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Analysis and Comparison of Features and
Algorithms to Classify Shoulder Movements
From sEMG Signals

Diletta Rivela, Alessia Scannella, Esteban E. Pavan, Carlo A. Frigo, Paolo Belluco, and Giuseppina Gini

Abstract—Shoulder movements are not considered for
electromyography-based pattern classification control, due to
the difficulty to manufacture three-degrees-of-freedom shoulder
prostheses. This paper aims at exploring the feasibility of
classifying up to nine shoulder movements by processing surface
electromyography signals from eight trunk muscles. Experiment-
ing with different pattern recognition methods, two classifiers
were developed, considering six different combinations of window
sizes and increments, and three feature sets for each channel.
Applying linear discriminant analysis the best performance was
obtained on a window length of 500 ms associated to temporal
increments of 62 ms. This setting yielded a 100% accuracy for
recognizing four movements, and progressively degraded to 92 %
for nine movements. Using neural networks, higher accuracy was
obtained in particular in the 9-class problem. Finally, the signals
from the eight channels were analyzed in order to check the
possibility to reduce the number of acquisition channels.

Index Terms— Linear discriminant analysis, neural networks,
pattern recognition control, SEMG, shoulder movements.

I. INTRODUCTION

P TO now most of the uses of electromyography

(EMGQG) signals are for diagnostic purposes. Other appli-
cations are related to the control of mechanical systems,
as prostheses. In such prosthetic applications, surface elec-
tromyography (SEMG) signals are used to detect a voluntary
movement, for example closing the hand, in order to control
some actuators that activate the intended movement. When
more than one movement must be independently controlled,
a voluntary movement must be repeated two or three times
to activate a second or a third pre-coded movement of the
prosthesis. To allow a real EMG based controller to be suitable
for complex full arm prostheses, it is necessary to build a
multiclass classifier, able to directly detect the user intention

Manuscript received December 14, 2017; revised February 23, 2018;
accepted February 25, 2018. Date of publication March 8, 2018; date of
current version April 9, 2018. The associate editor coordinating the review
of this paper and approving it for publication was Dr. Roozbeh Jafari.
(Corresponding author: Giuseppina Gini.)

D. Rivela is with the Advanced Telecommunications Research Institute
International, Kyoto 619-0288, Japan (e-mail: diletta.rivela@gmail.com).

A. Scannella is with GE Healthcare, 20126 Milano, Italy (e-mail:
alessia.scannella@gmail.com).

E. E. Pavan, C. A. Frigo, and G. Gini are with DEIB, Politecnico di Milano,
20133 Milano, Italy (e-mail: esteban.pavan@polimi.it; carlo.frigo@polimi.it;
giuseppina.gini @polimi.it).

P. Belluco is with Comune di Milano, 20121 Milan, Italy (e-mail:
paolo.belluco@polimi.it).

Digital Object Identifier 10.1109/JSEN.2018.2813434

from residual muscle activity. So far little effort has been
dedicated to the control system of active full-arm prosthesis.
This may be due to the relatively low incidence of major upper
limb amputations and to the difficulty to control a high number
of degrees of freedom. Conventional strategies of prosthetic
shoulder control are based on the activation of mechanical
switches [1]; other methods adopt the myoelectric control by
recording, during voluntary contraction, signals from residual
muscles that are not physiologically involved in the execution
of shoulder motions.

Usually sEMG signals from two sites (e.g. a couple of
agonist/antagonist muscles) are used to control one degree of
freedom. Both methods require a considerable effort to the
patient in the training phase, due to the low intuitiveness of
control. Training difficulties and the complexity of the control
strategies are two of the major reasons of user rejection [2].

Controllers based on EMG-based pattern recognition, able
to detect the user intention, can increase the acceptance of
prostheses and exoskeletons. They recognize patterns from
SEMG of synergistic muscles spontaneously activated in cor-
respondence with a predefined motor task [3], [4]. Even in
the case of major upper limb amputations, trunk muscles are
suitable, as they are usually preserved.

Controllers are also used in the robotic assisted neurore-
habilitation. A musculoskeletal model, obtained by fusing
EMG data and mechanical models, is the state of the art
in neurorehabilitation. Estimates of neural excitations, derived
from the amplitude of SEMG, correlate to muscle force. While
this approach is being developed for the legs, it is only at the
beginning for upper limbs movements [5].

According to a recent survey on robotic devices for upper
limb rehabilitation [6], very few systems use EMG signals
as input to control the shoulder joint of an exoskeleton,
both in rehabilitation and daily use. Only Kiguchi er al. [7]
provided a prototype system using, in combination with the
shoulder joints positions, the Mean Absolute Value (MAV) of
the sSEMG as muscle activity level to control a 2-degree-of-
freedom shoulder exoskeleton.

Other robotics devices for rehabilitation help in the repeated
execution of simple mechanically constrained movements; the
EMG signals provide the only clinically viable method to
interface the nervous system of the patient with a mechanical
device. For those applications as well as for the control of
full arm prosthesis the pattern recognition approach could

1558-1748 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-0334-420X

RIVELA et al.: ANALYSIS AND COMPARISON OF FEATURES AND ALGORITHMS TO CLASSIFY SHOULDER MOVEMENTS

be investigated. To our best knowledge no other work has
been performed by other groups to develop a pattern recog-
nition control for the shoulder than that previously done by
us [8], [9].

Aim of the current study was to experimentally verify how
effectively a pattern recognition approach could classify a
quite large number of shoulder movements. To this purpose
we have implemented a family of classifiers using data from
eight acquisition channels. We started investigating differ-
ent segmentation techniques and feature extraction methods.
We compared the discrimination capabilities of three different
feature extraction sets, and we analyzed the classification
results for 4, 5, or 9 motions. As expected, recognizing a
large number of classes is a demanding task for any classifier,
so the accuracy decreases when adding more classes. The best
linear classifier based on Linear Discriminant Analysis (LDA)
is fully presented. To improve the classification accuracy for
9 classes, a non-linear model, based on Neural Networks (NN)
is then developed. Pros and cons of the two classifiers are
analyzed. Finally we have investigated the possibility to reduce
the number of muscles to be considered without losing classifi-
cation accuracy. To this end we have examined the information
content of each channel.

II. PATTERN RECOGNITION AND DATA SET

Myoelectric signals, when properly processed, are supposed
to represent the motor command directed to the muscle actua-
tors [10]. For controlling prostheses, the myoelectric (SEMG)
signals are detected by electrodes located at the stump-socket
interface, rectified and integrated in order to generate the
commands that activate electric motors.

In the last decades, the use of SEMG pattern recognition for
prosthetic control has been proposed and developed [2], [11].
This approach is founded on the assumption that patterns of
SEMG signals from several muscles include much information
about the intentional movement of the limb. The basic princi-
ple is that each SEMG pattern can be associated to one motion
class among a multiplicity of preselected movements. Then the
controller automatically performs the chosen movement, and
the subject does not have to control each single degree of
freedom. In this way, a more intuitive and rapid control can
be obtained.

Generally, a pattern recognition-based control approach
requires training a classifier for the intended movements start-
ing from user’s data. This approach consists of the following
sequence of steps: data acquisition, data segmentation, feature
extraction, feature reduction, training of the classifier, and
evaluation of the classifier predictive power [12], [13].

The study here presented starts from data segmentation,
since the data set used has been taken from literature, and
its acquisition is fully described in [8]. The data set con-
tains data from eight healthy subjects (four males and four
females) aged 25.0 + 1.8 years, performing eight shoulder
movements: shoulder flexion at 45° , 90°, and 110°; shoulder
hyperextension at —30°; shoulder abduction at 45° and 90°;
shoulder elevation of 45° and 90° in an elevation plane
externally rotated by 45° in relation to the sagittal plane. See
in Figure 1 the definition of the movements.
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abduction flexion
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adduction extension
Fig. 1. Shoulder movements in the frontal and sagittal planes.

TABLE I
THE CONSIDERED CHANNELS

Electrode position Channel
Clavicular head of the pectoralis major
Sternal head of the pectoralis major
Serratus anterior

Trapezius descendent

Trapezius transversalis

Trapezius ascendant

Infraspinatus

Latissimus dorsi

0NN Nk W~

Data were recorded at a sampling rate of 1.0 kHz from eight
electrodes located on synergistic trunk muscles [14], usually
preserved after upper limb amputation, as illustrated in Table 1.
Standard filtering and rectification were applied to the signals.

At the beginning it is necessary to choose whether to process
the full myoelectric signal, which includes transient [4],
or only the part related to the steady state (i.e. during main-
tained contraction) signal. Steady state data are classified more
accurately than transient data, and the classification suffers
from less degradation with shorter data segments [15].

A crucial step is data segmentation. Since EMG is a contin-
uous signal, it is necessary to define the time windows in order
to segment it and later compute the features. Each channel is
segmented into a series of time windows, adjacent or partially
overlapped. The window length has to satisfy real-time con-
straints that require the actuation delay must not be greater
than 300 ms, otherwise a movement delay will be perceived
by the user [16]. For this reason, when using a window
length greater than 250 ms, windows must be overlapped.
However the determination of the best segmentation remains
an open issue. Smith and coauthors [17] analyzed different
combinations to conclude that the optimum window length
for pattern recognition control is between 150 ms and 250 ms.
Other researchers compared different combinations of window
lengths and increments, and suggested a length of 500 ms and
an increment of 125 ms [11].

After segmentation, features are computed. Generally, fea-
tures belong to three main domains: time domain, frequency
domain and time-frequency domain. The time domain (TD)
features, based on the signal amplitude, are commonly used
due to their simple definition and computation; examples for
prosthesis control are presented in [18] and [19].

Feature selection may be employed to reduce the dimen-
sionality of the initial feature space, attempting to preserve
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Fig. 2. The processing stages from EMG signals detection to classification
output.

the classification accuracy, while reducing the computational
costs and the complexity of the classifier [13]. Dimensionality
reduction strategies are either feature selection or feature pro-
jection. Feature selection consists in selecting the best feature
subset of the original features. Instead, in the feature projection
approach, a new feature subset is created, combining the orig-
inal features through a linear or non-linear mapping. Previous
studies [20], [21] have shown that the projection approach
leads to a higher discrimination ability compared to feature
selection. According to [22] this stage plays an important role
in classification accuracy, even more than the classifier itself.

The classifier to be deployed in the final system receives in
real time as input the reduced feature set for each segment, and
has to match the different patterns with the correct movement
class. To build the classifier many choices are available,
from classical statistical tools to machine learning tools. Two
methods are explored in this paper, LDA and NN.

The flowchart of the processing method to construct the
classifier is presented in Figure 2. Our implementation has
been done in Matlab R2015a and Neural Net Toolbox
(The MathWorks, Natick, USA).

III. METHODS AND ALGORITHMS
A. Data Segmentation

Data analysis considered only the steady state phase
(isometric hold) as in this condition the classification is more
accurate [2], [15]. This phase lasted about 3 seconds.

Six signal segmentation settings were tested, by combining
different window sizes (L) and increments (I): a) L = 500 ms,
I =250 ms, b) L = 500 ms, I = 125 ms, ¢) L = 500 ms,
I =62 ms,d L =250 ms, I =250 ms, e) L = 250 ms,
I =125 ms, and f) L = 250 ms, I = 62 ms.

After a random shuffling of all acquired trials, data were
split into a training dataset (the first 60%), and a test dataset
(the last 40%). After feature extraction from all the datasets,
the training set was used to reduce the dimensionality of
the original feature set and then to train the classifier. The
test dataset was only employed to estimate the classification
accuracy.

B. Feature Computation and Selection

For each of the six segmentations tested, three different
feature sets were extracted:

1) Hudgins’ TD feature set, i.e. the mean absolute
value (MAV), waveform length (WL), zero crossing (ZC),
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and slope sign change (SSC) [18]. Considering the 8 channels,
32 features are computed for each segment.

2) The feature vector defined in [23] containing the ZC,
Willison amplitude (WAMP) and MAV features of the 2nd
level reconstructed sSEMG signal with 7th order Daubechies
wavelet, and the MYOP feature of the 1st level reconstructed
SEMG signal with 8th order Daubechies wavelet. 56 features
are produced for each segment.

3) The TD feature set proposed in [11] containing the
sample entropy (SampEn), cepstral coefficients (CC) of the
4th order, root mean square (RMS), and WL. 32 features for
each segment are produced.

Subsequently, each feature set was reduced using the
principal component analysis (PCA), as strongly suggested
in [15], [16], [18], and [24]-[28]. PCA is an unsupervised
method and produces a new feature set by a linear projection
of the original feature vector onto the Eingenvector of the
covariance matrix [29]. We kept the maximum number of
principal components that make positive- definite the pooled
covariance matrix. This number was 18, 56, and 24 respec-
tively for the three feature sets, and their explained variance
was 100%. We observed that without PCA the classification
results sensibly degraded (up to 15%).

C. Construction of the Linear Classifier

Classification was performed using LDA [12]. This method
attempts to express the dependent variable class as a linear
combination of the features; it was chosen due to its advan-
tages, as low computational cost, high-speed training, and
robustness [4], [11]. Furthermore, it does not require iterative
training, avoiding the potential under- or over-training, and it
does not need any parameter adjustment.

The performance of the classifier was defined in terms of
classification error and was evaluated by considering three
different sets of motion classes.

First set — 9 classes: all the 8 motion classes described above
plus the rest class;

Second set — 5 classes: shoulder flexion at 90°, shoulder
hyperextension at —30°, shoulder abduction at 90°, shoulder
elevation at 90° along the plane rotated by 45° in relation to
the sagittal plane, and rest;

Third set — 4 classes: shoulder flexion at 90°, shoulder
hyperextension at —30°, shoulder abduction at 90°, and rest.

D. Developing Non-Linear Models

The LDA classifier gave good results in accuracy; moreover
it identified the combination of features that best characterizes
classes through linear relationships. However LDA has been
developed for normally distributed explanatory variables with
equal covariance matrices, and it is difficult to know whether
SEMG signals fulfill this characteristics. For this reason we
developed also a NN classifier [29].

The selected architecture was a feed-forward neural network
with one hidden layer. The input had 8 neurons (one for each
acquisition channel), the hidden layers considered had either
20 or 50 neurons, and the output layer a neuron for each
movement to classify (4, 5, or 9). The network used 3 different
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Fig. 3. Feature set 1 - Test classification errors (%) over all subjects, for
the six different combinations of window lengths (L [ms]) and increments
(I [ms]), in the four-, five- and nine- motion classes considered.

activation functions: MapMinMax in the input layer, TanH in
the hidden layer, and SoftMax in the output layer. Training
was backpropagation with early stopping.

E. Examining the Information of the Acquisition Channels

After having identified the best processing methods, we have
investigated the effect of reducing the number of the SEMG
channels on the classification performance. To this purpose,
the average RMS was used as criterion of channel selection.
Thus, the mean values of RMS for each motion class have
been calculated for each acquisition channel, to individuate
the channels with minor information content

IV. RESULTS

A. Features Sets and Classification Accuracy for
the LDA Classifier

For each Feature Set analyzed, the performance of the dif-
ferent segmentation settings was assessed as the percentage of
incorrectly classified motions over the tested motions included
in each motion-classes subset considered.

1) First Feature Set: For the first feature set used, the test
classification errors (%) over all subjects for each segmentation
setting, considering separately the three different motion-
classes, are in Fig. 3.

The best performance was obtained when windows of
L = 500 ms were overlapped by I = 62 ms. For this
segmentation, the errors were 1.75% to classify four motions,
8.87% for five classes, and 19.57% for nine classes. The worst
performances were observed in the case of five- and nine-
motion classes, using adjacent windows of length L = 250 ms,
with an error of 12.47% and 24.74%, respectively; and, in the
case of four classes, when using windows of L = 250 ms,
I = 125 ms, with an error of 3.48%.

2) Second Feature Set: Fig. 4 reports the classification
errors on the test set obtained from the second feature set.
It can be observed that the lowest classification error was
obtained for a window length L = 500 ms and an increment
of 62 ms, which was 0.59% for the four-motion classes,
while errors of 7.72% and 25.28% were observed for the
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Fig. 4. Feature set 2 - Test classification errors (%) over all subjects, for
the six different combinations of window lengths (L [ms]) and increments
(I [ms]), in the four-, five- and nine- motion classes considered.
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B Oclasses| 1221% | 12.53% | 13.19% 7.43% 8.30% 8.86%
Fig. 5. Feature set 3 - Test classification errors (%) over all subjects, for

the six different combinations of window lengths (L [ms]) and increments
(I [ms]), in the four-, five- and nine- motion classes considered.

five- and nine-motion classes, respectively. On the other hand,
the worst performances were: 29.63% for nine-motion classes
with L = 250 ms and I = 250 ms, and a classification
error of 10.85% for five classes when using L = 250 ms
and I = 62 ms.

3) Third Feature Set: The test classification errors for the
third feature set are in Fig. 5.

The best performance was reached for a window size
L = 500 ms for all motion-classes subsets, and / = 250 ms
and / = 62 ms for five- and nine- motion classes, respectively.
For these segmentations, the classification error was 0% for
four-motion classes, 2.09% for five-motion classes, and 7.44%
for nine-motion classes. The worst performance was obtained

using adjacent windows of L = 250 ms when an error
of 13.19% and 4.51% was observed for nine- and five-classes,
respectively.

As expected deterioration in the classification accuracy was
observed when increasing the number of classes. Moreover,
the classification error was affected by the segmentation set-
tings. Taking into account the segmentation parameters that
exhibited the best results from all the processing methods,
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Fig. 6.  Comparison of test classification errors in the three processing
methods, for the best performing segmentation (L = 500 ms, I = 62 ms).
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Fig. 7. Comparison of the error percentages using LDA and NN classifiers on
9 classes. In blue the percentage error for LDA, in orange for NN. We split
each combination of window size and increment to show the results with
#20 or #50 neurons in the hidden layer-.

TABLE III
PERCENTAGE ERROR FOR CLASSIFYING 9 CLASSES WITH NN

Window(ms) Increment(ms) Error% Hidden neurons
500 62 0.08 50
TABLE II 500 62 0.15 20
CONFUSION MATRIX SHOWING THE DISTRIBUTION OF ERRORS FOR 500 125 0.2 50
THE FIVE-CLASSES PROBLEM FROM FEATURE SET 3 500 125 0.6 20
500 250 1.76 50
True class 500 250 127 20
250 62 0.57 50
Rest Flex. 90° |Hyp.-30°| Abd. 90° | Elev. 90° 250 62 1.13 20
Rest 100.0% | 0.0% 0.0% [0.0%  |0.0% 250 2 L 20
250 125 2.89 20
% |Flex. 90°|0.0% |96.1% 0.0% 0.0% 2.3% 250 250 247 50
)
< |Hyp-30°|0.0% [00%  [100.0% |00% |0.0% 230 230 229 20
S
& | Abd. 90° | 0.0% | 0.0% 0.0% 97.2% 4.3%
= | Elev.90° | 0.0% |3.9% 0.0% 2.8% 93.4%

ie. L =500 ms, I = 62 ms (Fig. 6), it can be seen that the
third feature set yielded always the lower error. In particular,
for the four-motion classes problem, the accuracy was 100%,
which means that all classes were correctly classified.

This is better explained by the confusion matrices related
to this last method for the classes analyzed: the values in the
main diagonal are correct classifications (accuracy), and those
lying outside are incorrect classifications (error rate).

For five classes the confusion matrix is reported in Table II.
It can be observed that the most misclassified class was the
shoulder elevation of 90° in an elevation plane externally
rotated by 45°, with a classification accuracy of 93.42%,
confused with abduction at 90° (4.28%) and flexion at 90°
(2.30%). Instead, resting and hyperextension at —30° achieved
an accuracy of 100%.

For the nine-class problem hyperextension at —30° and
rest are correctly classified with 100% accuracy. The worst
performance with a classification accuracy of 78.2%, is flexion
at 110°, which was misclassified as flexion at 90° (14.4%) and
as shoulder elevation of 90° (7.3%).

B. Accuracy of the NN Classifier

Considering that the training of neural nets improves with
the number of examples, we made a different split of the
SEMG data. Taking all the data of the 8 subjects and randomly

extracting 70% as training set, 15% as validation set, and 15%
as testing set we trained the networks and considered their
predictions on the test set. Figure 7 compares the classification
error of the LDA and the NN classifiers in the 9-class problem.
Both for LDA and NN classifiers the higher errors are for
windows of 250 ms.

Numerical details about the classification errors for NN are
in Table III for the 9—class problem.

About the window size, we observe that the LDA classifier
has a significant degradation in the accuracy when moving
from the window size of 500 ms to 250 ms. In the NN the
degradation is lower, so also windows of 250 ms and 62 ms
increment have an acceptable error of about 1%. For 9 classes
the results of NN are clearly superior: for LDA the error is
about 8% while for NN it drops to 0.1%.

As performed for LDA, we built also the classifier for a
reduced number of classes. We show the errors with 5 classes
in Table IV.

As expected there is a significant improvement in accuracy
when reducing the number of classes. While the percentage
error for 5 classes in the LDA model is about 2.6%, in the
NN classifier the error can drop to zero. The improvement is
stronger with 4 classes, as reported in Table V.

For 4 classes, windows of 500 ms with any increment are
the best ones for LDA, giving no error, while the results of
NN do not depend on the windows length. For 4 classes both
the LDA and the NN classifiers are almost perfect. Instead,
when the number of classes increases the NN classifier shows
higher performance.
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TABLE IV
PERCENTAGE ERROR FOR CLASSIFYING 5 CLASSES WITH NN

Window (ms) | Increment (ms) Error% NN Hidden neurons
500 62 0.05 50
500 62 0.05 20
500 125 0.0 50
500 125 0.1 20
500 250 0.0 50
500 250 2.02 20
250 62 0.23 50
250 62 0.33 20
250 125 0.47 50
250 125 1.03 20
250 250 0.55 50
250 250 1.46 20

TABLE V

PERCENTAGE ERROR FOR CLASSIFYING 4 CLASSES WITH NN

Window (ms) | Increment (ms) Error% NN Hidden neurons
500 62 0 50
500 62 0 20
500 125 0 50
500 125 0 20
500 250 0 50
500 250 0 20
250 62 0 50
250 62 0 20
250 125 0 50
250 125 0 20
250 250 0 50
250 250 0 20

About the network architecture, we found that the number
of neurons in the hidden layer is not relevant. For 5 classes,
50 hidden neurons are slightly better than 20. For the other
cases, using 20 or 50 neurons does not affect the error, unless
for the unlikely combination (250, 250). In conclusion, the
simpler net with 20 neurons is recommended.

It is important to that when training a new net the weights
are randomly initialized; it means that the accuracy can change
of about +/— 0.5%. All the numbers shown are obtained
averaging the results of 5 trained nets.

While the performance of the NN is always superior to the
performance of LDA, some considerations about using NN
should be added. In particular, we cannot be sure that we
construct the best classifier in one shot, and it is recommended
to train more networks to select the best one. Moreover,
the best property of the LDA classifier, i.e. that the boundaries
between classes are at the maximum distance, iS no more
guaranteed for the NN classifier.

C. Reducing the Number of Channels

The best LDA classifier has been considered for the channel
reduction test. Fig. 8 displays the mean values of RMS for
each motion class, varying the acquisition channel for all
eight subjects. The channels that show the lowest dispersion
of averaged RMS among classes are: the sternal head of the
pectoralis major (Ch 2) and the latissimus dorsi (Ch 8).
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Fig. 9. Comparison of the LDA classification accuracy (%), on the test set,
relative to different number of classes over all eight subjects in correspondence
to the best segmentation (L = 500 ms, I = 62 ms), using 6 channels (dark grey)
and 8 channels (light grey).

Thus, these channels have been removed and the same
processing method for the LDA classifier has been reapplied,
obtaining the results in Fig. 9.

Comparing the six-channel classifier with the eight-channel
one, it can be observed that for the four-class and five-
class problem, the channel reduction lead to a slight decline
of classification accuracy (0.02% and 1.28%, respectively).
For the nine-class problem, the classification accuracy using
6 channels suffers a significant deterioration (4.25%). Those
observations suggest that for more than 5 motions only the NN
model could allow the reduction of channels without losing too
much in accuracy.

V. DISCUSSION AND CONCLUSION

In literature, many solutions have been developed
for upper-limb prosthetic control systems based on the
myoelectric signal. Much less solutions exist for the control
of exoskeletons of the arm. Looking at them, only the
most common levels of amputation, i.e. transradial and
transhumeral levels, have been so far extensively considered.

The present work, instead, took into account the shoulder,
a joint only initially studied for a possible EMG control.
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Our primary aim was to develop a sEMG classification
system able to correctly estimate the intentional movement
of a subject within a set of motion classes, at shoulder level.

We considered different studies, which were aimed at
determining the optimal window size for pattern recognition-
based myoelectric control. Starting with a linear classifier,
the results of our direct comparison among six different
segmentation settings (as in Fig. 4, Fig. 5, and Fig. 6) showed
that the best classification accuracy was reached by selecting
a window length L = 500 ms and an interval / = 62 ms.
The same segmentations were compared in [11] for a lower
amputation level, displaying that the most suitable segmenta-
tion was instead the overlapped window with L = 500 ms,
I = 125 ms. Several previous works investigated how the
classification error decreases with the increase of window
size [4], [17]. Indeed, choosing a greater window length, the
amount of temporal information used to identify the motion
class increases and the variance in the estimation of features
decreases. On the other hand, a greater window length leads
to a higher computational time. The combination L = 500 ms,
I = 62 ms allows to obtain a decisional flow every 62 ms; this
is the maximum time within which the processor must process
the myoelectric signals from the eight acquisition channels and
must provide output commands to the mechanical device.

Feature extraction plays an important role in the pattern
recognition-based control system. Indeed, a large number of
previous papers investigated which feature set returns the
best classification performance, mainly for transradial and
transhumeral amputation level. In this study, we have chosen
three feature sets among the ones proposed in the previous
works that proved to produce the lower classification error.
When applied to the shoulder disarticulation problem, our
results showed that the feature set composed by SampEn, CC,
RMS and WL outperforms the other two feature extraction
methods considered. The advantages of this feature vector
are its temporal robustness, as demonstrated in [11], and
its definition in time domain, which results into an easy
implementation.

Table II and Table III enable to make some observations
about the LDA classifier. In the 4-class problem all of the
movements are correctly classified. The addition of the eleva-
tion to 90° along the inclined plane, in the 5-class problem,
yields an accuracy reduction equal to 2.61%, due to the
misclassification with the flexion to 90° and the abduction
to 90°. This result can be explained by the fact that this move-
ment was a combination of the two classes just mentioned.
Finally, in the 9-class problem, the classification accuracy
further decreases to 92.56%. This value was mainly due to the
misclassification of the flexion to 110° with the flexion to 90°.
This confusion can be ascribed to the closeness between these
two motion classes. The accuracy significantly improves when
using the NN classifier, at the cost of losing some formal
properties of LDA and requiring more experience in building
and maintaining the classifier.

Furthermore, when reducing the SEMG channels from eight
to six, the results of the LDA classifier indicate that after
removing the signals with the less discriminating information,
in the four- and the five-classes problem the classification
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accuracy has a slight decline, while for nine movements
this reduction is significant. Indeed, the more the classes
of movement to be discriminated, the higher the number of
acquisition channels that is required. Therefore, in the 4- and
5-class problems, only six of the eight channels can be used
without compromising the classification accuracy and reducing
the complexity, the weight, and the cost of the prosthesis.

Analysis of time performance of the method indicated that
the most demanding feature to compute is the SampEn; the
fast method proposed in [30] takes 35 ms to compute it. The
computation of the full set of Phinyomark features, using
Matlab on a PC requires about 1 second for a segment
of 500 ms. The time required can be reduced by using a
hardware-optimized implementation.

In a future work, applications of our -classification
approach will be explored for neuroprostheses develop-
ment, i.e. for controlling Functional Electrical Stimulation
based systems [31], [32], for controlling rehabilitation robot-
ics or exoskeletons [3], as well as in the field of domotic
systems, for assisting severely disabled persons.

The SEMG raw data are freely available in [33].
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