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ABSTRACT

The industrial demand for high-performance and low energy consume has highlighted the need
to develop lightweight manipulators and robots. However, their design and control result more
difficult with respect to rigid-link robotic systems mainly due to the structural flexibility of
the arms. To this end, the Equivalent Rigid-Link System (ERLS) approach for 3-D flexible-
link robots has been developed and, in this work, is considered in its recent developments. In
particular, two recently published 3-D Equivalent Rigid-Link System formulations are discussed
and compared by means of numerical simulations to highlight their strengths and possible
weaknesses. The former deals with the Equivalent Rigid-Link System concept extension to
spatial manipulators and robots through a Finite Element Method approach (ERLS-FEM),
whereas the latter reformulates the model through a Component Mode Synthesis technique
(ERLS-CMS). After the definition and discussion of the kinematic and dynamic equations, which
account for the coupling between rigid-body and flexible-body motions, an extensive comparison
is made. A benchmark manipulator is implemented and the formulations numerically compared
in terms of accuracy and computational load under different input conditions.

Keywords: Equivalent Rigid-Link System; Component Mode Synthesis; Finite Element
Method; flexible-link; dynamic model.

Nomenclature

α angular acceleration terms vector

ε strain vector

φ angular virtual terms vector

θ independent generalized coordinates vector

ρ mass density
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a linear acceleration terms vector

C compatibility matrix

Cd elastic terms compatibility matrix

Cr rigid terms compatibility matrix

D stress strain matrix

e node position vector

f concentrated external forces and torques vector

fg equivalent nodal loads due to gravity vector

G matrix that contains the coefficients of the indepen-
dent generalized coordinate acceleration

g gravity acceleration vector

H elastic energy matrix
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J Jacobian matrix

K stiffness matrix

L matrix that contains all terms not depending on
virtual displacements and accelerations

l matrix that contains all terms not depending on
virtual displacements

M mass matrix

MC centrifugal stiffness terms matrix

MG Coriolis terms matrix

n matrix that contains all terms not depending on
both independent gereralized coordinate and modal
coordinates accelerations

P linear virtual terms vector

p absolute nodal position vector

q modal coordinates vector

qd elastic modal coordinates vector

qr rigid modal coordinates vector

S joint displacements selector matrix

T local-to-local transformation matrix

U eigenvector

u node displacement vector

Vθi selection block-matrix for the rigid degrees of
freedom

Voi selection matrix for the proper elements of the ith
link

Vqdi selection block-matrix for the elastic modal coordi-
nates

Vqri selection block-matrix for the rigid modal coordi-
nates

W virtual work matrix

Wf generalized force work matrix

Wg gravitational force work matrix

el. number of beam elements

Ic shrink disk inertia

Im motor inertia

m. number of modes

me elbow articulation concentrated mass

AMM Assumed Mode Method

CMS Component Mode Synthesis

DoF Degree of Freedom

ERLS Equivalent Rigid-Link System

FEM Finite Element Method

1 INTRODUCTION

Building a lightweight and high performance manipulator is
one of the most important challenges in industrial robotics.
Indeed, when lightening the system, dynamic effects of
structural flexibility arise and both the design and control
of the manipulator result more challenging and demanding.
For an effective outcome it is crucial to have at our disposal
accurate, manageable and possibly “computationally light”
dynamic models.
In the last thirty years, researchers focused their attention on
developing and refining dynamic formulations for describing
the motion of multi-body rigid-flexible-link systems, from
planar to spatial flexible-manipulators [23, 38, 28, 4, 40, 29,
12, 6, 31, 13, 20, 2, 27, 5]; however, thanks to the increasing
computational capabilities of the industrial controllers and
the availability of new high-strength and/or light materials,
the research area is still an open field of investigation,
especially with respect to 3-D systems and their control.
Examples of recent modeling works of flexible manipulators
and robots can be found in [3], [10] and [41].
By focusing on dynamical systems characterized by large
displacements and small deformations, it is possible to
develop a complete dynamic formulation where, given the
rigid body dynamical model of the manipulator, the elastic
deformations are introduced and a coupled approach that
allows considering the mutual influence between rigid body
motion and vibration can be obtained. However, the resultant
formulation is highly non-linear with a coupled set of partial
differential equations. Two main approaches to obtain a
finite-dimensional problem have been proposed in literature:
the “nodal” approach, i.e. the Finite Element Method (FEM),
and the “modal” approach, i.e. the Assumed Mode Method
(AMM) [29, 28, 12, 11, 17, 39, 24, 25, 26, 30, 22].
In the Finite Element Method a continuous domain can be
represented as an amount of discrete sub-domains called
elements. Each element is made of a fixed number of
nodes, which define the number of degrees of freedom of
the discrete system. In this way, it is possible to obtain
mass and stiffness matrices which relate the forces applied
in the nodes with nodal displacements and accelerations.
A limitation of this methodology is that the number of
degrees of freedom of the system should not be high if a low
computational time (i.e. for real-time control purposes) is
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required. On the other hand, the modal approach transforms
the physical coordinates into a new reduced set of modal
coordinates. Among all vibration modes only few of them
are taken into account for the coordinates transformation:
these comprehend all the modal coordinates related to the
rigid motion of the system and at least one modal coordinate
related to the main vibration mode. This approach is
able to provide a reduced-order system of equations whose
resolution is cheaper in terms of computational effort.
Among the different methods proposed in literature, in this
work the Equivalent Rigid-Link System formulation, firstly
introduced in [33, 32, 34, 8], is considered. Thanks to the
Equivalent Rigid-Link System idea, two main advantages
can be obtained: (a) the standard concepts of 3-D kinematics
can be adopted to formulate and solve the system and (b)
the kinematic equations of the Equivalent Rigid-Link System
can be decoupled from the compatibility equations of the
displacements at the joints.
The Equivalent Rigid-Link System concept has been applied,
together with a Finite Element Method approach, to model
planar flexible-link manipulators and robots by Giovagnoni
in [18]. Then, the model has been linearised and exploited for
control purposes [14, 15, 7]. In recent past, the formulation
has been extended to treat 3-D systems [37, 36, 16] and,
through a modal approach, to obtain a more flexible solution
based upon a reduced-order system of equations [35]; in
addition, the main differences and advantages with respect
to the well known Floating Frame of Reference Formulation
[29] have been described and discussed. The evolution of the
ERLS-based dynamic model for flexible multibody systems
has been presented in [5].
In this paper, after the description of the Equivalent Rigid-
Link System kinematics for flexible-link robots (Section 2),
the derivation of the virtual work term contributions and
of the equations of motion for both the Equivalent Rigid-
Link System - FEM and CMS methods is recalled (Section
3). Then, the main differences between the Finite Element
Method and Component Mode Synthesis formulations are
highlighted and discussed. Section 4 shows the numerical
implementation and simulation of the models, whereas,
in Section 5 the results of the numerical simulations are
presented and discussed. Finally, Section 6 outlines the
conclusions of this work.

2 EQUIVALENT RIGID-LINK SYSTEM KINEMATICS

By referring to Fig.1, being x, y, z a fixed global reference
frame, ui represents the nodal displacement vector of the ith
link, ei is the nodal position vector for the ith element of the
ERLS and pi is the absolute nodal position vector given by:

pi = ei + ui (1)

The index i spans from 1 to l, where l is the number
of links of the manipulator. Let xi, yi, zi be a local
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Figure 1 Model of the system and kinematic definitions.

reference frame, which follows the ERLS motion. It can
be expressed with respect to the ERLS by means of a set of
generalized coordinates θ, the m-rigid degrees of mobility
of the mechanism, by exploiting the Denavit-Hartenberg
notation that can be adopted to describe the kinematics of
the ERLS. The ei’s can be gathered into a unique vector e,
representing the position and orientation of the whole ERLS,
see Fig.1.
To move from a nodal to a modal approach, the nodal
displacements ui of the ith link have to be firstly expressed
as functions of a given number of eigenvectors Ui and modal
coordinates qi, namely:

ui = Uiqi (2)

The eigenvectors and eigenvalues can be calculated
according to the chosen modal (reduction) approach.
In terms of modal coordinates, the joint displacement
belonging to link i and to link i + 1 can be given by
ûi = SiUiqi and ˆui+1 = Si+1Ui+1qi+1 respectively, where
matrices Si and Si+1 are introduced just to extract the proper
joint displacement from all the nodal displacement. The
compatibility condition at the ith joint is given by ˆui+1 =
Ti+1ûi, where Ti+1(θ) is a local-to-local transformation
matrix between two consecutive reference frames associated
to the two consecutive links. By writing the previous
equation for all the links and assembling them into a matrix,
a comprehensive compatibility equation can be found:

C(θ)q = 0 (3)

Starting from this, the virtual displacements in the fixed
reference frame and the acceleration of a generic point can
be computed (see [35] for more details).
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3 EQUIVALENT RIGID-LINK SYSTEM DYNAMICS

3.1 EQUIVALENT RIGID-LINK SYSTEM - FINITE
ELEMENT METHOD DYNAMICS

The dynamic equations are obtained by applying the
principle of virtual work and computing the inertial, elastic,
gravity and external generalized forces terms:

δWinertia + δWelastic = −δWexternal∑
i

∫
vi

δpT
i p̈iρidv +

∑
i

∫
vi

δεTi Diεidv =

∑
i

∫
vi

δpT
i gρidv + (δuT + δeT ) f

(4)

where ρi, Di and εi are the mass density, the stress-strain
matrix and the strain vector for the ith volume (finite)
element, g is the gravity acceleration vector, and f is the
vector of the concentrated external forces and torques; δu
and δe refer to all the nodes of the model. The nodal
elastic virtual displacements δu and the virtual displacements
of the Equivalent Rigid-Link System δe are completely
independent. Thus, two set of equilibrium equations, i.e.
local nodal equilibrium and global equilibrium equations,
can be obtained from Eq.4 by zeroing alternatively the nodal
elastic virtual displacements and the virtual displacements of
the ERLS. The following system of differential equations are
obtained:
M(ë + ü) + 2(MG1 + MG2)u̇+
(MC1 + 2MC2 + MC3)u + Ku =

fg + f
(5)

JT M(ë + ü) + 2JT (MG1 + MG2)u̇+

JT (MC1 + 2MC2 + MC3)u =

JT (fg + f)

(6)

where M is the mass matrix, MG1 and MG2 are the
Coriolis terms, MC1, MC2 and MC3 the centrifugal stiffness
terms, K the stiffness matrix, J the Jacobian matrix, that
allows to express the δe virtual displacements with respect
to the δθ independent generalized coordinates, and fg the
vector of the equivalent nodal loads due to gravity. The
dynamic equations, after the substitution of the second
order differential kinematics equations of the ERLS, can be
grouped and rearranged in matrix form, as it can be seen in
Eq.7, where MG12 = MG1 + MG2 and MC123 = MC1 +
2MC2 + MC3. See [37] and [36] for further details.

[
M MJ

JT M JT MJ

] [
ü
θ̈

]
=

[
−2MG12 −MJ̇ −MC123 − K

−JT 2MG12 −JT MJ −JT MC123

] u̇
θ̇
θ

+

[
M I

JT M JT

] [
fg
f

]
(7)

A Rayleigh model of damping can be eventually considered
and inserted in the model to deal with real flexible
manipulator systems.

3.2 EQUIVALENT RIGID-LINK SYSTEM -
COMPONENT MODE SYNTHESIS DYNAMICS

In a similar manner, starting from the formulation of
the velocity/virtual displacement and acceleration terms as
functions of θ, i.e. the independent generalized coordinates,
and qd, i.e. the independent modal coordinates, and
their derivatives, the virtual work contributions can be
derived. Then, the relationship between the velocities/virtual
displacements and accelerations of the rigid body modal
coordinates qr and the velocities/virtual displacements and
accelerations of the independent variables, see [35] for the
details, can be recalled:

δqr = D(θ)δqd + G(θ,q)δθ (8)

q̈r = G(θ,q)θ̈ + D(θ)q̈d + n(θ, θ̇,q, q̇) (9)

where the matrices D(θ), G(θ,q) and the vector n(θ, θ̇,q, q̇)
take into account the different contributions and dependen-
cies. In particular, D(θ) is the matrix which relates the rigid
modal coordinates qr and the elastic modal ones qd:

qr = D(θ)qd (10)

and it is defined as:

D(θ) = −C+
r (θ)Cd(θ) (11)

where Cr and Cd contain the coefficients of the rigid and
elastic modal coordinates and only depend on the joint
parameters. These matrices are obtained by rearranging the
comprehensive compatibility equation (Eq.3) into the rigid
and the modal contributions as follows:

Crqr + Cdqd = 0 (12)

Starting from Eq.8, the virtual terms of the generic ith link,
i.e. linear δP0i, angular δφi and modal δq, can be written as:

δP0i

δφi
δq

 =

V θi 0 0
0 V qri 0
0 0 V qdi

 J(θ) 0
G(θ,q) D(θ)

0 I

[ δθ
δqd

]
=

VoiN
[
δθ
δqd

]
(13)

where Voi is a selection matrix for the proper elements of the
ith link (V θi is the selection block-matrix for the rigid DoFs,
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V qri for the rigid modal coordinates and V qdi for the elastic
modal ones) and J(θ) the Jacobian matrix of the Equivalent
Rigid-Link System. The Voi matrix is block diagonal and
allows to select the correct terms related to both the rigid
degrees of freedom and the independent vibration modal
coordinates. Also the acceleration terms (Eq.9), i.e. linear
a0i, angular αi and modal q̈, can be rewritten as function of
the independent variables:a0i
αi
q̈

 = VoiN
[
θ̈
q̈d

]
+ Voi

 J̇(θ, θ̇)θ̇

n(θ, θ̇, q, q̇)
0

 (14)

The second term of the equation depends only on the position
and velocity of the independent variables and, thus, it is
known.
The virtual work done by the inertial forces can be split into
two contributes:

δWinertia = δWI
inertia + δWII

inertia (15)

where the former contains all of the terms related to the
second derivative of the variables, the latter contains all the
remaining terms. The virtual work done by the inertial forces
δWI

inertia,i and δWII
inertia,i of each link, and the virtual

works done by the gravitational δWg and generalized δWf

forces, can be written as:

−δWI
inertia,i =

[
δPT0i δφTi δqT

]
Li

a0i
αi
q̈

 (16)

where the Li matrix contains all the terms not depending on
virtual displacements and accelerations.
By substituting Eq.13 and Eq.14, it holds:

− δWI
inertia,i =

[
δθT δqT

d

]
NT VoT

i Li

Vo
i N
[
θ̈
q̈d

]
+ Vo

i

 J̇(θ, θ̇)θ̇

n(θ, θ̇, q, q̇)
0


(17)

δWII
inertia,i =[

δPT
0i δφT

i δqT
]

li =
[
δθT δqT

d

]
NT VoT

i li
(18)

All the other terms such as the variation of the elastic
energy δH, the gravitational forces δWg and the resultant
generalized forces δWf do not depend on accelerations.
Then, they can be gathered into a unique term l̃i. By naming
δWi the term with all the contributions not depending on
accelerations, it holds:

δWi =
[
δPT

0i δφT
i δqT

]
l̃i =

[
δθT δqT

d

]
NT VoT

i l̃i (19)

All the links contributions can be added to obtain the final
formulation:

− δWI
inertia =

N∑
i=1

[
δθT δqT

d

]
NT VoT

i Li

Vo
i N
[
θ̈
q̈d

]
+ Vo

i

 J̇(θ, θ̇)θ̇

n(θ, θ̇, q, q̇)
0

 =

= δW =

N∑
i=1

[
δθT δqT

d

]
NT VoT

i l̃i

By naming L def
=
∑N
i=1 VoT

i LiVoi and l̃ def
=
∑N
i=1 VoT

i l̃i,
and discarding the virtual displacements, the final dynamic
model results:

NTLN
[
θ̈
q̈d

]
= NT

L

−

 J̇(θ, θ̇)θ

n(θ, θ̇, q, q̇)
0

+ l̃

 (20)

3.3 THEORETICAL COMPARISON
With respect to the Equivalent Rigid-Link System -
Finite Element Method formulation, the Component Mode
Synthesis model:

• takes into account all the terms without simplifica-
tions and/or neglecting some, even if with a small
contribution, inertia coupling terms. Indeed, in the
virtual displacement formulation of the ERLS-FEM
approach, the terms with lower-order magnitude are
usually neglected [37];

• allows to work with whatsoever flexible or rigid-link
shape and finite elements thanks to the modal repre-
sentation; the Equivalent Rigid-Link System - Finite
Element Method usually deals with flexible beam type
links;

• allows, as already explained, to reduce the complexity
of the model and possibly maintain a number of
degrees of freedom that can be handled by a processor
when a fine discretization is needed;

• allows the choice of a specific number of equations,
which globally describes the dynamic behaviour of the
flexible system;

• allows to retain only the interior modes of interest (e.g.
by using the Craig-Bampton approach [9]).

4 NUMERICAL IMPLEMENTATION AND
SIMULATION

The Finite Element Method and Component Mode Synthesis
dynamic models have been implemented in MatlabTM envi-
ronment and test them. Different benchmark mechanisms
have been proposed in literature, such as single-link, planar,
closed loop and spatial manipulators (e.g. [12, 18, 7, 21, 19,
1]). In this work, looking at a 3-D motion and excitation,
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Figure 2 L-shaped manipulator: reference frame and
possible node discretization.

a L-shaped mechanism, already adopted in [35], has been
chosen.
The L-shape, basically made of two flexible rods (Fig.2),
allows to induce motion and vibrations in different
directions. For the ERLS-CMS model, the link flexibility has
been imported through a special file, i.e. the modal neutral
file, generated in AnsysTM and based on the Craig-Bampton
reduction.
The L-shaped system has one rigid rotational DoF and, in
these tests, it has been modeled with two and four Euler-
Bernoulli beams - Finite Elements - in AnsysTM. Even if
a low number of FE is considered, a good representation
of its dynamic behaviour can be obtained [35, 14, 7, 16].
Each Euler-Bernoulli beam has two nodes and six degrees
of freedom: the two-elements system has a total of 18 DoFs
whereas the four-elements one has a total of 30 DoFs.
The geometrical and mechanical parameters of the chosen
mechanism are reported in Tab.I.
To compare the different formulations, the mechanism
responses under different inputs have been evaluated. In
particular, as made also in other works [35, 18, 21, 19],
gravitational force and torque inputs (see Fig.s 2 and 3) have
been considered and the results compared. Gravitational
force has been chosen as a natural way to excite the system,
whereas the step torque input allows to properly excite the
3-D mechanism upon a wider range of frequencies.
The input signal allows, from a statically balanced
configuration at 135◦, to fast accelerate and decelerate. For
simulating a realistic mechanical system, a motor inertia Im,
a shrink disc inertia Ic and an elbow articulation concentrated
mass me have been added to the model. The chosen values
are Im = 0.0043 kg m2, Ic = 0.001269 kg m2 and
me = 0.017 kg, respectively.

Time [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In
pu

t T
or

qu
e 

[N
m

]

-1

0

1

2

3

Figure 3 Input torque signal.

The number of exported modes is defined in AnsysTM when
creating the .mnf file for AdamsTM that exploits a Craig-
Bampton approach. In the 2-elements case, all available
modes have been exported whereas in the 4-elements case
both 18 and 30, over the 30 available modes, have been
chosen. In Tab.II, the exported natural frequencies have been
reported. The first 6 values are not present since they are
equal to zero representing rigid-body modes.
In Tab.III the properties of the laptop used for numerical
simulations are reported.
For each subdivision of the L-shaped manipulator in beam
elements, different numerical simulations have been run, by
varying the number of considered modes. The dynamics of
the robotic system has been simulated for a time equal to 2
seconds and by adopting a variable step ode45 solver, based
on an explicit Runge-Kutta formulation. For each number of
considered modes, three simulations have been run in order
to obtain a correct average value of computational time.

5 RESULTS AND DISCUSSION

In this section, the results of the numerical simulations for the
L-shaped manipulator subjected to both gravity and torque
inputs are presented. Dynamic simulations of the mechanism
under gravity are intended to show the L-shaped system
frequency response over a large frequency domain, whereas
simulations under torque input highlight the behaviour of
the system under a forced condition, more similar to a real
application.
In particular, four significant cases are highlighted and
focused:

• the 2- and 4-elements models without reduction equiv-
alent to the ERLS-FEM 2- and 4-beam elements
model, i.e. 2 el. 18/18 modes and 4 el. 30/30 modes;

• the 4-elements model exported from AnsysTM with 18
modes, i.e. 4 el. 18/18 modes;

• the model obtained by the full 30/30 reduced choosing
only the first 18 modes, i.e. 4 el. 18/30 modes.
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Table I - Geometrical and mechanical parameters of the L-shaped manipulator.

Rod Material Length Depth Width Density Poisson’s Young’s
ratio module

[m] [m] [m] [kg/m3] [N/m2]

1st Aluminium 0.5 0.008 0.008 2700 0.33 7e10

2nd Aluminium 0.5 0.008 0.008 2700 0.33 7e10

Table II - Natural frequencies [Hz] obtained by AdamsTM report files.

Mode 2 el. (18 m.) 4 el. (18 m.) 4 el. (30 m.) Mode 4 el. (30 m.)

7 23.33 28.19 28.19 19 5466.76
8 37.56 34.42 34.42 20 6104.64
9 1171.02 103.24 103.25 21 6104.64
10 1273.62 106.16 106.16 22 6483.02
11 2519.98 187.01 186.90 23 7991.92
12 2729.22 234.08 234.08 24 11313.76
13 2729.22 1434.45 1344.65 25 14071.89
14 3241.51 1463.87 1371.12 26 18313.23
15 5427.78 3761.82 3360.82 27 19697.79
16 9207.15 6368.74 3379.20 28 23294.27
17 10398.16 7310.70 3507.58 29 23651.84
18 12610.60 12023.24 3508.01 30 25068.96

Table III - Hardware used for the numerical simulations.

Computer HP Pavillon dv6
Processor Intel R© CoreTM 2 Duo CPU T6400 @ 2.00 GHz 2.00 GHz
Installed memory (RAM) 4.00 GB
System type 64-bit Operating System, x64-based processor
Windows edition Windows 10 Pro

5.1 MECHANISM UNDER GRAVITY
To better appreciate the differences between Finite Element
Method and Component Mode Synthesis model results,
the tip z-coordinate acceleration signal of the L-shaped
manipulator under gravity both in the time and frequency
domains are reported in Fig.s 4(a) and 4(b). The z-coordinate
has been chosen since it is the one that is heavily excited due
to the considered external forces acting on the mechanism
and, therefore, allows a better comparison of the results.
The 4-elements 18-modes and the 4-elements 30-modes
signals overlap almost perfectly whereas, as it can be
expected, the 2-elements signal shows a good agreement only
at low frequencies. Small differences can be observed for the
4 el. 18/30 modes case due to the post reduction in the mode
number.
In Tab.IV, the resonance peaks, detected on the z-coordinate
acceleration signal of the L-shaped mechanism, are reported.
Only frequencies lower than 10 kHz have been considered
here. Looking at the values, it can be highlighted how, in
both the 4-elements cases, i.e. 4 el. 18 exported modes and 4
el. 30 modes, 14 vibration modes can be sufficient to obtain
a very good agreement of the first 8 resonance peaks with
respect to the Finite Element Method case, i.e. full model
condition.
Concerning simulation results with a considered number of
modes lower than 14, a good agreement can be found only
with respect to the first 3 peaks.

As expected, by increasing the number of considered modal
coordinates the resonance peaks shift to lower frequency
values.
In Tab.V and Fig.5 the computational time for each simula-
tion is given, whereas in Tab.VI the mean computational time
over the three simulations of each case and the percentage
reduction with respect to the computational time of the FEM
cases, i.e. the cases with no modal reduction, are shown.
It can be noticed that, for the 2-elements 18-modes
and 4-elements 30-modes, the percentage reduction of
computational effort is always greater than 50 %. An
important computational time reduction can be appreciated
also for the 4-elements 18-modes with respect to both 2 and
4-elements FEM.
By considering the four main cases previously evaluated, it
can be appreciated how the modal reduction at 18 modes,
i.e. 18 imported modes, allows a time saving of about 22 %
whereas, if 18 modes are maintained from the 4el 30 modes
case, the time saving increases up to about 72 %.
If the 14 modes condition is evaluated, i.e. the one that allows
to have an agreement on the first 8 resonance peaks, it can
be appreciated how the reduction in time is always greater
than 88 %, thus allowing to highlight the better performances
of the ERLS-CMS approach with respect to the ERLS-FEM
one.
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Table IV - Resonance peaks [Hz] with respect to beam elements and considered modes, mechanism subjected to gravity
force.

Elements Modes Resonance peaks [Hz]

1 2 3 4 5 6 7 8 9 10 11

2 (18 m.) 18 0.5 7.5 28 31.5 1482

4 (18 m.)

8 0.5 12 28.5
10 0.5 10 26.5 38
12 0.5 8.5 26 37.5 124.5 170
14 0.5 9 11.5 25.5 30.5 111.5 124 172 1464
16 0.5 9 11.5 25.5 30.5 111.5 124 172 2259 6163
18 0.5 8.5 11.5 24 30.5 111.5 117 172 265.5 2260 9334

4 (30 m.)

8 0.5 12 28.5
10 0.5 10 26.5 38
12 0.5 9.5 26 37.5 124 170
14 0.5 9 12 25.5 30.5 112.5 124 172 1371
16 0.5 9 11.5 25.5 30.5 111.5 124 172 3381
18 0.5 9 11.5 25.5 30.5 111.5 124 172 1918 3429
30 0.5 8.5 11.5 24 30.5 111.5 117 172 265.5 1767 5044

Table V - Computational time [s], mechanism under gravity.

Elements Modes

6 8 10 12 14 16 18 30

2 (18 m.) 1.31 6.53 226.34 437.91 466.41 1041.23 2160.01
0.99 5.69 196.42 371.03 442.32 1004.10 2120.68
1.61 6.29 220.39 387.06 467.94 1027.24 2114.84

4 (18 m.) 1.24 6.02 6.38 27.69 245.81 1128.18 1667.27
0.99 5.86 6.39 26.40 234.17 1046.00 1608.18
1.12 5.88 6.53 26.69 236.03 1085.86 1636.31

4 (30 m.) 1.21 6.11 6.47 27.62 218.68 583.11 589.64 4969.19
1.47 5.80 6.47 27.07 221.09 614.76 622.72 5024.79
1.45 5.69 6.44 28.47 232.38 623.67 581.73 4974.43

Table VI - Computational mean time [s] and reduction [%] with respect to the FEM case, mechanism under gravity.

Elements Modes

10 12 14 16 18 30

2 (18 m.) mean time [s] 214.38 398.67 458.89 1024.19 2098.84*
* [%] 89.79 81.01 78.14 51.20

4 (30 m.) mean time [s] 6.46 27.72 224.05 607.18 598.03 4989.47**
* [%] 99.69 98.68 89.33 71.07 71.94

** [%] 99.87 99.44 95.51 87.83 88.01

4 (18 m.) mean time [s] 6.43 26.93 238.67 1086.68 1637.25
* [%] 99.69 98.72 88.63 48.22 21.99

** [%] 99.87 99.46 95.22 78.22 67.19

Reduction with respect to *
Reduction with respect to **

5.2 MECHANISM SUBJECTED TO TORQUE INPUT
The tip z-coordinate acceleration of the L-shaped beam under
torque input is reported in Fig.6(a) and 6(b) in time and
frequency domain.
In these cases, as well as in the gravitational force ones,
the 4-elements acceleration signals match each other very
well, whereas the 2- elements FEM captures only the low
frequencies in a good manner.

Tab.VII shows the resonance peaks of the previous
acceleration signals; it can be found that, for both 4-elements
cases, only 14 modal coordinates in input are enough to
identify the first 4 resonance peaks. The general trend is
quite similar to the gravitational force case, since resonance
peaks shift on lower frequency values whereas increasing the
number of considered modes. With respect to the gravity
case, the torque case shows 6 main excited frequencies.
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Table VII - Resonance peaks [Hz] with respect to beam elements and considered modes, mechanism subjected to torque
input.

Elements Modes Resonance peaks [Hz]

1 2 3 4 5 6

2 (18 m.) 18 9.5 32.5 1491 11720

4 (18 m.)

8 28.5
10 26.5 38
12 26.5 37.5 170
14 11.5 30.5 111.5 172
16 11 30.5 111.5 172 2271 6163
18 11 30.5 111.5 172 2272 9345

4 (30 m.)

8 28.5
10 26.5 38
12 26.5 37.5 170
14 12 30.5 113 172
16 11 30.5 111.5 172
18 11 30.5 111.5 172 1929 3440
30 11 30.5 111.5 172 1755 1778

Table VIII - Computational time [s], mechanism subjected to torque input.

Elements Modes

6 8 10 12 14 16 18 30

2 (18 m.) 1.02 5.85 203.64 387.05 454.47 1002.56 2091.69
1.37 6.35 213.72 374.69 445.70 1021.75 2105.60
1.42 5.62 198.73 378.21 448.13 986.64 2055.80

4 (18 m.) 1.09 5.38 5.85 30.23 255.47 1070.51 1678.88
1.06 5.15 5.81 29.13 244.35 1053.85 1625.22
1.19 5.32 6.13 31.08 259.08 1087.85 1721.40

4 (30 m.) 1.23 5.41 6.18 29.31 219.46 578.43 591.33 5137.08
1.33 5.31 6.16 30.27 219.47 573.86 591.82 5127.65
1.41 5.56 6.51 30.44 229.45 590.09 635.96 5087.46

Table IX - Computational mean time [s] and reduction [%] with respect to the FEM case, mechanism subjected to torque
input.

Elements Modes

10 12 14 16 18 30

2 (18 m.) mean time [s] 205.36 379.98 449.43 1003.65 2084.36*
* [%] 90.15 81.77 78.44 51.85

4 (30 m.) mean time [s] 6.28 30.01 222.79 580.79 606.37 5117.40**
* [%] 99.70 98.56 89.31 72.14 70.91

** [%] 99.88 99.41 95.65 88.65 88.15

4 (18 m.) mean time [s] 5.93 30.15 252.97 1070.74 1675.17
* [%] 99.72 98.55 87.86 48.63 19.63

** [%] 99.88 99.41 95.06 79.08 67.27

Reduction with respect to *
Reduction with respect to **

In Tab.VIII and in Fig.7 the computational time of the
different simulations is reported. As it can be seen, the
computational time decreases by increasing the number of
beam elements and the exported modes, for each number
of considered modes. By increasing the beam elements
and choosing the same number of modes, lower natural
frequencies are considered, see Tab.II. Thus, the solver is

able to extend the time integration step and therefore the
required computational time decreases.
By considering the four main cases previously evaluated, it
can be appreciated how the modal reduction at 18 modes,
i.e. 18 imported modes, allows a time saving of about 20 %
whereas, if 18 modes are maintained from the 4 el. 30 modes
case, the time saving increases up to about 71 %.
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Figure 4 Comparison of the tip z-coordinate acceleration of
the L-shaped mechanism under gravity force. At the

beginning of the excitation, the manipulator is in a static
balanced position at 135◦.
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Figure 5 Computational time [s] in logarithmic scale,
mechanism under gravity.

If the 14 modes condition is evaluated, i.e. the one that allows
to have an agreement on the first 4 resonance peaks, it can be
appreciated how the time reduction is again always greater
than 88 %, thus allowing to highlight the better performances
of the ERLS-CMS approach with respect to the ERLS-FEM
one.
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Figure 6 Comparison of the tip z-coordinate acceleration of
the L-shaped mechanism under torque input.
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Figure 7 Computational time [s] in logarithmic scale,
mechanism subjected to torque input.

As in gravitational force modality, also in this case we can
assume that, by means of ERLS-CMS model with a number
of modes lower than the maximum one, the reduction of
computational effort is of great significance.
It has to be noticed that the results obtained in this paper have
been obtained with a model suitable for small displacements
and small elastic deformations. By considering longer
rods or by increasing the stiffness of the material, a more

10



ISSN 1590-8844
International Journal of Mechanics and Control, Vol. XX, No. XX, 20XX

flexibility would be introduced and this fact could lead
to large elastic deformations. In such a condition, the
Equivalent Rigid-Link System formulation could not be
adopted any more being the approach not suitable to cope
with large elastic deformations.

6 CONCLUSION AND FUTURE WORKS

In this paper, a numerical formulation and comparison
between a Finite Element Method and a Component Mode
Synthesis approach, based on a Equivalent Rigid-Link Sys-
tem 3-D dynamic formulation, have been presented. The
kinematics and dynamics equations have been recalled and
a theoretical comparison between the two approaches dis-
cussed. Then, the models have been numerically imple-
mented in MatlabTM environment, a L-shape manipulator has
been chosen as a benchmark system and different simulations
have been run both under gravity and torque inputs by
varying, in particular, the number of considered modes.
With respect to the Equivalent Rigid-Link System - Finite
Element Method implementation, given the fact that the
new formulation allows to reduce the number of DoFs
of the considered system, the computational time required
decreases. Indeed, it is highly dependent on the number of
DoFs, now the number of kept modes and their frequency;
however, as demonstrated, the Equivalent Rigid-Link System
- Component Mode Synthesis approach allows to keep
both the gross and the fine motion of the robotic system.
Since the choice of the selected modes could be made in
different manners, in future works, different modal reduction
strategies will be applied and evaluated for increasing the
performance of the developed approach.
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