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Abstract: Traditionally regarded as single cell organisms, bacteria naturally and preferentially build
multicellular communities that enable them to react efficiently to external stimuli in a coordinated
fashion and with extremely effective outcomes. These communities are bacterial biofilms, where single
cells or microcolonies are embedded in self-built Extracellular Polymeric Substance (EPS), composed
of different macromolecules, e.g., polysaccharides, proteins, lipids, and extracellular DNA (eDNA).
Despite being the most common form in nature and having many biotechnologically useful
applications, biofilm is often regarded as a life-threatening form of bacterial infection. Since this
form of bacterial life is intrinsically more resistant to antibiotic treatment and antimicrobial resistance
is reaching alarming levels, we will focus our attention on how nanotechnology made new
tools available to the medical community for the prevention and treatment of these infections.
After a brief excursus on biofilm formation and its main characteristics, different types of nanomaterials
developed to prevent or counteract these multicellular forms of bacterial infection will be described.
A comparison of different classifications adopted for nanodrugs and a final discussion of challenges
and future perspectives are also presented.

Keywords: antibacterial nanomaterials; nanoparticles; biofilm; nanomedicine

1. Introduction

The bell has tolled. Antimicrobial resistance is set to cause 30 million deaths by 2050 and will
continue to cause a huge economic impact on health-care providers, around 100 Trillion USD$ [1].
The World Health Organization (WHO) has also recently outlined and ranked the microbes that should
be highly prioritized for the development of new antibiotics [2]. These two documents highlight the
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extreme necessity of new therapies for microbial infection, claiming for research on the development of
new antibiotics. Since the golden age of antibiotics, between 1940 and 1960, many different classes of
molecules were discovered and introduced in clinical practice [3]. Right after introduction into clinics,
specific antibiotic-resistant strains began to appear. From the 1970s, the development of new classes of
antibiotics, i.e., completely different molecules compared to the ones already marketed, started to slow
down, resulting in very few new antibacterial drugs introduced into practice. The last new antibiotic
active against Gram-negative bacteria, quinolones, appeared in 1962. More recent is the availability
of two new classes of drugs against Gram-positive bacteria. Lipopeptides and oxazolidinones were
approved in 2000 and 2003, respectively [4]. Furthermore, the aforementioned rapid appearance of
resistant strains terribly complicates the landscape. The generation of a new class of molecules requires
at least a decade of work, whereas the onset of resistant isolates may take as fast as one or two years
after introduction into clinics [5].

The problem of bacterial morbidity is especially prominent in implant-related or indwelling
device-related infections, where bacteria stably colonize different types of implants, catheters or
prosthetic valves. The colonization of these devices is mainly caused by the establishment of a biofilm,
a bacterial community embedded in a self-produced Extracellular Polymeric Substance (EPS) that
enables the microorganisms to settle at the site of infection and efficiently cope with various external
potentially deleterious stresses [6]. This milieu provides ideal conditions for bacteria to withstand
antibiotic treatment, decreasing antibiotic efficacy due to lower penetration into deeper layers of
the biofilm and the metabolic state of bacterial cells that is predominantly in the stationary phase.
It is known that many antibiotics require an active bacterial proliferation, i.e., in the logarithmic phase.
This condition is different from genetic resistance and is better referred to as tolerance [7] and it further
intricates the landscape of bacterial infections.

If examined together, these data highlight the need to complement the antimicrobial field with
different preventive and therapeutic strategies that must be regarded with mounting interest. Indeed,
the field of nanomedicine has emerged in the last decades as a promising option for new diagnostic
and therapeutic alternatives in the clinic. Most clinical applications of nanotechnological discoveries
involve non-infectious diseases, addressing mainly cancer [8]. Other fields of application include
central nervous system diseases, cardiovascular and inflammatory pathologies. In addition, diagnostic
and theranostic applications are also valued fields of investigation. It has to be mentioned that most of
the research in this area is at a pre-clinical stage or undergoing clinical trials [8,9]. The translation from
bench-to-bed occurred mainly for cancer treatment. Since 1995, when Doxil®, a liposomal-encapsulated
form of doxorubicin to reduce its cardiotoxicity [10], earned the approval from the Federal Drug
Administration (FDA), many other nano-drugs reached the clinics. The only example regarding
infectious diseases is represented by AmBisome, a liposomal form of amphotericin B to treat fungal
infections [11].

Therefore, the aim of this review is to summarize the state of the art regarding nanotechnological
research in order to counteract biofilm communities. Most literature addresses bacterial infections
analyzing planktonic populations, not considering that these multicellular communities mainly
mediate an established and recurrent infection. To better understand biofilm biology, we will first
focus on its formation and its characteristics. Then, nanothechnological advances will be illustrated
analyzing both different classifications proposed in the literature and their applications towards biofilm
infections. Finally, a brief excursus on the difficulties of the clinical translation process will be discussed.

2. Biofilm Formation

As previously mentioned, bacteria are traditionally considered unicellular organisms. Initial
observations that led to the formulation of the hypothesis of the formation of sessile communities
that are able to stick to surfaces date back to the 1970s thanks to the contributions of Marshall and
Costerton [12–14]. Over the last forty years, progress has been made in the understanding of this
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form of bacterial association, understanding many different mechanisms related to biofilm biology,
excellently reviewed recently [15,16].

Concerning formation, schematized in Figure 1, the first step is adherence to a surface. It can
be mediated both by non-specific factors, like physico-chemical factors, as well as by specific
bacterial protein components. The former mainly involves on one side the nature of the bacterial
cell-wall and superficial proteins and on the other the hydrophobicity of the surface, as analyzed in
different bacterial species, like Staphylococcus aureus (Gram-positive) [17] and Pseudomonas aeruginosa
(Gram-negative) [18,19]. In these cases, interaction of cell wall components, surfaces proteins and
cellular protrusions have been reported to play a role in the attachment to a surface. However,
the contribution of single components of the bacterial surface is still debatable, especially due to
the methods of analysis and their relevance in in vivo conditions [15]. Another relevant physical
factor recognized to be important for biofilm formation is shear stress that allows the formation of
a much stronger biofilm when it is applied during formation of the community and influences the
dispersal process, increasing the chance to disseminate the infection. Many works established the
influence of this physical factor on biofilm [20–23], including also natural biofilm in rivers in which
a particular form of biofilm microcolonies, termed streamers, are aligned to the flow with a sessile
“head” and a flowing unattached “tail” [24]. Recently, the molecular basis of mechanosensing of shear
was clarified in P. aeruginosa, further underlining the relevance of this physical factor [25]. Regarding
in vivo conditions, upon interaction with body fluids, any surface becomes covered with ExtraCellular
Matrix (ECM) components, thus coating the surface. The case of S. aureus Cell Wall Anchored (CWA)
proteins details the specific adhesion to defined ECM molecules. Fibrinogen [26,27], fibronectin [28,29]
and collagen [30,31] are the ligands of specific staphylococcal proteins that have been extensively
studied and recently re-classified according to their structure [32]. Even specific biofilm-associated
proteins have been reported [33]. These proteins have been substantially shown to bind to their
respective ligand and thus promoting specific adherence to a coated surface. Similar cases are reported
for Gram-negative bacteria [34]. These specific interactions provide a more realistic base for the first
step of biofilm formation in medically relevant conditions.
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The second step is the maturation of the biofilm where increase in biomass and the
production of the Extracellular Polymeric Substance (EPS) occur to achieve a complex 3D
structure. The main component of EPS is water (up to 97%) [16] followed by different biological
macromolecules as polysaccharides, proteins and extracellular DNA (eDNA). Specific types of
polysaccharides are produced when bacteria are embedded within biofilm: poly-N-acetyl-glucosamine
(PNAG or PIA—Polysaccharide Intercellular Adhesin) for staphylococcal species mainly [35,36] and
alginate together with Psl, a mannose-rich polysaccharide from gene cluster psl (polysaccharide locus)
for P. aeruginosa [37]. The expression of these polysaccharides is strictly regulated by operons and
regulons that are specifically activated at precise moments of biofilm growth. Another macromolecular
component of EPS are proteins, whose role inside the biofilm is to promote adherence between
cell and surface but also cell-cell adhesion and communication. This double role is again best
exemplified by staphylococcal CWA proteins [32,38,39]. Furthermore, extracellular enzymes are
present to degrade substances sorbed by the biofilm [16,40,41], in some cases reported to be within
extracellular vesicles [42], and proteinaceous component derived from died cells cellular debris
has also been detected [43]. These enzymes provide many insights into the “social” behavior of
biofilms since the digestion of complex molecules present in the matrix allows both remodeling of
the EPS and increases the availability of nutrients [16,44]. The last main component of the EPS is
eDNA, which revealed itself to be a fundamental component of the biofilm, showing to be necessary
upon its formation and maintenance, firstly reported in P. aeruginosa [45]. The role of eDNA is also
relevant in staphylococci but not equally in all species. As an example, its role in S. aureus biofilms is
fundamental [46], much less in S. epidermidis [47].

The final stage of the biofilm life is the detachment or dispersal, where small biofilm clumps or
single cells are released to promote colonization of other sites. This fate of biofilm is triggered by
a plethora of stimuli and finely regulated with precise gene expression patterns, extensively reviewed
elsewhere [48]. Examples can be drawn from P. aeruginosa where the motility is activated and the
productions of surfactants (rhamnolipids) occurs. Phenol-Soluble Modulins (PSM) are surfactants
produced by staphylococci to achieve EPS disruption and consequent dispersal [15].

3. Biofilm Properties

The highly heterogeneous nature of EPS provides bacterial communities with many characteristics
that influence their behavior and allows the formation of a peculiar microenvironment in which they
can better survive and cooperate, as shown in Figure 2.
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The presence of an extracellular matrix is first a physical barrier to external stresses. As previously
said, the main component of EPS is water retained by the hydrophilic molecules of the matrix,
thus allowing survival also upon desiccation. In some instances, one further layer of dehydration
prevention is provided by the formation of an external skin that forms a physical barrier to water
evaporation [49]. Furthermore, the “sticky” nature of the matrix allows non-selective sorption of
substances, that may be nutrients, ions or also toxic compounds, as documented in environmental
samples of biofilms [50–52]. Retained compounds can be digested by enzymes secreted by bacteria
embedded into the biofilm as described above, thus rendering nutrients available for the entire
community. Further nutrients are provided by died bacterial cells that can be “cannibalized”
as documented in Bacillus subtilis biofilms [53]. These sorption and retention capacities allows
the growth of biofilm in environments that can be highly oligotrophic, which is typical of most
natural environments.

Probably the most medically relevant feature that is connected to biofilm is its intrinsic tolerance
that shows to any treatment. Traditionally, planktonic bacteria become resistant to a determined
antimicrobial agent thanks to genetic elements that allow them to escape the mechanism blocked
by the antimicrobial. By contrast, it is known that bacterial cells within biofilm are not genetically
resistant to antimicrobials but always show a high survival rate upon treatment [54]. This phenomenon
can be referred to as tolerance (according to Flemming and coauthors [16]). It has been shown that
silver nanoparticles (AgNPs) inhibited to a lower extent biofilm viability compared to the planktonic
counterpart. Once suspended, biofilm-embedded Pseudomonas aeruginosa cells retained their sensitivity
to AgNPs, comparable to the planktonic culture [55]. Thus, an explanation of this effect may be the
physical barrier formed by EPS, which can chelate and modify antimicrobial molecules, owing to
the presence of secreted enzymes mentioned above. Another reason of the intrinsic tolerance of
bacterial cells once embedded in EPS matrix is their metabolic state. EPS causes the formation of
different gradients inside the biofilm community (nutrient, oxygen, pH) [14,16] and this leads bacteria
to respond differently based on the condition they find. Low nutrients and oxygen paucity may lead
to a dormant state, in which these so-called persister cells are still viable but not actively proliferating,
being therefore non-susceptible to most antimicrobial treatments [56,57]. This way, at least two
mechanisms contribute to biofilm survival upon the presence of antimicrobials.

Furthermore, the close proximity in which bacteria are held thanks to the biofilm matrix
enables a “social” behavior of the community. This phenomenon can be explained in multiple
ways: the primary way of communication inside the biofilm is thought to be quorum sensing (QS).
This communication system is based on chemical signals that are secreted by bacterial population.
The concentration of the signal increases as the population grows, reaching the quorum that indicates
that the population is conspicuous enough to trigger changes in gene expression patterns [58,59].
QS is studied through the use of batch cultures in the laboratory, allowing high concentration of
bacterial cells in a relatively small volume. By contrast, the role of QS in nature is questionable since
bacteria rarely reach such high concentrations in close proximity to allow diffusion and sensing of the
chemical signals. Instead, within biofilm matrix there is clearly the possibility to increase the local
concentration of signal molecules. Therefore, the role of QS has been extensively investigated in biofilm,
also as a therapeutic target. Nevertheless, even if in some studies it is deemed relevant for biofilm
infection, in other cases it is clear that bacteria that established the biofilm are QS-mutants. Joo and Otto
proposed a unified vision of this apparent conflict supported by other studies: QS is typically activated
in acute-phase infections whereas it is downregulated upon established chronic diseases [15].

Another intriguing form of communication reported in biofilm relays on electrical signals that can
be transmitted by ferric ions and potassium ion channels present in the matrix, as it has been reported
in different species (Bacillus subtilis, Geobacter sulfurreducens and Thiobacillus denitrificans) [60,61].

The restricted spatial distribution enables these communities to exert their effect on close-by
cells in different manners: if nutritional sources are scarce, competition may occur between species,
but many cooperative interactions have been proven [62–65]. In one instance, detossification of
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a toxic herbicide was achieved by a three-species biofilm (composed of Variovorax sp., Comamonas
testosteroni and Hyphomicrobium sulfonivorans), whereas the cognate monospecies biofilms were not
able to degrade it [66]. Another typical example of bacterial biofilm, where cooperation has been
clearly described, is dental plaque, in which recruitment of different and successive species is strictly
dependent on previous colonizers [67]. These examples show the many possible interactions that the
biofilm environment offers and led to the utterly intriguing term of “sociomicrobiology” [68]. Further,
this provides the basis for almost all biofilm-related concerns that are relevant for healthcare systems.

4. Nanotechnology as a Tool to Counteract Biofilm Infections: A Still Preclinical Issue

The relevance of biofilm in clinical settings arose in the 1980s when medical implants were found
contaminated by bacteria upon analysis with electron microscopy [69–71].

As reported in Figure 3, the main sites of initial infections are either sites where medical
manipulation occurred (prosthesis or catheter implantation) or areas where bacteria can gain
easy access to bloodstream (periodontal or “gum” disease—as previously said, dental plaque is
a form of biofilm–). The contamination at these sites enables access to bloodstream, that allows
dispersion of single cells or biofilm clumps in the entire body, therefore reaching even deeper tissues
(e.g., endocarditis). The adherence to a substratum and its localization in a specific site (with sporadic
bacteremia) are among the four characteristics that Parsek and Singh proposed for biofilm-related
infectious diseases [72]. The other two features are presence of a matrix-embedded biofilm upon
microscopic observation and increased resistance to antibiotics despite antibiotic sensitivity of the
constituent planktonic organisms. The latter is particularly relevant since it claims for alternative or
complementary approaches for the reduction of the infection burden, since in many cases infection
persists even after long-term aggressive antibiotic therapy, after which prosthesis or implant removal
is necessary [73]. This implies higher costs in many different aspects, both from the patient side and
the healthcare providers.
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The design of nanomaterials that are anti-infective by-design may help the field to improve not
only medical treatments, but also environmental applications. The development of nanoparticles
and nanomaterials in general is more focused on cancer and cardiovascular treatment and diagnostic
purposes, in which these nanostructured materials have reached successful clinical applications
(for extensive reviews, see [8,74,75]). In the field of antimicrobials, the application of nanotechnology
is still at a pre-clinical or academic research level [76,77], with only some examples of wound-dressing,
catheters, bone cements and cardiovascular implants containing silver as antimicrobial already
available for clinical use [78]. As shown in Table 1, a simple search of the main US literature and
clinical trial databases (PubMed and Clinicaltrail.gov, respectively) demonstrates that substantial
effort is invested in academic research on nanoparticles in general, with minor attention to infections
(166.221 vs. 2.604 hits) and biofilm (166.221 vs. 1.135 hits).

The clinical research and application are already a major barrier to most of the nanoparticle
preparations, especially for infectious diseases, as reflected by the paucity of clinical trials involving
nanoparticles. Clinical applications of nanosystems as antimicrobials are almost absent to the best
of our knowledge. Therefore, we will focus on the preclinical research that has been conducted in
this field.

Table 1. Academic and clinical research on metal nanoparticles in infectious diseases. Search of the
databases was performed on 11th April 2018 using the mentioned search strings.

Search String Number of Hits on PubMed.gov
(www.ncbi.nlm.nih.gov/pubmed) Number of Hits on Clinicaltrials.gov

Nanoparticle 166.221 292
Nanoparticle AND infection 2.604 19
Nanoparticle AND biofilm 1.135 4

Nanoparticle AND iron 10.886 25
Nanoparticle AND iron AND infection 96 0
Nanoparticle AND iron AND biofilm 57 0

Nanoparticle AND silver 13.873 14
Nanoparticle AND silver AND infection 423 2
Nanoparticle AND silver AND biofilm 384 2

Nanoparticle AND gold 25.879 7
Nanoparticle AND gold AND infection 251 0
Nanoparticle AND gold AND biofilm 90 0

Nanoparticle AND copper 4.308 0
Nanoparticle AND nickel 1.733 0

5. Classification of Nanoproducts for Antimicrobial Nanotechnology

5.1. Traditional Classification

The development of nanosystems for antimicrobial application, as said, is intensively investigated
at a preclinical level. A vast diversity of nanoproducts have been generated and different classifications
have been used: the most common refers to the chemical composition of the nanoparticles. By contrast,
the one proposed by Torchilin is based on functional aspects of the nanoformulated pharmaceutical [9].
A summary of these two different classifications is depicted in Figure 4.

www.ncbi.nlm.nih.gov/pubmed
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Figure 4. Two different classifications of nanoparticles (NPs), based on their chemical composition or
on their function. NDDSs classification has been proposed by Torchilin [9].

The first classification proposed divides the nanoparticles into different groups based on their
chemical nature. This is by far the most common approach adopted in several reports to describe the
different nanosystems generated (for extensive reviews, see [79–83]). Harnessing of metals or metal
nanoparticles is the most frequently investigated nanotechnological application to endow materials
with antibacterial and antibiofilm properties. The intrinsic nature of antimicrobials of various metal
is known and enhanced by their formulation as inorganic nanoparticles, which allows a higher
surface-to-volume ratio and increases controllability upon design, synthesis and tunability of their
physico-chemical parameters. Mechanisms of bacterial killing are different with respect to both
bacteria classes (Gram-positive or Gram-negative) and nanoparticles types and have been recently
extensively reviewed [84–87]. Among the most common antibacterial mechanisms are membrane
damage mediated by direct contact of nanoparticles with bacterial surface, protein chelation at Fe-S
clusters or thiol residues, DNA and RNA damage and Reactive Oxygen Species (ROS) generation.
A comprehensive picture of nanoparticles-mediated damages to the bacterial cell is given by Pelgrift
and Friedman [84], reported in Figure 5.

According to the traditional classification, the second class of nanoparticles is the group of organic
NPs, where organic molecules are part of the composition of the nanoparticles and exert an inherent
antibiofilm action. In this class, lipid-based nanoparticles are also included. Examples are chitosan
NPs [88] (which antibacterial effects are explained in Figure 5), functionalisation of polystyrene NPs
with sulfate groups [89], nitrofuratonin conjugated to poly-L-lactic acid plastic [90], combination of
perfluorinated lubricating fluids with polytetrafluoroethylene (PTFE) in membranes [91]. All these
systems proved effective against biofilm.
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Nitrogen Oxide Species (RNOS). Reactive Oxygen Species (ROS). R-SH schematizes a compound with
a thiol (SH) group. RSNO stands for S-nitrosothiol. (With permission, from [84]).

The third class, which comprises all types of combinations between inorganic and organic
components, is by far one of the most intensively investigated to endow the nanosystem with
different antimicrobial activities, such as improved delivery of antibiotics or metals, increased stability
and accumulation at the infection site, as well as increased cytocompatibility. Gallium-releasing
Polyether urethane (PEU)-polyethylene glycol (PEG) blends proved effective in preventing P. aeruginosa
infection upon implantation of the doped blend. The same blend loaded with Zinc showed much less
efficacy [92]. Apart from metals, also antibiotics have been loaded in liposomes and their effectiveness
has been proved [93], in some instances also in cystic fibrosis animal models [94].

5.2. Function-Based Classification

A more function-oriented classification has been recently proposed by Torchilin [9]. The three
proposed groups distinguish between different types of Nanoparticulate pharmaceutical Drug Delivery
Systems (NDDSs), as the author defines them. This perspective highlights the target of the NDDSs and
their multiple functions. The majority of the applications of these systems are not for infectious diseases.
However, some examples are present. Types 1 and 2 are drug-loaded NDDSs with at least two different
functions (e.g., longevity, targetability, stimuli-sensitivity or cell penetration), the latter differing from
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the former, since it encapsulates more than one drug. Further examples of different multicomponent
drug-delivery systems, apart from the ones cited above as combinations of organic and inorganic
components that are part of this class if regarded from the point of view of functional classification, are
nanoparticles releasing nitric oxide (NO) [95], three-component NPs (silver, chitosan and iodine) [96]
and gentamicin-loaded silica hydrogel NPs [97]. The complexity of these nanosystems successfully
targeted bacterial pathogens, but the analysis of their effect on biofilm is lacking. The combinations
of multiple factors able to tackle bacterial survival results in the substantial merging of some classes
belonging to different classification systems. In fact, nanoproducts included in the class in which
inorganic and organic components are combined can fit either in type 1 or type 2 NDDSs, based on the
number of different components that the nanosystem carries.

The third group encompasses theranostic NDDSs that conjugate diagnostic and therapeutic
purposes. This last group has never been applied to biofilm infection, therefore this group will not be
further described.

The two classifications presented here (composition-based and function-based) are therefore
intended to better focus on the nanoproducts characteristics and possible applications and are not
necessarily in contrast. Indeed, some points of contact are present.

6. Antibiofilm Application of Nanotechnology

Many strategies have been devised and proposed to tackle biofilm infections that can be classified
in: (i) surface modification, to prevent bacterial adhesion and proliferation; (ii) nanoparticles or small
molecules that can passively or actively target the biofilm; (iii) physical removal of the slime with
different methods, as presented in Figure 6.
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6.1. Surface Modification

To reduce biofilm formation from its initial formation stages, the generation of coated surfaces
that reduce or impede bacterial adhesion is intensively investigated, as summarized in Figure 6a.
Nanotopography has proved relevant to promote bacterial killing, even though the mechanistic base is
still unclear [98–101]. As previously said, impregnation or cross-linking of surfaces with metal-based
nanoparticles (e.g., silver, gold, zinc and their oxides) is often investigated and provides successful
biofilm reduction [102–108]. The use of “smart surfaces” with peculiar designs, that may change their
behavior upon precise trigger, is of increasing interest in recent years [7,109–111].

6.2. Nanoparticles or Small-Molecule Agents

Direct effect of different types of nanoparticles on biofilm is the main investigation field,
where many different approaches can be envisaged (Figure 6b). Simple and composite metallic
nanoparticles are known to have effect both on planktonic and biofilm-embedded bacteria [76,112–116].
The attention to further aspects besides antimicrobial efficacy is crucial for further development and
translation to clinics. The use of “green chemistry” to produce nanoparticles without polluting
and toxic reagents is crucial to improve cytocompatibility and lower toxicity of the final product.
For example, AgNP were produced using pectin from citrus peel acting as both reductant and
stabilizer of the nanoparticle preparation. This strategy yielded an extremely stable product that
was also fully cytocompatible and able to promote wound healing in vitro, besides showing high
antibacterial and antibiofilm effects [117]. The design of NDDSs in recent years has increased [9],
ranging from polymeric or organic nanoparticles, that might be conjugated to targeting molecules,
antimicrobial compounds or enzymes in order to degrade biofilm matrix. The delivery of antibiotics
is investigated to reduce side effects and increase local concentration of the active molecule inside
the biofilm [118]. Furthermore, also the conjugation with enzymes to increase biofilm penetration
has been explored, as in the case of poly(lactic-co-glycolic acid) PLGA nanocarriers loaded with
DNase I and ciprofloxacin [119], demonstrating increased efficacy and good biofilm inhibition,
since DNA is an essential component of EPS. The use of antimicrobial peptides conjugated to
nanoparticles has also been explored, since these peptides are smaller and therefore more stable
and protease-resistant than entire enzymes; this approach was efficient in vitro but no reports are
available in in vivo models [120,121]. Targeting of persisters cells has been mainly achieved with
free compounds [7,57,122,123]. Examples of persister cells causing latent infection upon dormant
survival in macrophages is well-known and described for different pathogens [57,124,125]. Specific
targeting of bacteria [126] or of macrophage-engulfed bacteria [127] was attained with multifunctional
antibiotic-loaded nanoparticles, demonstrating the principles to tackle bacteria embedded inside
immune cells. However, to the best of our knowledge, there is no report of the combinatorial use of
nanomaterials in conjugation to antimicrobials able to tackle persister cells in biofilm. The evaluation
of the synergistic effects provided by nanotechnology and antimicrobials will probably help to tackle
persisters, mainly responsible for relapsing infections.

6.3. Physical Factors

Combination of physical removal of biofilm with other treatments is regarded with increasing
attention since the sole mechanic disruption may lead to dispersal of small residues, therefore
increasing the risk of infection [7,73]. Photothermal activity has been studied in conjunction with gold
nanoparticles, owing to their intrinsic physico-chemical properties, resulting in significant biofilm
reduction of both Gram-negative and Gram-positive bacteria [128,129]. Photodynamic treatment of
biofilm in combination with organic compounds is another strategy that has been tested and yielded
good results on staphylococcal biofilms [39,130–132].

Therefore, a wide range of nanotechnological applications are now available to tackle biofilm
infection. Many of them showed promising features at laboratory level. Research effort should be
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focused on translating these principles into clinical application to reduce the well-known medical
burden of biofilm communities.

7. Challenges and Future Perspectives

The use of nanotechonology in clinics is much more advanced in other fields compared to
infectious diseases (e.g., cancer and cardiovascular pathologies, diagnostics) [8,74]. The advances of
these fields may provide fruitful insights for antimicrobial nanotechnology development, not only
for the pre-clinical design and analysis but also for the problems that may arise during clinical trials.
The intense academic research in the field of antimicrobial nanotechnologies should be carefully
designed towards a future possible clinical application. Therefore, deep characterization of the
nanosystem needs to be provided early in the development of the product, pointing out to the
necessity of a strict and strong collaboration between many different expertises (chemistry, biology,
pharmacological, engineering, and clinical) during the development of the nanodrug. The interest in
specific targeting and accumulation of nanoparticles at the site of disease is one of the most interesting
aspects. It is deeply investigated in cancer-related applications of nanoparticles. Nevertheless, passive
targeting through the Enhanced Permeability and Retention (EPR) effect and active targeting thanks to
specific and selective mechanisms are far from a complete understanding since in vivo complexity
poses major challenges to these two concepts [8,9,133]: different mammalian model organisms may
have slightly different dynamics in different districts of the body, especially at pathological sites.
This would cause different responses and therefore invalidate results obtained in animal models and
hinder the translation of these results to humans. Furthermore, studies on how these nanoparticles
interact with entire organisms are not often closely regarded, since the interactions of the nanosystem
with blood and tissue components may easily change nanoparticles surface properties, which are
critical for their properties [134,135]. Further, the long-term interaction of nanoparticles with the
human body may have unwanted effects that are currently unknown, as no studies in this field are
available. Particular attention should be addressed to the distribution and possible accumulation in
specific organs. Clearance of the nanoparticles should also be investigated since it may require longer
time compared to antimicrobials currently in use [136].

The necessity of large-scale production for clinical testing and application underlines the relevance
of batch-to-batch reproducibility of preparation. As stated before, especially for infectious diseases,
nanotechnologial approaches are mostly investigated at a preclinical level, where batch-to-batch
variability is not attentively investigated. This represents a downside of the academic research. In view
of a possible clinical translation, this aspect is crucial, thus it must be considered. In parallel, complex
and articulate synthesis procedures might hinder large-scale synthesis. Therefore, development of
complex multifunctional NDDSs might encounter more difficulties if clinical application is pursued.
Another aspect that should be considered pertains to the stability of the generated nanoproduct.
A precise analysis of the different storage conditions will provide a relevant piece of information for
their clinical translation.

All these aspects are far from being comprehensively considered from a regulatory point of view
for nanoproducts. New regulations specific to this new class of drugs are needed because of the
peculiarities of these products [76,137,138].

The market of nanomedicines is set to reach $400 billion by 2019, showing a high interest in this
field [137]. Together with the increasing problem of antibiotic resistance and the major impact of
biofilm infections, antimicrobial nanodrugs hold a great potential for future developments and their
impact on the healthcare systems will be considerable. The lessons learned from other fields will allow
a more reliable design and development of these products, allowing patients and clinicians to have
more therapeutic approaches to tackle infectious diseases in the near future.
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