumed to be equivalences, but also in having recognized the underlying universal property
in terms of a formal adjunction. This, of course, gives a better understanding of the deep rela-
tions occurring between state and event bisimulations, remarkably, even without a weak-pullback
preserving behavior functor.

Remark 5.3.9 (Bisimilarity is a behavioral equivalence) Any bisimulation R ⊆ X×X can
be extended to contain the identity relation on X and all symmetric pairs. The z-closure R of a
reflexive and symmetric relation R corresponds to the smallest equivalence relation containing it.
Since z-closure corresponds exactly with the action on objects for the functor Z, we have that all
bisimulations which are equivalences are objects in Po

(
Bisim((X,α), (Y, β))

)
, so that, they are in

bijection with the cocongruence (actually, behavioral equivalence) obtained applying the functor
Po to them.

Recall that (state) bisimilarity, ∼, is proved to be an equivalence (Theorem 5.1.9), hence it is
in bijection with its associated behavioral equivalence “Po(∼)”, so that we can informally say that
bisimilarity is a behavioral equivalence or, using the terminology in [31], an event bisimulation.
Note that, this does not mean that it corresponds to event bisimilarity (i.e., the largest event
bisimulation). Indeed, Terraf in [80] already proved this is not the case, showing a counter example
in which two states of a Markov kernel are event bisimilar but not state bisimilar. Still, we can
say, that state bisimilarity is included in event bisimilarity.
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6
Rule Formats for Continuous State

Probabilistic and Stochastic Systems

Plotkin’s structural operational semantics (SOS) [71] is generally recognized to be a successful
tool for giving operational semantics to recursively defined process description languages in terms
of labelled transition systems. An SOS specification system consists of a collection of derivation
rules that allows for a simple description of the transitions of a labelled transition system following
the syntactic structure of the terms of the programming language. The great success of the SOS
paradigm is mainly due to the fact that many important semantic properties, such as congruence
for bisimilarity, can be established simply by inspecting the syntactic format of the rules. Among
all proposed rule formats, the most popular are the GSOS format [17] and the tyft/tyxt rules [51]
(for an introduction on rule specification formats we recommend the survey by Aceto et al. [2]).

An abstract categorical formulation of well-behaved SOS specification formats has been pro-
posed by Turi and Plotkin [83, 82], who recognized that rule specification systems can be formulated
in terms of certain natural transformations, that is distributive laws of a monad over a comonad.
Intuitively, the monad represents the syntax of the programming language and the comonad mod-
els the computations of the operational system. The models for these distributive laws are the
so called bialgebras, that is, a pair consisting of an algebra (for the monad) and a coalgebra (for
the comonad) over the same carrier, and such that they are well-behaved with respect to the dis-
tributive law. The main advantages of this abstract categorical formulation are that it allows for
a deeper understanding of the theory leaving out all the technical details due to the specific model
at hand, and, more importantly, it permits to instantiate the general framework to different kinds
of systems behaviors.

In recent years, this approach has been applied also to stochastic and probabilistic systems, due
to their important applications to performance evaluation, systems biology, etc [55, 21, 54, 41]. For
example Bartels [15] has investigated rule formats both for simple discrete probabilistic systems
and Segala systems, proving that probabilistic bisimilarity of Larsen and Skou is a congruence
with respect his rule formats. Inspired by Bartel’s results, Klin and Sassone [61, 60] have proposed
rule formats for stochastic systems and, more generally, for weighted transition systems, providing
evidence that many well-known stochastic extension of process calculi, such as PEPA [55], CSP [22],
and CCS [65] fit their format.

However, these formats still do not cover the case of continuous-state probabilistic and stochas-
tic systems, like calculi with spatial/geometric features introduced in last years [24, 12]. In these
models, the behaviour of the system may be influenced by continuous data, which therefore is part
of the state of the system. Typical examples are quantitive informations such as density, volumes,
and spatial informations, such as the position of processes and where transitions take place; e.g.,
in wireless networks distance may affect data access, or in biological models diffusion alters the sig-
naling pathways, etc. Surprisingly, none have been proposed rule formats for this kind of systems
in the literature yet. So in this chapter we introduce the first well-behaved SOS-like specification
formats for continuous state probabilistic and stochastic systems.

The operational models we are interested in are Markov processes (cf. Chapter 5), so that
the notion of interest is no longer a measure on a discrete space, but a measure over a generic
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measurable space. Categorically, this corresponds to move to the category Meas of measurable
spaces and measurable functions, and to model the system behaviour by a ∆L

<∞-coalgebra, where
∆<∞ : Meas→Meas is the measure functor introduced in Section 2.3, associating to a measurable
space (X,Σ) the measurable space of measures over it. This leads to transitions of the form

x
a−→ µ, where x ∈ X is the current state of the system, a ∈ L is an action label representing

the interactions with an external environment, and µ is an actual measure over (X,Σ) measuring
either the probability or the execution rate of the possible outcomes of x. Semantics with a similar
transition format have been considered already by Cardelli and Mardare in [26, 10] for dealing with
specific equational stochastic systems. However, differently from the case of discrete processes, the
SOS specification given in [26, 10] are rather ad hoc, and they are not based on any general
framework for operational descriptions.

In this chapter we will cover this gap introducing a new GSOS-like rule format for Markov
processes over generic measurable spaces. To this end, we aim to apply the bialgebraic framework
introduced by Turi and Plotkin [83] to distributive laws of type S(Id×∆L

<∞)⇒ (∆<∞T
S)L, where

S : Meas→Meas is a syntactic endofunctor over Meas, specifying the syntax of continuous data
types, and TS the corresponding free monad modeling the term language as an actual measurable
space.

A “good” SOS rule format must be compositional, i.e., it has to define a system’s behaviour
in terms of those of its subsystems. In traditional GSOS format, this is reflected by the fact that
the target of a transition is a term built from the components of the source process, and their
corresponding semantics. In our settings, the target of a transition is not a term, but a measure
over a generic measurable space, which do not have any syntactic structure to play with. In order
to circumvent this problem, we propose to use transitions of the form t

a−→ µ where µ is no more
a measure but a syntactic expression intended to denote a measure, which we call measure term.
The syntax of these measure terms, and their interpretation as actual measures, is part of the
operational specification: a specification is given by a set of rules together with a description of
how measures must be combined. We will show that this specification format, is general enough to
cover interesting examples of process calculi dealing with continuous data. In particular, we show
that any MGSOS specification leads to a distributive law of type S(Id × ∆L

<∞) ⇒ (∆<∞T
S)L,

and as a consequence, the induced behavioural equivalence is a congruence.

Remark 6.0.10 One may have noticed that the type of the coalgebraic behaviour functor we have
considered above is ∆<∞, hence we have restricted the attention only to finite measures. This is
done because for the definition of a final operational semantic we need that the behaviour functor
has final coalgebra. In Section 4.1.3 we proved that a final coalgebra exists for the finite measure
functor, but we were not able to provide the same result for the general case ∆ (see Remark 4.1.21).

This, however is not a dramatic limitation, since it just corresponds to impose that the stochas-
tic transitions of the Markov processes have finite execution rate, a condition that is usually imposed
in the literature (sometimes even without a specific theoretical motivation).

6.1 Measurable Spaces of Terms

The development of a structural operational semantics over generalized Markov processes demands
for an algebraic description of their measurable space states. This can be formalized by means of
measurable signatures.

Definition 6.1.1 A measurable signature is a triple (S, ar, {(Xs,Σs)}s∈S), where S is a set of
operator symbols, ar : S → N is an arity function, and, for s ∈ S, (Xs,Σs) is a measurable space.
An interpretation of (S, ar, {(Xs,Σs)}s∈S) on a measurable set (X,Σ) is an S-indexed collection
of measurable functions (JsK : Xs ×Xar(s) → X)s∈S .

Differently, from standard set-signatures, each operator symbol s ∈ S is associated with a mea-
surable space (Xs,Σs). This, for example, allows for the definition of actual measurable spaces of
constant symbols (i.e., 0-ary operators) and for the specification of nontrivial measurable spaces
of terms.
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6.1. Measurable Spaces of Terms 89

Definition 6.1.2 (Measurable terms) Let (S, ar, {(Xs,Σs)}s∈S) be a measurable signature and
(X,Σ) be a measurable space of variables. The measurable space of terms (freely) generated over
(X,Σ) and (S, ar, {(Xs,Σs)}s∈S) is defined as (TX,ΣTX) where, TX and ΣTX are, respectively,
the smallest set and the smallest σ-algebra satisfying the following rules, for all s ∈ S

x ∈ X
x ∈ TX

t1, . . . , tar(s) ∈ TX k ∈ Xs

s(k, t1, . . . , tar(s)) ∈ TX

E ∈ Σ

E ∈ ΣTX

T1, . . . , Tar(s) ∈ ΣTX K ∈ Σs

s(K,T1, . . . , Tar(s)) ∈ ΣTX

where s(K,T1, . . . , Tar(s)) = {s(k, t1, . . . , tar(s)) | k ∈ K, ti ∈ Ti}.

In the definition above the number arguments for an operator symbol s ∈ S is augmented by one
in the term s(k, t1, . . . , tar(s)). This notation is particularly convenient for discriminating between
measurable terms which differ only on the σ-algebra structure (a situation that does not happen
in standard set-signatures). For example, assume the measurable spaces (R,B(R)) and (R, {∅,R})
are associated with constant operators c and c′, respectively. If we had considered r ∈ R as a
term, it would have been impossible to discriminate between the elements in c or c′. Adopting the
notation above these problems are overcome, since these constants are denoted either by c(r) or
c′(r).

6.1.1 Signature Interpretations as Algebras

Algebras are typically used to give an abstract categorical formalization to denotational semantics.
Now we show how measurable signatures and their interpretations can be modeled as algebras for
certain functors in Meas. Although this technique is standard in Set, the σ-algebra structures
endowed with the objects in Meas makes the construction less easy to be treated.

For a measurable signature (S, ar, {(Xs,Σs)}s∈S), the syntactic endofunctor in Meas associ-
ated with it is given by S =

∐
s∈S(Xs,Σs) × Id ar(s). Explicitly S acts on objects (X,Σ) and

arrows f : (X,ΣX)→ (Y,ΣY ) as follows

S(X,Σ) = ({〈s, (k, x1, . . . , xar(σ))〉 | s ∈ S, k ∈ Xs, x1, . . . , xar(σ) ∈ X},ΣS(X,Σ)) ,

Sf =
[
〈s, (k, x1, . . . , xar(σ))〉 7→ 〈s, (k, f(x1), . . . , f(xar(σ)))〉

]
,

where 〈s, (k, x1, . . . , xar(σ))〉 denotes inXs (k, x1, . . . , xar(σ)), and ΣS(X,Σ) is the final σ-algebra with

respect to the injections inXs : Xs ×Xar(s) → SX, for each s ∈ S, that is

ΣS(X,Σ) =
⋂
s∈S{A ⊆ SX | (inXs )−1(A) ∈ ΣXs×Xar(s)} . (6.1.1)

The σ-algebra ΣS(X,Σ) can be characterized in a more convenient way by means of a generating
family of sets having a structure that is simpler to handle than the subsets A ⊆ SX occurring in
Equation (6.1.1).

Proposition 6.1.3 Let (S, ar, {(Xs,Σs)}s∈S) be a measurable signature and S be the syntactic
Meas-endofunctor associated with it. Then, for any measurable space (X,Σ), the σ-algebra of
S(X,Σ) is generated by

{
⋃
s∈S〈s, (Ks, E1, . . . , Ear(s))〉 | ∀s ∈ S.Ks ∈ Σs and Ei ∈ Σ} .

where 〈s, (Ks, E1, . . . , Ear(s))〉 = {〈s, (k, x1, . . . , xar(s))〉 | k ∈ Ks and xi ∈ Ei}.

Proof. Let first notice that, for each s ∈ S, the σ-algebra ΣXs×Xar(s) is generated by Rs =
{K × E1 × · · · × Ear(s) | K ∈ Σs, Ei ∈ Σ}, that is, the family of measurable rectangles. So, we
have that

ΣS(X,Σ) =
⋂
s∈S{A ⊆ SX | (inXs )−1(A) ∈ ΣXs×Xar(s)}
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=
⋂
s∈S{A ⊆ SX | (inXs )−1(A) ∈ σ(Rs)}

=
⋂
s∈S σ

(
{A ⊆ SX | (inXs )−1(A) ∈ Rs}

)
(by Prop. 2.2.10)

= σ
(
{
⋃
s∈S〈s, (Ks, E1, . . . , Ear(s))〉 | ∀s ∈ S.Ks ∈ Σs and Ei ∈ Σ}

)
,

where the last equality holds since each A ⊆ SX such that (inXs )−1(A) ∈ Rs can always be given
as a disjoint union of the form

⋃
s∈S〈s, (Ks, E1, . . . , Ear(s))〉 for some Ks ∈ Σs and Ei ∈ Σ, for

1 ≤ i ≤ ar(s).

6.1.2 Term monad over measurable spaces

In this section we show how the measurable space of terms over a measurable signature can be
elegantly modeled as the free monad over the syntactic endofunctor associated with the signature.
As a consequence we obtain a principle of structural induction over measurable terms which extends
the well-known principle of structural induction for terms over standard set-signatures.

To this end, for any measurable signature (S, ar, {(Xs,Σs)}s∈S), we need to show that the
forgetful functor from the category of algebras for the syntactic Meas-endofunctor S associated
with the signature has a left adjoint. It is standard that, for endofunctors F : C → C in a
category C with binary coproducts, the the forgetful functor UF : F -alg → C has a left adjoint
LF : C → F -alg, if for any object X in C the functor X + F has initial algebra. Therefore, it
suffices to show that for any measurable space (X,Σ) the functor (X,Σ) + S has initial algebra.

Theorem 6.1.4 Let (S, ar, {(Xs,Σs)}s∈S) be a measurable signature, S be the syntactic endofunc-
tor associated with it, and (X,Σ) be a measurable set. Then ((TX,ΣTX), [ηX , ψX ]) is the initial
((X,Σ)+S)-algebra, where (TX,ΣTX) is the measurable space of terms generated over (X,Σ) and
(S, ar, {(Xs,Σs)}s∈S) and ηX : X → TX and ψX : STX → TX are defined as follows

ηX(x) = x , ψX(〈s, (k, t1, . . . , tar(s))〉) = s(k, t1 . . . tar(σ)) ,

for all x ∈ X, s ∈ S, k ∈ Xs, and t1, . . . , tar(s) ∈ TX.

Proof. By Proposition 6.1.3 it is immediate to see that both ηX and ψX are measurable, hence
[ηX , ψX ] is a well-defined ((X,Σ) +S)-algebra structure. We proceed first proving that (X,Σ) +S
has an initial algebra, then we prove that it is isomorphic to ((TX,ΣTX), [ηX , ψX ]). Let A : Ord→
Meas be the initial sequence of (X,Σ) + S, we prove that A(ω → ω+1) is an epimorphism. To
this end, consider the Set-endofunctor S′ =

∐
s∈S Xs × Id ar(s). It is immediate to see that

(X + S′)U = U((X,Σ) + S), where U : Meas → Set is the forgetful functor forgetting the σ-
algebra structure of a measurable space.

We prove that UA : Ord → Set is the initial sequence for X + S′. Clearly, since both A and
U preserves colimits, also UA preserves them. Moreover, for all ordinals γ ≤ β the following holds

UA(0) = U0 = 0

UA(β+1) = U((X,Σ) + S)A(β) = (X + S′)UA(β)

UA(γ+1→ β+1) = U((X,Σ) + S)A(γ → β) = (X + S′)UA(γ → β) .

Therefore UA : Ord → Set is the initial sequence of X + S′. Recall that polynomial functors in
Set are ω-cocontinuous, that is, preserves colimits of ω-sequences. Therefore the initial sequence
UA of X + S′ stabilizes at ω, thus, UA(ω → ω+1) is an isomorphism and, in particular, also an
epimorphism. Since U reflects epimorphisms, A(ω → ω+1) is an epic arrow in Meas.

Polynomial endofunctors in Meas preserves epimorphism, moreover Meas is cowell-powered
and has (Epic,Emb) as a factorization system. Thus, by Lemma ??, A stabilizes at some ordinal
κ ≥ ω hence, (A(κ), A(κ→ κ+1)−1) is an initial ((X,Σ) + S)-algebra (Theorem ??).

To prove that ((TX,ΣTX), [ηX , ψX ]) is isomorphic to (A(κ), A(κ → κ+1)−1), we exploit
the connection between the the initial sequences A and UA. The key observation is that both
(TX, [ηX , ψX ]) and (UA(κ), UA(κ → κ+1)−1) are initial (X + S′)-algebras, so that, denoting
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A(κ) = (I,ΣI) and ι = A(κ→ κ+1)−1 we have that the ((X,Σ) + S)-homomorphism ϕ : I → TX
given by initiality of ((I,ΣI), ι) is a bijection:

(X,Σ) + S(I,ΣI) (I,ΣI) X + S′I I

(X,Σ) + S(TX,ΣTX) (TX,ΣTX) X + S′TX TX

ι

(X,Σ)+S′ϕ ϕ

[ηX , ψX ]

ι

X+S′ϕ ϕ

[ηX , ψX ]

U

So (I,ΣI) ∼= (ϕ(I), ϕ(ΣI)) = (TX,ϕ(ΣI)), and ((TX,ϕ(ΣI)), [ηX , ψX ]) is an isomorphic initial
(X,Σ) + S-algebras. By initiality, there exists ϕ′ : TX → TX such that the following diagrams
commute

(X,Σ) + S(TX,ϕ(ΣI)) (TX,ϕ(ΣI)) X + S′TX TX

(X,Σ) + S(TX,ΣTX) (TX,ΣTX) X + S′TX TX

[ηX , ψX ]

(X,Σ)+S′ϕ′ ϕ′

[ηX , ψX ]

[ηX , ψX ]

X+S′ϕ′ ϕ′

[ηX , ψX ]

U

but, by unicity of the initial (X + S′)-homomorphism ϕ′ = idTX . Since ϕ′ is measurable, we have
that for all E ∈ ΣTX , id−1(E) = ϕ−1(E) ∈ ϕ(ΣI), hence ΣTX ⊆ ϕ(ΣI). By Lambek’s lemma,
[ηX , ψX ] is and isomorphism between (X,Σ) + S(TX,ϕ(ΣI)) and (TX,ϕ(ΣI)) so it is also an
embedding, and ϕ(ΣI) is the smallest σ-algebra rendering [ηX , ψX ] measurable. Thus, by the fact
that [ηX , ψX ] : (X,Σ) +S(TX,ΣTX)→ (TX,ΣTX) is measurable and ΣTX is contained in ϕ(ΣI),
we have that ΣTX = ϕ(ΣI). This proves that ((TX,ΣTX), [ηX , ψX ]) is isomorphic to the initial
((X,Σ) + S)-algebra, hence it is initial too.

By Theorem 6.1.4, for any syntactic endofunctor S associated with a measurable signature
(S, ar, {(Xs,Σs)}s∈S), the forgetful functor US : S-alg → Meas has a left adjoint LS : Meas →
S-alg defined as follows, for any measurable space (X,Σ), and measurable function f : (X,ΣX)→
(Y,ΣY ),

LS(X,Σ) = ((TX,ΣTX), ψX)

LSf = (f# : TX → TY )

where f# is the unique ((X,Σ) + S)-homomorphism from the initial algebra (TX,ΣTX , [ηX , ψX ])
to ((TY,ΣTY ), [f ◦ ηY , ψY ]).

Next we give a more explicit characterization of the monad arising from the adjunction US a LS .
Remarkably, due to Theorem 6.1.4 this monad is essentially defined as the term monad freely
generated by syntactic Set-endofunctors arising from set-signatures.

Definition 6.1.5 (Term monad) Let (S, ar, {(Xs,Σs)}s∈S) be a measurable signature and S be
the syntactic Meas-endofunctor associated with it. The monad freely generated by S, called mea-
surable term monad over S, is given by the triple (TS , ηS , µS), where TS : Meas → Meas is
defined as follows, for (X,Σ) a measurable space and f : (X,ΣX)→ (Y,ΣY ) a measurable map

TS(X,Σ) = (TX,ΣTX)

TSf(x) = f(x) , TSf(s(k, t1, . . . tar(s))) = s(k, TSf(t1), . . . , TSf(tar(s))) ,

where x ∈ X, s ∈ S, and k ∈ Xs, t1, . . . , tar(s) ∈ TX; with unit ηSX = ηX : (X,Σ) → (TX,ΣTX)
(the insertion-of-variables function); and multiplication µSX : (TTX,ΣTTX) → (TX,ΣTX) (the
operation which allows one to plug measurable terms into contexts) inductively defined as follows

µSX(t) = t , µSX(s(k,C1, . . . Car(s))) = s(k, µS(C1), . . . , µS(Car(s))) ,

for all t ∈ TX, s ∈ S, k ∈ Xs, and C1, . . . , Car(s) ∈ TTX (i.e., contexts).
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6.2 Measure GSOS Specification Rule Format

We are now going to present a concrete well-behaved specification rule format for stochastic tran-
sition systems with continuos state space as a particular instance of abstract GSOS distributive
laws of [83].

Briefly, our approach consists in instantiating the bialgebraic framework of Turi-Plotkin [83]
to L-labelled Markov kernels, that is, to the coalgebras for the functor ∆L

<∞ : Meas → Meas
(Proposition 5.2.2). The key intuition behind the bialgebraic framework is that rule specification
systems can be formulated in terms of certain natural transformations, called distributive laws.
The models for these distributive laws are bialgebras, that is, a pair consisting of a T -algebra
α : TX → X and a D-coalgebra β : X → DX on the same carrier and such that they are related
by a distributive law λ : TD ⇒ DT of a monad T over a comonad D as follows:

TX X DX

TDX DTX

α β

λX

Tβ Dα

Intuitively, the monad T represents the syntax of the programming language and the comonad
D models the shape of computations. The algebra α : TX → X and coalgebra β : X → DX,
respectively, denote the denotational and operational models of the system, and the distributive
law λ : TD ⇒ DT explains how the syntax distributes over the computations, that is to say, how
the computation of syntactic operator depends on the executions of its arguments. Bialgebras form
a category, where any unique morphism from the initial object represent a denotational semantics,
and any unique morphism to the final one an operational semantics. Hence, one can always find a
canonical fully-abstract semantics: the universal morphism from the initial to the final bialgebras.

The distributive laws we are interested in are those of type S(Id×∆L
<∞)⇒ (∆<∞T

S)L, that
is, abstract GSOS distributive laws of a monad TS over the copointed functor (Id×∆L

<∞), where
TS is freely generated by a syntactic functor S : Meas→Meas associated with some measurable
signature. Our aim is to describe these distributive laws by means of a set of derivation rules
similar to the well-know GSOS format of Bloom et al. [17].

In the GSOS format, the target of a transition is a term built from the components of the
source process, and their corresponding semantics. In our settings, the target of a transition is
not a term, but a (finite) measure over a generic measurable space, hence the derivations of the
stochastic transitions becomes more complicated. We cope with this problem proposing labelled
transitions of the form t

a−→ µ, where µ is no more a measure but a syntactic expression intended
to denote a measure, which we call measure term.

Definition 6.2.1 Let (S, arS , {(Xs,Σs)}s∈S) and (M, arM , {(X ′m,Σ′m)}m∈M) be the measurable
signatures for processes and measure terms, respectively. An MGSOS rule over them, for a finite
set L of labels, is an expression of the form{

xi
aij−−−→ µij

}1≤j≤mi
1≤i≤arS(s), aij∈Ai

{
xi 6

b−→
}b∈Bi

1≤i≤arS(s)

s(k, x1, . . . , xarS(s))
c−→ µ

where
• s ∈ S, k ∈ Xs;

• {xi | 1≤ i≤ arS(s)} and {µij | 1≤ i≤ arS(s), 1≤ j≤mi} are pairwise distinct process and
measure term variables, respectively;

• Ai ∩Bi = ∅ are disjoint subsets of labels in L, for all 1 ≤ i ≤ n, and c ∈ L;

• µ is a measurable term for the signature (M, arM , {(X ′m,Σ′m)}m∈M) with variables in {xi |
1≤ i≤ arS(s)} and {µij | 1≤ i≤ arS(s), 1≤ j≤mi}.
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Note that, differently from the standard GSOS rule format of [17], in the premises one is not
allowed to use the same label twice for the same variable xi.

Measure terms have to be interpreted as actual measure (over process terms) by means of
some suitable interpretation function. Has one may aspect, not all interpretations guarantees that
behavioral equivalence is a congruence. A condition which ensures that these are well-behaved is
they are natural transformations of a particular type:

Definition 6.2.2 Let (S, arS , {(Xs,Σs)}s∈S) and (M, arM , {(X ′m,Σ′m)}m∈M) respectively be the
measurable signatures for processes and measure terms, and S,M : Meas→Meas be the syntactic
functors associate with them. A measure term interpretation over these signatures is a natural
transformation of type TM∆<∞ ⇒ ∆<∞T

S, where TS and TM are the free monads over S and
M respectively.

The operational specification is given by a set of rules together with a description of how
measures must be combined.

Definition 6.2.3 Let (S, arS , {(Xs,Σs)}s∈S) and (M, arM , {(X ′m,Σ′m)}m∈M) be the measurable
signatures for processes and measure terms, respectively.

An MGSOS specification system is a pair (R, 〈| · |〉), such that R is a set of image finite MGSOS
rules and 〈| · |〉 : TM∆<∞ ⇒ ∆<∞T

S is a measure term interpretation over the process and measure
term signatures.

Similarly to GSOS transition systems specifications, also MGSOS specification systems define a
structural operational semantics, but in this particular case in the form of a labelled Markov kernel
over the measurable space of process terms. Its definition can be summarized in two stages. First,
an image finite labelled transition system (TS0, { α−−→ ⊆ TS0 × TM (TS0)}α∈L) is (inductively)
defined from the set of MGSOS derivation rules, then the associated Markov kernel is obtained
evaluating measure terms to measures. Formally, the associated ∆L

<∞-coalgebra γ over TS0 is
defined, for α ∈ L and t ∈ TS0, by

γ(t)(α) = ⊕TS0
(
{〈|µ|〉TS0 | t

α−→ µ}
)
.

where, for any given finite set of U measures over a measurable space (X,Σ), we define⊕X(U) : Σ→
[0,∞) by ⊕X(U)(E) =

∑
µ∈U µ(E), which is easily seen to be a finite measure over (X,Σ).

The main advantage in using this two staged definition is that Markov processes are defined
syntactically by structural induction on process terms.

The next theorem shows how MGSOS specification systems induce natural transformation of
type S(Id×∆L

<∞)⇒ (∆<∞T
S)L, i.e., abstract GSOS laws of [83].

Theorem 6.2.4 An MGSOS specification system (R, 〈| · |〉) over the measurable signatures for
processe and measure terms (S, arS , {(Xs,Σs)}s∈S) and (M, arM , {(X ′m,Σ′m)}m∈M), where S and
M are the associated syntactic functors, and set of labels L, determines a natural transformation
of type S(Id×∆L

<∞)⇒ (∆<∞T
S)L.

Proof. For any measurable space (X,Σ), define the (set) function JRKX as the composite:

S(X × (∆<∞X)L) (PfinT
M∆<∞X)L (∆<∞T

SX)L ,
νX (⊕TS ◦ Pfin〈| · |〉)LX

where, νX is defined as follows: for all µ′ ∈ TM∆<∞X, c ∈ L, s ∈ S, k ∈ Xs, xi ∈ X, and
βi ∈ (∆<∞X)L, put

µ′ ∈ νX(s(k, (x1, β1), . . . , (xarS(s), βarS(s))))(c)

if and only if there exists a (possibly renamed) rule in R of the form{
xi

aij−−−→ µij
}1≤j≤mi

1≤i≤arS(s), aij∈Ai

{
xi 6

b−→
}b∈Bi

1≤i≤arS(s)

s(k, x1, . . . , xarS(s))
c−→ µ
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94 6. Rule Formats for Continuous State Probabilistic and Stochastic Systems

such that βi(b) = 0 (the zero measure), for b ∈ Bi, and µ′ = (TMσ)(µ) for a substitution map σ
such that σ(xi) = δxi (the Dirac measure at xi) and σ(µij) = βi(aij).

Naturality of JRK is proved separately for the two components. To prove the naturality of ν
one proceeds as in [83, Th. 1.1]. The composite (⊕TS ◦ Pfin〈| · |〉)L, is natural since 〈| · |〉 and ⊕ are
natural.

As for measurability of JRKX , it suffices to check that JRK−1
X (Uα[E]) is measurable in S(X ×

(∆<∞X)L), for UEα = {β′ ∈ (∆<∞T
SX)L | β′(α) ∈ E}, where α ∈ L, and E ∈ Σ∆<∞TSX .

Let s(k, (x, β)) abbreviates s(k, (x1, β1), . . . , (xn, βn)) ∈ S(X × (∆<∞X)L), then

JRK−1
X (UEα ) =

{
s(k, x, β) | JRKX(s(k, x, β)) ∈ UEα

}
=
{
s(k, x, β) | ((⊕TS ◦ Pfin〈| · |〉)L ◦ ν)X(s(k, x, β)) ∈ UEα

}
=
{
s(k, x, β) | ((⊕TS ◦ Pfin〈| · |〉)L ◦ ν)X(s(k, x, β))(α) ∈ E

}
=
{
s(k, x, β) | (⊕TS ◦ Pfin〈| · |〉 ◦ να)X(s(k, x, β)) ∈ E

}
where ναX , νX(·)(α) is the specialization of νX on a fixed α ∈ L,

= (⊕TS ◦ Pfin〈| · |〉 ◦ να)−1
X (E)

= (ναX)−1 ◦ (⊕TS ◦ Pfin〈| · |〉)−1
X (E)

Now is easy to prove measurability. Since 〈| · |〉 is measurable and sums and products of measurable
functions is measurable, (⊕TS ◦ Pfin〈| · |〉)−1

X (E) ∈ ΣPfinTM∆<∞X .

To prove measurability of ναX we need only to check that (ναX)−1(
⋃k
j=0{Ej}) is a measurable

set in S(X × (∆<∞X)L), for Ej ∈ ΣTM∆<∞X , 0 ≤ j ≤ k.

(ναX)−1(
⋃k
j=0{Ej}) =

{
s(k, x, β) | ναX(s(k, x, β)) ∈

⋃k
j=0{Ej}

}
=
⋃k
j=0

{
s(k, x, β) | ναX(s(k, x, β)) = Ej

}
But ναX(s(k, x, β)) = Ej iff there exists some rule in R with conclusion of the form f(x1, . . . , xn)

α−→
µ and (TMσ)(µ) ∈ Ej (obviously, all the other conditions given above have to be satisfied too).
By construction, σ is defined by sums of Dirac measures δX and evaij , which are measurable.
Therefore, TMσ is measurable, and as a consequence also ναX is measurable.

In the proof above, measure terms variables are interpreted as Dirac measures via the natural
transformation δ : Id ⇒ ∆<∞ (hence, measurable in each component). This together with the
assumption that 〈| · |〉 : TM∆<∞ ⇒ ∆<∞T

S is a natural transformation are crucial to prove mea-
surability of JRK.

Remark 6.2.5 To establish a correspondence between abstract GSOS distributive laws and con-
crete rule formats, in [15] Bartels proposed an elegant decomposition strategy to recover congru-
ential specification systems from distributive laws. The method uses a collection of representation
lemmas for distributive laws, which allows to explain natural transformations of complex type in
terms of collections of natural transformations of simpler type. Using this technique Bartels has
been able to give the first detailed proof of correspondence between natural transformations of
type S(Id × PLfin) ⇒ (PfinTS)L for labelled transition systems and GSOS specification systems.
Moreover, he further extended the technique in order to derive from scratch a rule specification
formats for discrete probabilistic transition systems, the so called PGSOS. The very same tech-
nique has been applied also by Klin and Sassone [61] in the definition of a rule format for stochastic
transition systems (with discrete state space).

Unfortunately, this method applies only in the category Set and cannot be ported easily to
Meas. This is due to the fact that many of the decomposition lemmas used in [15] require objects
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to be represented as indexed coproducts of simpler canonical subobjects. This clearly works in
Set, since, for any set X, the isomorphism X ∼=

∐
x∈X{x} holds, but it does not work in Meas,

due to the presence of the σ-algebra structure in the objects.

In [83], it is shown that distributive laws ρ : S(Id × B) ⇒ BTS , where TS is the free monad
over S, for endofunctors S and B admitting initial S-algebra (TS0, α) and final B-coalgebra (F, ω),
give rise to a unique B-coalgebra structure βρ : TS0→ BTS0 such that (TS0, α, βρ) is the initial
ρ-bialgebra. Dually, there is a unique S-algebra structure αρ : SF → F such that (F, αρ, β) is the
final ρ-bialgebra. The unique (both by initiality and finality) homomorphism from the initial to the
final ρ-model is both the initial and final semantics for ρ, and it is called universal semantics for ρ.
Note, that two B-coalgebras have the same universal semantics if and only if they are behavioural
equivalent, therefore B-behavioural equivalence is an S-congruence.

As for abstract GSOS laws of type S(Id ×∆L
<∞) ⇒ (∆<∞T

S)L we have the following result
for behavioural equivalence on probabilistic processes on Meas.

Theorem 6.2.6 Behavioural equivalence on the ∆L
<∞-coalgebras over TS0 inductively induced by

MGSOS specification systems over S and M , and set of labels L, is an S-congruence.

Proof. By Theorem 6.1.4 every syntactic functor S : Meas → Meas have initial algebra. As
for the endofunctor ∆L

<∞ : Meas →Meas, the existence of the final coalgebra is given by Theo-
rem 4.1.20 and Remark 4.1.22. The thesis follows by Theorem 6.2.4 and [83, Cor. 7.3].

6.3 Measure terms evaluations

MGSOS specifications require the evaluations 〈| · |〉X : TM∆<∞X → ∆<∞T
SX to be both natural

and measurable. This time consuming check is overcome in this section, where we provide a
rather easy (and general) technique for defining natural measure terms evaluation functions. This
technique in based on a proof principle dual to the “coiterative proof principle” described in [15].

We start giving a recursion lemma dual to [15], which generalizes the standard induction proof
principle by means of a simple distributive law λ.

Lemma 6.3.1 Let S,B : C→ C be functors on a category with countable products, (A,α) be the
initial S-algebra, and λ : SB ⇒ BS be a (simple) distributive law. For any SB-algebra (X,ϕ)
there exists a unique λ-iterative arrow f : A → X induced by ϕ, such that the following diagrams
commute

SBX SBA SA

X A

SBf Sβλ

ϕ α

f

SA A BA

SBA BSA

α βλ

Sβλ Bα

λA

Proof. Dualize [15, Theorem 4.2.2].

We denote this induction proof principle by λ-iteration proof principle, and we call f : A → X as
the λ-iterative arrow induced by ϕ. Note that, the diagram on the right is the initial λ-model, and
in particular βλ is uniquely determined by (standard) induction on the S-algebra (BA,Bα ◦ λA).

The λ-iteration proof principle of Lemma 6.3.1 can be extended as a proof principle on the
monad TS freely generated by S as follows:

Proposition 6.3.2 (Structural λ-iteration) Let S,B : C → C be functors on a category with
binary coproducts and countable products, (TS , ηS , µS) be the free monad over S, λ : SB ⇒ BS be
a distributive law, and ψX : STSX → TSX be the free S-algebra structure over X. For any SB-
algebra (Y, ϕ), B-coalgebra (X, k), and arrow φ : X → Y , there exists a unique arrow f : TSX → Y
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such that the following diagrams commute

SBY SBTSX STSX

Y TSX

X

SBf Sβλ

ϕ ψX

f

ηSX

φ

X TSX STSX

BX BTSX SBTSX

k

BηSX

ηSX ψX

Sβλ

BψX ◦ λTSX

βλ

Proof. First, notice that βλ is the inductive extension of the (X+S)-algebra structure on BTSX
given by the copair [BηSX ◦k,BψX ◦λTSX ], along the initial (X+S)-algebra structure [ηSX , ψX ] on
TSX. Now, define the distributive law λ′ : (X +S)B ⇒ B(X +S) as λ′Y = [Binl, Binr] ◦ (k+λY )
(the proof of naturality is straightforward). By definition of λ′ we have

[BηSX ◦ k,BψX ◦ λTSX ] = B[ηSX , ψX ] ◦ λ′TSX .

Therefore, by unicity of the inductive extension, (TSX,ψX , βλ) turns out to be a λ′-model on
TSX. This allows to apply Lemma 6.3.1 on the (X + S)B-algebra structure (Y, [φ, ϕ]) obtaining
a unique λ′-iterative arrow f : TSX → Y making the required diagrams above commute.

We denote this proof principle by structural λ-induction proof principle, and we say that f is
the λ-iterative extension of ϕ along the (pair of) valuations φ and k. Note that, the diagram on
the right define βλ as the structural inductive extension of BψX ◦ λTSX along BηSX ◦ k.

Proposition 6.3.2 can be turned into an induction proof principle on natural transformations
in the following way:

Corollary 6.3.3 Let S,B, F,G : C → C be functors on a category with binary coproducts and
countable products, (TS , ηS , µS) be the free monad over S, λ : SB ⇒ BS be a (simple) distributive
law. For any ϕ : SBF ⇒ F , k : Id⇒ B, and φ : G⇒ F , there exist unique natural transformations
βλ : TS ⇒ BTS and f : TS ⇒ F such that the following (natural) diagrams commute

SBF SBTSG STSG

F TSG

G

SBf SβλG

ϕ ψG

f

ηSG

φ

Id TS STS

B BTS SBTS

k

BηS

ηS ψ

Sβλ

Bψ ◦ λTS

βλ

Proof. We first prove naturality of βλ, i.e., that for any morphism g : X → Y , (βλ)Y ◦ TSg =
BTSg ◦ (βλ)X . The commuting diagrams

X TSX STSX

BX BTSX SBTSX

BY BTSY SBTSY

kX

BηSX

ηSX ψX

S(βλ)X

BψX ◦ λTSX

(βλ)X

Bg BTSg SBTSg

BψY ◦ λTSYBηSY

(by def.) (by def.)

(nat. ηS) (nat. ψ and λ)
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and

X TSX STSX

BX Y TSY STSY

BY BTSY SBTSY

kX

Bg

g

kY

ηSX ψX

ηSY ψY

TSg STSg

BηSY
BψY ◦ λTSY

(βλ)Y S(βλ)Y

(nat. k)

(nat. ηS) (nat. ψ)

(by def.) (by def.)

assert that (βλ)Y ◦ TSg and BTSg ◦ (βλ)X are both inductive extensions of BψY ◦ λTSY along
BηSX ◦Bg ◦ kX , hence they necessarily coincide. Naturality of f follows similarly by unicity of the
λ-iterative extension.

SBTSGX

SBFY SBTSGY STSGY STSGX

FY TSGY TSGX

GY

FX GX

SBTSGg

S(βλ)GX

STSGg

ψGX

S(βλ)GY

ψGY

SBfY

ϕY

fY TSGg

ηSGY

φY ηSGX

Gg

φX

Fg

(nat. βλ)

(by def.)

(by def.)

(nat. ψ)

(nat. ηS)

(nat. φ)

SBFY SBFX SBTSGX STSGX

FY FX TSGX

GX

SBFg

ϕY

Fg

SBfX S(βλ)GX

ϕX ψGX

fX

ηSGX

φX

(nat. ϕ) (by def.)

(by def.)

Indeed, both fY ◦ Tg and Fg ◦ fX are λ-iterative extensions of ϕY along the pair of valuations
Fg ◦ φX and kGX , as proved by the commutative diagrams above.

6.4 Examples of MGSOS specifications

To illustrate the expressiveness of the MGSOS format, we present specifications for some simple
process calculi which extend Milner’s CCS [65] (without restriction) with continuous data infor-
mation. Remarkably, the MGSOS format allows for a very simple presentation of continuos state
stochastic semantics, ensuring important properties (e.g., congruence) that are notoriously difficult
to obtain even in the discrete case.

6.4.1 Quantitative CCS

In this section we present a CCS-like process calculus able to model continuos occurrences of agents.
The syntax is defined as follows:

P,Q ::= nil | α.P | P +Q | P ‖ Q | c of P
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte

98 6. Rule Formats for Continuous State Probabilistic and Stochastic Systems

α.x
α−−→ x

x
α−−→ µ

x+ x′
α−−→ µ

x′
α−−→ µ

x+ x′
α−−→ µ

x
α−−→ µ

c of x
α−−→ Uc(µ)

x
α−−→ µ

x ‖ x′ α−−→ µ | x′
x′

α−−→ µ

x ‖ x′ α−−→ x | µ

x
a−→ µ x′

a−→ µ′

x ‖ x′ τ−→ µ | µ′
x

a−→ µ x′
a−→ µ′

x ‖ x′ τ−→ µ | µ′

Figure 6.1: MGSOS specification system for the Quantitative CCS.

α ::= a | a | τ

where c ∈ R≥0 represents a positive concentration, and a ∈ A is an action label taken from a finite
set A. The nil operator denotes the null process, α.P the action prefix, P +Q the stochastic choice
operator, P ‖ Q the parallel composition. The concentration operator c of P models a process
with a continuous number c of occurrences of the agent P .

As for the semantics we aim to give to processes a stochastic baheviour which is faithful with
the standard non-deterministic one of CCS, where the execution rate of each action depends on
the availability of the agents that may perform it. The introduction of the concentration operator
c of P opens several problems that cannot be solved by a discrete state semantics. Indeed, a
discrete semantics forces to decide a priory the quantity of P to be consumed in c of P , with a
rule of the following form

x
α[r]−−−→ x′

c of x
α[c′·r]−−−−−→ c′ of x′ ‖ (c− c′) of x

(6.4.1)

where r denotes the execution rate of the stochastic a-transition in the premise, and c′ denotes the
concentration of the agent consumed by the transition. Having to deal with continuos concentra-
tions, any fixed choice of c′ ≤ c is unreasonable since the uniform probability of choosing the exact
value of c′ in the interval [0, c] would be always zero. The only satisfactory choice is to give an
actual continuous state operational semantics to the calculus. We do this by means of an MGSOS
specification system.

We start by defining the measurable signatures for processes and measure terms in order to
formally determine which are the σ-algebras associated with each operator symbols and, conse-
quently, to the measurable spaces of terms freely generated over them. We do this directly by
giving the syntactic functors S,M : Meas→Meas associated with the measurable signatures for
processes and measure terms, respectively:

SX =

nil︷︸︸︷
1 +

a.x︷ ︸︸ ︷
A×X +

a.x︷ ︸︸ ︷
A×X +

τ.x︷︸︸︷
X +

x+x︷ ︸︸ ︷
X ×X +

x‖x︷ ︸︸ ︷
X ×X +

c of x︷ ︸︸ ︷
R≥0 ×X ,

MX =

x|x︷ ︸︸ ︷
X ×X +

Uc(x)︷ ︸︸ ︷
R≥0 ×X ,

where A is the set of action labels endowed with the discrete σ-algebra, and R≥0 is the set of
positive real numbers with Borel σ-algebra.

The stochastic semantics for the quantitative CCS is described by means of the MGSOS spec-
ification system (Rq, 〈| · |〉q), where the set Rq of derivation rules is given in Figure 6.1, and the
measure term evaluation 〈| · |〉q : TM∆<∞ ⇒ ∆<∞T

S , is inductively defined, for µ, µ′ ∈ TM∆<∞X
and β ∈ ∆<∞X, as follows:

〈|β|〉qX = β
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〈|µ | µ′|〉qX = (〈|µ|〉qX × 〈|µ
′|〉qX) ◦ (λ(x, x′). x ‖ x′)−1

〈|Uc(µ)|〉qX = c · (U [0, c]× 〈|µ|〉qX × δX) ◦ (λ(c′, x′, x). c′ of x′ ‖ (c− c′) of x)−1 ,

where U [0, c](E) =
∫

[0,c]∩E
1
c dx, for any Borel set E ⊆ R≥0, denotes the uniform probability

measure over the interval [0, c]∩E, δX is the Dirac measure, β × β′ denotes the product measure,
and (rβ)(E) := r · β(E), for 0 ≤ r ≤ 1.

All the rules in Rq but the one for the quantitative operator are easy to understand. As for
the case for c of x, the actual semantics is given by the measure interpretation 〈| · |〉q : TM∆<∞ ⇒
∆<∞T

S . Intuitively, for any measurable set E of processes, the pre-image of (λ(c′, x′, x). c′ of x′ ‖
(c − c′) of x) permits to select those triples (c′, x′, x) for which a term of the form c′ of x′ ‖ (c −
c′) of x belongs to E. Since the function is measurable, the set of all such triples belongs to the σ-
algebra of the product space R≥0×TSX×TSX, so that it can be measured by (U [0, c]×〈|µ|〉qX×δX).
In this way, the concentration c acts as a formal parameter for the uniform distribution U [0, c] (note
the analogy with rule (6.4.1)). This solves the problem posed at the beginning of the section, when
a discrete semantic was shown to be inadequate.

6.4.2 FlatCCS

In this section we introduce a simple yet paradigmatic calculus of agents living in the Euclidean
plane R2, which we call FlatCCS 1. The idea we aim to model is that the rate of communications
between two agents depends on their distance (like, e.g., in wireless networks). To this end,
FlatCCS extends CCS with a syntactic frame operator representing a process’ displacement:

P,Q ::= nil | α.P | P +Q | P ‖ Q | [P ]z

α ::= a | a | τ

where a ∈ A ranges over action labels, and z over the plane R2. Intuitively, if the P is in position
z′ ∈ R2, the process [P ]z is in z′ + z. If no frame operator occurs, processes are assumed to be in
the origin (0, 0). Thus, in [P ‖ [Q ](0,1) ](1,0), P is (externally) seen to be in (1, 0) and Q in (1, 1).

As for the semantics, we assume that the communication probability decreases exponentially
with the distance. Thus, we expect the FlatCCS process a.nil ‖ [a.nil](r,0) (with r ∈ R) to perform

an internal communication evolving into nil ‖ [nil](r,0) at rate |r| (hence, with probability e−|r|).
We start by defining the measurable signatures for processes and measure terms in order to

formally determine which are the σ-algebras associated with each operator symbols and, conse-
quently, to the measurable spaces of terms freely generated over them. We do this directly by
giving the syntactic functors S,M : Meas→Meas associated with the measurable signatures for
processes and measure terms, respectively:

The syntactic functors S,M : Meas → Meas for FlatCCS processes and measure terms are
given as follows

SX =

nil︷︸︸︷
1 +

a.x︷ ︸︸ ︷
A×X +

a.x︷ ︸︸ ︷
A×X +

τ.x︷︸︸︷
X +

x+x︷ ︸︸ ︷
X ×X +

x‖x︷ ︸︸ ︷
X ×X +

[ x ]z︷ ︸︸ ︷
R2 ×X ,

MX =

xJx︷ ︸︸ ︷
X ×X +

xIx︷ ︸︸ ︷
X ×X +

xHx︷ ︸︸ ︷
X ×X +

〈 x 〉z︷ ︸︸ ︷
R2 ×X .

where the set A is endowed with the discrete σ-algebra, and R2 is the real plane endowed with its
Borel σ-algebra.

The stochastic semantics is defined by means of the specification system (Rfl, 〈| · |〉fl), where the
set Rfl of MGSOS rules is given in Figure 6.2. According to these rules, the term µ J µ′ indicates
that an action has been performed on the left hand side (dually in µ I µ′), µ H µ′ denotes that
the process succeeded in a synchronization, and 〈µ 〉z encodes the absolute position.

1Of course other variants can be considered, e.g. LineCCS, SpaceCCS, etc. [1].
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α.x
α−−→ x

x
α−−→ µ

x+ x′
α−−→ µ

x′
α−−→ µ

x+ x′
α−−→ µ

x
α−−→ µ

[x ]z
α−−→ 〈µ 〉z

x
α−−→ µ

x ‖ x′ α−−→ µ J x′
x′

α−−→ µ

x ‖ x′ α−−→ x I µ

x
a−→ µ x′

a−→ µ′

x ‖ x′ τ−→ µ H µ′
x

a−→ µ x′
a−→ µ′

x ‖ x′ τ−→ µ H µ′

Figure 6.2: MGSOS specification system for FlatCCS.

The measure term evaluation 〈| · |〉fl : TM∆<∞ ⇒ ∆<∞T
S completes the description of the

semantics we have introduced at the beginning of the section. It is defined, for µ, µ′ ∈ TM∆<∞X
and β ∈ ∆<∞X, as follows

〈|β|〉flX = β

〈|µ J µ′|〉flX = (〈|µ|〉flX × 〈|µ′|〉flX) ◦ (λ(x, x′). x ‖ x′)−1

〈|µ I µ′|〉flX = (〈|µ|〉flX × 〈|µ′|〉flX) ◦ (λ(x, x′). x ‖ x′)−1

〈|µ H µ′|〉flX =
(
‖pos(µ)− pos(µ′)‖ · (〈|µ|〉flX × 〈|µ′|〉flX)

)
◦ (λ(x, x′). x ‖ x′)−1

〈|〈µ 〉z|〉flX = 〈|µ|〉flX ◦ (λx. [x ]z)
−1 ,

where pos : TM∆<∞X → R2 determines the position of an action by inspecting the syntactic
structure of µ, inductively defined by

pos(β) = (0, 0) pos(µ J µ′) = pos(µ) pos(µ I µ′) = pos(µ′)

pos(µ H µ′) = 1
2 (pos(µ) + pos(µ′)) pos(〈µ 〉z) = z + pos(µ) .

Note that the use of an intermediate syntax for the measure terms occurring in the target of
the transitions is essential in order to recover the absolute position of the action that has been
performed.

The measure term evaluation 〈| · |〉fl : TM∆<∞ ⇒ ∆<∞T
S , as defined above, arises as an in-

stance of the structural λ-iteration of Corollary 6.3.3, for a suitable (simple) distributive law. Let
λ : M(R2 × Id)⇒ (R2 × Id)M be, for x, x′ ∈ X and z, z′ ∈ R2,

λX((z, x) J (z′, x′)) = (z, x J x′)

λX((z, x) I (z′, x′)) = (z′, x I x′)

λX((z, x) H (z′, x′)) = (1
2 (z + z′), x H x′)

λX(〈 (z, x) 〉z′) = (z + z′, 〈x 〉z′) .

Then, define k : Id ⇒ (R2 × Id), and a ϕ : M(R2 × ∆<∞T
S) ⇒ ∆<∞T

S as follows, for x ∈ X,
z, z′ ∈ R2, and β, β′ ∈ ∆<∞T

SX,

kX(x) = ((0, 0), x) ,

ϕX((z, β) J (z′, β′)) = (β × β′) ◦ (λ(x, x′). x ‖ x′)−1

ϕX((z, β) I (z′, β′)) = (β × β′) ◦ (λ(x, x′). x ‖ x′)−1

ϕX((z, β) H (z′, β′)) =
(
e−‖z−z

′‖ · (β × β′)
)
◦ (λ(x, x′). x ‖ x′)−1

ϕX(〈 (z, β) 〉z′) = β ◦ (λx. [x ]z′)
−1 .
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These are easily seen to be natural in X and measurable. Now, applying the structural λ-iteration
proof principle of Proposition 6.3.2 we obtain

M(R2 ×∆<∞T
SX) M(R2 × TM∆<∞X) MTM∆<∞X

∆<∞T
SX TM∆<∞X

∆<∞X

M(R2 × 〈| · |〉X) M〈pos, id〉∆<∞X

ϕX ψX

〈| · |〉X

ηmX

∆<∞η
S
X

X TMX MTMX

R2 ×X R2 × TMX M(R2 × TMX)

kX

(R2 × ηmX )

ηmX ψX

M〈pos, id〉X

(R2 × ψX) ◦ λ(TMX)

〈pos, id〉X

It is easy to check that the diagrams above commute also when 〈| · |〉flX is used in place of 〈| · |〉X ,
hence 〈| · |〉flX = 〈| · |〉X . Naturality follows by Corollary 6.3.3.

We conclude the description of the MGSOS rule format by showing a practical example of how
the construction in Theorem 6.2.4 applies to the specification system (Rfl, 〈| · |〉fl) for FlatCCS. The
abstract GSOS distributive law J·K : S(Id×∆L

<∞)⇒ (∆<∞T
S)L for x, x′ ∈ X, L = A ∪ A ∪ {τ},

and β, β′ ∈ (∆<∞X)L, is given by

JnilKX = λα. 0

Jα. KX(x, β) = λα′.

{
〈|δx|〉flX if α′ = α

0 otherwise

(x, β)J + KX(x′, β′) = λα. 〈|β(α)|〉flX ⊕ 〈|β′(α)|〉flX

(x, β)J ‖ KX(x′, β′) = λα.


〈|β(α) J δx′ |〉flX ⊕ 〈|δx I β′(α)|〉flX if α 6= τ⊕
a∈A

{
〈|β(α) J δx′ |〉flX , 〈|δx I β′(α)|〉flX ,
〈|β(a) H β′(a)|〉flX , 〈|β(a) H β′(a)|〉flX

}
if α= τ

J[ ]zKX(x, β) = λα′.〈|β(α)|〉flX

where 0 denotes the null sub-probability measure assigning to each measurable set probability
zero, and δx is the Dirac measure at x ∈ X.

Remark 6.4.1 When the measurable space of variables X is taken to be the space TS0 of ground
measurable terms, the above definition gives rise to the “canonical” universal (initial and final)
semantics for FlatCCS.
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7
On-the-Fly Exact Computation of

Bisimilarity Distances

Probabilistic bisimulation for Markov chains (MCs), introduced by Larsen and Skou [63], is the key
concept for reasoning about the equivalence of probabilistic systems. However, when one focuses
on quantitative behaviours it becames obvious that such an equivalence is too “exact” for many
purposes as it only relates processes with identical behaviours. In various applications, such as
systems biology [81], games [27], planning [30] or security [23], we are interested in knowing whether
two processes that may differ by a small amount in the real-valued parameters (probabilities) have
“sufficiently” similar behaviours. This motivated the development of the metric theory for MCs,
initiated by Desharnais et al. [39] and greatly developed and explored by van Breugel, Worrell and
others [88, 87]. It consists in proposing a bisimilarity distance (pseudometric), which measures the
behavioural similarity of two MCs. The pseudometric proposed by Desharnais et al. is parametric
in a discount factor λ ∈ (0, 1] that controls the significance of the future in the measurement.

Since van Breugel et al. have presented a fixed point characterization of the bisimilarity pseu-
dometric, several iterative algorithms have been developed in order to compute approximations
of δλ up to any degree of accuracy [46, 88, 87]. Recently, Chen et al. [28] proved that, for finite
MCs with rational transition function, the bisimilarity pseudometrics can be computed exactly
in polynomial time. The proof consists in describing the pseudometric as the solution of a linear
program that can be solved using the ellipsoid method. Although the ellipsoid method is theo-
retically efficient, “computational experiments with the method are very discouraging and it is in
practice by no means a competitor of the, theoretically inefficient, simplex method”, as stated in
[75]. Unfortunately, in this case the simplex method cannot be used to speed up performances in
practice, since the linear program to be solved may have an exponential number of constraints in
the number of states of the MC.

In this chaper, we propose an alternative approach to this problem, which allows us to compute
the pseudometric exactly and efficiently in practice. This is inspired by the characterization of
the undiscounted pseudometric given in [28] based on the notion of coupling, which we extend to
generic discount factors. A coupling defines a possible redistribution of the transition probabilities
of each pair of states of a given MC; it is evaluated by the discrepancy function that measures the
behavioural dissimilarities between the states revealed by the redistributions. In [28] it is shown
that the bisimilarity pseudometric for a given MC is the minimum among the discrepancy functions
corresponding to all possible couplings for that MC; moreover, the bisimilarity pseudometric is itself
a discrepancy function corresponding to an optimal coupling. This suggests that the problem of
computing the pseudometric can be reduced to the problem of finding a coupling with the least
discrepancy function.

Our approach aims at finding an optimal coupling using a greedy strategy that starts from an
arbitrary coupling and repeatedly looks for new couplings that improve the discrepancy function.
This strategy will eventually find an optimal coupling. We use it to support the design of an
on-the-fly algorithm for computing the exact behavioural pseudometric that can be either applied
to compute all the distances in the model or to compute only some designated distances. The
advantage of using an on-the-fly approach consists in the fact that we do not need to exhaustively
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explore the state space nor to construct entire couplings but only those fragments that are needed
in the local computation.

The efficiency of our algorithm has been evaluated on a significant set of randomly generated
MCs. The results show that our algorithm performs orders of magnitude better than the corre-
sponding iterative algorithms proposed, for instance in [46, 28]. Moreover, we provide empirical
evidence for the fact that our algorithm enjoys good execution running times.

One of the main practical advantages of our approach consists in the fact that it can focus
on computing only the distances between states that are of particular interest. This is useful
in practice, for instance when large systems are considered and visiting the entire state space is
expensive. A similar issue has been considered by Comanici et al., in [29], who have noticed that
for computing the approximated pseudometric one does not need to update the current value for
all the pairs at each iteration, but it is sufficient to only focus on the pairs where changes are
happening rapidly. Our approach goes much beyond this idea. Firstly, we are not only looking
to approximations of the bisimilarity distance, but we develop an exact algorithm; secondly, we
provide a termination condition that can be checked locally, still ensuring that the local optimum
corresponds to the global one. In addition, our method can be applied to decide whether two
states of an MC are probabilistic bisimilar, to identify the bisimilarity classes for a given MC or to
solve lumpability problems. Our approach can also be used with approximation techniques as, for
instance, to provide a least over-approximation of the behavioural distance given over-estimates
of some particular distances. This can be further integrated with other approximate algorithms
having the advantage of the on-the-fly state space exploration.

7.1 Markov Chains and Bisimilarity Pseudometrics

In this section we give the definitions of (discrete-time) Markov chains (MCs) and probabilistic
bisimilarity for MCs [63]. Then we recall the bisimilarity pseudometric of Desharnais et al. [39]
and its fixed point characterization given by van Breugel et al. [87].

Definition 7.1.1 (Markov chain) A (discrete-time) Markov chain is a tuple M = (S,A, π, `)
consisting of a countable nonempty set S of states, a countable nonempty set A of labels, a
transition probability function π : S × S → [0, 1] such that, for arbitrary s ∈ S,

∑
t∈S π(s, t) = 1,

and a labelling function ` : S → A. M is finite if its support set S is finite.

Remark 7.1.2 The above definition differs form that of Markov kernel (see Definition 5.1.1) in
that (i) the state space is discrete and (ii) labels are embedded into states rather than on the
transitions. We chose to deal with discrete-time MCs for algorithmic reasons and also because we
want to compare our algorithm with that in [28] where this kind models are used.

Given an MC M = (S,A, π, `), we identify the transition probability function π with its
transition matrix (π(s, t))s,t∈S . For s, t ∈ S, we denote by π(s, ·) and π(·, t), respectively, the
probability distributions of exiting from s to any state and entering to t from any state.

The MC M induces an underlying (directed) graph, denoted by G(M), where the states act as
vertices and (s, t) is an edge in G(M), if and only if, π(s, t) > 0. For a subset Q ⊆ S, we denote
by RM(Q) the set of states reachable from some s ∈ Q, and by RM(s) we denote RM({s}). The
size of M, denoted by size(M), is the number of vertices plus the number of edges of G(M).

From a theoretical point of view, it is irrelevant whether the transition probability function of a
given MC has rational values or not. However, for algorithmic purposes, in this chapter we assume
that for arbitrary s, t ∈ S, π(s, t) ∈ Q∩ [0, 1]. For similar reasons, we also restrict our investigation
to finite MCs.

Definition 7.1.3 (Probabilistic Bisimulation) Let M = (S,A, π, `) be a MC. An equivalence
relation R ⊆ S × S is a probabilistic bisimulation if whenever s R t, then

(i) `(s) = `(t) and,
(ii) for each R-equivalence class E,

∑
u∈E π(s, u) =

∑
u∈E π(t, u).
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Sono comunque fatti salvi i diritti dell’Università degli Studi di Udine di riproduzione per scopi di ricerca e didattici, con citazione della fonte

7.1. Markov Chains and Bisimilarity Pseudometrics 105

Two states s, t ∈ S are bisimilar, written s ∼ t, if they are related by a probabilistic bisimulation.

This definition is due to Larsen and Skou [63]. The intuition behind this definition is that, two
states are bisimilar if they have the same label and their probability of moving by a single transition
to any given equivalence class is always the same.

The notion of equivalence can be relaxed by means of a pseudometric, which tells how two
elements are far apart from each other and whenever they are at zero distance they are equivalent.
The bisimilarity pseudometric of Desharnais et al. [39] on MCs enjoys the property that two states
are at zero distance if and only if they are bisimilar. This pseudometric was first defined using a
real-valued semantics for a logic [39], then it has been characterized as the least fixed point of an
operator based on the Kantorovich metric for comparing probability distributions [87]. Actually,
for the purpose of this chapter we only require the fixed point characterization, but for the sake of
completeness (and also clarity), in the rest of this section we recall both of them.

Logical Characterization. The bisimilarity pseudometric of [39] is given by means of a real-
valued semantics. The logic L is defined by the following grammar, for σ ∈ A and q ∈ Q ∩ [0, 1]

φ ::= σ | ¬φ | φ ∨ φ | φ	 q | �φ .

Given a labelled Markov process M = (S,A, π, `) and a parameter λ ∈ (0, 1], the semantics of a
formula φ is given by the function JφKλ : S → [0, 1] defined by

JσKλ(s) =

{
1 if `(s) = σ

0 otherwise

J¬φKλ(s) = 1− JφKλ(s)

Jφ ∨ ψKλ(s) = max{JφKλ(s), JψKλ(s)}
Jφ	 qKλ(s) = max{JφKλ(s)− q, 0}

J�φKλ(s) = λ ·
∑
t∈S

π(s, t) · JφKλ(t) .

The parameter λ in the real-valued semantics of L plays the role of a discount factor. Indeed,
the smaller the value of λ, the more the future is discounted. If λ = 1 the future is not discounted
and semantics is said undiscounted.

Definition 7.1.4 (Bisimilarity Pseudometric) Let λ ∈ (0, 1] be the discount factor, the (1-
bounded) pseudometric δλ : S × S → [0, 1] assigns a distance to any given pair of states of a MC
according to the following definition:

δλ(s, t) = max
φ∈L
|JφKλ(s)− JφKλ(t)| .

This characterisation illustrates the sense in which states that are close in the pseudometric satisfy
similar behavioural properties. The following theorem justifies this intuition.

Theorem 7.1.5 (Soundness [39]) For all λ ∈ (0, 1], δλ(s, t) = 0 iff s ∼ t.

Fixed-point characterization. In [87], van Breugel et al. characterized the bisimilarity pseu-
dometric δλ as the least fixed point of an operator based on the Kantorovich metric for comparing
probability distributions which makes use of the notion of matching.

Definition 7.1.6 (Matching) Let µ, ν : S → [0, 1] be probability distributions on S. A matching
for the pair (µ, ν) is a probability distribution ω : S × S → [0, 1] on S × S satisfying

∀u ∈ S.
∑
s∈S ω(u, s) = µ(u) , ∀ v ∈ S.

∑
s∈S ω(s, v) = ν(v) . (7.1.1)

We call µ and ν, respectively, the left and the right mariginals of ω.

In the following, we denote by µ⊗ ν the set of all matchings for (µ, ν).
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Remark 7.1.7 Note that, for S finite, (7.1.1) describes the constraints of a homogeneous trans-
portation problem (TP) [32, 47], where the vector (µ(u))u∈S specifies the amounts to be shipped
and (ν(v))v∈S the amounts to be received. Thus, a matching ω for (µ, ν) induces a matrix
(ω(u, v))u,v∈S to be thought as a shipping schedule belonging to the polytope µ⊗ ν. Hereafter, we
denote by TP (c, ν, µ) the TP with cost matrix (c(u, v))u,v∈S and marginals ν and µ.

Transportation Problem. In 1941 Hitchcock and, independently, in 1947 Koopmans consid-
ered the problem which is usually referred to as the (homogeneous) transportation problem. This
problem can be intuitively described as: a homogeneous product is to be shipped in the amounts
a1, . . . , am respectively, from each of m shipping origins and received in amounts b1, . . . , bn re-
spectively, by each of n shipping destinations. The cost of shipping a unit amount from the i-th
origin to the j-th destination is ci,j and is known for all combinations (i, j). The problem is to
determine an optimal shipping schedule, i.e. the amount xi,j to be shipped over all routes (i, j),
which minimizes the total cost of transportation. This problem is easily formalized as a linear
programming problem

minimize
∑m
i=1

∑n
j=1 ci,j · xi,j

such that
∑n
j=1 xi,j = ai (i = 1, . . . ,m)∑m
i=1 xi,j = bj (j = 1, . . . , n)

xi,j ≥ 0 (i = 1, . . . ,m and j = 1, . . . , n)

The set of schedules feasible for a transportation problem, which is formalized as a conjunction
of linear constraints, describes a (bounded) convex polytope in R2, often called transportation
polytope. These polytopes have good geometrical properties, which makes the transportation
problem one of the most studied optimization problems in literature. As reported in [59], for
transportation problems of size m × n the number of vertices can be exponential in n and m,
namely max{m,n}min{m,n}−1. This result is due to Demuth [35]. Anyway the diagonal of the
transportation polytope is linearly bounded by 8(m+ n− 2) (see [20]).

There are several algorithms in literature which efficiently solve (not necessarily homogeneous)
transportation problems. Among these we recall [32, 47].

For a Markov chain M = (S,A, π, `) and a discount factor λ ∈ (0, 1], wed define the operator
∆Mλ : [0, 1]S×S → [0, 1]S×S as follows, for d : S × S → [0, 1] and s, t ∈ S:

∆Mλ (d)(s, t) =

1 if `(s) 6= `(t)

λ · min
ω∈π(s,·)⊗π(t,·)

∑
u,v∈S

d(u, v) · ω(u, v) if `(s) = `(t)

The set [0, 1]S×S is endowed with the partial order v defined as d v d′ iff d(s, t) ≤ d′(s, t) for
all s, t ∈ S. This forms a complete lattice with bottom element 0 and top element 1, defined as
0(s, t) = 0 and 1(s, t) = 1, for all s, t ∈ S. For D ⊆ [0, 1]S×S , the least upper bound

⊔
D, and

greatest lower bound
d
D are given by (

⊔
D)(s, t) = supd∈D d(s, t) and (

d
D)(s, t) = infd∈D d(s, t)

for all s, t ∈ S.
In [87], for any M and λ ∈ [0, 1], ∆Mλ is proved to be monotonic, thus, by Tarski’s fixed

point theorem, it admits least and greatest fixed points. In particular the former characterizes the
bisimilarity pseudometric.

Theorem 7.1.8 ([87]) Let M be a MC and λ ∈ (0, 1] be a discount factor. Then δλ corresponds
to the least fixed point of ∆Mλ .

Hereafter, ∆Mλ and δMλ will be denoted simply by ∆λ and δλ, respectively, when the Markov
chain M is clear from the context.



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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7.2 Alternative Characterization of the Pseudometric

In [28], Chen et al. proposed an alternative characterization of δ1, relating the pseudometric to
the notion of coupling. In this section, we recall the definition of coupling, and generalize the
characterization for generic discount factors.

Definition 7.2.1 (Coupling) Let M = (S,A, π, `) be a finite Markov chain. A Markov chain of
the form C = (S × S,A×A,ω, l) is a coupling for M if, for all s, t ∈ S

(i) ω((s, t), ·) ∈ π(s, ·)⊗ π(t, ·);
(ii) l(s, t) = (`(s), `(t)).

Intuitively, a coupling for M can be seen a probabilistic pairing of two copies of M running syn-
chronously, although not necessarily independently. Couplings have been used to characterize weak
ergodicity of arbitrary Markov chains [50], or to give upper bounds on convergence to stationary
distributions [11, 67].

Given a coupling C = (S×S,A×A,ω, l) forM = (S,A, π, `) we define ΓCλ : [0, 1]S×S → [0, 1]S×S

for d : S × S → [0, 1] and s, t ∈ S, as follows:

ΓCλ(d)(s, t) =

1 if `(s) 6= `(t)

λ ·
∑
u,v∈S

d(u, v) · ω((s, t), (u, v)) if `(s) = `(t)

One should easily convice himself that, for any λ ∈ (0, 1], ΓCλ is well-defined and monotonic:

Lemma 7.2.2 Let C be a coupling for M = (S,A, π, `) and λ ∈ (0, 1]. Then, ΓCλ is well-defined
and, whenever d v d′, ΓCλ(d) v ΓCλ(d).

Proof. Assume C = (S × S,A × A,ω, l). We first prove that, given d ∈ [0, 1]S×S then ΓCλ(d) ∈
[0, 1]S×S , that is, for all s, t ∈ S, 0 ≤ ΓCλ(d)(s, t) ≤ 1.

If `(s) 6= `(t), by definition, ΓCλ(d)(s, t) = 1. If `(s) = `(t), we have that ΓCλ(d)(s, t) = λ ·∑
u,v∈S d(u, v) · ω((s, t), (u, v)). By Definition 7.2.1, ω((s, t), ·) is a probability distribution, thus,

for all u, v ∈ S, ω((s, t), (u, v)) ≥ 0, and
∑
u,v∈S ω((s, t), (u, v)) = 1. By hypothesis, λ ∈ (0, 1] and,

for all u, v ∈ S, 0 ≤ d(u, v) ≤ 1, therefore

0 ≤ λ ·
∑
u,v∈S

d(u, v) · ω((s, t), (u, v)) ≤
∑
u,v∈S

ω((s, t), (u, v)) = 1 .

Therefore 0 ≤ ΓCλ(d)(s, t) ≤ 1.
Let d, d′ : S × S → [0, 1], such that d v d′, and s, t ∈ S. If `(s) 6= `(t) then ΓCλ(d)(s, t) = 1 =

ΓCλ(d′)(s, t). If `(s) = `(t) we have that

ΓCλ(d)(s, t) = λ
∑
u,v∈S

d(u, v) · ω(s, t)(u, v)

≤ λ
∑
u,v∈S

d′(u, v) · ω(s, t)(u, v) = ΓCλ(d)(s, t) ,

since, for all u, v ∈ S, d(u, v) ≤ d′(u, v) and ω(s, t)(u, v) ≥ 0. Since ΓCλ is monotonic and v is
antisymmetric, it follows that ΓCλ is well-defined.

By Tarski’s fixed point theorem, ΓCλ admits least fixed point, which we denote by γCλ . We will
see that, for any s, t ∈ S, γC1 (s, t) corresponds to the probability of reaching a state (u, v) with
`(u) 6= `(v) starting from the state (s, t) in the underling graph of C. For this reason we will call
γCλ the λ-discounted discrepancy of C or simply the λ-discrepancy of C.

Lemma 7.2.3 Let M be a MC, C be a coupling for M, and λ ∈ (0, 1] be a discount factor. If
d = ΓCλ(d) then δλ v d.
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Proof. Assume M = (S,A, π, `) and C = (S × S,A × A,ω, l). In order to prove δλ v d, it
suffices to show that ∆λ(d) v d. Indeed, by Tarski’s fixed point theorem, δλ is a lower bound of
{d | ∆λ(d) v d}.

Let s, t ∈ S. If `(s) 6= `(t), then ∆λ(d)(s, t) = 1 = ΓCλ(d)(s, t) = d(s, t). If `(s) = `(t),
∆λ(d)(s, t) = λ · minω′∈π(s,·)⊗π(t,·)

∑
u,v∈S d(u, v) · ω′(u, v), and ΓCλ(d)(s, t) = λ ·

∑
u,v∈S d(u, v) ·

ω((s, t), (u, v)). Since ω((s, t), ·) ∈ π(s, ·) ⊗ π(t, ·) (Definition 7.2.1), we have that ∆λ(d)(s, t) ≤
ΓCλ(d)(s, t) = d(s, t).

As a consequence of Lemma 7.2.3 we obtain the following characterization for δλ, which generalizes
[28, Theorem 8] for generic discount factors.

Theorem 7.2.4 (Minimum coupling criterion) Let M be a MC and λ ∈ (0, 1] be a discount
factor. Then, δλ = min

{
γCλ | C coupling for M

}
.

Proof. For any fixed d ∈ [0, 1]S×S there exists a coupling C for M such that ΓCλ(d) = ∆λ(d).
Indeed we can take as transition function for C, the joint probability distribution ω such that, for
all s, t ∈ S,

∑
u,v∈S d(u, v) · ω((s, t), (u, v)) achieves the minimim value.

Let D be a coupling for M such that ΓDλ (δλ) = ∆λ(δλ). By Theorem 7.1.8, ∆λ(δλ) = δλ,
therefore δλ is a fixed point for ΓDλ . By Lemma 7.2.3, δλ is a lower bound of the set of fixed points
of ΓDλ , therefore δλ = γDλ . By Lemma 7.2.3, we have also that, for any coupling C of M, δλ v γCλ .
Therefore, given the set D =

{
γCλ | C coupling for M

}
, it follows that δλ ∈ D and δλ is a lower

bound for D. Hence, by antisymmetry of v, δλ = minD.

7.3 Exact Computation of Bisimilarity Distance

Inspired by the characterization given in Theorem 7.2.4, in this section we propose a procedure to
exactly compute the bisimilarity pseudometric.

For λ ∈ (0, 1], the set of couplings for M can be endowed with the preorder Eλ defined as
C Eλ D, if and only if, γCλ v γDλ . Theorem 7.2.4 suggests to look at all the couplings C for M in
order to find an optimal one, that is, minimal with respect to Eλ. Needless to say, an enumeration
of all the couplings is unfeasible, therefore it is crucial to provide an efficient search strategy which
prevents us to do that. Moreover we also need an efficient method for computing the λ-discrepancy.

In Subsection 7.3.1 the problem of computing the λ-discrepancy of a coupling C is reduced
to the problem of computing reachability probabilities in C. Then, Subsection 7.3.2 illustrates a
greedy strategy that explores the set of couplings until and an optimal one eventually reached.

7.3.1 Computing the λ-discrepancy

In this section, we first recall the problem of computing the reachability probability for general
MCs [11], then we instantiate it to compute the λ-discrepancy.

Let M = (S,A, π, `) be an MC, and xs denote the probability of reaching G ⊆ S from s ∈ S.
The goal is to compute xs for all s ∈ S. The following holds

xs = 1 if s ∈ G , xs =
∑
t∈S xt · π(s, t) if s ∈ S \G , (7.3.1)

that is, either G is already reached, or by way of an other state. Equation (7.3.1) defines a linear

equation system of the form ~x = A~x+~b, where S? = S \G, ~x = (xs)s∈S?
, A = (π(s, t))s,t∈S?

, and
~b = (

∑
t∈G π(s, t))s∈S?

.
This linear equation system always admits a solution in [0, 1]S , howerver, it may not be unique.

Since we are interested in the least solution, we address to this problem fixing each free variable to
zero, so that we obtain a reduced system with a unique solution. This can be easily done inspecting
the graph G(M): all variables with zero probability of reaching G are detected by checking that
they cannot be reached from any state in G in the reverse graph of G(M).

Regarding the λ-discrepancy for a coupling C, if λ = 1, one can directly instantiate the afore-
mentioned method with G = {(s, t) ∈ S × S | `(s) 6= `(t)} and S? = (S × S) \ G. As for generic
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λ ∈ (0, 1], the discrepancy γCλ can be formulated as the least solution in [0, 1]S×S of the linear
equation system

~x = λA~x+ λ~b . (7.3.2)

Remark 7.3.1 If one is interested in computing the λ-discrepancy for a particular pair of states
(s, t), the method above can be applied on the least independent subsystem of Equation (7.3.2)
containing the variable x(s,t). Moreover, assuming that for some pairs the λ-discrepancy is already
known, the goal set can be extended with all those pairs with λ-discrepancy greater than zero.

7.3.2 Greedy search strategy for computing an optimal coupling

In this section, we give a greedy strategy for moving toward an optimal coupling starting from a
given one, Then we provide sufficient and necessary conditions for a coupling, ensuring that its
associated λ-discrepancy coincides with δλ.

Hereafter, we fix a coupling C = (S × S,A×A,ω, l) forM = (S,A, π, `). Let s, t ∈ S and µ be
a matching for (π(s, ·), π(t, ·)). We denote by C[(s, t)/µ] the coupling forM with the same labeling
function of C and transition function ω′ defined by ω′((u, v), ·) = ω((u, v), ·), for all (u, v) 6= (s, t),
and ω′((s, t), ·) = µ.

Lemma 7.3.2 Let C be a coupling for M, s, t ∈ S, ω′ ∈ π(s, ·) ⊗ π(t, ·), and D = C[(s, t)/ω′]. If
ΓDλ (γCλ)(s, t) < γCλ(s, t), then γDλ < γCλ .

Proof. It suffices to show that ΓD(γCλ) < γCλ , i.e., γCλ is a strict post-fixed point of ΓDλ . Then, the
thesis follows by Tarski’s fixed point theorem.

Assume ω̄ be the transition function of D and let u, v ∈ S. If `(u) 6= `(v), then, by definition,
ΓDλ (γCλ)(u, v) = 1 = ΓCλ(γCλ)(u, v) = γCλ(u, v). Notice that, this also means that `(s) = `(t), since
ΓDλ (γCλ)(s, t) < γCλ(s, t), by hypothesis. If `(u) = `(v) and (u, v) 6= (s, t), by definition of D, we
have that ω̄((u, v), ·) = ω((u, v), ·), hence ΓCλ(γCλ)(u, v) = ΓDλ (γCλ)(u, v).

Lemma 7.3.2 states that C can be improved w.r.t. Eλ by updating its transition function at (s, t),
whenever we find a distribution ω′ ∈ π(s, ·)⊗ π(t, ·) such that∑

u,v∈S γ
C
λ(u, v) · ω′(u, v) <

∑
u,v∈S γ

C
λ(u, v) · ω((s, t), (u, v)).

Notice that, an optimal schedule ω′ for TP (γCλ , π(s, ·), π(t, ·)) enjoys the above condition, so that,
the update C[(s, t)/ω′] improves C. This gives us a strategy for moving toward δλ by successive
improvements on the couplings.

Now we proceed giving sufficient and necessary condition for termination. This is done by
first giving two technical results, Lemma 7.3.3 and 7.3.4, then we will be able to give a sufficient
condition for termination (Lemma 7.3.5).

Lemma 7.3.3 Let s, t ∈ S, and γC1 = ∆1(γCλ). γC1 (s, t) = 1 iff δ1(s, t) = 1.

Proof. (⇐) Follows by Theorem 7.2.4. (⇒) Assume ω be the transition function of C. If `(s) 6= `(t)
the thesis follows trivially. Assume `(s) = `(t).

1 = γC1 (s, t) = ΓC1 (γC1 )(s, t)

=
∑
u,v∈S γ

C
1 (u, v) · ω((s, t), (u, v))

≤
∑
u,v∈S ω((s, t), (u, v)) = 1

Thus whenever ω((s, t), (u, v)) > 0, γC1 (u, v) = 1. By hypothesis we have γC1 = ∆1(γCλ), therefore
1 = γC1 (s, t) = minω′∈π(s,·)⊗π(t,·)

∑
u,v∈S γ

C
1 (u, v) · ω′(u, v). Hence there is no coupling that can

improve the summation. Therefore, by Theorem 7.2.4, δ1(s, t) = 1.

Lemma 7.3.4 For any λ ∈ (0, 1], if γCλ = ∆λ(γCλ) then δλ = γCλ .
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Proof. By Theorem 7.1.8, it suffices to prove that if γCλ is a fixed point for ∆λ, it is also the least
one. We distinguish two cases: when λ < 1 and λ = 1.

For λ < 1, [28, Theorem 6] states that ∆λ has a unique fixed point. By hypothesis γCλ is a fixed
point for ∆λ, therefore it is also the least one.

For λ = 1, we proceed by contradiction. Assume δ1 6= γC1 and ω be the transition function of
C. By δ1 6= γC1 and Theorem 7.2.4, we have that δ1 < γC1 . Let ∆′′ : [0, 1]S×S → [0, 1]S×S defined by

∆′′(d)(s, t) =

{
0 if γC1 (s, t) = 0

∆1(d)(s, t) otherwise

Since ∆1 is monotonic so is ∆′′. Thus it admits greatest fixed-point, say g. By δ1 < γC1 there exists
s, t ∈ S such that δ1(s, t) < γC1 (s, t), so that γC1 (s, t) 6= 0.

Suppose that
{

(s, t) | γC1 (s, t) = 0
}

= ∼, by [28, Corollary 18], ∆′′ has a unique fixed point
which corresponds to δ1. By γC1 = ∆1(γC1 ), we have that γC1 = ∆′′(γC1 ), which contradicts the
hypothesis that δ1 6= γC1 . Therefore, there exist s, t ∈ S such that γC1 (s, t) 6= 0 and s ∼ t. It can be
shown that there exists s, t ∈ S satisfying the previous conditions and g(s, t) = 1. By Lemma 7.3.3,
and δ1(s, t) = 0 we have that γC1 (s, t) < 1. Thus γC1 < g. Now, let m and M be defined as

m = max
{
g(s, t)− γC1 (s, t) | s, t ∈ S

}
, M =

{
(s, t) | g(s, t)− γC1 (s, t) = m

}
.

By γC1 < g, m > 0. We prove first two properties on M :

M ∩ {(s, t) | `(s) 6= `(t)} = ∅ (7.3.3)

M ∩
{

(s, t) | γC1 (s, t) = 0
}

= ∅ (7.3.4)

(7.3.3) follows since, for all `(u) 6= `(v), γC1 (u, v) = 1 = g(u, v), and m > 0. (7.3.4) follows by
definition of ∆′′ and m > 0.

Let (s, t) ∈M , then

m = g(s, t)− γC1 (s, t)

= ∆′′(g)(s, t)− ΓC1 (γC1 )(s, t)

= ∆1(g)(s, t)− ΓC1 (γC1 )(s, t) (by (7.3.4))

=
(

min
ω′∈π(s,·)⊗π(t,·)

∑
u,v∈S

g(u, v) · ω′(u, v)
)
−
∑
u,v∈S

γC1 (u, v) · ω((s, t), (u, v))

≤
∑
u,v∈S

g(u, v) · ω((s, t), (u, v))−
∑
u,v∈S

γC1 (u, v) · ω((s, t), (u, v))

=
∑
u,v∈S

(
g(u, v)− γC1 (u, v)

)
· ω((s, t), (u, v)) .

Since, for all u, v ∈ S, g(u, v) − γC1 (u, v) ≤ m and
∑
u,v∈S ω((s, t), (u, v)) = 1, we have that,

whenever ω((s, t), (u, v)) > 0, g(u, v) − γC1 (u, v) = m. Thus ω has support contained in M . This
means that, for all (s, t) ∈ M , RC((s, t)) ⊆ M . Thus, by (7.3.3), we have that γC1 (s, t) = 0, but
this contradicts (7.3.4).

Lemma 7.3.5 For any discount factor λ ∈ (0, 1], if γCλ 6= δλ, then there exist s, t ∈ S and a
coupling D = C[(s, t)/ω′] for M such that ΓDλ (γCλ)(s, t) < γCλ(s, t).

Proof. We proceed by contraposition. Assume that for all s, t ∈ S and for all couplings D such
that D = C[(s, t)/ω′], ΓDλ (γCλ)(s, t) ≥ γCλ(s, t). This corresponds to say that γCλ = ∆λ(γCλ). Then
the thesis follows by Lemma 7.3.4.

The above result ensures that, unless C is optimal w.r.t Eλ, the hypothesis of Lemma 7.3.2 are
satisfied, so that, we can further improve C.

The next statement proves that this search strategy is correct.
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Theorem 7.3.6 δλ = γCλ iff there is no coupling D for M such that ΓDλ (γCλ) < γCλ .

Proof. We prove: δλ 6= γCλ iff there exists D such that ΓDλ (γCλ) < γCλ . (⇒) Assume δλ 6= γCλ . By
Lemma 7.3.5, there are s, t ∈ S and ω′ ∈ π(s, ·) ⊗ π(t, ·) such that λ ·

∑
u,v∈S γ

C
λ(u, v) · ω′(u, v) <

γCλ(s, t). As in the proof of Lemma 7.3.2, we have that D = C[(s, t)/ω′] satisflies ΓD(γCλ) < γCλ . (⇐)
Let D be such that ΓDλ (γCλ) < γCλ . By Tarski’s fixed point theorem γDλ < γCλ . By Theorem 7.2.4,
δλ v γDλ < γCλ .

Remark 7.3.7 (Termination) Note that, in general there could be an infinite number of cou-
plings for a given MC, so it is not obvious that our strategy is terminating.

Let us call vertex coupling, a coupling for M having a transition function ω such that, for all
s, t ∈ S, ω((s, t), ·) is a vertex of π(s, ·)⊗ π(t, ·). Since for all s, t ∈ S the transportation polytope
π(s, ·)⊗ π(t, ·) has a finite number of vertices, the set of vertex couplings is finite. For each fixed
d ∈ [0, 1]S×S , the linear function mapping µ ∈ π(s, ·)⊗ π(t, ·) to λ

∑
u,v∈S d(u, v) · µ(u, v) achieves

its minimum at some vertex in π(s, ·)⊗π(t, ·). Thus, using any optimal TP schedule for the update
(which has not to be necessarily a vertex of the transportation polytope) we ensure the strategy
is always terminating. Indeed, the couplings that are encountered during any computation can be
immersed in the set of vertex couplings where /λ is obviously well-founded.

7.4 The On-the-fly Algorithm

In this section, we describe an on-the-fly algorithm for the exact computation of the bisimilarity
pseudometric δλ making full use of the greedy strategy presented in Section 7.3.2.

Let Q ⊆ S × S. Assume we want to compute δλ(s, t), for all (s, t) ∈ Q. The method proposed
in Section 7.3.2 has the following key features:

1. the improvement of each coupling C is obtained by a local update of its transition function
at some state (u, v) in C;

2. the strategy does not depend on the choice of the state (u, v);
3. whenever a coupling C is considered, the over-approximation γCλ of the distance can be com-

puted by solving a system of linear equations.

Among them, only the last one requires a visit of the coupling. However, as noticed in Remark 7.3.1,
the value γCλ(s, t) can be computed without considering the entire linear system of Equation (7.3.2),
but only its smallest independent subsystem containing the variable x(s,t), which is obtained by
restricting on the variables x(u,v) such that (u, v) ∈ RC((s, t)). This subsystem can be further
reduced, by Gaussian elimination, when some values for δλ are known. The last observation
suggests that, in order to compute γCλ(s, t), we do not need to store the entire coupling, but it can
be constructed on-the-fly.

The exact computation of the bisimilarity pseudometric is implemented by Algorithm 1. It
takes as input an MC M = (S,A, π, `), a discout factor λ, and a query set Q. We assume the
following variables to store:

- C: the current partial coupling;
- d: the λ-discrepancy associated with C;
- ToCompute: the pairs of states for which the distance has to be computed;
- Exact: the pairs of states (s, t) such that d(s, t) = δλ(s, t);
- V isited: the states of C considered so far.

At the beginning (line 1) both the coupling C and the discrepancy d are empty, there are no
visited states, and no exact computed distances. While there are still pairs left to be computed
(line 2), we pick one (line 3), say (s, t). According to the definition of δλ, if `(s) 6= `(t) then
δλ(s, t) = 1; if s = t then δλ(s, t) = 0, so that, d(s, t) is set accordingly, and (s, t) is added to
Exact (lines 4–7). Otherwise, if (s, t) was not previously visited, a matching ω ∈ π(s, ·) ⊗ π(t, ·)
is guessed, and the routine SetPair updates the coupling C at (s, t) with ω (line 9), then the
routine Discrepancy updates d with the λ-discrepancy associated with C (line 10). According to
the greedy strategy, C is successively improved and d is consequently updated, until no further
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Algorithm 1 On-the-fly Bisimilarity Pseudometric

Input: MC M = (S,A, π, `); discout factor λ ∈ (0, 1]; query Q ⊆ S × S.
1. C ← empty; d← empty; V isited← ∅; Exact← ∅; ToCompute← Q; // Init.
2. while ToCompute 6= ∅ do
3. pick (s, t) ∈ ToCompute
4. if `(s) 6= `(t) then
5. d(s, t)← 1; Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
6. else if s = t then
7. d(s, t)← 0; Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
8. else // if (s, t) is nontrivial
9. if (s, t) /∈ V isited then pick ω ∈ π(s, ·)⊗ π(t, ·); SetPair(M, (s, t), ω)

10. Discrepancy(λ, (s, t)) // update d as the λ-discrepancy for C
11. while ∃(u, v) ∈ RC((s, t)). C[(u, v)] not opt. for TP(d, π(u, ·), π(v, ·)) do
12. ω ← optimal schedule for TP(d, π(u, ·), π(v, ·))
13. SetPair(M, (u, v), ω) // improve the current coupling
14. Discrepancy(λ, (s, t)) // update d as the λ-discrepancy for C
15. end while
16. Exact← Exact ∪RC((s, t)) // add new exact distances
17. remove from C all edges exiting from nodes in Exact
18. end if
19. ToCompute← ToCompute \ Exact // remove exactly computed pairs
20. end while
21. return d�Q // return the distance for all pairs in Q

improvements are possible (lines 11–15). Each improvement is demanded by the existence of a
better schedule for TP (d, π(u, ·), π(u, ·)) (line 11). Note that, each improvement actually affects
the current value of d(s, t). This is done by restricting our attention only on the pairs that are
reachable from (s, t) in G(C). It is worth to note that, C is constantly updated, hence RC((s, t))
may differ from one iteration to another. When line 16 is reached, for each (u, v) ∈ RC((s, t)), we
are guaranteed that d(u, v) = δλ(s, t), therefore RC((s, t)) is added to Exact, and these values can
be used in successive computations, so the edges exiting from these states are removed from G(C).
In line 19, the exact pairs computed so far are removed from ToCompute. Finally, if no more pairs
need be considered, the exact distance on Q is returned (line 21).

Algorithm 1 calls the subroutines SetPair and Discrepancy , respectively, to construct/update
the coupling C, and to update the current over-approximation d during the computation. Now we
explain how they works.

SetPair (Algorithm 2) takes as input an MC M = (S,A, π, `), a pair of states (s, t), and a
matching ω ∈ π(s, ·) ⊗ π(t, ·). In lines 1–2 the transition function of the coupling C is set to ω
at (s, t), then (s, t) is added to V isited. The on-the-fly construction of the coupling is recursively
propagated to the successors of (s, t) in G(C). During this construction, if some states with trivial
distance are encountered, d and Exact are updated accordingly (lines 5–6).

Discrepancy (Algorithm 3) takes as input a discount factor λ and a pair of states (s, t). It
constructs the smallest (reduced) independent subsystem of Equation 7.3.2 having the variable
x(s,t) (lines 9–10). As noticed in Remark 7.3.1, the least solution is computed by fixing d to zero
for all the pairs which cannot be reached from any pair in Exact and such that its distance is
greater than zero (lines 5–7). Then, the discrepancy is computed and d is consequently updated.

Next, we present a simple example of Algorithm 1, showing the main features of our method: (1)
the on-the-fly construction of the (partial) coupling, and (2) the restriction only to those variables
which are demanded for the solution of the system of linear equations.

Example 7.4.1 (On-the-fly computation) Let us compute the undiscounted distance between
states 1 and 4 for the {red,blu}-labeled MC depicted in Figure 7.1.
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Algorithm 2 SetPair(M, (s, t), ω)

Input: MC M = (S,A, π, `); s, t ∈ S; ω ∈ π(s, ·)⊗ π(t, ·)
1. C[(s, t)]← ω // update the coupling at (s, t) with ω
2. V isited← V isited ∪ {(s, t)} // set (s, t) as visited
3. for all (u, v) ∈ {(u′, v′) | ω(u′, v′) > 0} \ V isited do // for all demanded pairs
4. V isited← V isited ∪ {(u, v)}
5. if u = v then d(u, v)← 0; Exact← Exact ∪ {(u, v)};
6. if `(u) 6= `(v) then d(u, v)← 1; Exact← Exact ∪ {(u, v)};
7. // propagate the construction
8. if (u, v) /∈ Exact then
9. pick ω′ ∈ π(u, ·)⊗ π(v, ·) // guess a matching

10. SetPair(M, (u, v), ω′)
11. end if
12. end for

Algorithm 3 Discrepancy(λ, (s, t))

Input: discount factor λ ∈ (0, 1]; partial coupling C; approx. distance d; s, t ∈ S
1. Nonzero← ∅ // detect non-zero variables
2. for all (u, v) ∈ RC((s, t)) ∩ Exact such that d(u, v) > 0 do
3. Nonzero← Nonzero ∪

{
(u′, v′) | (u, v) ; (u′, v′) in G−1(C)

}
4. end for
5. for all (u, v) ∈ RC((s, t)) \Nonzero do // set distance to zero
6. d(u, v)← 0; Exact← Exact ∪ {(u, v)}
7. end for
8. // construct the reduced linear system over nonzero variables
9. A← (C[(u, v)](u′, v′))(u,v),(u′,v′)∈Nonzero

10. ~b←
(∑

(u′,v′)∈Exact d(u′, v′) · C[(u, v)](u′, v′)
)

(u,v)∈Nonzero

11. ~̃x← solve ~x = λA~x+ λ~b′ // solve the reduced linear system
12. for all (u, v) ∈ Nonzero do // update distances
13. d(u, v)← x̃(u,v)

14. end for

Algorithm 1 guesses an initial coupling C0 with transition distribution ω0. This is done consid-
ering only the pairs of states which are needed: starting from (1, 4), the distribution ω0((1, 4), ·) is
guessed as in Figure 7.1, which demands for the exploration of (3, 4) and a guess ω0((3, 4), ·). Since
no other pairs are demanded, the construction of C0 terminates. This gives the equation system:

x1,4 =
1

3
·

=1︷︸︸︷
x1,2 +

1

3
·

=1︷︸︸︷
x2,3 +

1

6
· x3,4 +

1

6
·

=1︷︸︸︷
x3,6 =

1

6
· x3,4 +

5

6

x3,4 =
1

3
·

=1︷︸︸︷
x1,2 +

1

6
·

=0︷︸︸︷
x2,2 +

1

6
·

=1︷︸︸︷
x2,3 +

1

3
·

=0︷︸︸︷
x3,3 =

1

2
.

Note that the only variables appearing in the above equation system correspond to the pairs which
have been considered so far. The least solution for it is given by dC0(1, 4) = 11

12 and dC0(3, 4) = 1
2 .

Now, these solutions are taken as the costs of a TP, from which we get an optimal transportation
schedule ω1((1, 4), ·) improving ω0((1, 4), ·). The distribution ω1 is used to update C0 to C1 =
C0[(1, 4)/ω1] (depicted in Figure 7.1), obtaining the following new equation system:

x1,4 =
1

3
·

=0︷︸︸︷
x2,2 +

1

3
·

=0︷︸︸︷
x3,3 +

1

6
· x1,4 +

1

6
·

=1︷︸︸︷
x1,6 =

1

6
· x1,4 +

1

6
,

which has dC1(1, 4) = 1
5 as least solution. Note that, (3, 4) is no more demanded, thus we do not

need to update it. Running again the TP on the improved over-approximation dC1 , we discover that
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Figure 7.1: Execution trace for the computation of δ1(1, 4) (details in Example 7.4.1).

the coupling C1 cannot be further improved, hence we stop the computation, returning δ1(1, 4) =
dC1(1, 4) = 1

5 .

It is worth noticing that, Algorithm 1 does not explore the entire MC, not even all the reachable
states from 1 and 4. The only edges in the MC which have been considered during the computation
are highlighted in Figure 7.1.

Remark 7.4.2 Notably, Algorithm 1 can also be used for computing over-approximated distances.
Indeed, assuming over-estimates for some particular distances are already known, they can be taken
as inputs and used in our algorithm simply storing them in the variable d and treated as “exact”
values. In this way our method will return the least over-approximation of the distance agreeing
with the given over-estimates. This modification of the algorithm can be used to further decrease
the exploration of the MC. Moreover, it can be employed in combination with other existing
approximated algorithms, having the advantage of an on-the-fly state space exploration.

7.5 Experimental Results

In this section, we evaluate the performances of the on-the-fly algorithm on a collection of randomly
generated MCs1.

First, we compare the execution times of the on-the-fly algorithm with those of the iterative
method proposed in [28] in the discounted case. Since the iterative method only allows for the
computation of the distance for all state pairs at once, the comparison is (in fairness) made with
respect to runs of our on-the-fly algorithm with input query the set of all state pairs. For each
input instance, the comparison involves the following steps:

1. we run the on-the-fly algorithm, storing both execution time and the number of solved
transportation problems,

1 The tests have been made using a prototype implementation coded in Mathematicar (available at http:

//people.cs.aau.dk/~mardare/projects/tools/mc_dist.zip) running on an Intel Core-i7 3.4 GHz processor with
12GB of RAM.

http://people.cs.aau.dk/~mardare/projects/tools/mc_dist.zip
http://people.cs.aau.dk/~mardare/projects/tools/mc_dist.zip
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# States
On-the-Fly (exact) Iterating (approximated) Approximation

Time (s) # TPs Time (s) # Iterations # TPs Error

5 0.019675 1.19167 0.0389417 1.73333 26.7333 0.139107
6 0.05954 3.04667 0.09272 1.82667 38.1333 0.145729
7 0.13805 6.01111 0.204789 2.19444 61.7278 0.122683
8 0.255067 8.5619 0.364019 2.30476 83.0286 0.11708
9 0.499983 12.0417 0.673275 2.57917 114.729 0.111104
10 1.00313 18.7333 1.27294 3.11111 174.363 0.0946047
11 2.15989 25.9733 2.66169 3.55667 239.557 0.0959714
12 4.64225 34.797 5.52232 4.04242 318.606 0.0865612
13 6.73513 39.9582 8.06186 4.63344 421.675 0.0977743
14 6.33637 38.0048 7.18807 4.91429 593.981 0.118971
17 11.2615 47.0143 12.8048 5.88571 908.61 0.13213
19 26.6355 61.1714 29.6542 6.9619 1328.6 0.14013
20 34.379 66.4571 38.2058 7.5381 1597.92 0.142834

Table 7.1: Comparison between the on-the-fly algorithm and the iterative method.

# States
outer-degree = 3 2 ≤ outer-degree ≤ # States∗

Time (s) # TPs Time (s) # TPs

5 0.00594318 0.272727 0.011654 0.657012
6 0.0115532 0.548936 0.0304482 1.66696
7 0.0168408 0.980892 0.0884878 3.67706
8 0.0247971 1.34606 0.164227 5.30112
9 0.0259426 1.29074 0.394543 8.16919
10 0.0583405 2.03887 1.1124 13.0961
11 0.0766988 1.82706 2.22016 18.7228
12 0.0428891 1.62038 4.94045 26.0965
13 0.06082 1.88134 10.3606 35.1738
14 0.0894778 2.79441 20.1233 46.0775
20 0.35631 6.36833 1.5266 13.1367
30 4.66113 17.3167 74.8146 76.2642
50 27.2147 30.8217 2234.54 225.394

Table 7.2: Average performances of the on-the-fly algorithm on single-pair queries. On the first to
columns the outer-degree is 3; on the last two columns, the outer-degree varies from 2 to # States.
(*) For 20, 30 and 50 states, outer-degree is 4;

2. then, on the same instance, we execute the iterative method until the running time exceeds
that of step 1. We report the execution time, the number of iterations, and the number of
solved transportation problems.

3. Finally, we calculate the approximation error between the exact solution δλ computed by our
method at step 1 and the approximate result d obtained in step 2 by the iterative method,
as maxs,t∈S δλ(s, t)− d(s, t).

This has been made on a collection of MCs varying from 5 to 20 states. For each n = 5, . . . , 20,
we have considered 80 randomly generated MCs per outer-degree, varying from 2 to n. Table 7.1
reports the average results of the comparison.

As can be seen, the our use of a greedy strategy in the construction of the couplings leads to
a significant improvement in the performances. We are able to compute the exact solution before
the iterative method can under-approximate it with an error of ≈ 0.1, which is a considerable error
for a value in [0, 1].

So far, we only examined the case when the on-the-fly algorithm is run on all state pairs at once.
Now, we show how the performance of our method is improved even further when the distance is
computed only for single pairs of states. Table 7.2 shows the average execution times and number
of solved transportation problems for (nontrivial) single-pair queries for randomly generated of
MCs with number of states varying from 5 to 50. In the first two columns we consider MCs
with outer-degree equal to 3, while the last two columns show the average values for outer-degrees
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Figure 7.2: Distribution of the execution times (in seconds) for 1332 tests on randomly generated
MCs with 14 states, out-degree 6 (darkest) and 8 (lightest).

varying from 2 to the number of states of the MCs. The results show that, when the outer-degree
of the MCs is low, our algorithm performs orders of magnitude better than in the general case.
This is illustrated in Figure 7.2, where the distributions of the execution times for outer-degree 6
and 8 are juxtaposed, in the case of MCs with 14 states. Each bar in the histogram represents the
number of tests that terminate within the time interval indicated in the x-axsis.

Notably, our method may perform better on large queries then on single-pairs queries. This is
due to the fact that, although the returned value does not depend on the order the queried pairs
are considered, a different order may speed up the performances. So that, when the algorithm
is run on more than a single pair, the way they are picked may increase the performances (e.g.,
compare the execution times in Tables 7.1 and 7.2 for MCs with 14 states).



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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8
Conclusions and Future Work

We conclude by briefly recalling the main contributions and techniques used in this thesis, and by
listing some related work and possible further directions of research related to each subject that
has been considered.

Initial and Final Sequences in Categories with Factorization Systems. In Chapter 4 we
have considered alternative constructions for initial algebras and final coalgebras for endofunctors
F : C→ C in categories with factorization systems. To this end, we have exploited initial and final
sequences in combination with the axiomatic properties of factorization systems. The key intuition
behind the use of factorization systems relies on the fact that they are good generalizations of the
notions of subobject and quotient, which always played a crucial rôle in the construction of final
coalgebras and initial algebras.

Aczel and Mendler [4] obtained a final coalgebra as a quotient (by bisimilarity) of a coproduct
of a set of coalgebras. Barr [14] showed that if a set functor T is accessible then the category of
T -coalgebras as a set (not a proper class!) of generators. He then used the Special Adjoint Functor
theorem, whose proof also involves a quotient of a sum-construction, to derive the existence of a
final coalgebra.

In [92, 94, 93] Worrell adopted the approach of Adámek and Koubek [8] and Barr [13] using
final sequences which generalizes the iterative construction of the greatest fixed point of a mono-
tone function on a complete lattice. For Set-endofunctors accessibility seems to be a common
denominator among some of the hypothesis involved in the various final coalgebra theorems in
the literature, e.g. being bounded in [58] and set based in [4]. In [5] it has been shown that the
assumption of boundedness of a Set-functor is equivalent to accessibility. Since then, accessible
categories received much attention in order to give sufficient conditions for the existence of a final
coalgebra.

Informally, accessibility describes a generalized notion of “smallness” for a particular set of
objects in the category, the so called representable objects. These objects are colimits of a bounded
set of objects (formally, a κ-filtered diagram), and they enjoy the property that any morphism
to them can be factorized through some object in the colimit diagram. Intuitively, this amounts
to say that these objects can be fully described by means of the objects belonging to the colimit
diagram. Asking that such diagrams are small corresponds to say that the information carried by
representable objects can be encoded by a set rather then a proper class. Accessible endofunctors
are functors between accessible categories, such that they preserve κ-filtered colimits, for some
ordinal κ. Although this is a very general and reasonable categorical notion of “smallness” for ob-
jects, many categories of interest fail to be accessible (an important example is Top). Moreover, it
is usually hard to prove that a category is accessible and, following the final coalgebra construction
in [94], functors have to be accessible as well.

Our approach has many similarities, but the notion of “smallness” is characterized in a much
more simpler way by means of factorization systems. It would be interesting to relate all these
techniques to our. A tentative in this direction has been already done in Theorem 4.2.12, which
slightly generalizes a well-known theorem of stabilization for final sequences of Set-functors due to
Worrell [92, Theorem 4.6]. As a side remark, note that accessibility can be weakened to a notion
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ofM-accessibility, whereM is a class of morphisms and representable objects must be colimits of
(κ-filtered) diagrams with morphisms in M. With this notion Top is Emb-accessible, where Emb
is the class of topological embeddings.

Bisimulation for Labelled Markov processes In Chapter 5 we proved that bisimilarity on
generalized Markov processes is an equivalence without assuming that the state space is analytic.
The proof is given via a characterization of the coalgebraic bisimulation, introduced in order to
overcome some technical problems that do not allow to apply the standard techniques usually
employed in the theory of universal coalgebras. For example the functor ∆ does not preserve
weak pullbacks, hence transitivity for bisimilarity and the existence of a “maximal” coalgebraic
bisimulation cannot be proved via standard (weak) universal constructions. Typically, in case the
behavior functor does not preserves weak pullbacks, the existence of a maximal bisimulation can be
proved without having recourse to universal properties, but requiring that the underlying category
has well-behaved factorization systems for which the left class of morphisms has right inverse. This
technique usually works in Set, but not in Meas, since epimorphisms do not have right inverse.
An open question is if there are techniques which can be applied in order to prove the same
result within the categorical language. A possible strategy could be to use natural factorization
systems [49] instead of classical factorization systems, where left and right classes of morphisms
are represented as comonads and monads in the category of arrows.

The other contribution of the chapter is a coalgebraic analysis of the relationships between
bisimulation and cocongruences over Markov processes. This is done establishing an adjunction
between the category of bisimulations and that of cocongruences (actually, only a subcategory of the
latter). The adjunction gives rise to a closure operator (z-closure) that works as a kind of transitive
closure for bisimulation relations. In the study of probabilistic systems coalgebraically, but also
in coalgebraic modal logics in general, behavioral equivalence has advantages over bisimilarity.
However, the good side of bisimilarity is that it is computable by efficient algorithms (in the case
of labelled transition systems, (non-)deterministic automata, etc.), and traditionally many concrete
types of systems come equipped with a concrete notion of bisimilarity. Hence formal techniques
aimed at establishing a bridge between the notion of coalgebraic bisimulation and cocongruence
are of particular interest.

Congruential Rule Formats for Markov Processes In Chapter 6, we have introduced Mea-
sure GSOS specification systems, an SOS specification format for continuous state probabilistic
and stochastic calculi. To show the expressivity of the proposed rule format, we have introduced
two simple yet paradigmatic calculi where continuous data affect the operational description of
processes: the Quantitative CSS and FlatCCS.

In this format, transitions have the form t
α−→ µ, where t is a process term, and µ is a measure

term, i.e., an expression over a specifically designed language aimed at denoting a (finite) measure
over the measurable space of processes. An MGSOS specification is composed by a set of GSOS-like
inference rules, and a measure term interpretation, i.e., a natural transformation taking measure
terms to their denotation as an actual measure. The rule set yields a labelled transition system
corresponding to the collective semantics of all the derivable measure terms for a given process.
Then, each measure term is given a denotation via the measure terms interpretation, and the
overall operational semantics is given by summing up the set of partial behaviors. It is interesting
to compare this format with the usual GSOS. In particular, in a transition t

α−→ µ, the source term
t and the target term µ are from different languages, defined by two different syntactic monads.
The connection between these languages is provided by the measure term interpretation, which
is a kind of “distributive law” across two languages. Notably, the usual GSOS format can be
seen as a special case, when the two languages for the source and target of transitions are the
same, so that in this case, the interpretation is just the identity natural transformation. Thus, a
possible future work is to investigate the use of different syntactic languages for the sources and
targets of transitions, in combination with interpretations. This may help to give purely syntactical
representations to operational semantics for which the behavior functors have a shape that it is
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/)
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difficult to be represented syntactically.
MGSOS specifications yield well-behaved operational semantics for which the induced behav-

ioral equivalence is a congruence. This is proved categorically, showing that MGSOS specifications
give rise to abstract GSOS distributive laws of type S(Id×∆L

<∞)⇒ (∆<∞TS)L and providing a
canonical universal fully-abstract semantics as both initial and final morphism in the category of
bialgebras for the distributive law. The bialgebraic framework of Turi and Plotkin [83], however,
provides other formats as well. In particular, there is a categorical dual of abstract GSOS which,
for example, captures formats that allow for look-ahead in the case of labelled transition systems,
i.e. the premises of the derivation rules may refer to several successive transitions of the arguments
instead of just the immediate outgoing transitions. It would be interesting to try to derive a rule
format for this dual abstract distributive law also for labelled Markov processes. In the literature,
this kind of dual formats has not received much attention yet, even in the case of LTSs. A reason
for this, may be that the cofree comonad, on which the dual format is based, is much more difficult
to work with than the free monad generated by a signature. This problem still holds in the case
of labelled Markov processes, hence a careful examination on the structure on the cofree comonad
over ∆<∞ is another interesting direction for future work.

Metric Bisimulations In Chapter 7 we have proposed an on-the-fly algorithm for computing
exactly the bisimilarity distance between Markov chains, introduced by Desharnais et al. in [39].
Our algorithm represents an important improvement of the state of the art in this field where,
before our contribution, the known tools were only concerned with computing approximations of
the bisimilarity distances and they were, in general, based on iterative techniques. We demonstrate
that, using on-the-fly techniques, we cannot only calculate exactly the bisimilarity distance, but the
computation time is improved with orders of magnitude with respect to the corresponding iterative
approaches. Moreover, our technique allows for the computation on a set of target distances
that might be done by only investigating a significantly reduced set of states, and for further
improvement of speed.

Our algorithm can be practically used to address a large spectrum of problems. For instance,
it can be seen as a method to decide whether two states of a given Markov chain are probabilistic
bisimilar, to identify bisimilarity classes, or to solve lumpability problems. It is sufficiently robust
to be used with approximation techniques as, for instance, to provide a least over-approximation
of the behavioral distance given over-estimates of some particular distances. It can be integrated
with other approximate algorithms, having the advantage of the efficient on-the-fly state space
exploration.

Having a practically efficient tool to compute bisimilarity distances opens the perspective of
new applications already announced in previous research papers. One of these is the state space
reduction problem for Markov chains. Our technique can be used in this context as an indicator
for the sets of neighbor states that can be collapsed due to their similarity; it also provides a tool
to estimate the difference between the initial Markov chain and the reduced one, hence a tool for
the approximation theory of Markov chains.
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Soggetta alle licenze creative commons (http://creativecommons.org/choose/)
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[48] Michèle Giry. A categorical approach to probability theory. In Banaschewski, editor, Cate-
gorical Aspects of Topology and Analysis, volume 915 of Lecture Notes in Mathematics, pages
68–85. Springer Berlin/Heidelberg, 1982. 10.1007/BFb0092872.

[49] Marco Grandis and Walter Tholen. Natural weak factorization systems. Archivum Mathe-
maticum, 42:397–408, 2006.

[50] David Griffeath. A maximal coupling for markov chains. Probability Theory and Related
Fields, 31:95–106, 1975.

[51] Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Information and Computation, 100(2):202–260, 1992.

[52] H. Peter Gumm and Tobias Schr oder. Products of coalgebras. Algebra Universalis, 46:163–
185, 2001.

[53] Paul R. Halmos. Measure Theory. Number 18 in Graduate Texts in Mathematics. Springer,
1974.

[54] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process algebra for performance
evaluation. Theor. Comput. Sci., 274(1-2):43–87, 2002.

[55] Jane Hillston. Process algebras for quantitative analysis. In LICS, pages 239–248. IEEE
Computer Society, 2005.



Tesi di dottorato di Giorgio Bacci, discussa presso l’Università degli Studi di Udine
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