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A B S T R A C T

This thesis presents theoretical and experimental studies concerning active
and semi-active systems for the vibration control of the flexural response of
a thin plate using piezoelectric transducers. Concerning the active control sys-
tems, velocity feedback loops are implemented using a piezoelectric patch with
a particular shape as actuator. This piezoelectric patch is composed of 6 trian-
gular leafs disposed in such a way as to form an hexagonal patch. Single and
decentralised multiple channel configurations were studied, using the Nyquist
criteria to analyse the stability of the control loop and the kinetic energy of the
flexural response of the panel to asses the control performance.

Then, a fully coupled model of a semi-active vibration control system is pre-
sented, which uses a piezoelectric transducer connected to an electric shunt
circuit composed of an inductance and a resistance. A reduced model that ne-
glects the structural damping and considers only the first natural mode of the
plate was used to derive the optimum values for the inductance and resistance
of the shunt circuit. These values were then compared to the ones found nu-
merically using a genetic algorithm and considering an increasing amount of
natural modes of the plate. A parametric study is also presented in which the ef-
fects of the piezoelectric patch dimension on the vibration control performance
is analysed.

The last part of the thesis presents a time-varying shunted piezoelectric ab-
sorber that produces a broadband control effect of the flexural response of the
plate. Single and multiple configurations were studied, and two control laws
were proposed for the shunt: switching mode, in which the inductance and re-
sistance values cyclically change between a set of three pairs of values in order
to control iteratively the flexural response of the panel near three of its natural
frequencies; and sweeping mode, in which the shunt values are varied contin-
uously from a lower to an upper bound that match the lower and upper val-
ues of the frequency range of interest. Series and parallel operation modes are
proposed for the multiple configuration using five time-varying shunted piezo-
electric vibration absorbers. In the series mode the targeted frequency range is
divided in five sub-ranges in which only one piezoelectric vibration absorber
works and in the parallel mode all five absorbers work in the full targeted fre-
quency range but with a phase shift between each other.
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1

I N T R O D U C T I O N

Vibrations in mechanical systems are a response, usually an undesired one,
to excitation forces due to the operation process itself or due to external or en-
vironmental causes. Mechanical vibrations are found almost everywhere and
depending on the considered system and the type, frequency and amplitude
of the vibrations, these can be neglected in the best case and generate noise,
accuracy and other types of issues, or even damage and destroy the system
or injuring people in the worst case. Considering their effects on humans, in
the best case they are harmless or cause minor discomfort but they can also be
accounted for headaches, nausea and a wide variety of health issues, including
death in the worst case [3]. In the engineering field, vibration control of struc-
tures is of great interest in very different applications: from the manufacturing
sector, to the maritime, space, aerospace, railway and automotive industries, to
consumer goods industries as vibrations can be the source of lower produc-
tivity, material fatigue issues, or, amongst many others, user discomfort that
translates in a loss of the market share, e.g. a washing machine or a car that
are too noisy or vibrate too much [3–5]. In addition, many countries have set le-
gal regulations that industries must meet regarding workers exposure to noise
and vibration, e.g. within the European Union the regulations for noise and
vibration are the Noise at Work Directive 2003/10/EC and the Human Vibra-
tion Directive 2002/44/EC setting as limit values 87 dB(A) for average daily
noise exposure level, 2.5 m/s2 for single action hand-arm vibration, 0.5 m/s2

for single action whole-body vibration.
The diversity of size of the structures were vibration control is needed is also

reflected in the diversity of the frequency ranges of the significant vibrations:
1− 20 Hz for some systems, 20− 250 Hz for others, tonal or broad band, etc
[5]. The targeted frequency range is one of the parameters to take into account
in order to choose the best vibration control strategy. Another one is the nature
of the vibration: flexural, torsional or longitudinal.
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2 introduction

A variety of techniques have been developed over the years to produce the
desired vibration control effect on such different applications; these techniques
are usually categorized depending on the use of external power sources in two
main categories: passive or active; with many authors also referring to a third
category usually called semi-passive or semi-active.

1.1 passive vibration control

Passive treatments involves changes in the stiffness, mass and damping of
the vibrating system and in this way making it less responsive to the sources
of vibrations. These changes are usually design modifications or the addition
of masses, dampers or springs; elements that passively react in opposition to
the accelerations, velocities or deflections imposed upon them [5]. This means
that they do not require external power. In his book [5], Mead has classified the
passive vibration control approaches into four main categories:

by structural design : optimizing the design of a mechanical system can
reduce its vibration levels, e.g. by shifting the system resonance frequen-
cies away from the excitation frequencies;

by localized additions : a lumped mass or a vibration absorber (a combi-
nation of mass, spring and damper elements) is added at a specific place
of the structure where it can neutralize the exciting force over a narrow
frequency band;

by added damping : with the addition of highly damped polymeric materi-
als located in specific places of a lightly damped structure where they can
dissipate as much energy as possible; and

by resilient isolation : useful when the vibration is transmitted through
few connection points, then these connections are made of soft or resilient
rubber springs that can isolate the system from the source of vibration.

Passive solutions such as localized additions or added damping work well
at high frequencies, however at lower frequencies they usually require a lot
of space and introduce significant weight to the structure while delivering a
limited control performance. Another factors to consider are the ageing of the
damping material and changes in the system working conditions that would
decrease the performance of these passive vibration control systems.
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1.2 active vibration control

In active vibration control (AVC) electromechanical, electrohydraulic or elec-
tropneumatic actuators are used to produce a vibration that counteracts the
original one produced by the exciting forces. These systems use sensors to mea-
sure the vibration of the structure, an electronic system to process the signals
and to deliver the control signal to an amplifier that drives the actuators. AVC
systems can be used in conjunction with passive treatments, which also act as
a back-up to prevent serious damages in case the AVC unit fails for some rea-
son and the feedback loop becomes unstable. Some of the drawbacks of active
systems are the need of an external supply, instability and spillover (enhanc-
ing the vibration level at some frequencies) issues. Nevertheless, they are able
to, in a wide range of operating conditions, achieve remarkable performances,
specially at low frequencies.

Active vibration control systems can be classified into two main categories:
feed-forward and feedback control. Feed-forward control is used when the dis-
turbance is deterministic or tonal or when there is a signal reference strongly
correlated with the disturbance [6]. A secondary disturbance is generated in
order to destructively interfere with the primary one. This type of control relies
in some prior knowledge of the primary disturbance, however the system can
tune or adapt to different working conditions by using a reference signal and
an adaptive filter. The reference signal (e.g. a tachometer signal for combustion
engines) is measured and passed to the adaptive filter and then to an amplifier
that drives an actuator. The performance of a feed-forward control system re-
lies on the delicate interaction between the effects of the primary and secondary
disturbances. Thus, the amplitude and phase of the controller must be carefully
adjusted [6]; for this reason it is very important to use efficient algorithms to
tune the controller in real time [7]. It is important to note here that, for adap-
tive feed-forward control systems, the reference signal measured by the sensor
is not affected by the secondary disturbance.

On the other hand, feedback control systems are implemented when the orig-
inal excitation of the structure cannot be directly observed, so no reference sig-
nal or prior information is available for the controller; e.g. when the structure
is subjected to a broadband random excitation from many sources. Feedback
control systems are widely used for controlling the vibration of lightly damped
structures that are characterised by well separated resonance peaks at low fre-
quency and for which the disturbance at each resonance peak is relatively nar-
rowband [7]. An ideal velocity feedback is equivalent to a sky-hook damper;



4 introduction

so, considering that the response of a structure near low resonance frequencies
is mainly controlled by damping, then velocity feedback loops can be used to
actively increase the effective damping of the system [6].

Another type of classifying active control systems is referred to the amount of
inputs and outputs of the system. The most usual classification is single-input
single-output systems (SISO) and multiple-inputs multiple-outputs (MIMO)
systems. SISO systems use only a pair of sensor and actuator while MIMO
systems use an array of them and according to the control strategy they can be
categorised as centralised or decentralised.

In centralised MIMO control systems all the sensors provide their signal to
a centralised controller that process them and send the control signals to every
actuator. The number of sensors and actuators is not always the same and they
do not need to be collocated [6, 8, 9]. These type of control is used at low
frequencies were the response of the structure is due to a small number of
natural modes of the structure. Some disadvantages of centralised control are
the wiring (in large structures it translates in higher cost and weight), complex
control algorithms and the fact that the failure of one control channel makes
the whole system fail.

Decentralised MIMO control systems are characterised by an array of collo-
cated sensor-actuator pairs. Each pair has a dedicated controller and acts as a
SISO control system, i.e. the signal measured by one sensor is processed and
then fed to its correspondent actuator. The main advantage of this system is the
simplicity of the control loops, which are simple gains for ideal velocity sensors
and force actuators, and the fact that if one single unit fails the system continue
to work. The main disadvantage of this type of control systems is the existence
of crosstalk effects, which means that the stability of each loop is influenced by
the vibration generated by neighbouring actuators. i.e. the interaction between
single control loops, that may introduce instabilities into the control system
[10].

Active control using piezoelectric patches has been explored in many recent
studies [11–15] proposing SISO and MIMO decentralised control systems. Effi-
cient, compact and lightweight smart structures can be achieved with this type
of transducers, considering that the sensor and actuator can be embedded to
the original structure.

Another interesting possibility using piezoelectric transducers is the self-
sensing technique, developed by Dosch [16] and Anderson [17]. In this case
the same piezoelectric patch is used as sensor and actuator. The key idea is,
instead of using a sensor, to estimate the voltage induced in the piezoelectric
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patch, which is proportional to the mechanical strain in the hosting structure.
This would provide a suitable signal for a feedback compensator [18].

1.3 semi-passive vibration control

Semi-passive vibration control systems are passive systems that can change
or update its parameters to adapt to changes in the working or environmen-
tal conditions, e.g. tensioning effects or temperature changes that change the
properties of the hosting structure.

Shunted piezoelectric vibration absorbers are usually considered in this cate-
gory, as the shunt parameters are varied or tuned to obtain the desired control
effect and also because the tension-current characteristic of certain elements
such as inductances is reproduced using virtual inductors because the needed
values lie outside the commercial ranges or because the size and weight of such
inductor would be too large.

Forward [19] was the first to experimentally introduce in 1979 the idea of
using shunted piezoelectric transducers to control mechanical vibrations. He
considered a piezoelectric patch bonded on a thin structure and connected to
an electrical shunt circuit composed of an inductance. Uchino [20], around a
decade later, investigated the effects produced by a shunt composed of a pure
resistance. Then, some years later Hagood and von Flotow [21] presented a
study showing the effects of using resistive and resistive-inductive (RL) shunts.
They showed that using only a resistor the piezoelectric transducer produces a
viscoelastic damping effect while when using the RL shunt it produces a res-
onating vibration absorption effect. They also derived, using as starting point
the work of Den Hartog [22] with mechanical vibration absorbers, the expres-
sions for the resistance and inductance to optimise the vibration absorption
effect at the resonance frequency of a specific natural mode of the structure.
References [18, 23] offer detailed reviews on vibration control using shunted
piezoelectric transducers as well as the comprehensive book by Moheimani and
Fleming [24].

Forward was also one of the first to consider a negative capacitance in the
shunt to compensate the inherent capacitive effect of the piezoelectric trans-
ducer and improve the vibration absorption effect [25]. Since then many authors
have been investigating this idea, see references [24, 26–37], who acknowledge
the fact that to implement a negative capacitance active systems must be used
with the corresponding power and stability issues.
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Other techniques using semi-passive shunted piezoelectric transducers are
the switching techniques. Most of these were developed during the late 90s and
the first decade of the current century; the most popular one is the pulse switch-
ing or synchronized switch damping (SSD) [38], from which almost all the oth-
ers, such as blind switch damping (BSD) [39], synchronized switch damping
on voltage source (SSDV) [40] and synchronized switch damping on inductor
(SSDI) [40], are derived. These are non-linear techniques and the basic principle
is to open and short-circuit the transducer (or connect it to a particular shunt cir-
cuit) intermittently and synchronously with the structure motion. BSD works
in a similar way but with a fixed switching period instead of synchronously
with the structure motion [39].

Another idea that has attracted a lot of attention in the previous years is the
use of periodic arrays of piezoelectric patches to form smart metamaterials with
specific vibro-acoustical properties. Metamaterials are engineered materials ar-
ranged in repeating patterns, smaller than the wavelength of interest, whose
properties come from their particular structure and not from the materials prop-
erties. In addition, using periodic arrays of shunted piezoelectric patches, it is
possible to combine the vibration absorption effects of the shunted piezoelectric
transducer and of the periodic structure, such as in references [41–43].

1.4 objective of the thesis

The main objective of this thesis is to study and develop active and semi-
passive vibration absorbers using piezoelectric transducers for the broadband
control of the flexural response of a thin plate.

1.5 contributions of the thesis

The main contributions of this thesis are:

• development and testing of an hexagonal transducer with an increased
loop stability for active vibration control using velocity feedback loops
(chapter 3);

• development of a fully coupled model for shunted piezoelectric trans-
ducers bonded on thin plates that implement time-varying control loads
(chapter 4 and 5);

• analysis of the transducer mechanical and electromechanical coupling ef-
fect on the shunt tuning and of the validity of analytical expressions for
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the optimum values of the shunt inductance and resistance obtained with
a simplified model that considers only one natural mode of the structure
and neglects its structural damping (chapter 4);

• general guidelines regarding the transducer dimensions and control per-
formance for shunted piezoelectric absorbers (chapter 4);

• development of switching and sweeping vibration absorbers, which use
piezoelectric transducers connected to time-varying RL shunts for the
broadband control of the flexural response of a thin plate (chapter 5).

1.6 structure of the thesis

Chapter two serves as an introduction to piezoelectric materials, presenting
some historical background, the piezoelectric direct and inverse effects and it
focus on the fabrication, poling and working principle of piezoceramic trans-
ducers. The constitutive equations and the coefficients that characterize piezo-
electric elements are presented here.

Chapter three presents a study on velocity feedback loops for active vibra-
tion control of a thin panel in which piezoelectric transducers, with a particular
hexagonal shape, are used as actuators. SISO and MIMO configurations were
studied, the stability of the feedback loops is analysed using the Nyquist crite-
ria and the performance is assessed through the kinetic energy of the flexural
response of the panel. Simulations and experimental results are presented.

Chapter four introduces a fully couple model to analyse the shunt tuning and
a parametric study on the dimension of the piezoelectric transducer used in a
shunted vibration absorber device. Optimum values for the shunt inductance
and resistance to maximise the vibration absorption effect are found analyti-
cally for a simplified system that considers only the first natural mode of the
panel and neglects the structural damping. These values are then compared
to the ones found numerically using the fully coupled model considering an
increasing amount of natural modes of the structure. The last section of the
chapter presents a parametric study in which the thickness and surface area of
the piezoelectric transducers are varied within certain ranges to analyse their
effect on the performance of the shunted vibration absorber, using always the
optimum values for the shunt obtained for each transducer dimension using a
genetic algorithm.

Chapter five presents time-varying shunted piezoelectric absorbers to con-
trol the flexural response of a plate over a broad frequency band. Two oper-
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ation modes are proposed for the control of the time-varying shunt: switch-
ing and sweeping modes. The switching mode, that should not be confused
with the SSD techniques discussed above, changes iteratively between three
pairs of inductance and resistance values in order to control three different res-
onance peaks of the plate. The algorithm remains in the current pair of values
for a time greater than the time constant of the RLC parallel circuit and then
changes to the next pair of values, cyclically. On the other hand, instead of
discrete changes as in the switching mode, in the sweeping operation mode a
sine function is used to continuously vary the shunt inductance and resistance
between a lower and upper value, corresponding with the lower and upper val-
ues of the frequency range of interest. Both single and multiple patch systems
are presented and compared to the results obtained using fixed tuned shunted
piezoelectric transducers. For the multiple patch configuration two control laws
are proposed: series and parallel; in the first one the targeted frequency range
is divided into sub-ranges and each absorber works in one of these sub-ranges,
and in the parallel mode all the absorbers work on the whole frequency range
but with a phase shift between them.

Chapter six presents a summary of the presented studies and suggests ideas
for future work.
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P I E Z O E L E C T R I C T R A N S D U C E R S

This chapter presents a brief historical background concerning piezoelectric-
ity in general and piezoceramic materials in particular. The working principle,
fabrication and poling process are then introduced together with the material
constitutive equations and the coefficients or parameters used to characterise a
piezoelectric ceramic.
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2.1 introduction

Certain materials, often called smart materials by some authors, exhibit par-
ticular responses to physical stimuli of different nature[2]. Table 2.1 show some
of these stimuli and the effects they produce, where the diagonal terms are the
intrinsic properties that characterise the behaviour of the material. Piezoelec-
tricity, highlighted in red in table 2.1, is a property of certain materials which
generate internal electrical charges in response to a mechanical force. Pierre
and Jacques Curie called this property the piezoelectric effect in 1880. The most
common materials that exhibit this behaviour are crystals such as quartz and
tourmaline. Later on, the Curie brothers experimentally confirmed what the
physicist Gabriel Lippmann predicted in 1881: piezoelectricity is reversible pro-
cess. This means that applying an electrical field to a piezoelectric material will
produce internal mechanical strains.

Table 2.1.: Stimulus-response relations indicating various effects in materials from ref-
erence [2].

Output
Strain

Electric Magnetic
Temp. Light

Input change flux

Stress Elasticity
Piezo- Magneto- Photo-

electricity restriction elasticity

Electric Piezo-
Permittivity

Electro-
field electricity optic effect

Magnetic Magneto- Magneto-
Permeability

Magneto
field restriction electric optic effect

Heat
Thermal Pyro- Specific

expansion electricity heat

Light
Photo- Photovoltaic Refractive

striction effect index

Following these discoveries piezoelectric materials were studied for around
30 years until the first application arrived during World War I: Paul Langevin
and his colleagues built an ultrasonic submarine detector [44]. Extensive re-
search and new applications appeared before and during World War II, many
which are considered the classical applications of piezoelectric materials: res-
onators, accelerometers, microphones and other types of transducers. After the
war, the USA, Japan and the Soviet Union discovered piezoceramic materials
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while trying to improve the properties of capacitor materials. These new syn-
thetic materials exhibited dielectric constants up to 100 times the one of natu-
ral crystals; and the newly discovered piezoceramics showed similar improve-
ments in the piezoelectric capacity.

Nowadays many piezoceramic materials are industrially produced with very
interesting electromechanical properties for a wide range of applications: from
sensors to measure heat, force, traffic, etc. to linear, shear and rotor actuators,
energy harvesting, vibration and noise control, sound systems and many others.
One of the most popular of these materials is the PZT, a relatively stiff, brittle
and high density piezoceramic that was developed around 1952 in the Institute
of Technology of Tokyo. A composite material worth mentioning is the MFC,
developed by NASA around 1999, which in principle has higher performance
and durability compared to traditional monolithic ceramic devices.

2.2 structure of piezoelectric ceramics

Perovskite is a mineral compound with formula CaTiO3 named after the Rus-
sian mineralogist Perovski. Perovskite is also used to name a group of crystals
which have the same structure. Piezoceramic materials are composed of these
perovskite crystals. Each crystal, as shown in figure 2.1, is composed of a cubic
lattice with large metal ions on the corners, a small metal ion in the central
position and oxygens in the centre of the faces [45].

Ca

Ti

O2

(a) T>TCurie

Ca

Ti

O2

(b) T<TCurie

Figure 2.1.: (a) Unit cell with symmetrical, cubic Perovskite structure, and (b) tetrago-
nally distorted unit cell [1].
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Piezoceramic materials are produced by sintering a mixture of fine powders
of metal oxides. The metal oxide powders are mixed in specific proportions,
and then heated to obtain a uniform mixture. Binders are added to the mixture
and specific shapes are formed with it, such as plates or discs. Then the sinter-
ing takes place: this shaped elements are heated at a specific temperature for
an appropriate amount of time, enabling the formation of a dense crystalline
structure, which after cooling can be cutted into particular shapes. The last
step is adding the electrode layer to the proper surfaces of the ceramic. Figure
2.2 shows the typical structure of a piezoelectric patch, where the additional
structural layer can be neglected.

Piezoelectric material layer

Surface electrode layers

Structural layer

Figure 2.2.: General structure of a piezoceramic patch.

Plot (a) of figure 2.1 shows the lattice structure of a perovskite crystal at
temperatures above the Curie temperature, in this case the crystal is symmet-
ric and there is no dipole moment and no other piezoelectric properties. But
once the material starts to cool down, below the Curie temperature, the lattice
becomes deformed and asymmetric (or tetragonal symmetric1) which results
in the formation of dipoles, as shown in plot (b) where the red P indicates
the polarization direction. This type of ceramic is usually called ferroelectric
ceramic, and presents spontaneous polarization. These dipoles, when aligned
in the same orientation, create regions with a particular polarization called fer-
roelectric domain. However, no macroscopic piezoelectric behaviour is noticed
as the distribution of this domains is random, as shown in plot (a) of figure 2.3.

Then, the ceramic element is exposed to a strong DC electric field (of up to
several kV/mm) to align the ferroelectric domains. This process is called poling,
and it is usually performed after heating the ceramic just below its Curie tem-
perature. This process is analogous to the magnetizing of a permanent magnet

1Tetragonal symmetry refers to symmetric crystals that are stretched along one of its lattice
vectors, e.g. a cube of dimensions a× a× a is stretched into a prism of dimensions a× a× h.
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(a)

+

-

(b) (c)

Figure 2.3.: Polar domains (a) before the poling process, (b) during poling, and (c) after
poling.

[45]. During the poling process the domains are aligned, as shown in plot (b) of
figure 2.3, and those that were oriented as the electric field grow and the others
shrink. Plot (c) in the other hand shows the ceramic element polarization after
the poling process, i.e. once the electric field is removed and the material is
cooled down at normal temperature. It can be seen that the domains remain
reoriented and are now aligned. They are not perfectly aligned due to internal
mechanical stresses; however it is sufficient to produce a permanent polariza-
tion Pr and an expansion Sr of the ceramic element. Anyway, the length increase
is very small, within the micrometer range [44].

The remnant polarization Pr can be degraded if the mechanical, thermal or
electrical limits of the material are exceeded. Figure 2.4 shows typical hystere-
sis curves for the deformation and polarization versus the applied electric field.
Plot (a) shows that as the electric field increases, so does the element deforma-
tion. Decreasing the electric field also produces a decrease of the deformation;
but when the electric field iz zero it can be seen the remnant deformation Sr.
Then, applying an increasing negative electric field shrinks the element up to
a minimum and then it starts to lengthen again as the amplitude of the nega-
tive field increases. This effect is caused by the re-polarization of the domains,
once they change orientation due to the negative electric field the element stops
shrinking and starts to lengthen again. It may be also interesting to study the
hysteresis curve for an unipolar electric field, i.e. E does not changes sign. In
this case, once the electric field amplitude decreases, arrives to zero and the
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(a) (b)

Figure 2.4.: Typical hysteresis loop of (a) deformation and (b) polarization versus ap-
plied field [1].

remnant deformation Sr is achieved, the electric field amplitude starts to rise
again describing the curve presented with the solid gray line.

Plot (b) of figure 2.4 shows the hysteresis curve of polarization versus elec-
tric field, which shows a classical hysteresis curve. Here, it can be seen that a
negative electric field will depolarize the material if it exceeds the coercivity
strength Ec, and if the amplitude of the negative field continues to increase the
material will be polarized in the opposite direction considering with respect to
the original one. As in plot (a), the solid gray line in plot (b) shows the curve
for an unipolar electric field.

Figures 2.5 and 2.6 show the behaviour of a poled piezoceramic element
when subjected to mechanical and electrical stimuli respectively. Plot (a) in both
figures shows a poled piezoceramic cylindrical element at rest. Plot (b) of fig-
ure 2.5 presents the same element subjected to mechanical compression along
the polarization direction, this generates a voltage of the same polarity as the
poling voltage. As shown in plot (c), if the element is subjected to a mechanical
tension along the polarization direction, or compression perpendicular to that
direction, a voltage is generated with opposite polarity to the poling voltage. In
this configuration the element is being used as a sensor, converting mechanical
energy into electrical energy.

Plot (b) of figure 2.6 shows the piezoceramic element subjected to an external
voltage with the same polarity and in the same direction as the poling voltage,
this produces internal mechanical tensions resulting in a deformation of the
element: it becomes longer and its diameter is reduced. In plot (c), the element
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+

-

(a)

+

-

+-
+

-

(b)

+

-

+-
+

-

(c)

Figure 2.5.: (a) Polarized piezoelectric element (b) subjected to compression forces and
(c) to traction forces.

is subjected to a an external voltage with the same direction but opposite po-
larity as the poling voltage, this also produces internal mechanical stresses that
deform the element but in this case it shortens and its diameter increases. Op-
erating in this way, it is said the element is used as an actuator: converting the
electrical energy delivered by the power supply into mechanical energy.

+

-

(a)

+

-

+
-

(b)

+

-

+
-

(c)

Figure 2.6.: (a) Polarized piezoelectric element connected to a voltage source with (b)
the same and (c) opposite polarity as the poling voltage.

In both cases, using the piezoceramic as sensor or actuator, the relation be-
tween applied stress/voltage and the resulting voltage/strain is linearly pro-
portional up to a specific stress/voltage determined by the material properties
[44]. If operated under high electrical fields or mechanical stresses, consider-
able non linearities will be introduced. It is assumed here that the piezoelectric
materials are linear, working under low voltages and low mechanical stress.
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2.3 constitutive equations of a piezoelectric transducer

The stress/strain relations of a piezoelectric material are obtained assuming
that the total strain of the transducer is the sum of the strain induced by the
mechanical stress and the strain caused by the voltage applied to the transducer.
Figure 2.7 shows a piezoelectric transducer with the polarization direction and
the principal reference system used in the following formulation.

Piezoelectric material layer

Surface electrode layers

+

-

Figure 2.7.: Piezoelectric transducer diagram.

A contracted notation, known as Voigt-Kelvin notation [46] is used, which is
presented in table 2.2 where 1, 2, 3 are respectively the axes x, y, z and the shear
components around axes x, y, z are given by 4, 5, 6. Figure 2.7 shows that the
polarization of the transducer has the same direction as axis 3.

Table 2.2.: Contracted notation.

Axis Notation

x 1
y 2
z 3

Shear around x 4
Shear around y 5
Shear around z 6

Then, the normal stress and shear stress components are given respectively
by equations (2.1a) and (2.1b).

T1 = T11

T2 = T22

T3 = T33

(2.1a)

T4 = T23

T5 = T31

T6 = T12

(2.1b)
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S1 = S11

S2 = S22

S3 = S33

(2.2a)

S4 = 2S23

S5 = 2S31

S6 = 2S12

(2.2b)

The pure extension and shear strains are given by (2.2a) and (2.2b) respec-
tively. The stresses Tij and strains Sij have the typical denotation used in theory
of elasticity [47].

Then, the constitutive equations for the piezoelectric transducer presented in
figure 2.7 are given by [2]

Dm = εT
ikEk + dmiTi (2.3)

Si = dimEm + sE
ijTj (2.4)

where the sub-indexes i, j = 1, . . . , 6 and m, k = 1, 2, 3 refer to different direc-
tions as indicated in table 2.2 and figure 2.7. Also, D is the electric displacement,
E is the electric field, T is the stress, S is the strain, εT is the permittivity under
constants stress, dmi is the piezoelectric strain constant and sE is the compliance
under constant electric field.

If there is sensing involved in the application, then equations (2.3) and (2.4)
are re-written into the following form [44]

Si = sD
ij Tj + gmiDm (2.5)

Ei = gmiTi + βT
ikDk (2.6)

where sD is the compliance under constant electric displacement, gmi is the
piezoelectric voltage constant and βT is the impermittivity under constant stress.

Then, writing equations (2.3) and (2.4) in matrix form the following expres-
sions are obtained


D1

D2

D3

 =


εT

11 εT
12 εT

13

εT
21 εT

22 εT
33

εT
31 εT

32 εT
33




E1

E2

E3

+


d11 d12 d13 d14 d15 d16

d21 d22 d33 d24 d25 d26

d31 d32 d33 d34 d35 d36





T1

T2

T3

T4

T5

T6


(2.7)
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

S1

S2

S3

S4

S5

S6


=



sE
11 sE

12 sE
13 sE

14 sE
15 sE

16

sE
21 sE

22 sE
33 sE

24 sE
25 sE

26

sE
31 sE

32 sE
33 sE

34 sE
35 sE

36

sE
41 sE

42 sE
43 sE

44 sE
45 sE

46

sE
51 sE

52 sE
53 sE

54 sE
55 sE

56

sE
61 sE

62 sE
63 sE

64 sE
65 sE

66





T1

T2

T3

T4

T5

T6


+



d11 d21 d31

d12 d22 d32

d13 d23 d33

d14 d24 d34

d15 d25 d35

d16 d26 d36




E1

E2

E3



(2.8)
Considering a transversely isotropic material, which is true for piezoceramic

materials, and assuming that it is poled along axis 3, some of the matrix co-
efficients in equations (2.7) and (2.8) will be zero. The mechanical coefficients
different than zero are:

sE
11 = sE

22 (2.9)

sE
13 = sE

31 = sE
23 = sE

32 (2.10)

sE
12 = sE

21 (2.11)

sE
44 = sE

55 (2.12)

sE
66 = 2(sE

11 − sE
12) (2.13)

(2.14)

While the non-zero electric coefficients are

d31 = d32 (2.15)

d15 = d24 (2.16)

d33 (2.17)

εT
11 = εT

22 (2.18)

εT
33 (2.19)
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Re-writing (2.7) and (2.8) the following simplified expressions are obtained


D1

D2

D3

 =


εT

11 0 0

0 εT
11 0

0 0 εT
33




E1

E2

E3

+


0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d31 d33 0 0 0





T1

T2

T3

T4

T5

T6


(2.20)



S1

S2

S3

S4

S5

S6


=



sE
11 sE

12 sE
13 0 0 0

sE
12 sE

11 sE
13 0 0 0

sE
13 sE

13 sE
33 0 0 0

0 0 0 sE
44 0 0

0 0 0 0 sE
44 0

0 0 0 0 0 sE
66





T1

T2

T3

T4

T5

T6


+



0 0 d31

0 0 d31

0 0 d33

0 d15 0

d15 0 0

0 0 0




E1

E2

E3



(2.21)
It must be noted that equations (2.20) and (2.21) are valid for piezoelectric ce-

ramic materials such as PZT. Instead, for piezoelectric polymers such as PVDF
a different set of simplified equations must be used as this material is not
isotropic on the surface plane.

For simplicity the following notation will be used in the next chapters: plain
characters will be used to indicate scalar quantities while bold characters rep-
resent matrices and vector; e.g. equations (2.7) and (2.8) can be written in the
following form:  D

S

 =

 εεεT d

dT sE

 E

T

 (2.22)

where the super-index T indicates the transpose.

2.4 piezoelectric material coefficients

This section explains some of the most important parameters that character-
ize a piezoelectric material and that will be of use in the next chapters. Some
of the piezoelectric coefficients are defined using a set of two sub-index ij and
sometimes a super-index is also needed to indicate a mechanical or electrical
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boundary. The first sub-index i is indicates the direction of action of an electric
parameter (e.g the electric field, the voltage or the charge density) while the sec-
ond sub-index j is related to the direction of action of a mechanical parameter
such as the strain or stress. The mechanical and electrical constraints indicated
by a super-index are shown in table.

Table 2.3.: Super-indexes indicating mechanical and electrical constraints.

Super-index Description
T = constant stress Transducer mechanically free
E = constant electric field Transducer in short circuit
D = constant electric displacement Transducer in open circuit
S = constant strain Transducer mechanically clamped

2.4.1 Piezoelectric strain constants

The piezoelectric strain/charge constant is represented by dij, where the sub-
index ij means that the electric field is applied or the charge is collected in the
i direction for a displacement or a force produced in the j direction. There are
then two interpretations of this constant:

1. it is the ratio between the produced strain and the applied electrical field
when external stresses are constant:

dij =
Sj

Ei
[m/V] (2.23)

2. it represents the ratio between the charge density flowing through short
circuited electrodes perpendicular to the j direction and the stress applied
in the i direction:

dij =
QE

i
Tj

[C/N] (2.24)

where QE is the charge density flowing through the electrodes in short
circuit.

Something important to note is that large dij constants indicate large mechanical
displacements, which are usually desired for actuators.
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2.4.2 Piezoelectric voltage constants

This constant relates the electric field produced in the i direction for a me-
chanical stress applied in the j direction or the strain produced in the j direction
for a charge density applied in the i direction. Then, also here there are two in-
terpretations:

1. it is the ratio between the produced electric field with the electrodes in
open circuit and the applied mechanical stress:

gij =
EE

i
Tj

[Vm/N] (2.25)

2. it also represents the ratio between the produced strain in the j direction
and the charge density applied in the i direction under constant stress:

gij =
Sj

Qi

�
m2/C

�
(2.26)

where Q is the charge density applied to the electrodes.

In this case, large gij coefficients relates to higher output voltages, which is
usually desired for sensors.

2.4.3 Piezoelectric stress constants

This constants are the inverse of the piezoelectric voltage constants, which
means they also relate the mechanical stress produced in the i direction for an
electric field applied in the j direction or the charge density produced in the j
direction for a strain applied in the i direction. Then, this two interpretations
are formulated as:

1. the ratio between the produced mechanical stress and the applied electric
field under constant strain:

eij =
ET

i
Ej

[Vm/N] (2.27)

2. the ratio between the produced strain in the j direction and the charge
density applied in the i direction with the electrodes in short circuit:

eij =
Sj

Qi

�
m2/C

�
(2.28)
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2.4.4 Elastic compliance

The elastic compliance coefficients sij give the ratio of the strain in the i direc-
tion produced by the stress applied in the j direction assuming that the stress
along the other directions remains the same. For example, s21 indicates the
direct strain in direction 2 produced by a stress along direction 1 and s66 repre-
sents the shear strain around direction 6 due to a shear stress applied around
the same axis.

As a mechanical stress produce an electrical response that can increase the
resultant strain, the elastic compliance matrix can be defined as under constant
electric field sE or constant electric displacement sD. It would be expected that
a short-circuited piezoelectric patch has a smaller Young’s modulus of elasticity
than when it is in open circuit, as sE would be smaller than sD [44].

2.4.5 Permittivity

The permittivity coefficient ε ij indicates the charge density in the i direction
produced by an electric field applied along the j direction. This coefficient can
be expressed under constant stress εT

pe or constant strain εS
pe. Sometimes the

manufacturers provide a relative permittivity εr of the material, in this case the
absolute value is given by

ε = εrε0 (2.29)

where ε0 is the permittivity of the free space defined as

ε0 ≈ 8.8542× 10−12F/m (2.30)

2.4.6 Capacitance

Piezoceramic patches such as the one depicted in figure 2.7 have an inher-
ent capacitance Cpe. However, unlike the permittivity, which is a property of
the material itself, Cpe depends not only of the material but also of the patch
dimensions. The capacitance can be obtained analytically using the following
expression [2]

Cpe =
εT Ape

hpe
(2.31)

where Ape and hpe are the surface area and thickness of the piezoelectric patch.
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2.4.7 Electromechanical coupling factor

The piezoelectric electromechanical coupling coefficient kij indicates the ef-
ficiency with which a piezoelectric material converts mechanical energy into
electrical and vice versa. It can be calculated analytically [2, 21, 44, 45] and it
can be measured experimentally in different ways involving measurements of
specific parameters with the transducer in open and short circuit [21, 44]. For
example, for a mechanically free piezoelectric ceramic that is strained along di-
rection 1 due to a voltage applied along direction 3 the ratio between the stored
mechanical energy and the applied electrical energy is represented by k2

31.

2.5 chapter concluding remarks

This chapter presented some historical facts regarding piezoelectric materials,
in particular piezoceramics. A general overview of the structure and fabrication
process of a piezoceramic was given, including the poling process. The direct
and inverse piezoelectric effect were explained showing how a piezoceramic
element could be used as an actuator or as a sensor.

Then, the piezoelectric material constitutive equations were introduced in
their general form. A simplified, reduced form was also presented for a PZT
material, one of the most common types of piezoceramic materials.

The last section of this chapter addressed the coefficients that characterise a
piezoelectric material, focusing on the parameters used in the following chap-
ters.
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V E L O C I T Y F E E D B A C K L O O P U S I N G P I E Z O E L E C T R I C
T R A N S D U C E R S

This chapter presents an active vibration control study in which decentral-
ized velocity feedback loops are implemented on a thin rectangular aluminium
panel using piezoelectric transducers with a specific shape. The stability and
control performance of the system is analysed through simulations and experi-
mentally implementing either one or five control loops.

The feedback loop is composed of a piezoelectric patch actuator with an ac-
celerometer sensor at its centre. The actuator itself is made of six triangular
anisotropic piezoelectric patches assembled into an hexagonal patch. This par-
ticular type of shaped piezoelectric patch produces bending moments along its
edges and a net transverse force at its centre, balanced by opposite point forces
at the six vertices of the hexagon.
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3.1 introduction

Prototype smart panels with multiple velocity feedback control loops were
developed during the last two decades using inertial point force actuators
[48, 49] and piezoelectric actuators bonded on the panel [13, 50] with collocated
accelerometer sensors. Thin structures are characterised, at low frequencies, by
low flexural modal overlap, which means that their flexural response is due
to the resonances of low order modes; which are effectively controlled by con-
trol systems implementing velocity feedback loops [51]. Also, Elliot et al. [52]
showed that an array of local velocity feedback loops is unconditionally [53–
55] stable with a proper choice of actuators and sensors. The feedback loops
produce a sky-hook damping that can reduce the overall flexural response of
the panel [56]. Furthermore, the use of piezoelectric actuators to implement the
velocity feedback loop seemed quite promising due to the possibility of pro-
ducing compact sandwich structures [2, 6, 9, 57]. Nevertheless, as the velocity
feedback loop was affected by stability issues [14, 58] its practical implemen-
tation was not straightforward. This problem could be traced to two physical
phenomena:

• the piezoelectric patch produces a bending excitation field that is not col-
located with the accelerometer sensor [59], and

• the strength of the bending excitation field produced by the piezoelectric
patch tends to increase with frequency [60, 61].

These two concurrent phenomena produce delayed control signals components
with high amplitude at higher frequencies, which leads to instability.

This study deals with the vibration control effects produced by a single ve-
locity feedback loop located at the centre of a simply supported panel, and by
five velocity feedback loops positioned at the centre and diagonals of the panel.
Arrays of velocity feedback loops have been proven to produce large control ef-
fects [62], but a single unit can also produce good reductions if it is located in a
key position like the centroid of a thin structure, and in this way coupling with
all volumetric modes [63, 64]. In addition, velocity feedback loops using piezo-
electric patch actuators have stability drawbacks because of the non collocated
actuation effects generated at the edges of the patches. Nevertheless, several
studies have shown that the shape of the piezoelectric patch has a strong effect
on its active damping capability when implementing a velocity feedback loop
[65]. Particular shapes can improve the stability of the loop, which leads to a
better control performance [66].
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The proposed hexagonal actuator is composed of six triangular macro fiber
composite (MFC) [67] leafs with their principal axis aligned along the lateral
edge of the hexagon and the radial direction. A single input-single output
(SISO) control system is considered first, in which the MFC patch [68] is lo-
cated at the centre of the panel and the error velocity sensor at the centre of
the hexagon. The open and close loop response of the control system has been
modelled and analysed. Also, a prototype was built to confirm the theoretical
predictions. The closed loop response of the prototype was assessed off-line
using the measured FRFs. This means that after these FRFs were acquired and
stored, they were used in Matlab to produce the closed loop response.

Then, a decentralized multiple inputs-multiple outputs (MIMO) control sys-
tem using five MFC hexagonal actuators is studied, following an approach sim-
ilar to the one presented in [48] for five proof mass electrodynamic actuators
and in [50] for 16 piezoelectric actuators. Also for the MIMO control system
a model was developed to assess its open and closed loop responses and a
prototype was built to confirm the results. Also here the prototype closed loop
response was analysed off-line in Matlab using measured data.

3.2 velocity feedback with mfc hexagonal patch

The relevant geometrical and physical properties of the simply supported
panel are summarized in table 3.1, and in table 3.2 for the MFC patch.

Table 3.1.: Dimensions and physical properties of the panel.

Parameter Value Units

Thickness hp = 0.8 mm
Width ly = 0.314 m
Length lx = 0.414 m
Aluminium Density ρp = 2700 m3

Young’s Modulus Ep = 70× 109 N/m2

Poisson’s ratio νp = 0.33

The MFC is made of rectangular ceramic rods stacked between layers of elec-
trodes, adhesive and polyimide film. The electrodes are attached to the film
using an interdigitated pattern that transfers the applied voltage to and from
the ribbon shaped rods. This type of actuators are more robust and flexible com-
pared to standard monolithic piezoelectric patches. A general arrangement of
an MFC transducer [69] is shown in figure 3.1, where the top and bottom layers
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Table 3.2.: Dimensions and physical properties of the actuator.

Parameter Value Units

Thickness hpe = 0.4 mm
Leafs height a = 0.0173 m
Leafs base b = 0.02 m
Hexagon diagonal d = 0.04 m
Density ρpe = 7600 m3

Young’s Modulus Epe = 90× 109 N/m2

Poisson’s ratio νpe = 0.35
Strain/charge constants d31 ≈ 0 m/V

d32 = 166× 10−12 m/V
d36 ≈ 0 m/V

of polyimide with the interdigitated electrode pattern can be seen; and between
these layer the structural epoxy matrix containing the rectangular piezoelectric
fibers.

Polyimide films 

Piezoceramic fibers

Structural epoxy matrix

Interdigitated electrodes

Figure 3.1.: General arrangement of an MFC patch.

3.2.1 Excitation field

Figure 3.2 shows the transverse force p(x, y), flexural moments Mnn, shear
moments Mtn and shear force tnz distributions produced by a thin orthotropic
patch bonded on a panel. For clarity only a portion of the smart panel is shown,
where also the surface Ω and contour Γ can be seen. Figure 3.3 on the other
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hand, shows a cross section of the panel and piezoelectric transducer, where
the variable hs is the distance between the mid-planes of the panel and of the
patch and is defined as

hs =
hp + hpe

2
(3.1)

where hp is the thickness of the panel and hpe is the thickness of the patch.

ContourSurface

Midplane of
the panel

Panel

Piezoelectric
actuator

(a)

Transverse
force

Contour
Surface

Shear
force

Shear moment

Flexural
moment

Panel

Piezoelectric
actuator

(b)

Figure 3.2.: (a) Thin plate with a bonded piezoelectric transducer and (b) detailed sec-
tion with the forces and moments produced by the patch.

Figure 3.3.: Cross section of the panel and piezoelectric actuator.

Then, the equations of motion for the flexural response of a thin flat panel
with a bonded piezoelectric transducer can be written as [70, 71]:

Yph3
p

12(1− ν2
p)

�
∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

�
+ ρphp

∂2w
∂t2 +

hp

2
δep

�
e31

∂2S
∂x2 + 2e36

∂2w
∂x∂y

+ e32
∂2S
∂y2

�
vc = 0

(3.2)

where Yp, νp and ρp are respectively the Young’s modulus, the Poisson’s ratio
and the density of the panel, vc is the voltage applied to the transducer, w is
the transverse displacement of the panel, δep is a function whose value is equal
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to 1 or −1 depending on whether the electric field and the poling direction
have the same or opposite directions, S(x, y) is the spatial sensitivity function
which provides the spatial coupling between the structure and the piezoelectric
transducer and is given by

S(x, y) = F(x, y)P0(x, y) (3.3)

where F(x, y) is the effective surface electrode function and P0(x, y) is the poling
strength function assumed the same in directions 1, 2 and 6. Finally, the stress
constants eij, defined in section 2.4.3 are given by:


e31

e32

e36

 =


m2 n2 −2mn

n2 m2 2mn

mn −mn m2 − n2

 Ype

1− ν2
pe


1 νpe 0

νpe 1 0

0 0 1−νpe
2




d31

d32

d36

 (3.4)

where m = cos(β), n = sin(β) and β is the angle between the axes x and y
of the main reference system and the axes 1 and 2 of the piezoelectric mate-
rial, as shown in plot (a) of figure 3.2. Also, Ype and νpe are respectively the
Young’s modulus and the Poisson’s ratio of the transducer material and dij are
the piezoelectric strain constants defined in section 2.4.1, which are provided
in table 3.2.

The equivalent distributed flexural actuation effects produced by the three
piezoelectric patches are obtained using the formulation proposed by Derae-
maeker et al. [72], they derived the following expressions for the loads pro-
duced by a piezoelectric patch bonded on a plate:

−p(x, y) =
∂2

∂x2 (hse31vc) +
∂2

∂y2 (hse32vc) + 2
∂2

∂x∂y
(hse36vc) (3.5)

−Mnn = (e31n2
x + e32n2

y + 2e36nxny)hsvc (3.6)

−
�
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�
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¨
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�
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�
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�
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«
+
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∂
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(3.7)
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where
�
n2

x

�
and

�
nxny

�
are the discontinuity jumps of n2

x and nxny where nx

and ny are the x and y components of the unit vector n normal to the contour
Γ. Also, ∂(. . . )/∂s is the derivative with respect to the curvilinear coordinate
s along the contour Γ. As shown in figure 3.2, the term p(x, y) represents a
surface pressure excitation, only present if the patch stress/charge properties
or the applied voltage have a non uniform distribution across the surface of the
electrodes. The second term Mnn gives the flexural moments distributed along
the contour Γ with vector orientation parallel to the tangent of Γ. The third term
represents the shear forces occurring along the discontinuity points of Γ.

The MFC hexagonal patch is composed of six triangular leafs with the princi-
pal axis oriented along the lateral edge of the hexagon and the radial direction,
as shown in figure 3.4. The response of the hexagonal patch is obtained by
adding the effects of all six triangular leaf.

1

1

1 2

1

2

1

2

12

2

2

1

2

Figure 3.4.: Rectangular panel with an hexagonal MFC patch.

For simplicity an isosceles triangular leaf with the base aligned with the x
axis is considered, with principal axes 1 and 2 parallel to the axes x and y of
the plate. Then, the contour function Γ that delimits the surface of the triangular
leaf is described by

Γ1,2 x(y) = xb ∓
b
2
±my

Γ1,3 y(x) = 0

f or y ∈
�

0 , a
�

f or x ∈
�

xb −
b
2

, xb +
b
2

� (3.8)
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where a and b are the triangular leaf height and base dimensions, presented in
table 3.2 and shown in figure 3.4 where also xb is shown. These three segments
are connected at the following discontinuity points:

p1(x, y) = (xb −
b
2

, 0) (3.9)

p2(x, y) = (0 , a) (3.10)

p3(x, y) = (xb +
b
2

, 0) (3.11)

The normal functions along the three segments and the discontinuity jumps
at the three corners are presented in tables 3.3 and 3.4 respectively. Then, re-

Table 3.3.: Contour functions for the triangular leaf.

Contour nx ny nxny n2
x n2

y

Γ1
b√

b2+4a2
−2a√
b2+4a2

−2ab
b2+4a2

b2

b2+4a2
4a2

b2+4a2

Γ2
b√

b2+4a2
2a√

b2+4a2
2ab

b2+4a2
b2

b2+4a2
4a2

b2+4a2

Γ3 −1 0 0 1 0

Table 3.4.: Jump functions for the triangular leaf.

Vertex
�
nxny

� �
n2

x

�
p1

2ab
b2+4a2 1− b2

b2+4a2

p2
−4ab

b2+4a2 0

p3
2ab

b2+4a2
b2

b2+4a2 − 1

placing these values in equations (3.5), (3.6) and (3.7) the point shear forces at
the vertices of each triangular patch and the bending moments along its three
lateral edges, shown in plot (a) of figure 3.5, are obtained as [66, 72]:

F1 = (e32 − e31)
2ba

b2 + 4a2 hsvc (3.12)

F2 = −(e32 − e31)
4ba

b2 + 4a2 hsvc (3.13)

M1 = −b2e31 + 4a2e32

b2 + 4a2 hsvc (3.14)
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M2 = −e31hsvc (3.15)

It can be seen that F2 = −2F1 and that the total transverse point force applied
to the panel is equal to zero.

F1
M2

M1
M1

F1

F2

(a)

x

y

z

Fc

Me

Me

Me

Me

Me

Me Fv

Fv

FvFv

Fv

Fv

(b)

Figure 3.5.: Point shear forces and bending moments produced by: (a) each triangular
leaf and (b) the hexagonal actuator.

Then, the flexural excitation field produced by the hexagonal patch, pre-
sented in plot (b) of figure 3.5, is derived by adding the effects of the six tri-
angular leafs, resulting in:

• a shear point force Fc at the centre of the hexagon defined in equation
(3.16),

• shear point forces at each of the six vertices of the hexagon described by
the equation (3.17), and

• bending moments along the edges of the hexagon defined in equation
(3.18).

Fc = 6F2 (3.16)

Fv = 2F1 (3.17)

Me = M2 (3.18)

It is important to note that this model neglects the bending moments gener-
ated along the lateral edges of each triangular leaf; as, ideally, these are can-
celled with the ones produced by the contiguous leafs.

As mentioned in the introduction, piezoelectric patch actuators usually have
stability drawbacks because of the non collocated actuation effects produced
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at the edges of the patches. Nevertheless, with this proposed shape, the net
transverse point force produced at the centre of the patch would reinforce the
collocation characteristic of the actuator-sensor coupling. This would have two
important control effects:

1. it would improve the stability properties of the feedback loop, since the
spectra of the open loop FRFs have higher magnitude at lower frequencies
and lower phase lag at higher frequencies, and

2. it would enhance the active damping effect produced when the feedback
loop is closed.

3.2.2 System set-up

The block diagram of the control system is shown in figure 3.6, where the
mechanical and electrical variables have harmonic time dependence of the form
Re{exp(jωt)} where j =

√
−1 and ω is the circular frequency. Also, Fp(ω) is

the primary excitation, Gcp(ω), defined in equation (3.19), is the FRF between
the velocity at control position ẇc(ω) and the primary force Fp(ω); Gcc(ω) is the
open loop FRF defined in equation (3.20), and Gc is a constant gain.

Figure 3.6.: Block diagram of the feedback control system.

Gcp(ω) =
ẇc(ω)

Fp(ω)
(3.19)

Gcc(ω) =
ẇc(ω)

vc(ω)
(3.20)
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These mobility functions were obtained both by simulation and experimental
measurements. For the simulations, Gcc(ω) is defined as follows:

Gcc(ω) = GcFc(ω) + GcFv(ω) + GcMe(ω) (3.21)

where GcFc(ω) and GcFv(ω) are the mobility functions between the velocity at
control position and the forces Fc(ω) and Fv(ω) at the centre and vertices of the
patch given by equations (3.16) and (3.17) respectively, and GcMe(ω) are the mo-
bility functions between the velocity at control position and the moments Me

along the edge of the hexagon, defined in equation (3.18). These mobility func-
tions were derived using a modal summation approach, and their equations
can be found in appendix A.1.

The experimental measurements were conducted with a dSPACE Auto Box
DS1103 with a sampling rate set to 48 kHz. The main features of this controller
board are

• a CPU with a 1 GHz clock, 32 MB of memory for the application and 96
MB for data storage;

• 4 sample and hold ADC converters connected to 16 multiplexed inputs
with a voltage range of ±10 V.

• 8 DAC converters with an output range of ±10 V and ±5 mA.

Figure 3.7 shows the AutoBox in plot (a) and the connector panel in plot (b)
with the ADC input channels highlighted by a solid blue rectangle and the
DAC output channels by a dashed red rectangle.

Kemo CardMaster 255G filters are used at the sensor input and output of
the DAC implementing a low-pass filter with a cut-off frequency set to 25.4
kHz. These filters have internal jumpers to configure AC/DC single ended,
differential or IEPE input. Those connected to the sensors have to be set to
IEPE. Plot (c) of figure 3.7 shows the front panel of the filter, with the two
knobs to select the cut-off frequency, two switches to set the filter gain and the
input and output connectors.

The accelerometer sensor is a PCB Piezotronics 352C65 with a natural fre-
quency above 35 kHz, a sensitivity of 10.2 mV/(m/s2) and a weight of 2 grams.
Below its cut-off frequency, the accelerometer produces an output proportional
to the base acceleration, which is then integrated in order to obtain the velocity
at the centre of the hexagonal patch. As the control loop is closed off-line in Mat-
lab using measured data, the integration of the acceleration signal measured by
the sensor is also done in Matlab.
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(a) (b) (c)

Figure 3.7.: dSPACE AutoBox with board RT1103 (a) and (b) control panel. (c) Kemo
CardMaster 255G front panel.

The primary force Fp(ω) is produced by a Modal Shop 2007E shaker, whose
point of action is located at xp = 85 mm, yp = 110 mm. And to measure it a
force sensor PCB Piezotronics 208C01 is used, with a sensitivity of 112.4 mV/N
and an upper frequency limit of 36 kHz.

Also, an analogue amplifier with a fixed gain of 1 : 20 was used to drive the
patch.

3.2.3 Open Loop FRF

The SISO control system is implemented using the hexagonal patch actuator
and accelerometer sensor located at the centre of the hexagon. In the simulation
an ideal sensor is assumed, with a high fundamental frequency and no mass.
Also, the mass and stiffness effect of the patch is not taken into account.

The set-up for the experimental measurement of the open loop FRF is pre-
sented in Figure 3.8; where ẇc is given by the voltage vsensor. As this system is
to be applied using analogue devices, the FRF of the Kemo filter 1 was obtained
experimentally and then subtracted from the measured data. It is also impor-
tant to mention that the voltage vc applied to the patch is measured between
the input filter 2 and the fixed gain amplifier and that the integration of the
filter 1 output signal voutput is done within the dSPACE platform.

Considering the chosen sampling rate and the fact that the Kemo filters cut-
off frequency produces a constant roll off of the open loop FRF, it is sufficient
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Figure 3.8.: Open loop measurement set-up.

to study the system response up to 20 kHz. As at lower frequencies extra en-
ergy is needed to produce an output with a good noise to signal ratio several
measurements were taken. Then, 9 measurements were conducted where the
patch was excited using a linear cosine sweep from 30 Hz up to 3.8 kHz; and
then a final measurement using a broadband white noise signal to obtain the
FRF from 3.8 kHz to 20 kHz.

3.2.4 Control stability analysis

The stability of the feedback loop is analysed considering the Bode and
Nyquist plot of the open loop FRF Gcc.
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Figure 3.9.: Simulated open loop FRF (a) Bode and (b) Nyquist plots.
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Figure 3.10.: Measured open loop FRF (a) Bode and (b) Nyquist plots.

The simulation results are presented in figure 3.9; plot (b) presents the Bode
plot, which shows a response whose amplitude is characterised by a series of
well defined resonance peaks and anti-resonance narrow troughs at low fre-
quency, with a magnitude and overlap factor that increase with frequency. The
response phase shows a constant lag that starts at about 2 kHz and crosses
−90° at around 10 kHz. It can be seen that at this frequency the magnitude plot
becomes flat. Then, the first crossover at −180◦ is at around 17 kHz.

Plot (b) of figure 3.9 presents the Nyquist plot of the simulated system, which
shows an entanglement of big circles in the real positive quadrants; above 1
kHz the amplitude of circles is reduced and they slowly start to drift to the
real negative quadrant, eventually crossing the real negative axis around 0.32
and returning to the real positive quadrants. The system is stable for a limited
range of loop gains.

On the other hand, figure 3.10 shows the Bode and Nyquist plots of the mea-
sured open loop FRF. Plot (a) presents the Bode plot, which shows a response
characterized by a few damped resonance peaks below 150 Hz; between 200
Hz and 2 kHz it is characterized by a lot of resonance peaks with increasing
amplitude, an interesting feature takes place between 2 and 3 kHz: the ampli-
tude does not show any resonance peak nor anti-resonance troughs, this would
conveniently allow the implementation of a low-pass filter. Above 3 kHz there
is a first resonance peak that could limit the efficiency of the filter, and after that
a series of resonance peaks and anti-resonance troughs as the amplitude contin-
ues to rise with frequency. From the very beginning of the curve the phase plot
shows a delay, which may be introduced by the measuring instruments and
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that reduces the stability of the loop. The first crossovers at −90◦ and −180◦

are around 250 and 3500 Hz.
The Nyquist plot presented in plot (b) of figure 3.10 shows a group of entan-

gled circles in the real positive quadrants, which shift to the real negative quad-
rants as the frequency and the phase lag increase. The same interesting feature
can be seen in the Nyquist plot when the locus crosses the negative imaginary
axis, where the entangled circles greatly reduce their diameter as they continue
to shift to the negative real quadrants. After this, the circles grow bigger and
as they further shift to the upper negative real quadrant they encircle the −1
point in the real negative axis.

The Nyquist plot not only provides a good insight into the system stability,
but also into how much vibration reduction the control system is able to achieve.
In reference [14] a maximum reduction index Rn for the vibration at the error
sensor has been defined in terms of the following simple formula

Rn ∼= 20log10|1 + δn| (3.22)

where δn is the control ratio defined as

δn = −Re{Gcc(ωn)}
Re{Gcc(ω0)}

(3.23)

Equation 3.22 suggests that the amplitude reduction is proportional to the
ratio between the real value where the nth resonance circle, which corresponds
to the targeted nth resonance node, in the right semi-plane crosses the real axis
and the value in the left semi-plane where the locus crosses the real axis.
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Figure 3.11.: (a) Ideal and real (b) hexagonal patch.
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The differences between the response of the simulated and experimental sys-
tems shown in figures 3.9 and 3.10 could be explained in terms of constructive
constraints. The hexagonal patch used in the simulation and experimental mea-
surements can be seen respectively in plots (a) and (b) of figure 3.11. A 2 mm
gap can be seen in plot (b) between each consecutive leaf of the real hexagonal
patch. Recalling figure 3.1, this gap is where the interdigitated electrodes of this
MFC patch are placed. As the point force produced at the tip of each leaf is not
at the centre of the hexagon and the moments along the edges of each leaf are
not properly cancelled this would lead to a slightly different behaviour than
the predicted one. Some other factors that were not considered in the model
could also modify the response of the patch, such as the effect of the adhesive
layer between the panel and the piezoelectric patch, the stiffness of the patch
and the mass effect of the patch and the sensor.
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Figure 3.12.: Bode plot of the implemented compensator FRF.

Then, instead of a pure gain gc, to increase stability, a compensator Gc(ω) is
designed to reduce the incursion of the locus in the negative real quadrants of
figure 3.10, reducing in this way the circles in the left hand side quadrants and
increasing the reduction index Rn. The compensator, whose FRF is presented in
figure 3.12, is composed of a combination of a second order high pass and a first
order low pass filter with cut-off frequencies set to 70 and 800 Hz respectively.
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Figure 3.13.: Simulated (a) Bode and (b) Nyquist plots of the compensated open loop
FRF.
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Figure 3.14.: Measured (a) Bode and (b) Nyquist plots of the compensated open loop
FRF.

The compensator was implemented in both the simulated and the experimen-
tal set-up, for the latter it was done in Matlab using the previously measured
data. Both the simulated and experimental Nyquist plots, presented in plot (b)
of figures 3.13 and 3.14, show good improvement after the implementation of
the compensator Gc(ω). Using equation 3.22 yields a maximum reduction of
about 20 dB corresponding to the resonance peaks located around 600 Hz for
the simulated system, and about 17 dB for the resonance peak at 580 Hz for the
experimental set-up.
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3.2.5 Closed loop performance

The closed loop response of the system can be derived from the block dia-
gram presented in figure 3.6, leading to the following expression

ẇc(ω) =
Gcp(ω)

1 + Gcc(ω)Gc(ω)
Fp(ω) (3.24)

For the simulation, Gcp(ω) is derived using a modal summation approach,
the expressions used to calculate it can be found in appendix A.1 together with
the ones for the open loop FRF.

Then, in order to simulate off-line the response of the velocity feedback loop
based on measured data, the Gcp(ω) FRF was also measured, which is defined
in equation 3.19 as the mobility function between the velocity at control position
and the primary force.
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Figure 3.15.: Narrow band spectra of the control velocity per unit force of the shaker
with no control (thick dashed blue line) and with active control (thin solid
red line) for the simulated SISO system.

Also, the broad band white noise input Fp(ω) has been coloured using a
passband filter to obtain more realistic results. The passband is composed of
a second-order high pass filter with a cut-off frequency of 100 Hz and a first
order low pass filter with a cut-off frequency of 3.5 kHz.
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Figure 3.16.: Narrow band spectra of the control velocity per unit force of the shaker
with no control (thick dashed blue line) and with active control (thin solid
red line) for the experimental SISO system.

The feedback loop is then closed setting the compensator Gcc(ω) with a gain
equal to 80% the gain margin for both the simulation and the off-line experi-
ment. This gain value showed a good compromise between the reduction that
can be obtained for the response magnitude and the spillover effect.

The plots of the simulated closed loop FRF are presented in figure 3.15, where
the thick dashed blue line represents the uncontrolled system and the thin solid
red line the system with the active control unit. Some spillover is noticed in the
first resonance peak, nevertheless the simulation results show a good reduction
in almost all the targeted frequency band; achieving a maximum reduction of
20 dB for the resonance peak at 580 Hz.

On the other hand, the off-line experimental closed loop response is pre-
sented in figure 3.16 where the same colour and types of lines is used to iden-
tify the controlled and uncontrolled system. As expected, at low frequency be-
low 100 Hz the controller has almost no effect on the response. However, as
frequency increases up to 1 kHz most of the resonance peaks are reduced be-
tween 3 and 17 dB, with an average reduction of 3 dB in this frequency range.
Some spillover can be seen in the first resonance peak at 50 Hz, and very little
at 880, 920 and 960 Hz.

3.3 mimo feedback system

In this section a system with five decentralised active control units is analysed.
The experimental system is presented in figure 3.17, in which five velocity feed-
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back loops are implemented using five hexagonal actuators with accelerometers
at their centres, as defined in table 3.5.

1 2

3

4 5

Fp

x

y

(a) Top view from outside of the perspex box.
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3

4 5

Fp

x

y

(b) Bottom view from inside of the perspex box.

Figure 3.17.: Perspex box showing (a) the panel with the five accelerometers and the
excitation force action point and (b) the five hexagonal patches.

Table 3.5.: Coordinates of the centre of each hexagonal actuator.

Actuator 1 2 3 4 5

y [mm] 102 101 157 213 214

x [mm] 137 280 208 137 280

Plot (a) of figure 3.17 shows a top view from outside the perspex box where
the five accelerometers can be seen, and also the primary force application point
together with the coordinate reference system. Plot (b) on the other hand, shows
a bottom view from the inside of the perspex box where the five piezoelectric
actuators can be seen.
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For this MIMO configuration, the vector with the closed loop responses of
the five control velocities is given by [73]

ẇc(ω) = [I + Gcc(ω)Gc(ω)]−1Gcp(ω)Fp(ω) (3.25)

where ẇc(ω) is a 5× 1 vector containing the complex velocity signals from the
error sensors, I is a 5 × 5 identity matrix, Gcc(ω) is a 5 × 5 fully populated
matrix with the transfer functions between the control voltage vc driving each
actuator and the velocity at each control position (refer to appendix A.2 for
detailed equations), Gc(ω) is a diagonal matrix with the compensator and con-
trol gain of each loop, Gcp(ω) is a 5× 1 vector with the five transfer functions
between each velocity at control positions and the primary force Fp(ω).

3.3.1 Control stability analysis

The stability of the system is assessed using the generalized Nyquist cri-
terion [7], which establishes that the system is stable if the locus of det[I +
Gcc(ω)Gc(ω)] = 0 does not encircle the instability point (0, j0) as the frequency
varies from 30 Hz to 20 kHz. As the determinant of a matrix is the product of
its eigenvalues, the stability analysis of the system can be assessed through the
polar plots of the five eigenvalues of I + Gcc(ω)Gc(ω). In this case the five loci
should not encircle the instability point (−1, j0).

The loci of the simulated system, left-hand side plots presented in figure
3.18, exhibit a quite convenient shape for stability with almost all the circles in
the real positive quadrants and few incursions into the real negative ones. The
highest eigenvalue defines the gain margin, and the maximum reduction that
could be achieved is around 27 dB.

Considering the experimental results, the right-hand side plots in figure 3.18

show that the loci of the highest eigenvalue also has a very convenient shape
for stability, quite similar to the simulated one but with smaller incursions into
the real negative quadrants. Nevertheless, it can be seen that the second eigen-
value has a big circle in the left quadrants; defining a lower gain margin and
a maximum reduction index of 15 dB. The stability of the experimental MIMO
system is lower compared to the one of the SISO due to interactions between
the loops, represented by the transfer functions Gcc(i, j) when i 6= j. It is noted
that the compensators Gc(ω) are the same used for the SISO system, and the
loop gain was set considering the most critical loci, i.e. the second one. Then,
the same compensator and gain was applied to the five control loops.
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Figure 3.18.: Loci of the five eigenvalues of the simulated (left-hand side plots) and
measured (right-hand side plots) Gcc(ω) matrix between 30 Hz and 20
kHz.
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3.3.2 Closed loop performance

The overall performance of the system is evaluated using equation when
applying a loop gain equal to 80% the gain margin.

ẇavg
c (ω) =

∑
|ẇc(ω)|2 = ẇH

c (ω)ẇc(ω) (3.26)

where the superscript H is used to indicate the Hermitian operator.
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Figure 3.19.: Narrow band spectra of the control velocity per unit force of the shaker
with no control (thick dashed blue line) and with active control (thin solid
red line) for the simulated MIMO system.
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Figure 3.20.: Narrow band spectra of the control velocity per unit force of the shaker
with no control (thick dashed blue line) and with active control (thin solid
red line) for the experimental MIMO system.
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The results of the simulated system presented in figure 3.19 are quite promis-
ing, showing high reductions in all the considered band, except for a little
spillover at the first resonance peak.

Regarding the off-line control using measured FRFs, figure 3.20 shows that
the amplitudes of most of the resonance peaks between 100 Hz and 1 kHz are
reduced between 3 and 9 dB. The controller has no effect below 100 Hz and
produces very little spillover at the resonance peak at 950 Hz.

3.4 chapter concluding remarks

This chapter presented simulation and experimental results of the active con-
trol effects of SISO and MIMO velocity feedback loops on a thin panel using
hexagonal MFC actuators.

The theoretical work predicted for the SISO set-up good reductions in most
of the considered frequency band with a maximum reduction of around 20 dB.
While for the MIMO configuration, impressive reductions were predicted in all
the frequency of interest, except below 100 Hz.

On the other hand, the off-line experimental results showed good agreement
with the simulated SISO system; with good reductions in most of the resonance
peaks. The differences between simulation and experimental results are higher
when implementing off-line the five decentralised actuators; however, the sys-
tem is capable of reducing the response magnitude at several resonance peaks.
This performance difference is explained by the existence of a big circle in the
real left quadrant of the second loci, which drastically lowers the gain margin
and the maximum reduction index of the experimental system.

One reason for the discrepancies between simulation and experimental re-
sults could be the gap between consecutive triangular leafs of the hexagon.
Due to this gap the moments produced at the edges of the leafs are not prop-
erly cancelled and the point forces at the tip of each leaf are not acting at the
centre of the hexagon.

Considering these promising results, an improvement in the overall perfor-
mance is expected when reducing the gap between consecutive triangular leafs
of the hexagon.
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S H U N T E D P I E Z O E L E C T R I C T R A N S D U C E R S F O R
V I B R AT I O N C O N T R O L

This chapter studies the flexural vibration control effects produced on a two-
dimensional thin structure by a shunted piezoelectric vibration absorber. In
particular, it shows how the high modal overlap factor and the electromechan-
ical inherent properties of piezoelectric patches can influence the tuning of the
electrical shunt and therefore the performance of the vibration control system
produced at the target frequencies.

A parametric study is also presented in which general guidelines for the
dimensioning of the piezoelectric patch vibration absorber are provided in
order to maximise the vibration control performance.
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4.1 introduction

The study presented here considers a plate equipped with a pair of collocated
piezoelectric transducers connected to a shunt, which is tuned in such a way as
to absorb vibration energy near a resonance frequency of the hosting structure.
In their work published in 1991, Hagood and von Flotow [21] presented two
methods to find the optimum values for an RL shunt: one based on the pole
placement control theory and the other based on the fixed-point formulation
developed by Den Hartog [22] for mechanical TVAs. Approximated and exact
expressions to calculate the optimal inductance and resistance of the RL shunt
can also be found in recent works [74–76]. However, they refer to simplified
systems that consider only one flexural natural mode of the hosting structure;
and, in general, the flexural response spectrum of distributed structures sub-
ject to broad band disturbances is characterised by multiple resonance peaks
produced by the overlap of the second order responses of the structure natural
modes [70].

The distribution of the resonance peaks on the frequency axis depends on
the type of structure (beam, plate, shell, etc.) and on the type of wave (flexural,
extensional, etc.) and it is defined by the modal density factor n(ω) [70, 77,
78], which gives the average number of natural frequencies per unit frequency
where ω is the circular frequency in rad/s. Furthermore, the number of modal
responses that contribute to the overall response of the structure at a given
frequency is proportional to frequency, to the modal damping ratio and to the
modal density factor. This effect is usually quantified with the so called modal
overlap factor M(ω) = 2ωξn(ω) [70, 77, 78]. In thin two-dimensional structures,
flexural vibrations are characterised by modal overlap factors that rise rapidly
with frequency. Then, the flexural response at each frequency of shells and
plates is influenced by multiple modes.

The system proposed in this work is composed of a pair of collocated thin
rectangular piezoelectric transducers bonded on opposite sides of the panel,
forming in this way a symmetric laminate around the mid-plane of the panel.
The transducers are connected in a counter-phase parallel architecture. The
shunt is composed by a parallel RL circuit which together with the inherent
capacitance of the transducers produce a resonating electrical circuit that cou-
ples with the flexural vibration of the panel, acting as a vibration absorber
[21, 22, 79]. An ideal negative capacitance, which compensates the inherent one
of the transducers [24–37, 80], is then also considered in the parallel circuit.
An analytical fully coupled model, which includes the passive mechanical and
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electro-mechanical effects of the piezoelectric transducers, is used to derive the
flexural response of the plate with the pair of piezoelectric patches.

This study highlights how the shunt tuning is affected by the multi-modal
response of distributed two-dimensional structures and by the inherent elec-
trical and passive mechanical effects of the piezoelectric transducers. A para-
metric study is also presented, which provides general guidelines on how the
area and thickness of the transducers affect the tuning and performance of the
piezoelectric vibration absorber system.

4.2 modelling of shunted piezoelectric transducers bonded on

a thin plate

The system considered in this study is presented in figure 4.1, it is composed
of a simply supported rectangular thin panel with a pair of collocated, rect-
angular, thin, piezoelectric transducers bonded slightly offset from the centre
of the aluminium plate. The piezoelectric patches have the same aspect ratio

z , 3

x , 1

y , 2
yc

xc

dx

dy

lx

ly

Zs

1

2

Figure 4.1.: Plate with a pair of piezoelectric transducers.

as the plate and lateral edges oriented parallel to the edges of the plate. Both
patches have the same dimensions and are made of the same material, which
means they have the same elastic and piezoelectric properties. The patches are
assumed perfectly bonded on the plate, one on the bottom surface and the other
on the top surface. In this way, they form a symmetric laminate around the
plate mid-surface. Then, as shown in figure 4.1 the principal reference system
is located on the bottom left corner of the panel with x and y axes laid on the
plate mid-surface parallel to the edges of plate. A double notation (x, y, z) and
(1, 2, 3) is used for the principal axes to simplify the mathematical formulation.
The piezoelectric transducers are polarised in transverse direction, indicated by
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Piezoelectric actuator

Panel
midplane

Shunt

Figure 4.2.: Cross section of the plate with the pair of shunted piezoelectric transducers.

the red arrow in figure 4.2. As they are bonded on opposite surfaces of the
plate, they undergo opposite form of normal strains in x and y directions when
the plate bends, i.e. extensional against compressional strains. Then, the pair
of transducers are connected in a counter-phase parallel architecture as to offer
the same electromechanical loads to flexural vibrations despite the above men-
tioned fact that they are bonded on opposite surfaces of the panel. This arrange-
ment of two patches is then connected to an electrical shunt circuit, devised to
reduce the flexural vibration contribution due to one flexural mode of the plate.
The shunt, as shown in figure 4.3 is composed of an inductor and a resistor in

Figure 4.3.: Lumped parameters model of the system considering only its first natural
mode.

parallel, which together with the inherent capacitance of the piezoelectric trans-
ducers form an RLC parallel circuit. It is possible to maximise the absorption
of the electrical energy generated by the extensional and compressional normal
strains of the two piezoelectric patches due to the flexural vibration of the plate
by properly tuning the inductance and resistance of the shunt [21, 22, 79].
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Piezoelectric transducers are, generally speaking, characterised by a relatively
large inherent capacitance, which limit the effectiveness of the shunt. Then, the
possibility of adding a negative capacitance to the shunt to compensate that of
the patches [25]. To implement this negative capacitance effect active electrical
circuits using operational amplifiers could be used; however, this introduces
a number of issues [24–37, 80] that should be taken into account, e.g. the sys-
tem stability. For simplicity and as depicted in figure 4.3 an idealised capacitor
characterised by negative capacitance is considered in the shunt.

A uniform distribution of uncorrelated, stochastic, transverse forces resem-
bling a rain on the roof excitation [12] is used to excite the plate. The steady
state response of the plate is expressed in terms of the power spectral density
(PSD) of the total flexural kinetic energy [12].

Table 4.1.: Dimensions and physical properties of the plate.

Parameter Value Units

Thickness hp = 1 mm
Length lx = 414 mm
Width ly = 314 mm
Density ρp = 2700 kg/m3

Young’s Modulus Yp = 70× 109 N/m2

Poisson’s ratio νp = 0.33 —
Modal damping ratio ξp = 0.02 —

The principal reference system depicted in figure 4.1 is used to define the
constitutive relations for both the panel and the piezoelectric patches. The plate
is made of aluminium isotropic material and the transducers of a piezoceramic
material polarized in transverse z-direction and isotropic in the x–y plane. Both
materials are assumed homogeneous and linearly elastic. The geometry and
mechanical properties of the panel are presented in table 4.1 while the geometry
and electromechanical properties of the patches are provided in table 4.2.

The plate and the two piezoelectric transducers form a symmetric laminate
around the mid-surface of the plate. In this case the in-plane extensional and
shear vibrations [77] are uncoupled from the out-of-plane flexural vibrations
of the panel [81]. Then, considering that the study is focused on the flexural
vibrations of the plate produced by out-of-plane loads in a low audio frequency
range up to 1 kHz, the model for the out-of-plane response of the plate with
the pair of shunted piezoelectric transducers is simply derived.
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Table 4.2.: Dimensions and physical properties of the piezoelectric patches.

Parameter Value Units

Thickness hpe = 0.5 mm
Width dx = 82.8 mm
Length dy = 62.8 mm
Centre position xc =

13
28 lx mm

yc =
15
28 ly mm

Density ρpe = 7600 kg/m3

Young’s Modulus Ype = 50× 109 N/m2

Poisson’s ratio νpe = 0.35 —
Permittivity εT

33 = 29.2× 10−9 F/m
Inherent capacitance Cpe = 267.9× 10−9 F
Strain/charge constants d31 = −150× 10−12 m/V

d32 = −150× 10−12 m/V
d36 ≈ 0 m/V

The study considers that the piezoelectric patches are perfectly bonded to the
panel, i.e. the layers of epoxy adhesive are very thin and stiff compared to the
plate and patches; in this case the bending strains are assumed continuous at
the interface between the panel and the patches [82–85]. Also, the considered
thicknesses of the plate and piezoelectric patches are at least 10 times smaller
than the surface dimensions of the plate and of the patches.

Therefore, the out-of-plane flexural vibrations of the plate with the shunted
transducers are derived with the classical laminated plate theory (CLPT) [81].
The CLPT assumes linearly varying laws across the whole panel and piezo-
electric transducers laminate with null values at the plate mid-surface for the
normal strains in x and y directions. Then, according to Hooke’s stress-strain
law for linearly elastic materials, also the normal stresses in x and y directions
should vary linearly across the laminate; however, as the material properties
of the plate and of the piezoelectric transducers are not the same, the normal
stresses in x and y directions are characterised by discontinuity and change in
slope at the interfaces between the plate and the piezoelectric patches [86, 87].
In fact, these discontinuities are emphasised by the additional normal stresses
in x and y directions produced by the electrical activation of the piezoelectric
patches, which are in opposite direction than those produced by the restoring
strain of the piezoelectric material [85, 87]. However, the equilibrium condition
at the free edges of the transducers enforces the in-plane normal stress com-
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ponents in x and y directions to be zero, which is in conflict with the linearly
varying hypothesis mentioned above [81]. Nevertheless, Liang and Rogers [82]
showed that the in-plane normal stress field in the transducers is actually un-
affected by the free edges except approximately four patch thicknesses from
the edges. Then, as the considered rectangular piezoelectric transducers have a
large aspect ratio (i.e. lateral dimensions vs thickness), the linear stress distri-
bution can be assumed [85], which generates a case a pure bending in the lami-
nate. Furthermore, Crawley and de Luis [83] showed that for perfectly bonded
patches the laminate generates bending moments than can be localised along
the boundaries of the piezoelectric transducers.

On the other hand, if the piezoelectric patches material properties were not
isotropic in the plane and the material principal axes were not parallel to the
edges of the patches, twisting moments would also be generated along the
edges of the patches together with the bending moments mentioned before.
These twisting moments would produce transverse point forces acting at each
corner of the patches, but whose overall effect is necessarily zero, as expected
for strain actuators [71, 88–91].

4.2.1 Stress/strain relations of the plate and patches

The out-of-plane flexural vibration of the plate with the shunted piezoelec-
tric patches is derived considering the CLPT, which for the system at hand,
assumes [57, 81]:

1. the thicknesses of the plate and piezoelectric patches are small compared
to the surface dimensions of the plate and piezoelectric patches (ratio
thickness vs lateral dimensions < 0.1);

2. the displacements of the plate mid-surface are much smaller than unity
such that their squares and products are negligible;

3. the out-of-plane normal stress is small compared to the in-plane normal
stresses;

4. transverse normals perpendicular to the laminate mid-surface remain straight
after deformation, they do not undergo elongation and remain perpendic-
ular to the mid-surface after deformation.
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The fourth hypothesis, known as Kirchhoff hypothesis, leads to the following
linear relationships for the in-plane U(x, y, z, t) and V(x, y, z, t) and the out-of-
plane W(x, y, z, t) displacements in the plate and piezoelectric patches [81]:

U(x, y, z, t) = u(x, y, t)− zw,x(x, y, t) (4.1)

V(x, y, z, t) = v(x, y, t)− zw,y(x, y, t) (4.2)

W(x, y, z, t) = w(x, y, t) (4.3)

where u(x, y, t) and v(x, y, t) are the in-plane displacements, w(x, y, t) is the out-
of-plane displacement of the panel mid-surface and w,x and w,y are the rotations
of the normal to the mid-surface about the y and x axe respectively where the
subscript "," is used to indicate the spatial derivative. The Kirchoff hypothesis
also leads to a plane strain state [46, 47, 57, 81], which means that S3, S4 and
S5 are zero. The condition of zero shear strains S4 and S5 for isotropic or or-
thotropic materials implies that also the shear stresses T4 and T5 are zero. Then,
considering the third hypothesis, which assumes that T3 is zero, there is also a
plane stress state, which is normally used to define the material stress/strain
relations for thin laminates [46, 47, 57, 81]. Then, the constitutive expressions
for the plate and piezoelectric patches are expressed as:

T =


T1

T2

T6

 (4.4a) S =


S1

S2

S6

 (4.4b)

The second hypothesis leads to linear strain-displacement relations [46, 47,
57, 81], such that:

S1 = U,x (4.5)

S2 = V,y (4.6)

S6 = U,y + V,x (4.7)

Substituting the displacements given in equations (4.1)-(4.3) into these expres-
sions yields the following strains relations with respect to the displacements
and curvatures of the plate mid-surface:

S1 = u,x(x, y)− zw,xx(x, y) (4.8)

S2 = v,y(x, y)− zw,yy(x, y) (4.9)

S6 = u,y(x, y) + v,x(x, y)− 2zw,xy(x, y) (4.10)
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Finally, considering only the transverse displacement of the plate mid-surface
(i.e. neglecting u,x(x, y), v,y(x, y), u,y(x, y) and v,x(x, y)) the plate and piezoelec-
tric transducers strain vector can be expressed as:

S = zK (4.11)

where K the vector with the curvatures due to bending deformation of the plate
defined as

K =


−w,xx

−w,yy

−2w,xy

 (4.12)

where for simplicity the dependency on the x and y variables has been omitted.
The electric field and electric displacement vectors are presented in equa-

tions (4.13a) and (4.13b). The electric field, generated by the electric potential
difference at the two electrodes is aligned with the polarization vector along
direction 3; and the same happens with the polarization vector.

E =


E1

E2

E3

 =


0

0

E3


(4.13a)

D =


D1

D2

D3

 =


0

0

D3


(4.13b)

As both vectors have only one component, the following notation is used
Epe = E3 and Dpe = D3 instead of the vectorial one. Also, as the transducers
have a constant thickness and their piezoelectric material is homogeneous, the
electric field can be assumed constant as for small thicknesses fringe effects
are negligible [92]. Then, the following electric field-electric potential relation is
assumed:

Epe =
vpe

hpe
(4.14)

where vpe is the voltage difference across the electrodes of the two piezoelectric
transducers connected in parallel. On the other hand, also the electric displace-
ment generated by the piezoelectric material produces a total electric charge on
the electrodes of the patches, given by:

Qpe =
∫

Ape,i

Dpe Ape,i (4.15)
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Then, the following matrix form [2, 92] can be used to express the constitutive
equations for the plate material as:

T = cpS (4.16)

and for the piezoelectric material as:

 Dpe

T

 =

 εS
pe eT

pe

−epe cE
pe

 Epe

S

 (4.17)

where εS
pe = εS

33 is the piezoelectric material permittivity in transverse direc-
tion under constant strain (S = 0), the vector epe is given by the piezoelectric
stress/charge constants

epe =


e31

e32

0

 (4.18)

and the matrices cp and cE
pe give the elastic constants for the plate and piezo-

electric patches and are defined as

cp =


Yp

1−ν2
p

νpYp

1−ν2
p

0
νpYp

1−ν2
p

Yp

1−ν2
p

0

0 0 Yp
2(1+νp)


(4.19a)

cE
pe =


YE

pe

1−νE2
pe

νE
peYE

pe

1−νE2
pe

0

νE
peYE

pe

1−νE2
pe

YE
pe

1−νE2
pe

0

0 0
YE

pe

2(1+νE
pe)


(4.19b)

where Yp and νp are the Young’s modulus (or elastic modulus) and Poisson
ratio of the plate and YE

pe and νE
pe correspond to the piezo, measured under

constant field intensity (E = 0).
The parameters e31, e32 and εS

pe are not available in commercial datasheets, so
they are usually derived using an alternative form of the constitutive equations
of the piezoelectric material:

 Dpe

S

 =

 εT
pe dT

pe

dpe sE
pe

 Epe

T

 (4.20)
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where εT
pe is the piezoelectric material permittivity in transverse direction under

constant stress (T = 0), the vector dpe is given by the piezoelectric strain/charge
constants provided in table 4.2

dpe =


d31

d32

0

 (4.21)

and the matrix sE
pe gives the compliance constants for the piezoelectric patches:

sE
pe =


1

YE
pe
− νE

pe

YE
pe

0

− νE
pe

YE
pe

1
YE

pe
0

0 0
2(1+νE

pe)

YE
pe

 (4.22)

The values for the piezoelectric material permittivity in transverse direction
under constant strain εS

pe and for the vector epe are obtained by setting the stress
T equal to zero in equations (4.17) and (4.20), which gives the following set of
four equations:

Dpe = εS
peEpe + eT

peS (4.23)

0 = −epeEpe + cE
peS (4.24)

Dpe = εT
peEpe (4.25)

S = dpeEpe (4.26)

Substituting equation 4.26 in equation 4.24 gives

epe = cE
pedpe (4.27)

Then, substituting equations 4.25, 4.26 and 4.27 in equation 4.23 yields

εS
pe = εT

pe(1− k2) (4.28)

where k is called the electromechanical coupling coefficient [2, 44] of the piezo-
electric transducer and is defined as follows

k2 =
eT

pecE
pedpe

εT
pe

(4.29)
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4.2.2 Variational formulation using the generalised Hamilton’s principle

The equations of motion for the flexural vibration of the plate with the
shunted piezoelectric transducers are derived using the generalised form of
Hamilton’s principle for electromechanical systems considering the variational
indicator V.I. for displacement and flux linkage variables [2, 92, 93]:

∫ t2

t1

[δL + δWnc] dt = 0 (4.30)

where δ(. . . ) is the variation operator, Wnc is the work done by non conservative
forces and L is the Lagrangian given by [2]:

L = T∗ −V + W∗e (4.31)

where T∗,V and W∗e represent respectively the kinetic coenergy, the elastic po-
tential energy and the electrical coenergy for the flexural vibrations of the plate
with the patches [2, 93]. These three variables are given by [2, 92]:

T∗ =
1
2

∫
Vp

ρpẇ2 dVp +
∑

i=1,2

1
2

∫
Vpe,i

ρpeẇ2 dVpe,i (4.32)

V =
1
2

∫
Vp

STT dVp +
∑

i=1,2

1
2

∫
Vpe,i

STT dVpe,i (4.33)

W∗e =
∑

i=1,2

1
2

∫
Vpe,i

EpeDpe dVpe,i (4.34)

where the sub-index i is used to identify the two piezoelectric transducers. Sub-
stituting equations (4.16) and (4.16) in equation (4.33) gives:

V =
1
2

∫
Vp

STcpS dVp +
∑

i=1,2

1
2

∫
Vpe,i

�
−STepeEpe + STcE

peS
�

dVpe,i (4.35)

Then, substituting equation (4.16) in equation 4.34:

W∗e =
∑

i=1,2

1
2

∫
Vpe,i

�
Epeε

S
peEpe + EpeeT

peS
�

dVpe,i (4.36)

On the other hand, the work done by non-conservative actions is composed
of three contributions: the work done by the external uncorrelated transverse
forces exciting the panel; the work done by the damping forces exerted by the
interaction between the panel flexural vibration and the fluid and the work
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done by the external currents applied to the piezoelectric patches; which are
respectively represented in equations 4.37, 4.38 and 4.39.

W f
nc =

∫
Ap

f w dAp (4.37)

Wd
nc = −

∫
Ap

µẇw dAp (4.38)

W i
nc = −

∑
i=1,2

∫
Ape,i

σvpe dApe,i (4.39)

where f is the uncorrelated transverse force excitation per unit surface, w the
transverse displacement at position (x, y) of the plate, µ is the viscous damping
factor per unit surface and σ are the surface charge densities set at the electrodes
of the two piezoelectric patches. So, the total work done by non-conservative
forces is defined by:

Wnc = W f
nc + Wd

nc + W i
nc =

∫
Ap

f w dAp −
∫

Ap

µẇw dAp −
∑

i=1,2

∫
Ape,i

σvpe dApe,i

(4.40)

4.2.3 Variation indicator

The variations of the Lagrangian and of the work of the non-conservative
actions are derived as follows

δL =
∂L
∂ẇ

δẇ +
∂L
∂S

δS +
∂L

∂Epe
δEpe (4.41)

δWnc =
∂Wnc

∂w
δw +

∂Wnc

∂vpe
δvpe (4.42)

Recalling that the Lagrangian has three contributions, the variations are calcu-
lated for each one of them:

δT∗ =
∂T∗

∂ẇ
δẇ +

∂T∗

∂S
δS +

∂T∗

∂Epe
δEpe (4.43)

δV =
∂V
∂ẇ

δẇ +
∂V
∂S

δS +
∂V

∂Epe
δEpe (4.44)

δW∗e =
∂W∗e
∂ẇ

δẇ +
∂W∗e
∂S

δS +
∂W∗e
∂Epe

δEpe (4.45)
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Then, solving all these operations yields:

∂T∗

∂ẇ
δẇ =

∫
Vp

ρpẇδẇ dVp +
∑

i=1,2

∫
Vpe,i

ρpeẇδẇ dVpe,i (4.46)

∂T∗

∂S
δS = 0 (4.47)

∂T∗

∂Epe
δEpe = 0 (4.48)

∂V
∂ẇ

δẇ = 0 (4.49)

∂V
∂S

δS =
∫

Vp

δSTcpS dVp +
∑

i=1,2

1
2

∫
Vpe,i

�
−δSTepeEpe + 2δSTcE

peS
�

dVpe,i (4.50)

∂V
∂Epe

δEpe = −
∑

i=1,2

1
2

∫
Vpe,i

δEpeSTepe dVpe,i (4.51)

∂W∗e
∂ẇ

δẇ = 0 (4.52)

∂W∗e
∂S

δS =
∑

i=1,2

1
2

∫
Vpe,i

EpeeT
peδS dVpe,i (4.53)

∂W∗e
∂Epe

δEpe =
∑

i=1,2

1
2

∫
Vpe,i

�
2δEpeε

S
peEpe + δEpeeT

peS
�

dVpe,i (4.54)

While solving the derivatives for equation 4.42 yields

∂Wnc

∂w
δw =

∫
Ap

f δw dAp −
∫

Ap

µẇδw dAp (4.55)

∂Wnc

∂vpe
δvpe = −

∑
i=1,2

∫
Ape,i

σδvpe dApe,i (4.56)
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Then, the variation of the Lagrangian is the sum of all terms from equa-
tion (4.46) to equation (4.56), which gives

∫ t2

t1


∫

Vp

ρpẇδẇ dVp +
∑

i=1,2

∫
Vpe,i

ρpeẇδẇ dVpe,i −
∫

Vp

δSTcpS dVp

+
∑

i=1,2

1
2

∫
Vpe,i

�
δSTepeEpe − 2δSTcE

peS + δEpeSTepe + EpeeT
peδS

+2δEpeε
S
peEpe + δEpeeT

peS
�

dVpe,i +
∫

Ap

f δw dAp

−
∫

Ap

µẇδw dAp −
∑

i=1,2

∫
Ape,i

σδvpe dApe,i

 dt = 0

(4.57)

Considering that S and epe are column vectors, equation (4.57) can be simplified
into:

∫ t2

t1


∫

Vp

ρpẇδẇ dVp +
∑

i=1,2

∫
Vpe,i

ρpeẇδẇ dVpe,i −
∫

Vp

δSTcpS dVp

+
∑

i=1,2

∫
Vpe,i

�
δSTepeEpe − δSTcE

peS + δEpeε
S
peEpe + δEpeeT

peS
�

dVpe,i

+
∫

Ap

f δw dAp −
∫

Ap

µẇδw dAp −
∑

i=1,2

∫
Ape,i

σδvpe dApe,i

 dt = 0

(4.58)

Then, considering that the operators δ(. . . ) and ∂(. . . )/∂t are commutative, the
first two terms of equation (4.58) are integrated by parts [93]; and recalling that
δw = 0 for t = t1 and t = t2 equation (4.58) can be expressed as:

∫ t2

t1

−
∫

Vp

ρpẅδw dVp −
∑

i=1,2

∫
Vpe,i

ρpeẅδw dVpe,i −
∫

Vp

δSTcpS dVp

+
∑

i=1,2

∫
Vpe,i

�
δSTepeEpe − δSTcE

peS + δEpeε
S
peEpe + δEpeeT

peS
�

dVpe,i

+
∫

Ap

f δw dAp −
∫

Ap

µẇδw dAp −
∑

i=1,2

∫
Ape,i

σδvpe dApe,i

 dt = 0

(4.59)
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Substituting the strain-displacement relation and the electric field-electric po-
tential relation given in equations (4.11) and (4.14) respectively yields the fol-
lowing integral expression

∫ t2

t1

−
∫

Vp

ρpẅδw dVp −
∑

i=1,2

∫
Vpe,i

ρpeẅδw dVpe,i −
∫

Vp

z2δKTcpK dVp

+
∑

i=1,2

∫
Vpe,i

(
z

hpe
δKTepevpe − z2δKTcE

peK +
1

h2
pe

δvpeε
S
pevpe +

z
hpe

δvpeeT
peK

)
dVpe,i

+
∫

Ap

f δw dAp −
∫

Ap

µẇδw dAp −
∑

i=1,2

∫
Ape,i

σδvpe dApe,i

 dt = 0

(4.60)

The next step is breaking the volume integrals into a product of area and
thickness integrals, and solving these thickness integrals the following expres-
sion is obtained

∫ t2

t1

−
∫

Ap

mpẅδw dAp − 2
∫

Ape,i

mpeẅδw dApe,i −
∫

Ap

IpδKTcpK dAp

+ 2
∫

Ape,i

�
zpeδKTepevpe − IpeδKTcE

peK +
1

hpe
δvpeε

S
pevpe + zpeδvpeeT

peK
�

dApe,i

+
∫

Ap

f δw dAp −
∫

Ap

µẇδw dAp −
∑

i=1,2

∫
Ape,i

σδvpe dApe,i

 dt = 0

(4.61)

where:

mp = ρphp (4.62)

mpe = ρpehpe (4.63)

zpe =
∫ z1

z0

z
hpe

dz =
∫ z3

z2

z
hpe

dz = −
hp + hpe

2
(4.64)

Ip =
∫ z2

z1

z2 dz =
h3

p

12
(4.65)

Ipe =
∫ z1

z0

z2 dz +
∫ z3

z1

z2 dz = α
h3

pe

12
(4.66)

α = 6
�

hp

hpe

�2

+ 12
�

hp

hpe

�
+ 8 (4.67)
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The thicknesses z0, z1, z2 and z3, shown in figure 4.2, are defined as

z0 = −
�

hp

2
+ hpe

�
(4.68)

z1 = −
hp

2
(4.69)

z2 =
hp

2
(4.70)

z3 =
hp

2
+ hpe (4.71)

4.2.4 Solution using Galerkin’s method

The transverse displacement of the plate with the piezoelectric transducers
is separable in space and time variables for synchronous motions [94], which
allows its representation in terms of a modal summation as follows

w(x, y, z) = [φn1 . . . φnR ]


q1(t)

...

qR(t)

 = ϕϕϕ(x, y)q(t) (4.72)

where φnR(x, y) are the R natural modes of the plate with no piezoelectric
patches and qR(t) are the R generalised coordinates for the transverse vibra-
tions of the plate. The plate is assumed simply supported, therefore it is char-
acterised by the following natural modes and natural frequencies:

φnr(x, y) = 2 sin
�r1πx

lx

�
sin

�
r2πy

ly

�
(4.73)

ωnr =

Ì
Yph2

p

12ρp(1− ν2
p)

[�r1π

lx

�2
+

�
r2π

ly

�2]
(4.74)

where r1 and r2 are the mode indexes.
Substituting the modal summation for the transverse displacement presented

in equation (4.72) and allowing arbitrary variations of q(t) and vpe(t), which
are equal to zero for t = t1 and t = t2, yields the following two matrix equa-
tions [92]

�
Mp + Mpe

�
q̈(t) + Cpq̇(t) +

�
Kp + Kpe

�
q(t) +ΘΘΘpevpe(t) = ΦΦΦ(t) (4.75)
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−ΘΘΘT
peq(t) + Cpevpe(t) = qpe(t) (4.76)

where qpe is the charge produced by the piezoelectric transducers, Mp, Cp, Kp

are the modal mass, modal damping and modal stiffness matrix of the plate,
Mpe, Kpe and ΘΘΘpe are the modal mass, modal stiffness and modal electrome-
chanical transduction coefficient of the piezoelectric patches, Cpe is the capac-
itance of both piezoelectric transducers and ΦΦΦ is the vector with the modal
amplitudes of the generalised primary forces. These matrices and vectors are
defined as:

Mp = mp

∫
Ap

ϕϕϕT(x, y)ϕϕϕ(x, y)dAp = mpI (4.77)

Cp =
∫

Ap

µϕϕϕT(x, y)ϕϕϕ(x, y)dAp = 2mpξpΩ (4.78)

Kp = Ip

∫
Ap

ψψψT(x, y)cpψψψ(x, y)dAp = mpΩ2 (4.79)

Mpe = 2mpe

∫
Ape

ϕϕϕT(x, y)ϕϕϕ(x, y)dApe (4.80)

Kpe = 2Ipe

∫
Ape

ψψψT(x, y)cE
peψψψ(x, y)dApe (4.81)

ΘΘΘpe = 2zpe

∫
Ape

ψψψT(x, y)epedApe (4.82)

ΦΦΦ =
∫

Ap

ϕϕϕT(x, y) f (x, y)dAp (4.83)

Cpe = 2
εS

pe Ape

hpe
(4.84)

where I is an identity R× R matrix, ξp is the modal damping ratio assumed to
be equal for all modes, and

ψψψ(x, y) =


ϕϕϕ,xx(x, y)

ϕϕϕ,yy(x, y)

2ϕϕϕ,xy(x, y)

 (4.85)
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Ω =


ωn1

. . .

ωnR

 (4.86)

The plate mass and stiffness matrices are diagonal while the piezoelectric trans-
ducers mass and stiffness matrices are fully populated, which means that the
inertial and stiffness effects of the patches couple the modal responses of the
plate based on the natural modes of the plate without patches. For the complete
calculation of these matrices see appendix B.

It is convenient to calculate the derivative of equation (4.76) to work with
current instead of total charges, then the following expression is obtained

−ΘΘΘT
peq̇(t) + Cpev̇pe(t) = is(t) (4.87)

where ipe is the current flowing trough the piezoelectric patches. Then, another
equation is used to describe the shunt circuit, considering the most general
case analysed here where an RLC parallel is used and according to the sign
convention shown in figure 4.3 the governing equation is

ipe(t) = −
� 1

Rs
vpe(t) +

1
Ls

∫
vpe(t)dt + Csv̇pe(t)

�
(4.88)

4.2.5 Frequency domain formulation

The variables presented in the previous section can be expressed in terms of
phasors in the form

f (t) = f (ω)ejωt

where harmonic motion is assumed and where ω is the circular frequency and
f (ω) is the complex amplitude. Then, the three differential equations (4.75),
(4.87) and (4.87) that describe the response of the panel with the pair of shunted
piezoelectric transducers can be expressed as

�
−ω2M + jωCp + K

�
q(ω) +ΘΘΘpevpe(ω) = ΦΦΦ(ω) (4.89)

−jωΘΘΘT
peq(ω)+jωCpevpe(ω) = is(ω) (4.90)

vpe(ω) = vs(ω) = −Zs(ω)is(ω) (4.91)

where M and K are the fully populated matrices containing respectively the
sum of the modal mass matrices of the plate Mp and patches Mpe and of the
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modal stiffness matrices of the plate Kp and patches Kpe, ΦΦΦ(ω) is the vector
containing the complex amplitudes of the generalised primary forces, q is the
vector with the amplitudes of the generalised coordinates, vpe(ω) and ipe(ω) are
the complex amplitudes of the voltage and current and Zs(ω) is the impedance
of the shunt circuit, defined for the parallel RLC shunt in equation (4.92) and
for the parallel RL circuit in equation (4.93)

ZRLC
s (ω) =

jωLsRs

Rs + jωLs −ω2RsLsCs
(4.92)

ZRL
s (ω) =

jωLsRs

Rs + jωLs
(4.93)

Substituting the current in equation (4.90) using equation (4.91) and the re-
sulting voltage into equation (4.89) yields

�
−ω2M + jω

�
Cp + ZspeΠΠΠpe

�
+ K

�
q(ω) = ΦΦΦ(ω) (4.94)

where ΠΠΠpe and Zspe are respectively the electromechanical coupling matrix de-
fined in equation 4.95 and the impedance of the shunt in parallel with the
impedance of patches defined in equation 4.96 for the RLC shunt and in equa-
tion 4.97 for the RL shunt.

ΠΠΠpe = ΘΘΘpeΘΘΘT
pe (4.95)

ZRLC
spe (ω) =

jωLsRs

Rs + jωLs −ω2RsLs
�
Cs + Cpe

� (4.96)

ZRL
spe(ω) =

jωLsRs

Rs + jωLs −ω2RsLsCpe
(4.97)

Equation (4.94) is defined by R second order differential equations mechani-
cally coupled via the fully populated total mass and total stiffness matrices M
and K but also electromechanically via the fully populated coupling matrix ΠΠΠ.
The mechanical coupling appears because the response of the plate has been
expanded with reference to the natural modes of the plate without the piezo-
electric transducers. Then, the next step is to derive a new set of generalised
coordinates in which the total mass and stiffness matrices are diagonal. Consid-
ering the free response (ΦΦΦ = 0) with the patches in short circuit (vpe = 0) and
neglecting the structural damping (Cp = 0) equation (4.94) becomes

�
−ω2M + K

�
q(ω) = 0 (4.98)
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By solving this eigenvalue-eigenvector problem the natural frequencies and
natural modes of the plate with the piezoelectric transducers are obtained as

ω̂nr =
√

λr (4.99)

φ̂nr(x, y) = ϕϕϕ(x, y)q̂r (4.100)

where λr and q̂r are respectively the r-th eigenvalue and the r-th eigenvector.
All eigenvectors can be collected in an eigenvector matrix defined as

V = [q̂1 . . . q̂R] (4.101)

This matrix V is used to diagonalise the total mass and total stiffness matrices
after setting

q(ω) = Vq̂(ω) (4.102)

where the vector q̂(ω) contains the new generalised coordinates. Substitut-
ing 4.102 into equation 4.94 and pre-multiplying by VT gives the following
new set of R differential equations in the new generalised coordinates

�
−ω2M̂ + jω

�
Ĉ + ZspeΠ̂ΠΠ

�
+ K̂

�
q̂(ω) = Φ̂ΦΦ(ω) (4.103)

where the new modal matrices are defined as

M̂ = VTMV (4.104)

Ĉ = VTCpV (4.105)

K̂ = VTKV (4.106)

Π̂ΠΠ = VTΠΠΠpeV (4.107)

Φ̂ΦΦ = VTΦΦΦV (4.108)

It is important to note that the new modal matrices for the total mass and stiff-
ness are now diagonal, while the modal damping and modal electromechanical
coupling matrices are fully populated. In effect, the modal equations of motion
using the new generalised coordinates q̂ are coupled via the electromechani-
cal coupling effect and via the damping effect. However, as the latter can be
neglected for small damping effects, also the new modal damping matrix Ĉ is
diagonal.



70 shunted piezoelectric transducers for vibration control

4.2.6 Spectral analysis of the structure response

As shown in [12], the flexural response of the plate is derived in terms of
the kinetic energy PSD of the plate and piezoelectric patches, derived with the
following expression [95, 96]

SK(ω) =
1
2

∫
Ap

ρphp lim
T→∞

E
� 1

T
ẇ∗(x, y, ω)ẇ(x, y, ω)

�
dAp

+
1
2

∫
Ape

2ρpehp lim
T→∞

E
� 1

T
ẇ∗(x, y, ω)ẇ(x, y, ω)

�
dApe

(4.109)

where the superscript ∗ is used to indicate the complex conjugate operator,
ẇ(x, y, ω) is the finite Fourier transform of ẇ(x, y, t) which according to equa-
tions (4.72) and (4.100) is defined by:

ẇ∗(x, y, ω) = ϕϕϕ(x, y)q̇(ω) = ϕϕϕ(x, y)VT ˙̂q(ω) (4.110)

where q̇(ω) and ˙̂q(ω) are respectively the finite Fourier transform of the vec-
tors q̇(t) and ˙̂q(t) containing the generalised modal velocities of the panel.
Substituting (4.110) in (4.109) gives [12]

SK(ω) =
1
2

Tr
�
M̂Sq̂q̂(ω)

�
(4.111)

where Tr[. . . ] is the trace operator and Sq̂q̂(ω) is the matrix that contains the
self and cross PSD functions of the plate modal velocities produced by the
random excitation and is defined as

Sq̂q̂(ω) = lim
T→∞

E
� 1

T
˙̂q(ω) ˙̂qH(ω)

�
(4.112)

where the vector ˙̂q(ω) can be derived from equation (4.102) and can be ex-
pressed using the following mobility matrix equation

˙̂q(ω) = Ŷ(ω)Φ̂ΦΦ(ω) (4.113)

where Ŷ(ω) is defined in equation (4.114) and Φ̂ΦΦ(ω) is the finite Fourier trans-
form of the vectors with the generalised modal forces Φ̂ΦΦ(t)

Ŷ(ω) = jω
�
−ω2M̂ + jω

�
Ĉ + ZspeΠ̂ΠΠ

�
+ K̂

�−1
(4.114)
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Then, for a linear time-invariant system, the matrix Sq̂q̂(ω), which contains
the modal velocities PSD of the plate and piezoelectric transducers, is derived
using the following expression

Sq̂q̂(ω) = lim
T→∞

E
� 1

T
Ŷ(ω)Φ̂ΦΦ(ω)Φ̂ΦΦ

T
(ω)Ŷ

H
(ω)

�
= ŶSΦ̂ΦΦΦ̂ΦΦ(ω)Ŷ

H
(ω)

(4.115)

where SΦ̂ΦΦΦ̂ΦΦ(ω) is the matrix containing the PSD functions of the modal excita-
ciones, which for the uniform spatial distribution of uncorrelated rain-on-the-
roof forces is defined as

SΦ̂ΦΦΦ̂ΦΦ(ω) = lim
T→∞

E
[
Φ̂ΦΦ(ω)Φ̂ΦΦ

T
(ω)

]
(4.116)

Using equations (4.83) and (4.108), equation 4.116 can be expressed as

SΦ̂ΦΦΦ̂ΦΦ = lim
T→∞

E

[
1
T

VT
∫

Ap

ϕϕϕT(x, y) f (x, y, ω)dAp

∫
A′p

ϕϕϕ(x′, y′) f ∗(x′, y′, ω)dA′pV

]

= VT
∫

Ap

∫
A′p

ϕϕϕT(x, y)S f f (x, y, x′, y′, ω)ϕϕϕ(x′, y′)dApdA′p

V

(4.117)

where S f f (x, y, x′, y′, ω) is the cross spectral density of the rain-on-the-roof ex-
citation, defined as

S f f (x, y, x′, y′, ω) = lim
T→∞

E
� 1

T
f (x, y, ω) f ∗(x′, y′, ω)

�
(4.118)

Finally, the following expression for the kinetic energy PSD is found substi-
tuting equation (4.115) into (4.111)

SK(ω) =
1
2

Tr
[
M̂ŶSΦ̂ΦΦΦ̂ΦΦ(ω)Ŷ

H
(ω)

]
(4.119)

4.3 shunt tuning

This section is focused on the effect of the modal overlap and of the elec-
tromechanical coupling effects on the response of the system when the shunt is
tuned to control the first mode of the plate. This study analyses the spectrum of
the flexural response of the plate in a narrow frequency band around the first
resonance frequency considering an increasing number of modes in the model.
The analysis starts with the response of the structure with the shunt in open
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and short circuit and with a purely resistive shunt. Optimal tuning values for
the inductance and resistance are presented for a simplified model. Then, an
RL shunt using the latter optimal values is analysed. Finally a RLC shunt is
considered to show the effect of a negative capacitance on the system response.

4.3.1 Effect of the shunt on the structure

Figure 4.4 shows the 30-60 Hz spectrum of the total flexural kinetic energy
PSD of the plate without the piezoelectric transducers (dashed thick black line),
with the transducers in short circuit (dash-dotted thin green line), in open cir-
cuit (thin dotted magenta line) and using a purely resistive shunt (solid blue
line). The optimal resistance for this shunt was found by trial and error. The
four plots are obtained considering (a) only the first, (b) the first five, (c) the
first fifty and (d) the first one hundred and fifty natural modes of the plate and
piezoelectric transducers.

The first resonance peak of the plate can be seen at 39 Hz in the four plots as
its value does not change with the number of modes considered in the model.
Plot (a) shows that for the three responses involving the transducers (in open
and short circuit and connected to a resistive shunt) there is a shift to higher
frequencies to around 47 Hz. The short circuit inhibits the electromechanical
capacitive effect of the transducers, resulting in a somewhat reduced stiffness
effect. As it can be seen in the plot, the resonance peak for the short circuited
transducers has the same amplitude as the open circuit one but is located at
a slightly lower frequency. Furthermore, the resonance peak is located at an
intermediate frequency when the resistive shunt is used and its amplitude is
about 6 dB lower due to the electromechanical damping effect produced by the
resistor [21]. Although these features remain as the number of natural modes
considered in the model increases, they shift always to lower frequencies, close
to the fundamental resonance frequency of the plate without patches, as it can
be seen in plots (b), (c) and (d). It can also be noted that, the frequency gap
between the resonance peak in short circuit and open circuit tends to decrease
and also the damping produced by the resistive shunt. For a high number of
modes, and as it usually is in real applications, the short and open circuit and
resonance peaks are very close to each other and the damping produced by the
resistive shunt is rather small.

This example suggests that the modal overlap of the modal responses of the
plate with the piezoelectric transducers is relevant even at low frequencies near
the fundamental resonance frequency of the plate.
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Figure 4.4.: PSD of the total flexural kinetic energy of the plate without the piezoelectric
transducers (dashed thick black line) and with them in short circuit (dash-
dotted thin green line), in open circuit (thin dotted magenta line) and with a
purely resistive shunt (solid blue line) obtained with a model that considers
the (a) first mode, (b) first five modes, (c) first fifty modes and (d) first one
hundred and fifty modes of the plate and piezoelectric transducers.

4.3.2 Tuning law for a simplified system

Hagood and von Flotow [21] showed that the optimal tuning of the elec-
tromechanical vibration absorber formed by a shunted piezoelectric patch can
be found using the classical formulation proposed by Ormondroyd and Den
Hartog [97] for a mechanical vibration absorber. Several norms have been de-
fined over the years to identify the optimal tuning parameters of a classical
mechanical vibration absorber, as summarised by Zilletti and Elliott [98]. Here,
the optimal values for the RL shunt are derived from an H2 norm [9] given by
the time averaged kinetic energy of the plate and piezoelectric transducers per
unit rain on the roof excitation; calculated considering the contribution of only
the first natural mode and a simplified model where the structural damping is
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considered to be zero. Then, the performance index to be minimized is given
by:

I1 =
1
2

M11

∫ ∞

−∞
|Ŷ11(ω)|2dω (4.120)

where Y11 is the mobility function for the first mode of the plate and transduc-
ers, which according to equation (4.114) is given by:

Ŷ11(ω) =
jω

−ω2M̂11 + jωZspeΠ̂11 + K̂11
(4.121)

where M̂11, K̂11 and Π̂11 are the modal mass, stiffness and electromechanical
transduction coefficient related to the first mode of the plate and patches. The
solution of the integral presented in equation (4.120) is obtained using the for-
mulation found in the appendix of reference [99], which leads to:

I1 =
1
2

M̂11
π(N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8)

D1 + D2 + D3
(4.122)

where:

N1 = A2
0A3B2

3 D1 = A2
0A2

3A4

N2 = −A0A1A2B2
3 D2 = A0A2

1A2
4

N3 = 2A0A1A4B1B3 D3 = A0A1A2A3A4

N4 = −A0A1A4B2
2

N5 = −A0A3A4B1
2

N6 = 2A0A3A4B0B2

N7 = A1A2
4B2

0

N8 = −A2A3A4B2
0

Considering that:

A0 = K̂11Rs B0 = 0
A1 = K̂11Ls B1 = Rs

A2 = M̂11Rs + K̂11RsLsCpe + LsRsΠ̂11 B2 = Ls

A3 = M̂11Ls B3 = RsLsCpe

A4 = M̂11RsLsCpe

equation (4.122) becomes

I1 =
1
2

M̂11
π(A2

0A3B2
3 − A0A1A2B2

3 + 2A0A1A4B1B3 − A0A1A4B2
2 − A0A3A4B1

2)

A2
0A2

3A4 + A0A2
1A2

4 + A0A1A2A3A4
(4.123)
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To find the shunt optimal values, the derivatives of the performance index I1

with respect to the inductance and resistance are set to zero:

∂I1

∂Ls
= 0 (4.124)

∂I1

∂Rs
= 0 (4.125)

Solving the derivative in equation (4.124) gives:

−CpeLsK̂11 + M̂11 = 0 (4.126)

and from here the optimal inductance value is found to be:

Lopt
s1 =

M̂11

K̂11Cpe
(4.127)

On the other hand, solving the derivative in equation (4.125) gives the following
expression:

(C2
peK̂

2
11L2

s + Π̂11CpeK̂11L2
s − 2Cpe M̂11K̂11Ls + M̂2

11)R2
s = M̂11K̂11L2

s (4.128)

Then, considering the optimal inductance of equation (4.127) it is possible to
find the following expression for the optimal resistance:

Ropt
s1 =

Ì
M̂11

Π̂11Cpe
(4.129)

The equation (4.127) found for the optimal inductance is similar to the ones
derived in references [21, 100, 101]. Instead, the expression (4.129) found for the
optimal resistance is different than the ones found in the latter references.

4.3.3 Tuning based on the multiple mode formulation

Figure 4.5 presents also four plots in which the PSD of the total flexural
kinetic energy is calculated using the (a) first, (b) first five, (c) first fifty and
(d) first one hundred and fifty modes of the system. Each plot shows the total
flexural kinetic energy PSD of the plate without the piezoelectric transducers
(dashed thick black line), with the transducers in short circuit (dash-dotted thin
green line), with the transducers connected to an inductive shunt (solid thin red
line) and with the transducers connected to an RL shunt (thick solid blue line).
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The values for the shunt are the optimal inductance Lopt
s1 and resistance Ropt

s1

obtained in Section 4.3.2.
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Figure 4.5.: PSD of the total flexural kinetic energy of the plate without the piezoelec-
tric transducers (dashed thick black line) and with them in short circuit
(dash-dotted thin green line), using an inductive shunt (solid thin red line)
and with an RL shunt (thick solid blue line) obtained with a model that
considers the (a) first mode, (b) first five modes, (c) first fifty modes and (d)
first one hundred and fifty modes of the plate and piezoelectric transducers.

Plot (a) of figure 4.5 shows the classical spectra that characterise the response
of a plate with piezoelectric transducers connected to a purely inductive shunt
and to an RL shunt perfectly tuned. The shunt with only the inductance Lopt

s1

produces an antiresonance narrow trough at the same frequency where the res-
onance peak of the short circuited patches occur, and a pair of lightly damped
resonance peaks at each side of the narrow trough with the same amplitude
than the peak of the system with short circuited patches. These two resonance
peaks are rounded off when the optimal resistance Ropt

s1 is added to the shunt,
achieving a reduction of their amplitudes of around 20 dB. Plots (b), (c) and
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(d) show that by increasing the number of considered modes in the simula-
tion these features are progressively lost. Furthermore, from the two peaks pro-
duced by the purely inductive shunt, the one at lower frequency tends to shift
significantly to lower frequencies following the response of the short circuited
system; while the second peak remains around the same position but has a
progressively lower amplitude. In fact, when the resistor is also added to the
shunt this second peak disappears and it is difficult to distinguish the response
of the RL shunt from the one of the shunt in short circuit. This means that the
optimal values for the shunt presented in equations (4.127) and (4.129) for a
simplified one mode model are not accurate any more when the model takes
into consideration higher order modes.

Because of this, a parametric study was conducted to analyse the tuning
of the RL shunt considering an incremental number of modes of the plate
and piezoelectric patches in the model. In this study the optimal values for
the inductance and resistance are found numerically using a genetic algorithm,
whose implementation is discussed in appendix C.

The response of the structure was calculated for a range of pairs of induc-
tance and resistance values in order to obtain three-dimensional plots where
the x-axis is the shunt resistance, y-axis is the shunt inductance and the z-axis
is the reduction of the total flexural kinetic energy PSD in dB in the 30-60 Hz
frequency range. Figure 4.6 shows this surface plots in a top view consider-
ing the (a) first, (b) first five, (c) first fifty and (d) first one hundred and fifty
modes of the panel. The four plots are characterised by an inverted bell shaped
surface, which as the number of considered modes increases is progressively
flattened along the horizontal axis. In addition, the minimum tends to shift by
small inductance values and much higher resistance values. These plots show
that the tuning for the inductance must be quite precise since small variations
from the optimal value would produce substantial degradation to the control
performance of the piezoelectric vibration absorber. They also suggest that a
large number of modes should be used for a correct tuning of the shunt, par-
ticularly for the resistance. This is due to two concurrent effects: first, the fact
that a plate is characterised by a high modal overlap that rises with frequency
such that, at each frequency, the response of the plate is the superposition of
multiple modal responses and second, as discussed in Section 4.2, the mechan-
ical and electromechanical coupling between the piezoelectric transducers and
the plate occurs along the edges of the transducers, generating high cross cou-
pling effects of the fundamental mode with higher order modes of the panel
and transducers.
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Figure 4.6.: Reduction in dB of the PSD of the time averaged total flexural kinetic en-
ergy of the panel in the 30-60 Hz frequency range calculated with a model
that considers the (a) first mode, (b) first five modes, (c) first fifty modes
and (d) first one hundred and fifty modes of the plate and piezoelectric
transducers.

Figure 4.7 shows the spectra of the plate total flexural kinetic energy PSD
when the optimal values shown in figure 4.6 are used. These plots show the
response of the plate without piezoelectric transducers (dashed thick black line),
with the transducers in open circuit (dotted thin magenta line), in short circuit
(dash-dotted thin green line) and connected to an RL shunt (thick solid blue
line). In this plots it is possible to see that as the amount of considered modes
increases the performance of the shunted vibration absorber diminishes from
around 25 dB of peak reduction when only the first mode is taken into account
to around 11 dB when 150 modes are used in the simulation.

In order to find the minimum number of modes that should be taken into
account to accurately describe the control effect of the RL shunt and to find
accurate values for the inductance and resistance, the response of the panel has
been calculated iteratively considering from only the first mode up to the first
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Figure 4.7.: PSD of the total flexural kinetic energy of the plate without the piezoelectric
transducers (dashed thick black line) and with them in open circuit (dot-
ted thin magenta line), in short circuit (dash-dotted thin green line) and
connected to a properly tuned RL shunt (thick solid blue line) obtained
with a model that considers the (a) first mode, (b) first five modes, (c) first
fifty modes and (d) first one hundred and fifty modes of the plate and
piezoelectric transducers.

300 modes of the plate and piezoelectric transducers. Figure 4.8a shows the
convergence of the total flexural kinetic energy PSD peak reduction in dB in
the 30-60 frequency range. The value stabilises to around 11.5 dB when at least
the first one hundred modes are considered in the model.

Plot (b) of figure 4.8b shows the convergence of the optimal shunt inductance
(blue circles) and resistance (orange crosses); which shows that for an accurate
tuning at least 150 modes of the plate with the piezoelectric patches have to
be taken into account. The optimal inductance and resistance obtained using
only the first mode of the plate and patches are respectively around 50% and
75% lower than the values obtained considering a large number of modes. The
values used for figure 4.8 are presented in table 4.3.
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Figure 4.8.: Convergence of the (a) panel total flexural kinetic energy PSD peak reduc-
tion and (b) of the optimal inductance and resistance values as the number
of considered modes in the model increases. Plot (b): blue circles and or-
ange crosses are respectively the optimal inductance and resistance values
considering an increasing amount of natural modes; the cyan square and
red triangular markers show the optimal inductance and resistance consid-
ering only the first mode of the plain plate.

It is also interesting to note that if the shunt inductance was calculated us-
ing the first mode of the plain plate only (square cyan marker in figure 4.8b)
the value would be quite close to the one obtained 150 modes of the plate
and piezoelectric patches. The same is not true for the resistance, which when
calculated using the first mode of the plate only (red triangular marker in fig-
ure 4.8b) is much lower than the value obtained considering 150 modes of the
plate and piezoelectric patches. The importance of considering a large number
of natural modes to predict the response of two dimensional thin structures
with piezoelectric patches was also noticed by Elliot et al. [52] who considered
the response of a plate equipped with multiple feedback loops using small
piezoelectric patch actuators.

To conclude this analysis, figure 4.9 shows the spectrum of the total flexural
kinetic energy PSD of the plate with no piezoelectric transducers (dashed thick
black line), with the transducers connected to a shunt composed of only the
optimal inductance and to the optimal inductance and resistance. In contrast to
the results shown in figure 4.5d, when the accurate inductance is used, the spec-
trum of the flexural response is characterised by the two sharp peaks (thin solid
red line) which are smoothened by around 11 dB when the accurate resistance
is also added to the shunt (thick solid blue line). Another interesting feature
shown in figure 4.9 is the effect of adding a negative capacitance to the shunt
to reduce the inherent capacitance of the transducer; in this case, by a 75%. By
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Table 4.3.: Shunt optimal values and total flexural kinetic energy PSD peak reductions
convergence.

Modes Lopt
s [H] Ropt

s [kΩ] SK1 peak reduction [dB]

1 17.6 35.5 24
5 23.7 37.5 17
10 27.3 39.2 14
50 31.3 69.2 12.5
100 32.4 98.3 11.5
125 32.6 102.8 11.5
150 33.1 142.2 11.5
200 33.2 159.4 11.5
250 33.3 161.2 11.5
300 33.4 163.1 11.5

reducing the global capacitance of the resonant LC circuit, the two sharp peaks
are spread further apart from each other (thin dash-dotted magenta line) and
when the optimal resistance is also used (thick dashed-dotted green line) the
two peaks are smoothened by around 15 dB. As references [25, 27–31, 36] sug-
gested, the RLC shunt using a negative capacitance is able to produce larger
vibration reductions in a frequency band that comprises the response of the
targeted mode of the structure.

4.4 analysis of the piezoelectric transducer dimensions

A parametric study to asses the effect of the transducers dimensions on
the control performance of the shunted piezoelectric vibration absorber is pre-
sented in this section. Table 4.4 shows the initial and final dimensions of the pair

Table 4.4.: Dimensions of the piezoelectric transducers for the parametric study.

Dimension Value

dx/lx 5% to 90%
dy/ly 5% to 90%

hpe/hp 10% to 100%

of piezoelectric transducers. The study considers the flexural vibration control
effects at frequencies near the fundamental resonance frequency of the panel.
The pair of shunted transducers produce two effects of the panel: a purely me-



82 shunted piezoelectric transducers for vibration control

 Frequency  [Hz] 
30 35 40 45 50 55 60

 S
K

(!
) 

[d
B

 r
el

. 1
 J

N
-1

H
z-1

] 

-40

-30

-20

-10

0

(a)

 Frequency  [Hz] 
34 36 38 40 42

 S
K

(!
) 

[d
B

 r
el

. 1
 J

N
-1

H
z-1

] 

-40

-30

-20

-10

0

(b)

Figure 4.9.: PSD of the total flexural kinetic energy of the plate without the piezoelectric
transducers (dashed thick black line) and with them connected to a shunt
composed of the optimal inductance only (thin solid red line), the optimal
inductance and resistance (thick solid blue line), a negative capacitance and
the optimal inductance (thin dash-dotted magenta line) and a negative ca-
pacitance and the optimal inductance and resistance (thick dashed-dotted
green line) considering the first 150 modes of the plate and transducers for
a (a) 30-60 Hz and (b) 33-42.5 Hz frequency range.

chanical stiffness and inertia effect and a vibration absorption electromechani-
cal effect. Figure 4.10a shows the ratio of the total flexural kinetic energy PSD
peak value in the 30-60 Hz frequency range for the plate with the transducers
in short circuit and the plain plate. This plot suggests that the passive stiffness
and inertia effects produced by the pair of piezoelectric transducers have little
impact on the peak flexural response of the panel at frequencies close to the
fundamental resonance frequency of the panel. In fact, recalling figure 4.4d, the
spectrum of the total flexural kinetic energy PSD of the panel with short cir-
cuited transducers remains quite similar to the one of the plain plate, with the
resonance peak shifted by little to lower frequencies. On the other hand, fig-
ure 4.10b presents the ratio of the total flexural kinetic energy PSD peak value
of the plate with the transducers connected to an optimally tuned RL shunt and
with the transducers in short circuit in the 30-60 Hz frequency band. This plots
shows that when the surface and thickness of the patches increases the peak
flexural response of the panel drops substantially. The larger is the surface area
the higher is the reduction of the peak response of the first natural mode. Also,
the blue curve overlapped to plot (b) indicates that the optimal thickness of the
piezoelectric patches tends to rise as the lateral dimensions of the patches are
increased. This can be explained by the fact that the thicker are the piezoelec-
tric patches the larger is the electromechanical coupling factor and the larger
is the bending stiffness of the plate and piezoelectric patches laminate. Then,
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Figure 4.10.: Ratio in dB of the total flexural kinetic energy PSD peak value in the 30-
60 Hz frequency band for the plate (a) with the piezoelectric transducers
in short circuit and the plain plate and (b) with the optimally shunted
transducers and the short circuited transducers.

while the former effect tends to increase the conversion of the bending strain
into electric current flowing into the shunt the second effect tends to reduce the
bending strain of the piezoelectric patch and thus the electric current flow into
the shunt so that the maximum conversion of mechanical strain energy in elec-
trical energy is obtained for an optimal thickness of the piezoelectric patch [87].
Generally speaking, figure 4.10b indicates that the best vibration control effect
is obtained with piezoelectric patches that cover the largest possible portion of
the panel and have thickness equal to the one of the panel.

In order to provide a deeper insight on how the dimension, surface area and
thickness, of the piezoelectric transducers influence the response of the struc-
ture, four cases are taken into consideration: (1) small and thin transducers, (2)
small and thick transducers, (3) large and thin transducers and (4) large and
thick transducers. The dimensions for the four considered cases are presented
in table 4.5. Figure 4.11 shows the spectra of the total flexural kinetic energy

Table 4.5.: Dimensions of the piezoelectric transducers for the plots presented in figure
4.11.

Case Figure Type of patches Surface area Thickness
Ape/Ap hpe/hp

1 (a) Small and thin 1% 30%
2 (b) Small and thick 1% 30%
3 (c) Large and thin 64% 90%
4 (d) Large and thick 64% 90%
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Figure 4.11.: PSD of the total flexural kinetic energy of the plate without the piezoelec-
tric transducers (dashed thick black line) and with them in short circuit
(dash-dotted thin green line) and connected to a properly tuned RL shunt
(thick solid blue line) for four different patch dimensions as described in
table 4.5.

PSD of the plain panel (thick dashed black line) and of the panel with the
piezoelectric transducers either in short circuit (thin dash-dotted green line) or
connected to the optimal RL shunt (thick solid blue line) in the 30-250 Hz fre-
quency band for all four analysed cases. Plots (a) and (b) indicate that if the
transducers are small, regardless of whether they are thin or thick, the shunted
piezoelectric vibration absorbers have little impact on the flexural response of
the panel and produce a reduction of around 3-4 dB of the amplitude of the
first resonance peak. In contrast, plots (c) and (d) show that large transduc-
ers produce a substantial variation of the dynamic response. More specifically,
the dash-dotted green line in plot (c) shows that, for the vibration absorber
composed of the large and thin patches, the spectrum of the response is charac-
terised by a shift to higher frequencies of the resonance peaks. In other words,
the transducers produce on the panel a higher stiffening effect than the inertial
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effect. Also, the solid blue line in plot (c) shows that the shunt successfully re-
duces the amplitude of the first resonance peak by about 25 dB for a pair of
large and thin patches. Considering the large and thick patches, the thin dash-
dotted green and the thick solid blue lines in plot (d) shows that the spectrum
of the response is characterised by even a greater shift to higher frequencies of
the resonance peaks and that the shunt effectively reduces the amplitude of the
first resonance peak by more than 30 dB.

The four plots of figure 4.11 are useful to provide clear and enlightening
insights on the parametric study presented in figure 4.10, which indicate how
large and thin or large and thick piezoelectric patches produce the best com-
bination of mechanical and electromechanical effects for the reduction of the
flexural response of the fundamental natural mode of the panel at the first reso-
nance frequency. The analysis presented in this section is limited to the control
of the first natural mode of the panel, which is characterised by a volumetric
mode shape that effectively couples to a patch that covers the whole surface of
the panel [70]. It is likely that shaped piezoelectric patches should be used to
effectively control higher order modes, as it happens with radiation modes [70].
Nevertheless, the transducers should be kept as large as possible to maximise
the electromechanical coupling.

Another interesting thing to analyse is how the electrical parameters of the
resonant circuit vary with the transducers dimensions considered in this study.
Figure 4.12 shows the piezoelectric patches inherent capacitance; as it is for par-
allel plate capacitors, the patches inherent capacitance is directly proportional
to the surface area of the patches and inversely proportional to the thickness of
the patches. As it was discussed in section 4.3.3, the piezoelectric transducers
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Figure 4.12.: Piezoelectric transducers inherent capacitance in pF for the considered
surface area and thickness of the transducers.

capacitance determines the aperture, which relates directly to the maximum at-
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tenuation, of the double resonance peak produced by the shunted piezoelectric
vibration absorber in correspondence to the targeted resonance frequency of
the panel. It is possible to affirm that when large piezoelectric transducers are
used, the implementation of a negative capacitance effect in the shunt to reduce
the inherent capacitance of the piezoelectric patch may significantly increase
the vibration control effect produced by the shunted piezoelectric transducer
vibration absorber.
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Figure 4.13.: Optimal values for the shunt (a) inductance in H and (b) resistance in kΩ
for the considered surface area and thickness of the transducers.

Figure 4.13 on the other hand, shows the variation of the optimal inductance
and resistance values in plots (a) and (b) respectively. These plots show that
both the inductance and resistance values tend to decrease as the transducers
surface area increases and as the transducers thickness decreases. Thus, in gen-
eral, it is preferable to use piezoelectric patches with the largest possible surface
area and thickness similar to the one of the plate for the practical realisation of
the shunt circuit.

4.5 chapter concluding remarks

This chapter presented a theoretical study on shunted piezoelectric vibration
absorbers bonded on a thin rectangular panel to control its flexural response at
frequencies near a resonance frequency of the panel. A fully coupled electrome-
chanical analytical model was presented, which was developed considering the
classical laminated plate theory.

This study shows that the classical analytical formulae for the optimal tuning
values of the RL shunt circuit based on simplified lumped parameters model
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are not adequate when the patches are bonded on two-dimensional distributed
structures such as a thin plate. Two effects could explain this:

1. the high modal overlap factor that characterises thin structures, and

2. the fact that the coupling between the plate and the transducers is char-
acterised by large self and cross mechanical and electromechanical modal
coupling factors.

Finally, the last part of the chapter deals with a parametric study that gives
general guidelines about how the surface and thickness dimensions of the
piezoelectric transducers affect the performance of the vibration absorber sys-
tem. To control the response near the first resonance frequency of the plate, the
piezoelectric patches should be very large, covering most of the panel surface
and a thickness equal to the one of the plate. The control of the flexural response
near resonances at higher frequencies is expected to require large patches, but
with specific shapes, maximising the electromechanical coupling effect of the
targeted resonating mode.





5

T I M E - VA RY I N G S H U N T E D P I E Z O E L E C T R I C V I B R AT I O N
A B S O R B E R S

This chapter deals with a simulation study concerning the low and mid fre-
quencies control of flexural vibration in a lightly damped thin plate, which
is excited by a rain-on-the-roof broad band frequency stationary disturbance
and equipped with time-varying shunted piezoelectric vibration absorbers. The
study considers discrete or continuous variations over time of the RL shunts in
such a way as to switch between given values or to sweep between given ranges
the shunt parameters and in this way control the resonant response of certain
targeted flexural modes or the flexural response of the plate due to all modes in
the 20 Hz and 1 kHz frequency band. First a system considering a single vibra-
tion absorber unit is presented and then a system with five vibration absorbers.
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5.1 introduction

Recent studies have shown the possibility of controlling the flexural response
of thin structures over a broad frequency band using time-varying mechanical
vibration absorbers [64, 102, 103]. The working principle of this type of vibra-
tion absorbers is to vary the stiffness and damping parameters of the vibra-
tion absorber within given ranges to produce a control action over a desired
frequency band. A voice coil transducer with the magnet suspended on soft
springs was used to experimentally demonstrate this type of time-varying me-
chanical vibration absorber [102].

On the other hand, the use of shunted piezoelectric transducers to control me-
chanical vibrations was introduced in chapter 4. However, as a shunted piezo-
electric patch connected to an RL shunt can control the resonant response of
only one specific natural mode of the plate, multi-resonant circuits were in-
vestigated [32, 33, 104–109], in which the shunt is composed of n RL or RLC
branches to control n natural modes of the plate. In this case the first branch
is an RL shunt and the rest are RLC shunts; with each additional branch the
values of the previous branches must be recalculated. No closed-form tuning
solution was found for this technique, but the shunts values can be found nu-
merically [18].

In this work, and as an alternative to the multi-resonant shunt circuits, the
use of time-varying shunts is proposed. Two operation modes are presented:
the first one in which the inductance and resistance of the shunt are cyclically
switched between three values in order to control the flexural response of three
natural modes of the plate; and the second, in which the shunt parameters are
swept between given ranges to control the flexural response of all the natural
modes of the plate in a given frequency band.

In this chapter the implementation of time-varying shunted piezoelectric vi-
bration absorbers for broadband flexural vibration control is considered. As
depicted in figure 5.1 the shunt is composed of a time-varying inductance and
resistance. The same thin aluminium panel as in chapter 4 is considered here,
with dimensions and physical properties summarised in table 4.1. On the other
hand, in this study thin rectangular piezoelectric transducers are considered,
whose dimensions and physical parameters are presented in table 5.1, and as
shown in figure 5.1 the central patch is bonded on the backside of the plate.
It must be noted that for the considered frequency range the membrane effect
can be neglected. Finally, as shown in figure 5.2 the panel is exposed to a white
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Figure 5.1.: Plate equipped with five shunted piezoelectric vibration absorbers imple-
menting time-varying RL shunts.

noise rain-on-the-roof excitation, which is modelled by an array of 4× 4 uncor-
related point forces uniformly distributed over the plate surface.

Figure 5.2.: Plate subject to a rain-on-the-roof excitation modelled using an array of
4× 4 point forces.

First, a panel with only the top left piezoelectric vibration absorber will be
analysed and then the five patches configuration will be considered. The vibra-
tion control performance produced by the time-varying piezoelectric vibration
absorbers will be compared to the one produced by single and five fixed tuning
shunted piezoelectric vibration absorbers.

5.2 mathematical model

The mathematical model used to obtain the electromechanical equations of
motion for the flexural response of the panel with the piezoelectric transducers
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Table 5.1.: Dimensions and physical properties of the piezoelectric transducers.

Parameter Value Units

Thickness hpe = 1 mm
Width dx = 80 mm
Length dy = 80 mm
Centre position xc3 = lx

2 , yc3 =
ly
2 mm

j = 1, 2, 4, 5 xcj =
lx
2 ∓ 60, ycj =

ly
2 ∓ 60 mm

Density ρpe = 7600 kg/m3

Young’s Modulus Ype = 50× 109 N/m2

Poisson’s ratio νpe = 0.35 —
Permittivity εT

33 = 14.18× 10−9 F/m
Inherent capacitance Cpe = 55.6× 10−9 F
Strain/charge constants d31 = −190× 10−12 m/V

d32 = −190× 10−12 m/V
d36 ≈ 0 m/V

is quite similar to the one presented in chapter 4. Nevertheless, a numerical
approach is used together with the state space formulation to integrate the
equation of motion of this time-invariant system. The reason for this is that the
stochastic nature of the primary forces acting on the plate and the time-varying
behaviour of the shunt circuits cannot be addressed using the standard fre-
quency domain formulation based on frequency dependent PSDs and transfer
functions [99].

As the initial part of this formulation is the same as the one presented in
chapter 4 for a pair of piezoelectric transducers forming a symmetric laminate
around the mid-surface of the plate, this section presents a reduced version
where the differences are highlighted. In summary, the same variational indica-
tor as presented in equation (4.57) is used, but in this case the kinetic coenergy,
the elastic potential energy, the electrical coenergy and the work done by non
conservative actions are defined respectively by the following expressions [92]

T∗ =
1
2

∫
Vp

ρpẇ2 dVp +
1
2

∫
Vpe

ρpeẇ2 dVpe (5.1)

V =
1
2

∫
Vp

STT dVp +
1
2

∫
Vpe

STT dVpe (5.2)

W∗e =
1
2

∫
Vpe

EpeDpe dVpe (5.3)
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Wnc =
N∑

i=1

fpiwi −
∫

Ap

µẇw dAp − qpevpe (5.4)

where fpj are the point forces acting on the plate and qpe are the charges on the
piezoelectric patch. Following the same procedure as in chapter 4.2 it is possible
to arrive to the following set of modal equations

�
Mp + Mpe

�
q̈(t) + Cpq̇(t) +

�
Kp + Kpe

�
q(t) +ΘΘΘpevpe(t) = ΦΦΦpfp(t) (5.5)

−ΘΘΘT
peq(t) + Cpevpe(t) = qpe(t) (5.6)

ipe(t) = −
1
Rs

vpe(t)−
1
Ls

∫
vpe(t)dt (5.7)

where qpe is the total charge produced by the piezoelectric transducers, Mp,
Cp, Kp are the modal mass, modal damping and modal stiffness matrix of the
plate defined in equations (4.77), (4.78) and (4.79) respectively, Mpe, Kpe and ΘΘΘpe

are the modal mass, modal stiffness and modal electromechanical transduction
coefficient of the piezoelectric patches, Cpe is the capacitance of the piezoelectric
patch and ΦΦΦ is the vector with the modal amplitudes of the generalized primary
forces. These matrices and vectors are defined as:

Mpe = mpe

∫
Ape

ϕϕϕT(x, y)ϕϕϕ(x, y)dApe (5.8)

Kpe = Ipe

∫
Ape

ψψψT(x, y)cE
peψψψ(x, y)dApe (5.9)

ΘΘΘpe = zpe

∫
Ape

ψψψT(x, y)epedApe (5.10)

Cpe =
εS

pe Ape

hpe
(5.11)

where I is an identity R × R matrix, ξp is the modal damping ratio assumed
to be equal for all modes and defined in table 4.1, ψψψ(x, y) is defined in equa-
tion (4.85) and

ΦΦΦp =


ϕϕϕ(x1, y1)

...

ϕϕϕ(x16, y16)

 , fp =


fp1
...

fp16

 (5.12)
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where fp1, . . . , fp16 are the sixteen forces applied on the plate.

5.2.1 State space formulation

The set of differential electromechanical equations represented by equations
(5.5), (5.6) and (5.7) can be casted in the following state space matrix formula-
tion

ẋ(t) = Ax(t) + Bfp(t) (5.13)

q̇(t) = Cx(t) (5.14)

where the state space vector is defined as

x(t) =


x1(t)

x2(t)

x3(t)

x4(t)

 =


q(t)

q̇(t)∫
vpe(t)dt

vpe(t)

 (5.15)

Equations (5.5), (5.6) can be rewritten as:

Mq̈(t) + Cpq̇(t) + Kq(t) +ΘΘΘpevpe(t) = ΦΦΦpfp(t) (5.16)

−ΘΘΘT
peq̇(t) + Cpev̇pe(t) = ipe(t) (5.17)

where M is the sum of Mp and Mpe and K is the sum of Kp and Kpe. Using the
state variables defined in equation (5.15), equations (5.16), (5.17) and (5.7) can
be expressed as

Mẋ2(t) + Cp ẋ1(t) + Kx1(t) +ΘΘΘpe ẋ3(t) = ΦΦΦpfp(t) (5.18)

−ΘΘΘT
pex2(t) + Cpe ẋ4(t) = ipe(t) (5.19)

ipe(t) = −
1
Rs

x4(t)−
1
Ls

x3(t) (5.20)
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Then, substituting equation (5.20) into (5.19) and solving for ẋ4(t) the follow-
ing expression is obtained:

ẋ4(t) =
ΘΘΘT

pe

Cpe
q̇(t)− 1

LsCpe

∫
vpe(t)dt− 1

RsCpe
vpe(t) (5.21)

Solving equation (5.16) for ẋ2(t)

ẋ2(t) = −M−1Cp ẋ1(t)−M−1Kx1(t)−M−1ΘΘΘpe ẋ3(t) + M−1ΦΦΦpfp(t) (5.22)

Using the latter two equations and recalling that the values for ẋ1(t) and ẋ3(t)
are stated in equation (5.15) it is possible to express equations (5.13) and (5.14)
in matrix form as

ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =


0 I 0 0

−M−1K −M−1Cp 0 M−1ΘΘΘpe

0 0 0 1

0
ΘΘΘT

pe
Cpe

−1
Cpe Ls

−1
CpeRs




x1(t)

x2(t)

x3(t)

x4(t)



+


0

−M−1ΦΦΦp

0

0

 fp(t)

(5.23)

q̇(t) = [0, I, 0, 0]


x1(t)

x2(t)

x3(t)

x4(t)

 (5.24)

The state A, input B and output C matrices are defined as

A =


0R×R IR×R 0R×1 0R×1

−M−1K −M−1Cp 0R×1 M−1ΘΘΘpe

01×R 01×R 0 1

01×R ΘΘΘT
pe

Cpe
−1

Cpe Ls
−1

CpeRs

 (5.25)
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B =


0R×1

−M−1ΦΦΦp

0

0

 (5.26)

C =
�
0R×R, IR×R, 0, 0

�
(5.27)

where the dimensions of the zeros and identity sub-matrices are indicated as
superscripts for clarity. This state space representation is valid for the single
patch configuration, while the matrices for the multiple patch systems can be
obtained following the same approach. In this case, the state vector is defined
as follows

x(t) =



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)

x6(t)

x7(t)

x8(t)

x9(t)

x10(t)

x11(t)

x12(t)



=



q(t)

q̇(t)∫
vpe1(t)dt

vpe1(t)∫
vpe2(t)dt

vpe2(t)∫
vpe3(t)dt

vpe3(t)∫
vpe4(t)dt

vpe4(t)∫
vpe5(t)dt

vpe5(t)



(5.28)

And the state A, input B and output C matrices are defined as



5.2 mathematical model 97

A
=

                                    

0R
×

R
IR
×

R
0R
×

1
0R
×

1
0R
×

1
0R
×

1
0R
×

1
0R
×

1
0R
×

1
0R
×

1
0R
×

1
0R
×

1

−
M
−

1 K
−

M
−

1 C
p

0R
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1
M
−

1 ΘΘ Θ
pe
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×

1
M
−

1 ΘΘ Θ
pe
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1
M
−

1 ΘΘ Θ
pe

3
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pe
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pe
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0
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1

0
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1
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pe

R
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0
0

01×
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T pe

4
C
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0

0
0

0
0

0
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1
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L s
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1
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pe

R
s4

0
0
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0
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0
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0
0
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1
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pe
0

0
0

0
0

0
0

0
−

1
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L s
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−
1

C
pe

R
s5

                                    (5
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5.2.2 Numerical integration of stochastic differential equations

The time integration of the equation of motion is performed considering the
spectral analysis for cyclostationary processes [96] and implementing a specific
Runge-Kutta algorithm developed by Kasdin [110]. The following two assump-
tions are made: the primary disturbances are treated as uncorrelated white
noise and the shunted piezoelectric vibration absorbers as time-varying compo-
nents, allowing the cyclic change of the inductance and resistance values.

The method proposed by Kasdin [110] does not require the explicit calcula-
tion of the derivatives of the function, instead it calculates an approximated
solution at each time step. It is worth mentioning that commercially available
functions use variable time step according to a certain tolerance value. This is
not so when dealing with random processes as it is not possible to calculate an
approximated error at each step, that is why a fixed time step is used. Then, for
stochastic disturbances the differential equation (5.13) can be expressed as

ẋ(t) = f1(x, t) + Bfp(t) (5.32)

where the first term accounts for the deterministic dependence of x and t while
the second one for the stochastic dependence of the disturbance. The approxi-
mated solution of equation (5.13) at time tk+1 can be defined as [110]

xk+1 = xk + α1k1 + α2k2 + · · ·+ αnkn (5.33)

with
k1 = g f1(xk, tk) + hBfp1 (5.34)

k j = g f1(xk +
j−1∑
i=0

σijki , tk + ηjg) + gBfpj (5.35)

where fpj is a vector of random forces generated at each time step. In order
for the numerical solution xk to have the same statistical properties than the
exact solution x(t), the coefficients αi, σij and ηj are determined by matching
the coefficients of the Taylor expansion of the covariance matrix of the exact
solution x(t) and the approximated one xk. The values of these three coefficients
for the fourth order Runge-Kutta algorithm used in this study can be found
in [110]. In the implementation a time vector of 60 seconds is considered with
a fixed sampling frequency of 20 kHz; in other words a fixed time step with
a length of 50 microseconds. At each time step, the algorithm calculates the
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approximated solution, updates the value of the state matrix A and continues
using as initial condition the state vector of the previous iteration.

5.2.3 Energy formulation

As in section 4.2.6 of the previous chapter, once that the time response of the
plate flexural vibration is obtained, a frequency domain formulation is derived
as noise and vibration problems subject to stationary random disturbances are
usually studied in the frequency domain. The flexural response of the plate
with the piezoelectric transducers is studied in terms of the panel total flexural
kinetic energy PSD, which as shown in [12] can be derived with the following
expression [95, 96]

SK(ω) =
1
2

∫
Ap

ρphp lim
T→∞

� 1
T

ẇ∗(x, y, ω)ẇ(x, y, ω)
�

dAp

+
1
2

∫
Ape

ρpehp lim
T→∞

� 1
T

ẇ∗(x, y, ω)ẇ(x, y, ω)
�

dApe

(5.36)

Equation (5.36) is very similar to (4.109), and the procedure is the same as in
section 4.2.6, therefore a reduced formulation is presented here. Equation (5.36)
can be expressed as

SK(ω) =
1
2

Tr
[
MSqq(ω)

]
(5.37)

where for a linear and time invariant system the matrix Sqq(ω) containing the
PSDs of the plate modal velocities can be defined as

Sqq(ω) = Y(ω)Sfpfp YT(ω) (5.38)

where the mobility matrix Y(ω) is defined as

Y(ω) = jω
�
−ω2M + jω

�
C + ZspeΠΠΠ

�
+ K

�−1
(5.39)

and where the matrix Sfpfp contains the PSD functions of the 16 uncorrelated
white noise forces acting on the panel and is given by a 16× 16 identity matrix.
Substituting equation (5.38) into (5.37) gives the total flexural kinetic energy
PSD

SK(ω) =
1
2

Tr
�
MY(ω)Sfpfp YT(ω)

�
(5.40)

When the time-varying shunted vibration absorbers are used the time history
of the total flexural kinetic energy is not anymore stationary and therefore the
total flexural kinetic energy PSD cannot be defined [95, 96]. However, both the
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switching and sweeping operation modes can be classified as cyclostationary
allowing a Fourier transform analysis to estimate the kinetic energy PSD in the
frequency domain [111].

The total flexural kinetic energy PSD is not derived from equation (5.40);
instead, once the vector q̇(t) is obtained using the numerical integration algo-
rithm presented in section 5.2.2, its finite Fourier transform q̇(ω) is calculated
and then substituted in equation (5.37). To prove the validity of this approach,
figure 5.3 shows the spectrum of the total flexural kinetic energy PSD of the
plate in steady state condition obtained following the above description (thick
solid red line) and calculated using equation (5.37) (thin black solid line). The
curves match quite well, there is only some difference at the first natural fre-
quency at around 38 Hz, where the response calculated via the finite Fourier
transform of the instantaneous total kinetic energy of the panel is somewhat un-
derestimated. Nevertheless, this was found to be the best trade-off between the
random error present in the signal and the underestimation of the peaks [96].
The thick solid red line is obtained using MATLABr pwelch function, whose
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Figure 5.3.: Total flexural kinetic energy PSD of the plain plate obtained using equation
(5.37) (thin solid black line) and using the numerical approach (thick solid
red line).

output is the PSD estimate of the input signal, and whose parameters with the
values used in this study are:

window: divides the input signal vector in sub-vectors, this study considered
windows of 50000 samples which means windows with a length of 2.5
seconds;

noverlap: specifies the overlap in samples, set to 50%;
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nfft: sets the number of DFT points, also 50000 samples were considered
which gives a resolution of 0.05 Hz for the output vector;

fs: indicates the sampling frequency of the input time vector, set to 20 kHz.

5.3 single patch systems

In this section only the top left shunted piezoelectric transducer shown in
figure 5.1 is considered. The vibration control effects are analysed considering
the piezoelectric patch is connected to a time-invariant fixed shunt, to a time-
varying switching shunt and to a time-varying sweeping shunt. As summarised

Table 5.2.: Single patch systems control range.

Shunt type Target frequency [Hz]

Fixed shunt 38
Switching 38, 81 and 114
Sweeping 38 to 114

in table 5.2, the fixed shunt is tuned to control the flexural response of the plate
first natural mode, which resonates at 38 Hz. Instead, the switching shunt is
tuned to iteratively control the resonant response of the plate first three flex-
ural natural modes, which are located at around 38, 81 and 114 Hz. And the
sweeping shunt is set to control the resonant response of the plate between 38
and 114 Hz.

One of the issues with shunted piezoelectric vibration absorbers is their
proper tuning, as discussed in chapter 4, it is then interesting to analyse their
effect when the shunt is not accurately tuned to the target frequency. Then,
the system will also be studied when a shunt with a mistuning of 25% of the
optimal inductance and resistance is implemented.

5.3.1 Fixed tuning shunt

The optimal resistive and inductive components of the shunt have been de-
rived with a trial and error procedure, starting from the values obtained with
equations (4.127) and (4.129) derived in the previous chapter. Figure 5.4 presents
the spectrum of the total flexural kinetic energy PSD of the plate with the trans-
ducer N°1 in short circuit (thin solid black lines) in the 22-176 Hz frequency
band. This spectrum is characterised by a series of five peaks due to the res-
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Figure 5.4.: PSD of the total flexural kinetic energy of the plate with the piezoelectric
transducer N°1 in short circuit (thin solid black line) and connected to (a)
an optimally tuned RL shunt (thick solid green line) and (b) to a mistuned
RL shunt (thick solid cyan line) by 25% of the optimal inductance and
resistance values.

onances of the panel low order natural modes, with the last two peaks being
apart only 5 Hz distant from each other. Figure 5.4a shows the spectrum of the
total flexural kinetic energy PSD of the plate with the piezoelectric transducer
connected to an optimally tuned RL shunt (thick solid green line) set to control
the resonant response of the first flexural mode of the plate. The spectrum is
characterised by a large reduction of about 13.5 dB of the first resonance peak
produced by the shunted piezoelectric vibration absorber. On the other hand,
figure 5.4b presents the spectrum of the flexural response of the system when
the shunt inductance and resistance values are mistuned by 25% (thick solid
cyan line) with respect to their optimal values. In this condition the mistuned
piezoelectric shunted vibration absorber has little impact on the response of the
panel, achieving about 2 dB reduction at the target frequency, and as the accu-
rately tuned it lightly enhances the response near the second resonance peak
and produces around 1 dB reduction at the third resonance peak.

5.3.2 Switching shunt

In this operation mode the piezoelectric vibration absorber is equipped with
a control algorithm that switches the shunt inductance and resistance between
three pair of tuning values to control sequentially the resonant response of
the first three flexural modes of the plate. As it was done for the fixed tuning
shunt, the three pairs of RL values have been derived iteratively starting from
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Figure 5.5.: (a) Time history of the switching sequence and (b) PSD of the total flexural
kinetic energy of the plate with the piezoelectric transducer N°1 in short
circuit (thin solid black line) and connected to an RL switching shunt tuned
to the first three resonant frequencies (thick solid magenta line).

equations (4.127) and (4.129) for each of the three targeted modes. To allow
smooth transitions between consecutive states, the switching events occur only
when the piezoelectric patch is not strained, that is when the voltage across its
terminals is equal to zero.

The free response of the shunt circuit is characterised by an exponential decay
defined by the time constant

τ′n =
1

ζs,nωs,n
(5.41)

where ζs,n and ωs,n are respectively the damping ratio and natural frequency
of the electric circuit formed by the piezoelectric patch capacitance and RL
elements of the shunt set to control the resonant response of the n-th flexural
mode of the plate; recalling that for an RLC parallel circuit the damping ratio
and natural frequency are defined as:

ζRLC =
1

2R

Ê
L
C

(5.42)

ωRLC =

Ê
1

LC
(5.43)

Then, in order to allow at least 63% of the transient occurs at each iteration, the
duration of each tuning configuration is set to be

τn = τ′n + ∆t (5.44)
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where ∆t represents the fraction of time necessary to reach the zero strain con-
dition to implement a smooth transition from one tuning to the next one. Ta-

Table 5.3.: Switching shunt control parameters.

Flexural mode Inductance [H] Resistance [kΩ] τn [milliseconds]

1 181.9 357.3 39.8 + ∆t
2 39.1 165.6 18.4 + ∆t
3 20.6 120.2 13.4 + ∆t

ble 5.3 shows the set of values for the inductance, resistance and τ for each of
the targeted flexural modes. In summary, to control the resonant response of
the first three natural modes of the plate, the following switching sequence has
been implemented: τ1 + ∆t, τ2 + ∆t, τ3 + ∆t. Plot (a) of figure 5.5a shows a brief
portion of the time history of the variable that controls to which flexural mode
the shunt is tuned to at a particular instant, with time in the horizontal axis and
the targeted flexural modes in the vertical axis.

Following the same approach as in the previous subsection, the thin solid
black line in figure 5.5b shows the 22–176 Hz spectrum of the total flexural
kinetic energy PSD of the plate with the piezoelectric patch N°1 in short circuit.
The thick solid cyan line in figure 5.5b shows the spectrum of the total flexural
kinetic energy PSD of the plate with the piezoelectric patch N°1 connected to
the switching RL shunt, which is characterised by a reduction of about 5.2
dB of the first resonance peak and about 1.8 dB and 4.5 dB reductions at the
2nd and 3rd resonances. The switching operation mode still produce a good
vibration control effect at the first resonance accompanied by a good reduction
at the third resonance and lower level performance at the second one. It is
important to emphasise that this result depends also on the coupling between
the piezoelectric patch and the controlled modes; which means that it is likely
that the lower control effects produced at the 2nd and 3rd resonance frequencies
could be ascribed also to a worst coupling between the patch and the 2nd and
3rd natural modes of the plate. Nevertheless, this initial result suggests that the
single piezoelectric patch with the proposed switching shunt is able to produce
an overall reduction of the resonating response of the three targeted flexural
modes of the hosting plate.
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5.3.3 Sweeping shunt

No specific tuning of the RL shunt elements is required for the sweeping
operation mode. Instead, in this operation mode the shunt natural frequency
is swept between the lower and upper limits of the frequency control range
according to the following law:

ωs = ωi + (ω f −ωi)sin2(2π fsw) (5.45)

where ωi and ωo are the lower and upper value of the targeted frequency band
shown in table 5.2 and fsw is the frequency is the sweeping frequency set to 6 Hz
after a process of trial and error to find its optimal value. Figure 5.6a shows the
variation over time of the RLC circuit natural frequency (thick red line), which
has lower and upper limit values at around 40 Hz and 115 Hz respectively. The
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Figure 5.6.: (a) Time history of the sweeping shunt resonance frequency and correspon-
dent values for the sweeping shunt (b) inductance and (c) resistance in H
and kΩ respectively.
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inductance is obtained from equation (5.43) with the following expression:

Ls =
1

ω2
s Cpe

(5.46)

Also the shunt resistance is varied over time in such a way as to maintain
a constant damping ratio equal to 30%, similar approach was used in refer-
ences [64, 102, 112]. Then, using equation (5.42) the value of resistance is ob-
tained as:

Rs =
1

2ζs

√
Ls

Cpe
(5.47)

Plots (b) and (c) of figure 5.6 show respectively the variation over time of the
sweeping shunt inductance (dash-dotted red line) and resistance (dashed blue
line). As the inductance has a quadratic relation with the shunt natural fre-
quency, it can be noticed in plot (b) that the peaks are narrow and the function
spends more time in the mid lower values than in the upper ones. The induc-
tance value vary from a minimum of around 37 H to a maximum of about
285 H. Plot 5.6 shows a similar behaviour over time for the resistance, with
minimum and maximum values of about 160 kΩ and 450 kΩ respectively.
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Figure 5.7.: (a) PSD of the total flexural kinetic energy of the plate with the piezoelec-
tric transducer N°1 in short circuit (thin solid black line) and connected to
an RL sweeping shunt set to control the 38-114 Hz frequency band (thick
solid red line) and (b) total flexural kinetic energy PSD peak reduction for
the first three resonance peaks of the system for all considered shunted
piezoelectric vibration absorbers.

Following the same criteria as for the fixed tuning and switching shunts, the
thin solid black line in figure 5.7a show the 22–176 Hz total flexural kinetic en-
ergy PSD spectrum of the plate with the piezoelectric transducer N°1 in short
circuit. The thick solid red line, on the other hand, shows the spectrum of the
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total flexural kinetic energy PSD of the plate with the piezoelectric patch N°1
connected to the sweeping RL shunt. In this case, the spectrum is characterised
by reductions of about 3.5 dB, 3.2 dB and 2.5 dB of the first three resonance
peaks. Thus, despite the shunt is operated blindly without tuning the RL ele-
ments to precise natural frequencies and damping ratios of the plate natural
modes comprised in the targeted frequency range, reasonable reductions of the
resonance peaks are generated in the frequency range between 38 and 114 Hz.
This is a rather interesting result since it suggest a simple operation mode of the
shunt, which does not require prior knowledge of the dynamic response of the
structure and, quite importantly, which is robust to changes of operation condi-
tions that may vary the dynamic response of the hosting structure (tensioning
effects, temperature variations, etc.).

Plot (b) in figure 5.7 summarises the results obtained with the four considered
cases:

• fixed tuning shunt set to control the first natural frequency of the plate,
first green column starting from the left-hand side;

• detuned fixed tuning shunt, second cyan column starting from the left-
hand side;

• switching shunt set to control the first three natural frequencies of the
plate, third magenta column starting from the left-hand side and

• sweeping shunt set to control the 38-114 frequency band, fourth red col-
umn starting from the left-hand side.

5.4 multiple patch systems

The results obtained in the previous section with a single piezoelectric trans-
ducer indicate that the proposed time-varying shunts may be effectively used
to control the flexural response of the plate in a broad frequency band. The
effects produced by the five shunted piezoelectric vibration absorber shown in
figure 5.1 are analysed in this section.

The five shunted piezoelectric vibration absorbers are operated in such a
way as to control the flexural response of the plate in a relatively large fre-
quency range comprised between 30 Hz to 1 kHz that encompass both the low-
frequency range, where the response is characterised by the well separated nar-
row band resonance peaks, and the mid-frequency range, where the response
is characterised by wide band crests and troughs due to the combined response
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Table 5.4.: Multiple patch systems control frequencies or frequency bands.

Shunt Absorber Absorber Absorber Absorber Absorber
type 1 2 3 4 5

Fixed
39 Hz 115 Hz 254 Hz 455 Hz 768 Hztuning

Switching 39, 79, 156, 165, 165, 254, 455, 513, 698, 728,
series 115 Hz 233 Hz 431 Hz 569 Hz 769 Hz

Switching 39, 79, 115, 156, 165, 233, 165, 254, 431, 455, 513, 569, 698,
parallel 728 and 768 Hz

Sweeping 30 to 80 to 210 to 400 to 670 to
series 100 Hz 230 Hz 440 Hz 670 Hz 1000 Hz

Sweeping from 30 Hz to 1000 Hz with a phase shift of pi/5 between
parallel consecutive piezoelectric vibration absorbers

of clusters of modes [70]. The performance achieved by five fixed shunts set to
control the resonant response of the flexural modes with natural frequencies
listed in the first row of table 5.4 is used as a benchmark result to assess the
effectiveness of switching and sweeping operation modes.

The targeted natural frequencies for the fixed tuning shunt have been chosen
in such a way as to divide the total frequency band in five sub-bands covering
the 30 Hz to 1 kHz frequency range and each vibration absorber is acting on one
of these five sub-bands. Also in this study a mistuned fixed shunt is included
in the analysis. Furthermore, two operation modes are defined for the time-
varying shunts: A Series mode in which each vibration absorber acts on one of
the previously discussed sub-bands, and a Parallel mode in which the five vibra-
tion absorbers are acting on the whole control frequency band asynchronously,
with a phase shift of pi/5 between each other. Table 5.4 also summarises either
the targeted frequencies or frequency bands for the series/parallel switching
and sweeping operation modes. The frequency bands for the series sweeping
mode are characterised by an overlap of 20 to 50 Hz.

5.4.1 Fixed tuning shunt

The optimal resistive and inductive elements of the five shunts have been de-
rived following the same approach as for the single vibration absorbers systems
in section 5.3.1, i.e. with a trial and error procedure using the values obtained
with equations (4.127) and (4.129) as starting point, for the five flexural modes
with natural frequencies listed in the first row of table 5.4.
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(a) Optimally tuned fixed RL shunts.
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(b) Mistuned fixed RL shunts.

Figure 5.8.: PSD of the total flexural kinetic energy of the plate with the five piezo-
electric transducers in short circuit (thin solid black line) and connected to
fixed RL shunts (a) optimally tuned (thick solid green line) to the resonance
frequencies as specified in table 5.4 and (b) mistuned (thick solid cyan line)
25% of the optimal inductance and resistance values.

The thin solid black line in both plots of figure 5.8 shows the 22–1414 Hz spec-
trum of the total flexural kinetic energy PSD of the plate with the five piezoelec-
tric patches in short circuit. The spectrum is characterized by a series of well
separated and sharp resonance peaks up to about 400 Hz. At higher frequen-
cies, at each frequency the response is controlled by the resonant response of
clusters of modes, which give rise to a sequence of crests and troughs. The thick
solid green line in figure 5.8a shows the spectrum of the total flexural kinetic
energy PSD of the plate with the piezoelectric patches connected to the optimal
fixed RL shunts. The spectrum is characterised by large reductions comprised
between 10 dB and 18 dB of the peaks produced by the resonant responses of
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the five targeted flexural modes. As expected, the fixed tuning produce large vi-
bration control effects, which however are limited to the resonance frequencies
of the targeted flexural modes.

Figure 5.8b shows the effect of using mistuned RL shunts; as for the single
patch system, the shunt inductance and resistance are mistuned by 25% of their
optimal values. The thick solid cyan line in plot (b) of figure 5.8 indicates that
there is little impact on the global response of the structure when the shunts
are mistuned. Although there are a few resonance peaks in which the mistuned
system is able to achieve a reduction of the flexural response amplitude in the
order of 3-8 dB. This is probably due to the fact that a shunt that is not properly
tuned to control a particular frequency could be tuned to a different one.

5.4.2 Switching shunt

The series and parallel switching operation modes are implemented using
control algorithms that switch sequentially the RL elements to the optimal
values for the control of the resonant responses of the flexural modes with
natural frequencies listed in rows 2 and 3 of table 5.4. Following the same
strategy as in Section 5.3.2, the switching sequences are implemented in such
a way as to ensure a decay of at least 63% of the response of the targeted
modes at each iteration. The duration of each tuning configuration is defined
by equations (5.41), (5.42) and (5.44). As for the single vibration absorber of
Section 5.3.2, to allow smooth transitions between the RL values, the switching
events are implemented only when the piezoelectric patches are not strained, i.e
when the voltage across their terminals are zero. Then, the duration of each tun-
ing configuration is set to be τ + ∆t, where ∆t represents the fraction of time
necessary to reach the zero strain condition essential to implement a smooth
transition from one tuning to the next one.

Table 5.5.: Series switching time constants.

τ [ms] Absorber 1 Absorber 2 Absorber 3 Absorber 4 Absorber 5

τ1−5,1 30.8 7.6 7.4 5.3 1.1
τ1−5,2 15.3 7.4 4.8 2.4 1.1
τ1−5,3 10.6 17.4 2.4 2.8 1.6
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Table 5.6.: Parallel switching time constants, bold numbers indicate the starting value
for each vibration absorber.

τ [ms] Absorber 1 Absorber 2 Absorber 3 Absorber 4 Absorber 5

τ1−15
7.4, 4.8, 2.4, 7.6, 7.4, 17.4, 30.8, 15.3, 10.6, 5.32, 2.4, 2.8,

1.1, 1.1 and 1.6
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(a) Series switching sequence.
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(b) Parallel switching sequence.

Figure 5.9.: Time history of the switching sequences for the (a) series and (b) parallel
operation modes.

Table 5.5 shows the values for the switching time constants in milliseconds
for each vibration absorber. It is important to mention that these values are not
taking into account the extra time ∆t to perform a smooth transition between
consecutive tunings.
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(a) Series switching.
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(b) Parallel switching.

Figure 5.10.: PSD of the total flexural kinetic energy of the plate with the five piezo-
electric transducers in short circuit (thin solid black line) and connected
to switching RL shunts (thick solid magenta line) operating in (a) series
and (b) parallel mode tuned to the resonance frequencies as specified in
table 5.4.

Figure 5.9 shows the switching sequence over time of both operation modes.
Plot (a) presents the series mode switching sequence for all five vibration ab-
sorbers, where the legends A1 to A5 are used to respectively identify vibration
absorbers N°1 to 5. It can be noticed that the time period of the vibration ab-
sorber N°1 (thick solid blue line) is much greater than the rest, with the N°2
(thick solid red line) being some 7 milliseconds faster, N°3 (thick solid green
line) and N°4 (thick solid cyan line) having similar periods and N°5 (thick
solid magenta line) period has a very brief duration of about 4 milliseconds.
On the other hand, plot 5.9b shows the parallel mode switching sequence, the
same colours as in plot 5.9a are used to identify each vibration absorber. In
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this operation mode all vibration absorbers are iteratively tuned to all 15 con-
sidered flexural modes as shown in table 5.4 and the switching time constants
in milliseconds are presented in table 5.6 where the bold numbers indicate the
starting configuration for each of the five vibration absorbers. Also in this case
these values are neglecting the extra time ∆t to perform a smooth transition
between one set of RL values to the next one.

The thin solid black line in both plots of figure 5.10 show the 22–1414 Hz
spectrum of the total flexural kinetic energy PSD of the plate with the five
piezoelectric patches in short circuit, while the thick solid cyan lines in show
the spectrum of the total flexural kinetic energy PSD of the plate when the five
piezoelectric patches implement respectively the series and parallel switching
operation modes. Stripes with darker colour has been added in the background
of plot (a) to easily recognize the frequency ranges for each one of the five vi-
bration absorber in the 30 to 1 kHz band, while for plot (b) as they all have
the same control frequency band only one stripe has been used. The two plots
show significant reductions of most resonance peaks comprised between 30
Hz and 1 kHz. The series mode is able to control the response of most flex-
ural modes resonating in this frequency range. The parallel mode produces
relatively lower control effects at the first resonance peak, but then produces
remarkable control effects at higher frequencies, in particular between 100 and
200 Hz. Additional simulation results have shown that the low frequency con-
trol performance could be improved if the time interval for lower frequencies
are increased, particularly the time set to control the flexural response at the
first natural frequency of the plate.

5.4.3 Sweeping shunt

The series and parallel sweeping operation modes are implemented in such
a way the shunts natural frequencies are swept between the lower and upper
limits of the targeted frequency range, just as for the single vibration absorber
system presented in section 5.3.3. For the series mode, the five shunts operate
individually in a given frequency sub-band whose lower and upper frequency
limits are summarised in table 5.4. The series control laws for the five sweeping
piezoelectric vibration absorbers is then derived from equation (5.45) as follows:

ωseries,n = ωi,n + (ω f ,n −ωi)sin2(2π fsw) (5.48)
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(b) Parallel sweeping.

Figure 5.11.: Time history of the sweeping shunts resonance frequencies for the (a) se-
ries and (b) parallel operation modes.

where ωi,n and ωo,n are the lower and upper value of each targeted frequency
sub-band as shown in table 5.4 and fsw is the sweeping frequency which, as
for the single vibration absorber system, is set to 6 Hz. Figure 5.11a shows the
variation over time of each RLC circuit natural frequency, same colours are used
to identify each vibration absorber as in section 5.4.2. It is possible to notice the
overlap between consecutive sweeping shunts and that as frequency rises the
sweeping vibration absorbers cover a wider frequency band.

On the other hand, the expression for the control laws for the parallel opera-
tion mode, which is also derived from equation (5.45), are defined as:

ωparallel,n = ωi + (ω f −ωi)sin2(2π fsw + (n− 1)
π

5
) (5.49)



5.4 multiple patch systems 115

 Time  (sec) 
0 0.05 0.1 0.15 0.2

L
s n [

H
y]

0

100

200

300

A1
A2
A3
A4
A5

(a)

 Time  (sec) 
0 0.05 0.1 0.15 0.2

R
s n [

kO
hm

]

0

50

100

150

200

A1
A2
A3
A4
A5

(b)

 Time  (sec) 
0 0.05 0.1 0.15 0.2

L
s n [

H
y]

0

100

200

300

A1
A2
A3
A4
A5

(c)

 Time  (sec) 
0 0.05 0.1 0.15 0.2

R
s n [

kO
hm

]

0

50

100

150

200

A1
A2
A3
A4
A5

(d)

Figure 5.12.: Evolution over time of the shunts inductance (plots (a) and (c)) and resis-
tance (plots (b) and (d)) values for the series (plots (a) and (b)) and parallel
(plots (c) and (d)) operation modes.

where ωi and ωo are the lower and upper value of the whole control frequency
band as shown in table 5.4. Plot (b) of figure 5.11 shows the evolution over time
of the control variables ωparallel,n. In this case it can be seen that the five sweep-
ing vibration absorbers work on the same frequency band, and that the phase
shift between consecutive vibration absorbers allows a uniform distribution of
the control frequency band over time between the five sweeping vibration ab-
sorbers.

The values for each shunt inductance and resistance are obtained, for both
series and parallel operation modes, using equations (5.43) and (5.42) with a
damping coefficient ζs, which has a constant value of 20% for all five vibration
absorbers and both operation modes. It is also interesting to analyse the evolu-
tion over time, presented in figure 5.12, of the shunts inductance and resistance
values. Plots (a) and (b) show the values for the series operation mode of the
shunt inductance and resistance respectively. It can be seen much longer ranges
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for the values corresponding to the vibration absorber N°1 for both shunt ele-
ments, with maximum values of about 290 H and 180 kΩ and minimum values
of 35 H and 65 kΩ. For the vibration absorber N°2, the inductance is swept be-
tween around 9 to 72 H and the resistance between about 30 to 90 kΩ. Then, for
vibration absorbers N°3, 4 and 5 the inductance has much shorter excursions,
respectively from around 2.3 to 10 H, 1 to 2.8 H and 0.5 to 1.2 H. The same is
valid for the resistance, with the following minimum and maximum values: 16
to 34 kΩ, 10 to 18 kΩ and 7 to 11.5 kΩ.

Considering the parallel operation mode, the shunt values are shown respec-
tively in plots (c) and (d) of figure 5.12 for the inductance and resistance. As
expected, the maximum and minimum values for the inductance are the same
for all vibration absorbers as the only difference in the control law is the phase
shift, with around 0.5 H as lower limit and 285 H as upper limit. The same
is valid for the resistance in plot (d), with a minimum value of 7 kΩ and a
maximum one of 180 kΩ.

The thin solid black line in both plots of figure 5.13 show the 22–1414 Hz
spectrum of the total flexural kinetic energy PSD of the plate with the five
piezoelectric transducers, illustrated in Section 5.2, in short circuit. The thick
solid red lines in plots (a) and (b) show the spectrum of the total flexural ki-
netic energy PSD of the plate when the five piezoelectric patches implement
respectively the series and parallel sweeping operation modes, also here with
stripes with different background colour to identify the control frequency range
of each vibration absorber. The two plots show remarkable reductions of most
resonance peaks comprised between 30 Hz and 1 kHz. In the series mode, the
system produces good flexural vibration reductions below 200 Hz comprised
between 6 dB and 12 dB. The performance drops to around 4 dB reduction
of the flexural vibration for the resonances comprised in the 200-300 Hz band
and then very good control effects are obtained between 300 and 500 Hz, with
reductions of the resonance peak amplitudes between 6 and 12 dB. The system
also works well between 550 Hz and 750 Hz achieving about 6 dB reductions of
the peaks in this band and some extra reductions can be seen at higher frequen-
cies in the 750-950 Hz band. The parallel sweeping operation mode also shows
very good performances at low and mid frequencies, with improved control
effects at the first resonance peak.

Figure 5.14 summarizes the reductions in dB at the peaks with higher ampli-
tudes obtained with all the studied type of vibration absorbers and operation
modes. The green and cyan bars, first and second starting from the left-hand
side, present respectively the total flexural kinetic energy PSD peak reduction
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(a) Series sweeping.
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(b) Parallel sweeping.

Figure 5.13.: PSD of the total flexural kinetic energy of the plate with the five piezo-
electric transducers in short circuit (thin solid black line) and connected
to sweeping RL shunts (thick solid red line) operating in (a) series and (b)
parallel mode tuned to the resonance frequencies as specified in table 5.4.

at many of the resonances in the 30 to 1 kHz frequency band for the fixed and
optimally tuned RL shunts and for the mistuned RL shunts. The fixed shunt
system achieves very good reductions of the flexural response at the five tar-
geted resonances, with reductions ranging from a minimum of 3 dB for the
resonance peak at 768 Hz to around 18 dB for the resonance at 115 Hz. On the
other hand, when the shunts are mistuned by 25% of their optimal values, they
have little impact at the resonance peaks located at 455 Hz and 768 Hz but they
are still able to reduce the amplitude of the flexural response by about 3.5 to
7 dB at 39, 115 and 255 Hz. Nevertheless, the fact that they are mistuned for a
particular frequency does not exclude that they can be tuned to a different one;
which can explain the good reduction of around 11 dB obtained at 430 Hz, 6
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(a) Series operation mode.
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(b) Parallel operation mode.

Figure 5.14.: Flexural kinetic energy PSD peak reduction at resonance frequencies for
the plate with the five piezoelectric transducers implementing a fixed
tuned RL shunt (first green column from the left), a mistuned RL shunt
(second cyan column from the left), a (a) series and (b) parallel switching
RL shunt (third magenta column from the left) and a (a) series and (b)
parallel sweeping RL shunt (fourth red column from the left).

dB obtained at 512 Hz and 7 dB obtained at 935 Hz. In contrast they enhance
the flexural response of the plate by almost 5 dB at the resonance peaks around
570 Hz.

The series time-varying vibration absorbers shown in (a) achieve good re-
ductions for almost all the resonance peaks, with a higher performance of the
series sweeping operation mode. Plot (a) shows the parallel operation mode,
which works very well at low frequencies below 200 Hz in particular for the
switching vibration absorber although it has not a good performance on the
first resonance peak where the sweeping achieves an amplitude reduction of
almost 13 dB. It is expected that adjusting the time constant of the first reso-
nance peak the performance would increase. Generally speaking the sweeping



5.5 chapter concluding remarks 119

series mode is the one with the better performance, this piezoelectric shunted
vibration absorber is able to consistently reduce the amplitude of the flexural
response at most of the resonance peaks in the 30 to 1 kHz frequency band.

5.5 chapter concluding remarks

The study presented in this chapter has shown the effects of using time-
varying shunted piezoelectric vibration absorbers bonded on a thin lightly
damped plate to control its flexural response up to 1 kHz when using five vi-
bration absorber units. A system composed of only a single vibration absorber
unit was also analysed.

Discrete and continuous variations of the shunt were proposed and analysed,
in particular: switching and sweeping operation modes, with their respective
control laws. It was shown that these kind of time-varying shunted piezoelectric
vibration absorbers, in particular the sweeping vibration absorber, is able to
reduce the flexural response of the panel both at low frequencies, where the
plate total flexural kinetic energy spectrum is characterised by well separated
resonance peaks, and at mid frequencies were it is characterised by wide band
crests due to the overlap of clusters of natural modes.

Keeping in mind that the sweeping vibration absorbers work without a pre-
cise shunt tuning, only the damping ratio and initial and final values of a fre-
quency range are needed, they could offer significant advantages for the de-
velopment of robust, effective, modular and easy to use devices. Furthermore,
they could be operated without the need of system identification of the hosting
structure physical properties.





6

C O N C L U S I O N S A N D F U T U R E W O R K

The research presented in this thesis is focused on the broadband vibration
control of thin structures using piezoelectric transducers. Considering that this
type of system could be applied in a wide variety of applications, active and
semi-passive strategies were presented for the control of the flexural response
of a thin aluminium panel.

Novel shaped piezoelectric actuators were proposed in chapter 3 to increase
the open loop stability and therefore the global performance of the velocity feed-
back loop. The proposed actuator is composed of 6 triangular leafs arranged to
form an hexagon. In the ideal hexagonal piezoelectric actuator the moments
produced along the edges of consecutive triangular leafs are cancelled; as a re-
sult the actuation effect of the transducer can be described by moments along
the edges of the hexagon and transversal point forces at its vertices balanced by
a transversal point force at the centre of the hexagon which is collocated with
the accelerometer sensor. Due to constructive reasons, the patch used in the
prototype presents gaps between consecutive triangular leafs, which may lead
to a disadvantageous situation where the internal moments are not properly
cancelled and the transversal force is not at the centre of the hexagon but at the
tip of each triangular leaf, resulting in a weaker collocation effect with the ac-
celerometer sensor. Simulation and off-line experimental results were presented
for SISO and MIMO configurations. The theoretical work predicted impressive
results for both the SISO and MIMO configurations and the experimental ones,
despite the issue described above, showed good reductions at most of the reso-
nance peaks in the considered frequency range.

Considering the semi-passive strategy for a shunted piezoelectric vibration
absorber, chapter 4 presents a fully coupled model of the panel with a pair of
identical piezoelectric transducers, which form a symmetric laminate around
the mid-plane of the panel. The equations of motion of plate with the shunted
piezoelectric transducers are obtained using the extended form of Hamilton’s

121
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principle. Then, a simplified system that neglects the structural damping and
considers only the first natural mode of the structure is considered to obtain
analytical expressions for the optimal values of the RL shunt that maximize
its vibration absorption effect. These values are then compared to the ones
obtained using a genetic algorithm for an increasing number of considered
modes in the fully coupled model of the panel with the pair of piezoelectric
transducers. This study showed that the values found for the simplified system
are not accurate for two-dimensional distributed structures and that at least
150 natural modes of the structure must be considered for the flexural kinetic
energy PSD reduction and the inductance and resistance variables to converge.
This phenomena could be explained by two effect: the high modal overlap of
thin structures and by the large self and cross mechanical and electromechanical
modal coupling factors which characterise the coupling between the plate and
the pair of transducers.

The second study presented in chapter 4 deals with the effects of the transduc-
ers dimension on the performance of a shunted piezoelectric vibration absorber.
In order to control the flexural response of the plate in frequencies near its first
resonance, the transducers should have a thickness equal to the one of the plate
and be quite large, covering most of the panel.

In chapter 5 two control strategies are proposed for a time-varying semi-
passive shunted piezoelectric absorber to produce a broadband control effect
instead of the narrowband effect of the classical shunted piezoelectric absorbers
usually found in the literature. The switching operation mode, in which the
values of the shunt inductance and resistance are iteratively varied to control
the flexural response of the structure near three different resonance frequencies.
And the sweeping operation mode in which there is no proper tuning of the
shunt, a sine function with the initial and final values of the targeted frequency
band is used to obtain the current value for the shunt inductance while the
resistance value is obtained by fixing the damping ratio of the electrical circuit.
It must be noted that if the frequency band is chosen to be too large, the control
effect of the absorbers will be spread and lower performance will be seen at
the resonance peaks. Single and multiple patch configurations were analysed
with promising results for the sweeping operation mode, reducing the flexural
response of the panel both at low and mid-high frequencies. Considering that
there is no need to perform a system identification of the hosting structure to
determine its physical properties, as this sweeping absorbers only require the
initial and final values of the targeted frequency band and the damping ratio



6.1 future work 123

value, they can offer significant practical advantages for the development of
effective, robust and easy to use modular devices.

6.1 future work

The following works could be carried out concerning the active vibration
system presented in chapter 3:

• reduce the gap between consecutive triangular leafs of the hexagonal
MFC patch or consider different construction methods or materials such
as PVDF and conduct experimental test on these new patches.

• Investigate the viscous elastic effects of the bonding layer to obtain a more
accurate result of the actuation effect of the piezoelectric actuator bonded
on the panel.

• It could also be interesting to model the system using a numerical method
(e.g. using finite element analysis) to confirm the negative influence of
these gaps on the stability of the feedback loop.

In addition, regarding the semi-passive shunted piezoelectric absorbers pre-
sented in chapters 4 and 5, the following ideas emerged as a natural continua-
tion of the current research:

• implement the switching and sweeping shunted vibration absorbers on a
prototype and compare the results to the ones obtained in the simulations
presented in chapter 5.

• Study the possibility of replacing the resistor in the shunt with an energy
harvesting circuit; determine how much energy could be extracted for a
tonal excitation first, which matches a natural frequency of the system
and then for different types of excitations.

• Consider the possibility of self-powered semi-passive shunted piezoelec-
tric vibration absorbers. Multiple shunted transducers systems could be
used in which some of the units harvest sufficient electrical energy to
drive the sweeping control system of the rest of them.
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A
M O B I L I T Y F U N C T I O N S F O R A S I M P LY S U P P O RT E D P L AT E

The expressions for the natural frequencies and natural modes of a simply
supported plate can be defined as [70]

φn(x, y) = 2 sin
�r1πx

lx

�
sin

�
r2πy

ly

�
(A.1)

ωn =

Ì
Yph2

p

12ρp(1− ν2
p)

[�r1π

lx

�2
+

�
r2π

ly

�2]
(A.2)

where r1 and r2 are the mode indexes, Yp and νp are the Young’s modulus and
Poisson’s ratio of the panel, lx, ly and hp are the length, width and thickness of
the panel and ρp is the density of the panel.

a.1 siso system

The mobility functions Gcp(ω), GcFc(ω), GcFv(ω) and GcMe(ω) presented in
equations 3.19 and 3.21 for the simulation of the SISO system were derived
using a modal summation approach [70], and are defined as follows:

Gcp(ω) = jω
∞∑

n=1

φn(xc, yc)φm(xFp , yFp)

Mb(ω2
n(1 + jη)−ω2)

(A.3)

GcFv(ω) = jω
∞∑

n=1

φn(xc, yc)φm(xFv , yFv)

Mb(ω2
n(1 + jη)−ω2)

(A.4)

GcMe(ω) = jω
∞∑

n=1

φn(xc, yc)φm(xMe , yMe)

Mb(ω2
n(1 + jη)−ω2)

(A.5)

GcFc(ω) = jω
∞∑

n=1

φn(xc, yc)φm(xFc , yFc)

Mb(ω2
n(1 + jη)−ω2)

(A.6)
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128 mobility functions for a simply supported plate

where Mb is the total mass of the plate; η is the loss factor assumed to be 2%; ωn

are the natural frequencies for a pinned-pinned panel [70]; ω is the frequency
that varies from 30 Hz to 50 kHz; (xc, yc), (xMe , yMe), (xFc , yFc), (xFv , yFv) and
(xFp , yFp) are, respectively, the coordinates of the control position and of the
application points of all the moments Me and of the force Fc, the 6 forces Fv

and the force Fp; and all the different φn(x, y) are the mode shapes at the above
mentioned positions. It must be noted that the moments Me at the edges of the
patch are modelled as couples of forces (F+, F−), where the distance between
the two forces is defined by the smallest wavelength of interest divided by 5

(around 4 mm). Then, Me is defined as the difference between the mode shapes
at the application points of F+ and F−. The simulation considers three pair of
forces acting on each one of the six edges of the hexagonal patch, this separation
is defined by the smallest wavelength of interest divided by 2 (around 1 cm).

a.2 mimo system

The following matrices were used to simulate the MIMO system:

ẇc(ω) =



ẇc1(ω)

ẇc2(ω)

ẇc3(ω)

ẇc4(ω)

ẇc5(ω)


(A.7)

Gcc(ω) =



G11(ω) G12(ω) G13(ω) G14(ω) G15(ω)

G21(ω) G22(ω) G23(ω) G24(ω) G25(ω)

G31(ω) G32(ω) G33(ω) G34(ω) G35(ω)

G41(ω) G42(ω) G43(ω) G44(ω) G45(ω)

G51(ω) G52(ω) G53(ω) G54(ω) G55(ω)


(A.8)

Gc(ω) =



Gc(ω) 0 0 0 0

0 Gc(ω) 0 0 0

0 0 Gc(ω) 0 0

0 0 0 Gc(ω) 0

0 0 0 0 Gc(ω)


(A.9)
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Gcp(ω) =



Gc1 p(ω)

Gc2 p(ω)

Gc3 p(ω)

Gc4 p(ω)

Gc5 p(ω)


(A.10)

where Gc(ω) is the same compensator used in the SISO system, and each ele-
ment of the Gcc(ω) matrix is obtained using equation 3.21.





B
M O D A L M AT R I C E S O F A P I E Z O E L E C T R I C PAT C H

This appendix shows how the modal matrices for the mass, stiffness and
transduction coefficient of a piezoelectric patch are obtained from equations
(4.80), (4.81) and (4.82).

For clarity, equation (4.73) can be expressed as:

ϕϕϕm(x, y) = 2 sin (Km1x) sin (Km2y) (B.1)

where
Km1 =

m1π

lx
, Km2 =

m2π

ly
(B.2)

b.1 modal mass matrix

Starting from equation (4.80), the modal mass matrix for one piezoelectric
transducer can be expressed as:

Mpe = 2ρpehpe

∫
Ape

2 sin (Km1x) sin (Km2y)2 sin (Kn1x) sin (Kn2y)dApe (B.3)

Then, the area integral can be broken into two integrals along the x and y
directions:

Mpe = 8ρpehpe

∫ x2

x1

sin (Km1x) sin (Kn1x)dx
∫ y2

y1

sin (Km2y) sin (Kn2y)dy (B.4)

where x1, x2 and y1, y2 are respectively the x and y coordinates where the
transducer begins and ends. Then, the following trigonometric identity can be
used:

sin (ax) sin (bx) =
1
2
[cos ((a− b)x)− cos ((a + b)x)] (B.5)
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132 modal matrices of a piezoelectric patch

so that equation (B.4) becomes

Mpe = 2ρpehpe

∫ x2

x1

[cos (Ax)− cos (Bx)]dx
∫ y2

y1

[cos (Cy)− cos (Dy)]dy (B.6)

where

A = Km1 − Kn1 (B.7)

B = Km1 + Kn1 (B.8)

C = Km2 − Kn2 (B.9)

D = Km2 + Kn2 (B.10)

Solving these integrals yields:

Mpe = 2ρpehpe Ape (B.11)

with

Ape =

sin (Ax)
A

− sin (Bx)
B

x2

x1

sin (Cy)
C

− sin (Dy)
D

y2

y1

(B.12)

Then, depending on the values of the coefficients A, B, C and D there are four
expressions to calculate Ape listed below.

case 1 : A = 0, which means Km1 = Kn1

Ape =

x2 − x1 −
sin (Bx2)− sin (Bx1)

B

lpey (B.13)

case 2 : C = 0, which means Km2 = Kn2

Ape = lpex

y2 − y1 −
sin (Dy2)− sin (Dy1)

D

 (B.14)

case 3 : A = 0 and C = 0, which means Km1 = Kn1 and Km2 = Kn2

Ape =

x2− x1−
sin (Bx2)− sin (Bx1)

B

y2− y1−
sin (Dy2)− sin (Dy1)

D


(B.15)

case 4 : the most general case, when A 6= 0 and C 6= 0

Ape = lpex lpey (B.16)
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where

lpex =
sin (Ax2)− sin (Ax1)

A
− sin (Bx2)− sin (Bx1)

B
(B.17)

lpey =
sin (By2)− sin (By1)

B
− sin (Dy2)− sin (Dy1)

D
(B.18)

b.2 modal stiffness matrix

Equation (4.81) can be written as

Kpe = 2Ipe

∫
Ape

[
ϕϕϕm,xx ϕϕϕm,yy 2ϕϕϕm,xy

]


YE
pe

1−νE2
pe

νE
peYE

pe

1−νE2
pe

0

νE
peYE

pe

1−νE2
pe

YE
pe

1−νE2
pe

0

0 0
YE

pe

2(1+νE
pe)




ϕϕϕn,xx

ϕϕϕn,yy

2ϕϕϕn,xy

dApe

(B.19)

Kpe = 2Ipe
YE

pe

1− νE2
pe

∫
Ape

[
ϕϕϕm,xx ϕϕϕm,yy 2ϕϕϕm,xy

] 
1 νE

pe 0

νE
pe 1 0

0 0
1−νE

pe
2




ϕϕϕn,xx

ϕϕϕn,yy

2ϕϕϕn,xy

dApe

(B.20)

Kpe = 2Ipe
YE

pe

1− νE2
pe

∫
Ape

�
ϕϕϕm,xxϕϕϕn,xx + νE

pe(ϕϕϕm,yyϕϕϕn,xx + ϕϕϕm,xxϕϕϕn,yy)+

ϕϕϕm,yyϕϕϕn,yy + 2(1− νE
pe)ϕϕϕm,xyϕϕϕn,xy

�
dApe

(B.21)

Then, the next step is to calculate the second derivatives of φ(x, y) with re-
spect to x and y:

ϕϕϕm,x = 2Km1 cos (Km1x) sin (Km2y) (B.22)

ϕϕϕm,xx = −2K2
m1 sin (Km1x) sin (Km2y) (B.23)

ϕϕϕm,y = 2Km2 sin (Km1x) cos (Km2y) (B.24)

ϕϕϕm,yy = −2K2
m2 sin (Km1x) sin (Km2y) (B.25)

ϕϕϕm,xy = 2Km1Km2 sin (Km1x) sin (Km2y) (B.26)
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Replacing these expressions into (B.21) yields

Kpe = 2Ipe
YE

pe

1− νE2
pe

�
β1

∫
Ape

4 sin (Km1x) sin (Km2y) sin (Kn1x) sin (Kn2y)dApe+

β2

∫
Ape

4 cos (Km1x) cos (Km2y) cos (Kn1x) cos (Kn2y)dApe

�
(B.27)

where

β1 = K2
m1K2

n1 + νE
peK

2
m2K2

n1 + νE
peK

2
m1K2

n2 + K2
m2K2

n2 (B.28)

β2 = Km1Km2Kn1Kn2 (B.29)

For clarity, the two surface integrals of equation (B.27) are named Aβ1
pe and Aβ2

pe ,
so that equation (B.27) is re-written as

Kpe = 2Ipe
YE

pe

1− νE2
pe

[
β1Aβ1

pe + β2Aβ1
pe

]
(B.30)

Then, solving Aβ1
pe , which can be broken into two integrals gives:

Aβ1
pe =

∫ x2

x1

2 sin (Km1x) sin (Kn1x)dx
∫ y2

y1

2 sin (Km2y) sin (Kn2y)dy (B.31)

Using the trigonometric identity presented in equation (B.5) and the values A,
B, C and D defined in equations (B.7)-(B.10), equation (B.31) becomes

Aβ1
pe =

∫ x2

x1

�
cos (Ax)− cos (Bx)

�
dx
∫ y2

y1

�
cos (Cy)− cos (Dy)

�
dy (B.32)

And solving these integrals gives

Aβ1
pe =

�
sin (Ax)

A
− sin (Bx)

B

�x2

x1

�
sin (Cy)

C
− sin (Dy)

D

�y2

y1

(B.33)

On the other hand, the same procedure is conducted for the second integral:

Aβ2
pe =

∫ x2

x1

2 cos (Km1x) cos (Kn1x)dx
∫ y2

y1

2 cos (Km2y) cos (Kn2y)dy (B.34)

Using the following trigonometric identity

cos (ax) cos (bx) =
1
2
[cos ((a− b)x) + cos ((a + b)x)] (B.35)
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equation (B.34) becomes

Aβ2
pe =

∫ x2

x1

�
cos (Ax) + cos (Bx)

�
dx
∫ y2

y1

�
cos (Cy) + cos (Dy)

�
dy (B.36)

And solving these integrals yields

Aβ2
pe =

�
sin (Ax)

A
+

sin (Bx)
B

�x2

x1

�
sin (Cy)

C
+

sin (Dy)
D

�y2

y1

(B.37)

As for the modal mass matrix, depending on the values of the coefficients A, B,
C and D there are for cases, which are listed below.

case 1 : A = 0, which means Km1 = Kn1

Aβ1
pe =

x2 − x1 −
sin (Bx2)− sin (Bx1)

B

lβ1
pey (B.38)

Aβ2
pe =

x2 − x1 +
sin (Bx2)− sin (Bx1)

B

lβ2
pey (B.39)

(B.40)

case 2 : C = 0, which means Km2 = Kn2

Aβ1
pe = lβ1

pex

y2 − y1 −
sin (Dy2)− sin (Dy1)

D

 (B.41)

Aβ2
pe = lβ2

pex

y2 − y1 +
sin (Dy2)− sin (Dy1)

D

 (B.42)

case 3 : A = 0 and C = 0, which means Km1 = Kn1 and Km2 = Kn2

Aβ1
pe =

x2 − x1 −
sin (Bx2)− sin (Bx1)

B

y2 − y1 −
sin (Dy2)− sin (Dy1)

D


(B.43)

Aβ2
pe =

x2 − x1 +
sin (Bx2)− sin (Bx1)

B

y2 − y1 +
sin (Dy2)− sin (Dy1)

D


(B.44)
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case 4 : the most general case, when A 6= 0 and C 6= 0

Aβ1
pe = lβ1

pex lβ1
pey (B.45)

Aβ2
pe = lβ2

pex lβ2
pey (B.46)

where

lβ1
pex =

sin (Ax2)− sin (Ax1)

A
− sin (Bx2)− sin (Bx1)

B
(B.47)

lβ1
pey =

sin (By2)− sin (By1)

B
− sin (Dy2)− sin (Dy1)

D
(B.48)

lβ2
pex =

sin (Ax2)− sin (Ax1)

A
+

sin (Bx2)− sin (Bx1)

B
(B.49)

lβ2
pey =

sin (By2)− sin (By1)

B
+

sin (Dy2)− sin (Dy1)

D
(B.50)

b.3 modal transduction coefficient matrix

Recalling equations (4.27) and (4.85), the modal electromechanical transduc-
tion coefficient presented in equation (4.82) can be expressed as:

ΘΘΘpe = 2zpe

∫
Ape

�
φm,xxe31 + φm,yye32

�
dApe (B.51)

ΘΘΘpe = 2zpe

∫
Ape

�
−2K2

m1e31 +−2K2
m2e32

�
sin (Km1x) sin (Km2y)dApe (B.52)

ΘΘΘpe = −4zpe
�
K2

m1e31 + K2
m2e32

� ∫ x2

x1

sin (Km1x)dx
∫ y2

y1

sin (Km2y)dy (B.53)

ΘΘΘpe = 4zpe
�
K2

m1e31 + K2
m2e32

�cos (Km1x)
Km1

x2

x1

cos (Km2y)
Km2

y2

y1

(B.54)

ΘΘΘpe = 4zpe
K2

m1e31 + K2
m2e32

Km1Km2
lpex lpey (B.55)
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where

lpex = [cos (Km1x2)− cos (Km1x1)] (B.56)

lpey = [cos (Km2y2)− cos (Km2y1)] (B.57)





C
O P T I M U M S H U N T C A L C U L AT I O N U S I N G G E N E T I C
A L G O R I T H M S

Genetic algorithms are used for solving constrained and unconstrained op-
timization problems inspired by the concepts of natural selection and natural
genetics found in biological evolution [113].

Starting from an initial number or population of solutions the GA iteratively
modifies individuals of these populations. At each step it randomly selects and
uses individuals from the current population as parents to produce the children
for the next generation. By selecting the proper parameters and iterations the
algorithm converges to an optimal solution.

The basic items used in a typical genetic algorithm are:

1. an initial population of guesses of the solution to the problem;

2. a method to calculate the accuracy or suitability of the individual solu-
tions of the population;

3. a method to combine fragments of the better solutions to create new ones;

4. and the last item is a mutation operator, in this way there is no loss of
diversity within the population.

There are two main differences between GA and classical optimisation algo-
rithms [114]:

1. a GA generates a population of individuals at each iteration where the
best ones converge to an optimal solution; while a classical algorithm
generates a single point at each iteration where the sequence of points
converge to an optimal solution.

2. in a GA the next population is chosen using a random number generator
while in a classical algorithm the next point is calculated by a determinis-
tic computation.
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c.1 ga implementation

The GA used in this work is the one provided by MATLAB optimisation
toolbox. This algorithm in particular works in the following way [114]:

1. an initial population is randomly created or given as input.

2. The genetic algorithm iteratively creates sets of new populations, to do
this the following steps are performed:

a) a fitness value is calculated for each individual in the population,

b) the parents are chosen based on this fitness values,

c) the individuals with the best fitness value are called elite, these are
passed directly to the next population,

d) children are created from the parents using two methods: by making
random changes to a single parent (i.e mutation) or by combining
some properties of a pair of parents (i.e. crossover),

e) the current population is replaced with the new one formed by the
children and elite members.

3. When one of the stopping criteria is accomplished the GA stops.

You can apply the genetic algorithm to solve problems that are not well suited
for standard optimization algorithms, including problems in which the objec-
tive function is discontinuous, nondifferentiable, stochastic, or highly nonlinear.

MATLABs GA function has a variety of parameters that can be set to meet
different needs, for the full list see reference [115]. In this work the following
parameters were used:

fitnessfcn: this is the function that calculates the fitness value for each in-
dividual in the population, in this case the function calculated the time
averaged flexural kinetic energy defined in equation (4.119);

nvars: specifies the number of variables used in the fitness function, set to 2
as both the optimal inductance and optimal resistance of the shunt are to
be found;

lb: defines a set of lower bounds for the considered variables, set to 1 H and
100 kΩ;

ub: defines a set of upper bounds for the considered variables, set to 2000 H
and 5 MΩ.
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options: this parameters can be used to define a wide range of parameters,
such as the initial population, the number of individuals in the popula-
tion, the number of iterations, set particular parameters for the crossovers
and mutations, enabling the use of parallel computing and more.
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