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Abstract. Network Performance (NP)- and more recently Quality of
Service/Experience/anything (QoS/QoE/QoX)-based network manage-
ment techniques focus on the maximization of associated Key Perfor-
mance Indicators (KPIs). Such mechanisms are usually constrained by
certain thresholds of other system design parameters. e.g., typically,
cost. When applied to the current competitive heterogeneous Cloud Ser-
vices scenario, this approach may have become obsolete due to its static
nature. In fact, energy awareness and the capability of modern technolo-
gies to deliver multimedia content at different possible combinations of
quality (and prize) demand a complex optimization framework.

It is therefore necessary to define more flexible paradigms that make
it possible to consider cost, energy and even other currently unforeseen
design parameters not as simple constraints, but as tunable variables
that play a role in the adaptation mechanisms.

In this chapter we will briefly introduce most commonly used frame-
works for multi-criteria optimization and evaluate them in different
Energy vs. QoX sample scenarios. Finally, the current status of related
network management tools will be described, so as to identify possible
application areas.

1 Introduction

Network Performance- and more recently Quality of Service/Experience/
X-based network management techniques (where “X” can represent “S” service,
“P” perception, “E” experience or “F” flow, just to give a few examples), focus on
the maximization of associated KPIs. Such mechanisms are usually constrained
by certain thresholds of other system design parameters, e.g., typically, cost.
When applied to the current competitive heterogeneous Internet of Services sce-
nario, this approach may have become obsolete due to its static nature. In fact,
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energy awareness and the capability of modern technologies to deliver multime-
dia content at different possible combinations of quality (and prize) demand a
complex optimization framework.

It is therefore necessary to define a more flexible paradigm that makes it
possible to consider cost, energy and even other currently unforeseen design
parameters not as simple constraints, but as tunable variables that play a role in
the adaptation mechanisms. As a result, for example, the service supply will then
search for the maximum QoE at the minimum cost and/or energy consumption.
In consequence, a certain service will not be offered at a single and specific
guaranteed price, but will vary with the objective of obtaining the best (QoE,
cost, energy, etc.) combination at a given time.

Unfortunately, most considered design parameters are conflicting, and there-
fore the improvement of one of them entails some deterioration of the others.
In these circumstances, it is necessary to find a trade-off solution that optimizes
the antagonistic criteria in the most efficient way. Therefore, the resource allo-
cation problem becomes a multi-criteria optimization problem and the relevance
of each criteria gains uttermost importance.

This chapter analyzes the existing optimization frameworks and tools and
studies the complexity of introducing utility functions into network/management
mechanisms, including fairness considerations. Then, we present cost/energy/*-
aware network and cloud services management scenarios. Finally, we address the
challenge of introducing energy-awareness in network controlling mechanism and
provide a general view of current technologies and solutions.

2 Dealing with Multi-criteria Optimization: Frameworks
and Optimization Tools

Regardless the mathematical or heuristic tools applied in order to find (near)
optimal solutions in the scope of Internet of Services management mechanisms,
all of them share common issues due to the extension of the original definition
of the problem to a multi-criteria one. This section provides a summarized com-
pilation of those issues, especially those related to how the decision maker (DM)
will take into consideration different antagonistic criteria.

2.1 Generic Definition of the Problem

The classical constrained single criteria problem deals with finding the combina-
tion of design parameters (normally represented by a vector x∗) in the feasible
space (S) that minimize a single function (1).

∃x∗ ∈ S / min f(x∗) = z (1)

Then the multi-criteria or multi-objective optimization problem, defined as
an extension of the mono-criteria one, aims at simultaneously minimizing a col-
lection of requirements keeping the equality and inequality constraints of the
feasible space (2).
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∃x∗ ∈ S / min fi(x∗) = zi∀i = 1, 2, . . . , k (2)

The optimal solution that minimizes simultaneously all the criteria is most of
the times hardly achievable, and is known as utopian solution [5]. Therefore, the
actual best solution of the problem should be as close as possible to this utopian
solution. The optimization problem must then be redefined to extract from the
whole feasible space of solutions, those closer to the utopian solution. That set
of solutions characterizes the Pareto-optimal front. The goal of a good multi-
criteria optimization problem is the search of a set of solutions that properly
represents that Pareto front, i.e., uniformly distributed along that Pareto front.

However, due to the trade-offs among different parameters, in most of the
cases there will not exist such a solution which minimizes all the criteria simul-
taneously. So, the nature of the problem is usually re-defined by introducing the
concept of Utility Function, responsible for quantifying the relevance and com-
posite articulation of different criteria. Then, the real formulation of the problem
can be expressed mathematically as follows (3).

∃x∗ ∈ S / min U(z1, z2, . . . , zk) (3)

2.2 Incorporating Multiple Criteria in General Optimization
Methods

Multiple Objective Optimization (MOO) has been a field of intensive research
in different engineering areas. This activity has led to the development of a lot
of MOO methods ranging from exact methods to meta-heuristics and including
several different nature algorithms.

In this section, we propose a comprehensive taxonomy of the optimization
problem synthesized from the works in [13,14,21,30,31,36]. The presented tax-
onomy categorizes the optimization problems according to different perspectives
where the main goal is to determine how the multiple criteria are considered
by the DM. Table 1 summarizes the characterization of the optimization criteria
that are defined as follows:

– Qualitative vs. quantitative criteria: refers to how the analyzed criteria
are measured. If the DM is able to represent the preference degree of one
option against the others by a numerical value, then the criteria are quan-
titative. Otherwise, the criteria are qualitative, meaning that preference can
not be numerically measured or compared and, in consequence, a descriptive
value is assigned.

– Preference articulation: refers to the point in time the DM establishes its
preferences:

• A priori preference articulation: the preferences are defined at prob-
lem modeling stage, adding supplementary constraints to the problem
(i.e., weighted sum and lexicographic methods).

• A posteriori preference articulation: once the optimization problem
provides the set of results from the optimization process, DM’s preferences
are used to refine the final solution (i.e., in evolutive and genetic methods).
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• Progressive preference articulation: DM’s preferences are gradually
incorporated in an interactive way during the optimization process.

• Without preference articulation: when there is no preference defini-
tion for the problem (i.e., max-min formulation, global criterion method).

– Continuous vs. discrete: refers to the variable type used to describe the
optimization criteria. When the optimization problem handle discrete vari-
ables, such as integers, binary values or other abstract objects, the objective
of the problem is to select the optimum solution from a finite, but usually
huge, set. On the contrary, continuous optimization problems handle infinite
variable values. In consequence, continuous problems are usually easier to
solve due to their predictability, because the solution can be achieved with
an approximate iterative process. Since cost/energy aware network and ser-
vices management must deal with both discrete (i.e., number of servers, route
lengths, radio bearers, etc.) and continuous design parameters (i.e., coding bit
rate, transmission power, etc.) both techniques should be considered.

– Constrained vs. not constrained: refers to the possibility of attaching
a set of requirements expressed through (in)equality equations to the opti-
mization problem. In this case, besides finding a solution that optimizes a
collection of criteria, it must also meet a set of constraints. Non constrained
methods can be used to solve constrained methods, replacing restrictions for
penalizations on objective functions to prevent possible constraint violations.
As aforementioned, classical network management approached involved con-
sidering a single criteria only and establishing Cost and Energy constrains.
The proposal in ACROSS to move to a multi-criteria optimization analysis
does not necessarily imply getting rid of all the possible constraints.

Those classifications do not result into disjoint categories. In fact, multi-
criteria optimization problems in the considered heterogeneous network and ser-
vices management scenario may fall into one or several of the categories listed
above.

Summarizing, before beginning with the process of multi-criteria optimiza-
tion problem there is a crucial previous step: the definition of the criteria to be
optimized, i.e., the preferences of the DM about the suitability of the obtained
solution.

Regardless the decision maker being the Cloud/Network/SOA designer or
service operator the adaptation algorithm must incorporate the impact of dif-
ferent criteria on their perception of the goodness of any solution. A key factor
in the analysis for decision making is indeed the fact that the functions that
model decision maker’s preferences (criteria or objective functions) are not usu-
ally known a priori.

2.3 Complexity of Defining Multi-criteria Utility Functions
to be Incorporated in Network/Management Mechanisms

Considering the relevance of the choice of a multi-criteria utility function, dif-
ferent tools aiding at this task will be reviewed in this section.
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Table 1. Characterization of the optimization criteria for DM.

Description type Qualitative

Quantitative

Preference articulation A priori

A posteriori

Progressive

None

Type of variables Continuous

Discrete

Constraint definition Constrained

Not constrained

– Goal attainment
– MAUT (Multi-Attribute Utility Theory)
– Preference relations
– Fuzzy logic
– Valuation scale

Goal Attainment. This basic format restricts the feasible space with the most
relevant set of alternatives according to the DM’s preferences (Fig. 1). Such pref-
erences if represented mathematically usually result in a n-dimensional shape or
contour in the decision space limiting those solutions acceptable by the DM
(similar to that imposed by the constraints in the design space). It is a simple
and direct format, that just splits alternatives into relevant/non-relevant groups.
However, it only offers little information about preferences, not providing any
hint about the predilections of the DM.

Fig. 1. Selection set within feasible space.

The work in [8,9] describe the use of goal attainment preference modeling in
multi-criteria algorithms.
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Multi-Attribute Utility Function. In this case, the utility function is build
by describing the repercussion of an action regarding a specific criterion. Each
action is assigned a numerical value, so that the higher the value, the more
preferable the action. Then, the assessment of an action becomes the weighted
sum of the numerical values related to each considered criterion. This represen-
tation format is capable of modeling DM’s preference more precisely than the
Selection Set. Nontheless, it also means that the DM must evaluate its incli-
nations globally, comparing each criterion against all the others, which is not
always possible. Therefore, this type of utility function is suitable just for the
cases in which a perfect global rationality can be assumed [46]. For example, this
classic model is commonly employed in economics and welfare field.

Besides, utility has an ordinal nature, in the sense that the preference relation
between the possible choices is more significant than the specific numerical values
[4]. So, this leaves the door open to discarding the numerical value of the utility,
as it is shown next.

Preference Relations. This representation format models the inclination over
a set of possible choices using a binary relation that describes the qualitative
preference among alternatives. Then, a numerical value is linked to that rela-
tion, defining the preference degree of alternative xi against alternative xk in a
quantitative way [37].

This format of preference modeling provides an alternative to the assign-
ment of a numerical value to different utility levels, allowing the comparison of
alternatives pairwise, providing the DM higher expressiveness to enunciate his
preferences (i.e., similar to Analytic Hierarchy Process – AHP [39]). Outranking
methods employ this format of preference representation.

Fuzzy Logic. This format allows the introduction of uncertainty over the pref-
erences under analysis. In order to avoid ambiguity in the definition process of
the preferences, each “xi is not worse than xk” is attached a credibility index.
In this sense, fuzzy logic becomes a useful tool [46], as a general framework for
preference modeling where certain sentences are a particular case.

The obstacle of using fuzzy logic with credibility indexes is the weakening
of the concept of truth. The infinite possible values of truth between absolute
truth and falseness have an intuitive meaning that does not correspond to their
formal semantics. In addition, there are other problems, such as the formulation
of the credibility index itself.

Valuation Scale. This preference formulation defines a formal representation
of the comparison between possible choices that expresses both the structure of
the described situation and the variety of manipulations that can be made on it
[37]. This type of sentences are appropriately expressed in logical language. But
classical logic can be too inflexible to acceptably define expressive models. In
consequence, other formalisms must be taken into account to provide the model
with the required flexibility.
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Conclusion. Preference or criteria description format plays a crucial role in
the definition of the nature and structure of the information the DM employs to
set his predilections up towards the different possibilities. The selection of the
best representation format will rely on the characteristics of the specific area
of expertise. Sometimes, inclinations will be better expressed using numerical
values, and in other cases using more natural descriptions, such as words or
linguistic terms.

The final goal is to contrast the impact of the potential actions with the
purpose of making a decision. Therefore, it is necessary to establish a scale for
every considered criterion. The elements of the scale are denoted degrees, levels
or ranks.

Table 2. Summary of methods to define multi–criteria utility functions ordered by
complexity.

Goal attainment Simple, just relevant/non–relevant categorization of
preferences

Multi-Attribute Utility
Theory (MAUT)

Utility function as a weighted sum of numeric values
assigned to criteria, needs perfect global rationality

Preference relations Modeled through binary relations to define preferences
pairwise

Fuzzy logic Introduces uncertainty through a credibility index

Valuation scale Establishes a formal representation of the preference
between alternatives

Table 2 summarizes the aforementioned methods to define multi–criteria util-
ity functions represent the preferences of the decision maker related to the mul-
tiple criteria to be optimized. This table also orders them according to its com-
plexity, starting with the simpler Goal Attainment method and ending with the
completer Valuation Scale.

2.4 Multi-criteria Problems Solving Mechanisms

Once the optimization problem is modeled or formulated, the solution is found
after the application of an optimization method.

Most optimization algorithms frequently imply an iterative searching pro-
cess. Beginning with an initial approach to the solution, the algorithm performs
consecutive steps towards the termination point. The search strategy states the
difference among the diverse methods and there is no universal method applica-
ble to any kind of problem. Table 3 shows a classification of the main optimization
solving families.
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Table 3. Classification of optimization solving methods.

Weighted sum [21] The multiple objective functions are aggregated in a
single function by the assignment of weights

Random search [13] Generate random numbers to explore the search
(feasible) space

Tabu search [14] Iteratively make movements around the current
solution constrained by a group of forbidden or tabu
movements

Physical programming [31] Incorporate preferences without the need of weight
assignment. Address both design metrics and
constraints in the same way, integrating them into the
utility function

Lexicographic [6] Objective functions are processed in a hierarchical basis

Genetic and evolutionary
[12,15]

Imitate the optimization process of the natural
selection. Employ techniques such as heredity,
mutation, natural selection or factor recombination to
explore the feasible space and select the current
solution

Simulated annealing [14] Imitate the iterative process of cold and heat
application for metal annealing by increasing or
decreasing the difference between the ideal solution
and the current approach

Ant colony optimization
(ACO) and swarm
optimization [40]

Imitate animal behavior related to their intra-group
communication or their search for the optimal ways
towards the food

Outranking methods [46] Build an ordered relation of the feasible alternatives
based on the defined preferences over a set of criteria
to eventually complete a recommendation

2.5 Fairness Consideration

Traditionally, the goal of any optimization problem has been the search for the
optimum solution for a given situation among all the possible ones in the feasible
solution space. This optimality meaning has often been understood as a Pareto
Optimum, i.e., the result of the maximization/minimization of the objective
functions (or criteria), where the result of none of the objective functions can be
improved, but at the expense of worsening another one. Finding a Pareto-optimal
solution means finding the technically most efficient solution. And applying this
concept to the field of networking, this optimality results on the optimum dis-
tribution of resources among the flows traveling through the network.

Obviously, an optimal distribution of resources not always implies an equi-
table use of them. Indeed, in some cases it may lead to absolutely unfair sit-
uations that entail the exhaustion of some resources. In that sense, the effi-
cient assignment of resources derived from the direct application of optimization
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algorithms may leave without service some customers or final users, due to the
provision of all the benefit to others (see examples in [9,38]). Obviously, the
global utility of the system is the maximum, but the result is clearly unfair, and
the situation worsens as the heterogeneity of the final users increases.

The conflict between the maximization of the benefit, the optimal resource
allocation and the fairness of the distribution is a field that has been widely
analyzed in Economy, as part of microeconomics or public finances. The conclu-
sion is that the incompatibility between fairness and efficiency is not a design
problem of the optimization algorithms, but of the formulation of the problem to
be optimized, where the fairness concept must be included. The difficulty rises
up since efficiency is an objective or technical goal that, in consequence, can be
measured and assessed quantitatively. This has nothing to do with the concept
of fairness, a subjective concept whose assessment is not trivial.

Although fairness may initially seem to be easy to define, it has a variety of
aspects that complicate its proper delimitation. Taking the sense of equanimity,
an equitable distribution of resources could be defined as an evenly split available
resource assignment among the flows competing for them. The disadvantage of
this distribution is that it does not take into account the specific necessities of
each flow. If all the flows obtain the same portion of resources, those with lower
requirements benefit from a proportionally higher resource quantity.

Changing the definition of fair distribution to that assigning the resources
proportionally on the basis of flow requirements is neither the ideal solution. In
this case, the most consuming items are benefited, i.e., those which contribute
more to the network congestion, to the detriment of lighter transmissions and
consequently, of the global performance of the network.

In addition, other aspects such as cooperation must also be considered. There
may be some nodes in the network not willing to give up their resources to
other transmissions, and so, this kind of behavior should be punished. But, what
happens when a node doesn’t give up resources to the network due to the lack
of them? It would be the case of a node with low battery or low capacity links.
Would these be reason enough to reduce the transmission resources that have
been assigned? In this case, would the distribution be fair? This conflict remains
unsolved, although some approaches have been formulated and are discussed
next.

The work in [8] presents several interpretations of the concept of fairness. In
one hand, there is the widely accepted max-min fairness definition [38], usually
employed in social science. It is based in the search for consecutive approaches
to the optimum solution in a way that no individual or criterion can improve its
state or utility if it means a loss for a weaker individual or criterion.

Translating this concept to communications, the distribution of network
resources is considered max-min fair when all the minimum transmission rates
of the data flows are maximized and all the maximum transmission rates are
minimized. It is proven that this fairness interpretation is Pareto-efficient.

Another interpretation of fairness that also searches for the trade-off between
efficiency and equity is the proportional fairness [26]. A resource distribution
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among the network flows is considered proportional when the planned priority
of a flow is inversely proportional to the estimated resource consumption of this
flow. It can also be proven that the proportional fairness is Pareto-efficient.

Both aforementioned interpretations the bandwidth is shared to maximize
some utility function for instantaneous flows. This means that the optimality of
the resource assignment is measured for a static combination of flows. Taking into
account the real random nature of the network traffic, it is necessary to define
the utility in terms of the performance of individual flows with finite duration.
And in this case, it is not so clear that the max-min or proportional fairness
concepts reach an optimum result. With random traffic, the performance and,
in consequence, the utility depend on precise statistics of the offered traffic and
are hard, if not impossible, to be analytically assessed.

Sharing flows under a balanced fairness criterion [9], the performance
becomes indifferent to the specific traffic characteristics, simplifying its for-
mulation. The term balanced fairness comes from the necessary and sufficient
relations that must be fulfilled to guarantee the insensitiveness in stochastic net-
works. This insensitiveness entails that the distribution of the active flow number
and, in consequence, the estimated throughput, depends just on the main traffic
offered in each route.

Balanced fairness makes it possible to approach the behavior of the elastic
traffic over the network and, in addition to the insensitiveness property, it also
makes it possible to find the exact probability of the distribution of concurrent
flows in different routes and then evaluate the performance metrics.

The balanced fairness is not always Pareto-efficient, but in the case that
existing one, it will be one of a kind.

3 Cost/Energy/*-Aware Network and Cloud Services
Management Scenarios

Once most well knows multi-criteria optimization techniques are introduced, the
next step is to analyze the application scenarios. This section overviews sev-
eral research scenarios where energy-aware control of different systems has been
considered as part of the ACROSS project. The scenarios include the following:
modeling and analysis of performance-energy trade-off in data centers, charac-
terization and energy-efficiency of applications in cloud computing, energy-aware
load balancing in 5G HetNets and finally incorporating energy and cost to oppor-
tunistic QoE-aware scheduling.

3.1 Modeling and Analysis of Performance-Energy Trade-Off
in Data Centers

An increasing demand for green ICT has inspired the queueing community to
consider energy-aware queueing systems. In many cases, it is no longer enough
to optimize just the performance costs, but one should also take into account the
energy costs. An idle server (waiting for an arriving job to be processed) in the
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server farm of a typical data center may consume as much as 60% of the peak
power. From the energy point of view, such an idle server should be switched
off until a new job arrives. However, from the performance point of view, this
is suboptimal since it typically takes a rather long time to wake the server up.
Thus, there is a clear trade-off between the performance and energy aspects.

The two main metrics used in the literature to analyze the performance-
energy trade-off in energy-aware queueing systems are ERWS and ERP. Both of
them are based on the expected response time, E[T ], and the expected power
consumption per time unit, E[P ]. The former one, ERWS, is defined as their
weighted sum, w1E[T ] + w2E[P ] and the latter one, ERP, as their product,
E[T ] · E[P ]. Also, generalized versions of these can be easily derived.

Here we model data centers as queuing systems and develop policies for the
optimal control of the performance-energy trade-off. For a single machine the
system is modeled as an M/G/1 queue. When considering a whole data-center,
then a natural abstraction of the problem is provided by the dispatching problem
in a system of parallel queues.

Optimal Sleep State Control in M/G/1 Queue: Modern processors support many
sleep states to enable energy saving and the deeper the sleep state the longer is
the setup delay to wake up from the sleep state. An additional feature in the
control is to consider if it helps to wait for a random time (idling time) after
busy period before going to sleep. Possible approaches for the sleep state selection
policy include: randomized policy, where processor selects the sleep state from
a given (optimized) distribution, or sequential policy, where sleep states are
traversed sequentially starting from the lightest sleep state to the deepest one.
Analysis of such a queuing system resembles that of classical vacation models.

Gandhi et al. see [17], considered the M/M/1 FIFO queue with deterministic
setup delay and randomized sleep state selection policy but without the possi-
bility of the idle timer, i.e., the timer is either zero or infinite, and they showed
for the ERP metric that the optimal sleep state selection policy is deterministic,
i.e., after busy period the system goes to some sleep state with probability 1
(which depends on the parameters). Maccio and Down [29] added the possibility
of an exponential idle timer in the server before going to sleep, and showed for
the ERWS cost metrics and for exponential setup delays that the optimal idle
timer control still sets the idle timer equal to zero or infinite, i.e., the idle timer
control remains the same. Gebrehiwot et al. considered the more general M/G/1
model with generally distributed service times, idle timer distributions and setup
delays, both ERP and ERWS cost metrics (and even slightly more generalized
ones) and randomized/sequential sleep state selection policies. Assuming the
FIFO service discipline, it was shown in [20] that even after all the generaliza-
tions the optimal control finally remains the same: the optimal policy (a) either
never uses any sleep states or (b) it will directly go to some deterministic sleep
state and wake up from there. This result was shown to hold for the Proces-
sor Sharing (PS) discipline in [19] and for the Shortest Remaining Processing
Time (SRPT) discipline in [18]. Thus, it is plausible that the result holds for any
work-conserving discipline.
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Energy-Aware Dispatching with Parallel Queues: The data center can be mod-
eled as a system of parallel single-server queues with setup delays. The system
receives randomly arriving jobs with random service requirements. The problem
is then to identify for each arrival where to dispatch arriving new jobs based
on state information available about the system, e.g., the number of jobs in the
other queues. Another modeling approach is to consider a centralized queue with
multiple servers, i.e., the models are then variants of the multiserver M/M/n
model.

In the parallel queue setting and without any energy-aware considerations,
the optimality of the JSQ policy for minimizing the mean delay with homoge-
neous servers is one classical result, see [48]. However, in an energy-aware setting
the task is to find a balance for using enough servers to provide reasonably low
job delay while taking into account the additional setup delay costs, and to let
other servers sleep to save energy. Achieving this is not at all clear. For the cen-
tralized queue approach, Gandhi et al. proposed the delayed-off scheme, where
servers upon a job completion use an idle timer, wait in the idle state for this time
before going to sleep, and new jobs are sent to idle servers if one is available or
otherwise some sleeping server is activated. An exact analysis under Markovian
assumptions was done in [16], and it was shown that by appropriately selecting
the mean idle timer value, the system keeps a sufficient number of servers in
busy/idle state and allows the rest to sleep. An important result has been only
recently obtained by Mukherjee et al. in [33], which considers the delayed-off
scheme in a distributed parallel queue setting: it was shown that asymptotically
delayed-off can achieve the same delay scaling as JSQ, i.e., is asymptotically
delay optimal, and at the same time leaves a certain fraction of servers in a sleep
state, independent of the value of the idle timer and the setup delay. This result
holds asymptotically when the server farm is large with thousands of servers.

However, in a small/moderate sized data center there is still scope for opti-
mization. In this setting the use of MDP (Markov Decision Process) and Policy
Iteration has been recently considered by Gebrehiwot et al. in [28], where the
data center is assumed to consist of two kinds of servers: normal always-on
servers and instant-off servers, which go to sleep immediately after queue emp-
ties, i.e., there are no idle timers, and an explicit near optimal policy is obtained
for minimizing the ERWS metric that uses as state the number of jobs in the
queues and the busy/sleep status. Also, size-aware approaches with MDP have
been recently applied by Hyytiä et al. in [24,25].

3.2 Characterization and Energy-Efficiency of Applications
in Cloud Computing

Modeling Applications. With the goal of improving energy efficiency in cloud
computing, several authors have studied the different factors that are causing
energy loss and energy waste in data centers. In [32], the different aspects are
discussed in detail, and idle runs are discussed as one of the causes for energy
waste, as already mentioned earlier in this chapter. Low power modes have been
proposed in the literature both for servers and storage components, however
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their benefits are often limited due to their transition costs and inefficiencies.
To improve energy efficiency and reduce the environmental impact of federated
clouds, in the EU project ECO2Clouds [47] an adaptive approach to resource
allocation is proposed, based on monitoring the use and energy consumption of
resources, and associating it to running applications. The demand for resources
can therefore associated to applications requesting resources, rather than only
to the scheduling of resources and tasks in the underlying cloud environment.

Along this line, we have studied within ACROSS how different types of appli-
cations make use of resources, with the goal of improving energy efficiency.

As mentioned in Sect. 3.1, to compare different solutions in terms of response
time and power consumption, the two main approaches are ERWS and ERP. An
alternative, which allows evaluating energy efficiency at application level, is the
energy per job indicator. This indicator allows comparing different solutions in
terms of work performed, rather than on performance parameters, and to discuss
ways of improving energy efficiency of applications in terms of application-level
parameters.

Another aspect which has been considered is that increasing resources is not
always beneficial in terms of performances, as the systems may present bottle-
necks in their execution which may cause inefficiencies in the system: in some
cases, the additional resources will worsen energy efficiency, as the new resources
are not solving the problem and are themselves underutilized. As a consequence,
in considering energy efficiency in applications in clouds, some aspects can better
characterize the use of resources:

– Shared access to resources: during their execution application can request
access to shared resources with an impact on energy consumption due to
synchronization and waiting times.

– The characterization of the application execution patterns: batch applica-
tions and transactional applications present different execution patterns: in
batch applications the execution times are usually longer with larger use
of resources, but response time constraints are not critical; in transactional
applications, response times are often subject to constraints and the allocated
resources must guarantee they are satisfied.

These application-level aspects have an impact on the resource allocation
criteria in different cases. In the following, we discuss how to model batch and
transactional applications considering these aspects with the goal of choosing
the number of resources to be associated to an application in terms of VMs with
the goal of minimizing the energy-per-job parameter.

Batch Applications. Batch applications have been studied in detail in [22] to
consider the following aspects: number of VMs allocated for executing a batch
of similar applications, shared resources (in particular shared storage access and
access synchronization), heterogeneous deployments environments for VMs, with
servers with different capacity.

While for the details we refer to [22], we summarize here the main charac-
teristics of the approach. The general goal is to minimize idle time to improve
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energy efficiency, while avoiding to increase execution time for each application
in the batch, which would result in an increase of the total energy. We assume
that in computing the energy per job, idle time is distributed to all applications
being run on the system in an equal basis. Queuing models have been developed
to represent applications, in terms of computing nodes to execute the applica-
tion and storage nodes for data access, which is assumed to be shared, with
the possibility of choosing between asynchronous access and synchronous access
(with synchronization points). In both cases the critical point is represented by
the ratio between the service time for computing nodes and the service time for
storage access: going beyond this point the energy per job is increasing without
significant benefit in execution times.

An example is shown in Fig. 2, where it is clear that increasing the number
of VMs for an application after the critical point is mainly resulting in a loss of
energy efficiency, both with synchronous and asynchronous storage access.

Transactional Workloads. For transactional workloads, the main application-
level parameter affecting energy consumption is the arrival rate. In fact, assuming
an exponential distribution of arrivals, if the arrival rate λ is much lower than the
service time, the idle times will be significant. On the other hand, getting closer to
service time, the response time will increase, as shown in Fig. 3. The details of the
computations can be found in [23]. The paper also describes how different load
distribution policies for VMs can influence energy-per-job. Assuming again that
idle power is uniformly distributed to all VMs running on the same host, three
policies have been evaluated: (1) distributing the load equally; (2) allocating
larger loads to VMs with lower idle power; (3) allocating larger loads to VMs
with higher idles power. Initial simulation results result in Policy 2 being the
worst, while Policy 1 and 3 are almost equivalent, with Policy 1 resulting in
better energy-per-job and Policy 3 in better response times [23].

Fig. 2. Energy per job in batch applications
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Fig. 3. Energy-per-job in transactional applications [23]

3.3 Energy-Aware Load Balancing in 5G HetNets

The exponential growth of mobile data still continues and heterogeneous net-
works have been introduced as a vital part of the network architecture of future
5G networks. Heterogeneous networks (HetNet) especially alleviate the prob-
lem that the user data intensity may have spatially large variations. These are
network architectures with small cells (e.g., pico and femtocells) overlaying the
macrocell network. The macrocells are high power base stations providing the
basic coverage to the whole cell area, while the small cells are low power base
stations used for data traffic hotspot areas within a macrocell to improve spectral
efficiency per unit area or for areas that the macrocell cannot cover efficiently.

In HetNets, when a user arrives in the coverage area of a small cell it can
typically connect to either the local small cell or to the macrocell, as illustrated
in Fig. 4. Typically, the small cells offer in its coverage area a possibility for
achieving high transmission rates. However, depending on the congestion level
at the small cell it may be better from the system point of view to utilize the
resources of the macrocell instead. This raises the need to design dynamic load
balancing algorithms. In 5G networks the energy consumption of the system
will also be an important factor. Thus, the load balancing algorithms must be
designed so that they take into account both the performance of the system, as
well as the energy used by the whole system.

Consider a single macrocell with several small cells inside its coverage area.
The small cells are assumed to have a wired backhaul connection to the Internet.



256 B. Blanco et al.

Fig. 4. User inside a femtocell may connect either to the local small cell (femto) or the
macrocell to achieve better load balancing.

They typically also operate on a different frequency than the macrocell and hence
do not interfere with the transmissions of the macrocell. From the traffic point
of view, each cell can be considered, whether it is the macrocell or a small cell, as
a server with its own queue each having its own characteristics. The traffic itself
may consist, for example of elastic data flows. The load balancing problem then
corresponds to a problem of assigning arriving jobs or users to parallel queues.
The difference to a classical dispatching problem, where an arrival can be routed
to any queue, is that in this case the arrival can only select between two queues:
its own local queue or the queue representing the macrocell.

In order to include the energy aspects in the model, the macrocell must be
assumed to be operating at full power continuously. This is because the macrocell
provides the control infrastructure and the basic coverage in the whole macrocell
region and it can not be switched off. However, depending on the traffic situation
it may be reasonable to switch off a low power small cell since the small cells
typically have power consumption at least an order of magnitude lower than
the macrocell. The cost of switching off a base station is that there may be a
significant delay, the so-called set up delay, when turning the base station back
on again. The queueing models used for the small cells must then be generalized
to take this into account.

The resulting load balancing problem that optimizes for example the overall
weighted sum of the performance and the energy parts of the whole system is
difficult. However, it can be approached under certain assumptions by using the
theory of Markov Decision Processes. This has been done recently by Taboada
et al. in [42], where the results indicate that a dynamic policy that knows the
sleep state of the small cells and the number of flows when compared with an
optimized randomized routing policy is better able to keep the small cells sleeping
and it thus avoids the harmful effect of setup delays leading to gains for both
the performance and energy parts, while at high loads the energy gain vanishes
but the dynamic policy still gives a good improvement in the performance.
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3.4 Incorporating Energy and Cost to Opportunistic QoE-Aware
Scheduling

One of the fundamental challenges that network providers nowadays face is the
management for sharing network resources among users’ traffic flows so that most
of traditional scheduling strategies for resource allocation have been oriented
to the maximization of objective quality parameters. Nevertheless, considering
the importance and the necessity of network resource allocation for maximizing
subjective quality, scheduling algorithms aimed at maximizing users’ perception
of quality become essential.

Thus, to overcome the lacks found in the field of traffic flow scheduling opti-
mization, during the last years we have analyzed the following three stochastic
and dynamic resource allocation problems:

1. Subjective quality maximization when channel capacity is constant [44],
2. Subjective quality maximization in channels with time-varying capacity [43],
3. Mean delay minimization for general size distributions in channels with time-

varying capacity [41,45].

Since these problems are analytically and computationally unfeasible for find-
ing an optimal solution, we focus on designing simple, tractable and imple-
mentable well-performing heuristic priority scheduling rules.

For this aim, our research is focused on the Markovian Decision Processes
(MDP) framework and on Gittins and Whittle methods [41,43–45] to obtain
scheduling index rule solutions. In this way, first of all, the above scheduling
problems are modeled in the framework of MDPs. Later, using methodologies
based on Gittins or/and Whittle approaches for their resolution, we have pro-
posed scheduling index rules with closed-form expression.

The idea of Gittins consists in allocating resources to jobs with the current
highest productivity of using the resource. The Gittins index is the value of
the charge that provides that the expected serving-cost to the scheduler is in
balance with the expected reward obtained when serving a job in r consecutive
time slots, which results in the ratio between the expected total reward earned
and the expected time spent in the system when serving a job in r consecutive
time slots.

On the other hand, the Whittle approach consists in obtaining a function that
measures the dynamic service priority. For that purpose, the optimization prob-
lem formulated as a Markov Decision Process (MDP) can be relaxed by requiring
to serve a job per slot on average, which may allow introducing the constraint
inside the objective function. Then, it is further approached by Lagrangian meth-
ods and can be decomposed into a single-job price-based parametrized optimiza-
tion problem. Since the Whittle index is the break-even value of the Lagrangian
parameter, it can be interpreted as the per cost of serving. In such a way, the
Whittle index represents the rate between marginal reward and marginal work,
where marginal reward (work) is the difference between the expected total reward
earned (work done) by serving and not serving at an initial state and then
employing a certain optimal policy.
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As a first step towards ACROSS targeted multi-criteria optimization, it is
worth mentioning the utility-based MDP employed in [43,44] for QoE maximiza-
tion. This function depended on delay only but we plan to extend it to a generic
problem aimed at maximizing a multivariate objective function. Considering the
meaning of work and reward in Whittle related modeling, such extension could
demand the modification of the structure of the problem itself (i.e., alternative
MDP) or just considering different criteria in the work/reward assignments.

Although we carried out some very preliminary tests with LP and AHP
based articulation of preferences for QoE vs. energy optimization in [27] we plan
to further analyze index rules techniques in the multi-criteria problem.

4 Current Technologies and Solutions

Research on energy-aware control has been actively pursued in the academia
already for a long time, and Sect. 3 introduced several scenarios that have ana-
lyzed and given valuable insights to the fundamental tradeoff between energy
efficiency and QoS/QoE. Due to the rising costs of energy, the industry is also
actively developing solutions that would enable more energy efficient networks.
Next we review industry efforts towards such architectures and finally we intro-
duce a framework for energy-aware network management systems.

4.1 Industry Efforts for Integrating Energy Consumption
in Network Controlling Mechanisms

New network technologies have been recently started to consider cost/energy
issues in the early stages of the design and deployment process. Besides the
infrastructure upgrade, the incorporation of such technologies requires the the
network managers must handle a number of real-time parameters parameters to
optimize Network energy /cost profile. These parameters include, among others,
the sleep status of networks elements or the activation of mobile resources to
provide extra coverage or change in performance status of some of the processors
in the network.

The fact is that energy consumption in networks is rising. Therefore, network
equipment requires more power and greater amounts of cooling. According to
[27]. By 2017 more than 5 zettabytes of data will pass through the network every
year. The period 2010–2020 will see an important increase in ICT equipment to
provide and serve this traffic. Smartphones and tablets will drive the mobile
traffic to grow up to 89 times by 2020, causing energy use to grow exponentially.
For example, mobile video traffic is expected to grow 870%, M2M (IoT) 990%
and Applications 129%. As a consequence, ICT will consume 6% of Total of
Global Energy consumption: in 2013 it was 109,1 GW according to the energy
use models at different network levels shown in Table 4.
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Table 4. Energy use models.

Devices Networks

PC’s 36,9 GW Home & Enterprise 9,5 GW

Printer 0,9 GW Access 21,2 GW

Smartphones 0,6 GW Metro 0,6 GW Aggregation and transport

Mobile 0,6 GW Edge 0,7 GW

Tablets 0,2 GW Core 0,3 GW

Service Provider & Data Center 37,1 GW

One of the challenges the industry faces is how to support that growth in
a sustainable and economically viable way. However, there is an opportunity
for important reductions in the energy consumption because the networks are
dimensioned in excess of current demand and even when the network is low
in traffic the power used is very important and most of it is wasted [34]. The
introduction of new technologies will provide a solution to improve the energy
efficiency at the different scenarios (see Table 5).

Table 5. Scenarios for energy efficiency increase.

Home: Sleep mode

Office: Cloud

Access: VDL2, Vectoring, VoIP Wireless Access: LTE Femto, Small, HetNet

IP: MPLS Backhaul

Fixed Wireless: Microwave Backhaul for Wireless
2G 3G, Fiber

Copper: VDL2, Vectoring, VoIP, PON

Metro: IP/MPLS Transport, Packet Optical

Edge: IP Edge

IP Core: Next Gen IP Router and Transport (10Gb)

Service Provider & Data Center

Current forecasts estimate that the trend will be to manage energy consump-
tion and efficiency policies based on different types of traffic. Two organizations
pursuing this goal are introduced next.

GeSI Global e-Sustainability Initiative (GeSI) [2]. Building a sustainable
world In collaboration with members from major Information and Communica-
tion Technology (ICT) companies and organisations around the globe, the Global
e-Sustainability Initiative (GeSI) is a leading source of impartial information,
resources and best practices for achieving integrated social and environmental
sustainability through ICT.
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In a rapidly growing information society, technology presents both challenges
and opportunities. GeSI facilitates real world solutions to real world issues both
within the ICT industry and the greater sustainability community. We con-
tribute to a sustainable future, communicate the industry’s corporate responsi-
bility efforts, and increasingly drive the sustainability agenda.

Members and Partners: ATT, Telecom Italia, Ericsson, KPN, Microsoft,
Nokia, Nokia Siemens.

Green Touch [3]. GreenTouch is a consortium of leading Information and
Communications Technology (ICT) industry, academic and non-governmental
research experts dedicated to fundamentally transforming communications and
data networks, including the Internet, and significantly reducing the carbon foot-
print of ICT devices, platforms and networks.

4.2 C-RAN: Access Network Architecture of Future 5G Networks

Cloud computing represents a paradigm shift in the evolution of ICT and has
quickly become a key technology for offering new and improved services to con-
sumers and businesses. Massive data centers, consisting of thousands of con-
nected servers, are fundamental functional building blocks in the implementa-
tion of cloud services. With the rapidly increasing adoption of cloud computing,
the technology has faced many new challenges related to scalability, high capac-
ity/reliability demands and energy efficiency. At the same time, the huge increase
in the processing capacity enables the use of more accurate information that the
control decision may be based on. This justifies the development of much more
advanced control methods and algorithms, which is the objective of the work as
described earlier in Sect. 3.

To address the growing challenges, the research community has proposed
several architectures for data centers, including FatTree, DCell, FiConn, Scafida
and JellyFish [7]. On the other hand, vendors, such as, Google, Amazon, Apple,
Google etc., have been developing their own proprietary solutions for the data
centers which has created interoperability problems between service providers.
To push forward the development of architectures addressing the challenges
and to enable better interoperability between cloud service providers, IEEE has
launched the IEEE Cloud Computing Initiative which is developing presently
two standards in the area: IEEE P2301 Draft Guide for Cloud Portability and
Interoperability Profiles and IEEE P2302 Draft Standard for Intercloud Inter-
operability and Federation.

Cloud-based approaches are also considered as part of the development of
the future 5G networks. Namely, in the C-RAN (Cloud-Radio Access Network)
architecture [35] the radio access network functionality is moved to the cloud.
This means that all the radio resource management and cell coordination related
functionality requiring complex computations are implemented in the cloud. This
makes the functionality of the base stations simpler and hence also cheaper to
manufacture. However, this places tough requirements on the computing capac-
ity and efficiency of the centralized processing unit, essentially a data center, and
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the interconnection network between the base stations and the data center. Sev-
eral projects based on the C-RAN architecture have been initiated in the Next
Generation Mobile Networks (NGMN) consortium and EU FP7 [10], and the
C-RAN architecture will most likely be considered also in the standardization
by 3GPP.

4.3 A Framework for Energy-Aware Network Management Systems

Considering the problem modeling and the existing optimization frameworks
described in the previous sections, the challenge now is the integration of energy
consumption in network controlling mechanisms. The networks in the data cen-
ters and in the operators world are showing a fast evolution with growing size
and complexity that should be tackled by increased flexibility with softwarization
techniques.

Emerging 5G Networks now exhibit extensive softwarization of all network
elements: IoT, Mobile, and fiber optics-based transport core. This functions
should be integrated in a network management environment with autonomous
or semi-autonomous control response capabilities based on defined SLA’s and
applying policies and using simulated scenarios and past history learning.

By monitoring the energy parameters of radio access networks, fixed net-
works, front haul and backhaul elements, with the VNFs supporting the internal
network processes, and by estimating energy consumption and triggering reac-
tions, the energy footprint of the network (especially backhaul and fronthaul) can

Fig. 5. MAPE-K diagram.
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Fig. 6. Functional description of an energy management and monitoring application.

be reduced while maintaining QoS for each VNO or end user. An Energy Manage-
ment and Monitoring Application can be conveniently deployed along a standard
ETSI MANO and collect energy-specific parameters like power consumption and
CPU loads (see Figs. 5 and 6). Such an Energy Management and Monitoring
Application can also collect information about several network aspects such as
traffic routing paths, traffic load levels, user throughput and number of ses-
sions, radio coverage, interference of radio resources, and equipment activation
intervals. All these data can be used to compute a virtual infrastructure energy
budget to be used for subsequent analyses and reactions using machine learning
and optimization techniques [11].

The application can optimally schedule the power operational states and the
levels of power consumption of network nodes, jointly performing load balancing
and frequency bandwidth assignment, in a highly heterogeneous environment.
Also the re-allocation of virtual functions across backhaul and front haul will be
done as part of the optimization actions, in order to cover virtual network func-
tions to less power-consuming or less-loaded servers, thus reducing the overall
energy demand from the network.

Designing software systems that have to deal with dynamic operating con-
ditions, such as changing availability of resources and faults that are difficult
to predict, is complex. A promising approach to handle such dynamics is self-
adaptation that can be realized by a Monitor-Analyze-Plan-Execute plus Knowl-
edge (MAPE-K) feedback loop. To provide evidence that the system goals are
satisfied, regarding the changing conditions, state of the art advocates the use
of formal methods.

Research in progress [1] tries to reinforce the approach of consolidating design
knowledge of self-adaptive systems with the traditional tools of SLA’s and pol-
icy modules and in particular with the necessity of defining the decision criteria
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using formalized templates and making it understandable for a human opera-
tor or manager via the human interfaces and dashboards as shown in Fig. 6.
This figure shows the proposed architecture of an advanced Network Monitoring
and Management System that includes energy management. At the top are the
two agents responsible for the management of the network: On one side those
responsible for the negotiating the SLA’s with the customers and of establishing
the policies of the operation. On the other side those responsible for the detailed
technical operation. These roles are supported by a set of applications and reside
in the corresponding specialized cloud environments. The Business Intelligent
cloud helps the Management API to generate dashboards for the optimization
of the operation business results, issuing recommendations to the managers or
autonomously implementing decisions. Those decisions will be based dynami-
cally on contractual commitments, market conditions and customer’s needs. The
operational cloud supports the technical operations with specialized technical AI
dashboards using available information from many sources: Network monitoring
information including real and historical performance data from the network,
power data and network statistics. Simulated data can be used to support the
operation by providing hypothetical failure scenarios, possible solutions and the
impact of applying those solutions. This helps together with the historical data
with the analysis of the consequences of possible decisions when trying to solve
specific incidents. As in the Business application the operational cloud will anal-
yse the scenarios and select the optimal configuration autonomously or mediated
by the operator interaction via the corresponding dashboards reducing the total
energy footprint of the network. At the bottom of Fig. 6 is the SND network
Controller with access to Network and Resource Monitoring and Topology that
reacts to real Network events implementing the required network solution as
directed by the layers above.

5 Conclusions and Foreseen Future Research Lines

5.1 Conclusions

This chapter has addressed the challenges of combining energy and QoS/QoE
issues in the management mechanisms of network and cloud services. Unfor-
tunately, these design parameters are usually conflicting and it is necessary to
introduce multi-criteria optimization techniques in order to achieve the required
trade-off solution.

So, as a first step, the common issues related to multi-objective optimiza-
tion problems and mechanism have been depicted. These issues include typical
preference articulation mechanisms, typical optimization methods and fairness
considerations. Then, most well-known optimization methods have been briefly
summarized in order to provide Internet of Services research community with a
broad set of tools for properly addressing the inherent multi-criteria problems.

Finally, in the multiuser/multiservice environments considered in ACROSS,
how resources are distributed and the impact into different kind of users must
be carefully tackled. As analyzed, fairness is most of the times considered once
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the algorithm has selected the most efficient (i.e., optimal) solution. However,
the incompatibility between fairness and efficiency is not a design problem of the
optimization algorithms, but of the formulation of the problem to be optimized,
where the fairness concept must be included.

The next step is to model and analyze the problem of including the per-
formance/energy trade-off into different scenarios in the scope of the ACROSS
project. We start this analysis studying the use case of data centers modeled
as queuing systems to develop policies for the optimal control of the QoS/QoE-
energy balance. The trend in this area is to focus in small/moderate size data
centers.

Then, the second scenario focuses on the way different applications use the
resources available in cloud environments and its impact in terms of energetic
cost. Considering that increasing resources does not always benefit the perfor-
mance of the system, we analyze two application-level approaches in order to
improve energy efficiency: the characterization of the application execution pat-
terns and the shared access to resources.

Next, we show an example of energy-aware load balancing in 5G HetNets
where cells of different sizes are used to adapt the coverage to the variations of
user data traffic. We discuss the challenge of designing a load-balancing algorithm
that considers both the performance of the system and the energy consumption
of the whole system. The discussion suggests a MDP approach for the multi-
criteria optimization problem.

The last analyzed scenario presents a network services provider that shares
resources among different traffic flows. The goal here is to introduce energy and
cost into opportunistic QoE-aware scheduling. The research focuses on the use of
MDP framework to model the scheduling problem and the application of Gittins
and Whittle methods to obtain scheduling index rule solutions.

Finally, the chapter compiles the current state of emerging technologies and
foreseen solutions to the energy/performance trade-off issue in network and cloud
management systems addressed in the ACROSS project. Based on the expected
huge increase of network traffic and, in consequence, of energy consumption, the
design of upcoming network management systems must face the challenge of
addressing power efficiency while still meeting the KPIs of the offered services.
Industry is already fostering innovative initiatives to integrate energy issues into
network controlling mechanisms.

In this direction, we present C-RAN architecture as the cloud-based solution
for the future 5G access network. This approach moves all the radio resource
management and cell coordination functionality to the cloud. The increasing
complexity of the service management and orchestration in the cloud requires
advanced network control methods and algorithms. Therefore, as final conclu-
sion, we suggest a framework to include energy awareness in network manage-
ment systems that implements a MAPE-K feedback loop.
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5.2 Future Work

The joint research accomplished in the scope of the COST ACROSS action has
allowed the identification of common interests to develop in future collaborations.
Remaining under the umbrella of Energy/Cost–aware network management, this
future work will strongly relay on the application of multi–criteria optimization
techniques in order to cope with conflicting performance objectives.

As previously concluded, the consideration of fairness in a optimization pro-
cess does not fall to the multi–criteria optimization algorithm. On the contrary, it
must be considered in the formulation of the design problem itself. Therefore one
of the issues that will be addressed in future work grounded in the result of the
COST ACROSS action is the inclusion of fairness among users/services/resource
allocation in the definition network and services management optimization.

Besides, analyzing the problem of the introduction of energy-awareness in
load balancing processes in 5G HetNets, another of the proposed future research
lines is to use MDP and Policy Iteration in order to optimize the dispatching
problem focusing in small/moderate size data centers. Similarly, we also found
common interests in the development of further analysis of index rules techniques
in the multi-criteria problem of opportunistic QoE–aware scheduling.

Finally, research in progress envisages innovative initiatives to integrate
energy issues into network controlling mechanisms and interactive management
approaches including self-adaption features.
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8. Bonald, T., Massoulié, L., Proutière, A., Virtamo, J.: A queueing analysis of max-
min fairness, proportional fairness and balanced fairness. Queueing Syst. 53(1–2),
65–84 (2006)

http://gesi.org/
https://s3-us-west-2.amazonaws.com/belllabs-microsite-greentouch/index.html
https://s3-us-west-2.amazonaws.com/belllabs-microsite-greentouch/index.html


266 B. Blanco et al.

9. Bonald, T., Proutière, A.: On performance bounds for balanced fairness. Perform.
Eval. 55(1–2), 25–50 (2004)

10. Chih-Lin, I., Huang, J., Duan, R., Cui, C., Jiang, J.X., Li, L.: Recent progress on
C-RAN centralization and cloudification. IEEE Access 2, 1030–1039 (2014)

11. Casetti, C., Costa, L.C., Felix, K., Perez, G.M., Robert, M., Pedro, M., Pérez-
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