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Abstract
Coupled double quantumdots (c-2QD) connected to leads have beenwidely adopted as prototype
model systems to verify interference effects on quantum transport at the nanoscale.We provide here
an analytic study of the thermoelectric properties of c-2QD systems pierced by a uniformmagnetic
field. Fully analytic and easy-to-use expressions are derived for all the kinetic functionals of interest.
Within theGreen’s function formalism, our results allow a simple inexpensive procedure for the
theoretical description of the thermoelectric phenomena for different chemical potentials and
temperatures of the reservoirs, different threadingmagneticfluxes, dot energies and interdot
interactions;moreover they provide an intuitive guide to parametrize the systemHamiltonian for the
design of best performing realistic devices.We have found that the thermopower S can be enhanced by
more than ten times and thefigure ofmeritZT bymore than hundred times by the presence of a
threadingmagneticfield.Most important, we show that themagnetic flux increases also the
performance of the device undermaximumpower output conditions.

1. Introduction

Quantumdot systems have attracted enormous interest as workable thermoelectric device candidates for the
study of electronic and thermal quantum transport at the nanoscale. The origin of such an interest both from the
theoretical and the experimental side, resides in the potential they offer, as artificial nanoscale junctions, to
explore a large variety of thermoelectric effects. Relevance of nanostructures as performing energy harvesting
devices was envisaged in the pioneering paper ofHick andDresselhaus [1]. Since then nanoscale
thermoelectricity has been addressed by an increasing number of theoretical and experimental works; a
perspective of thefield can be found in the focus point collection in [2] and in the articles appeared in [3]. In
particular, interference Ahronov-Bohm [4–7], Fano [8–11], Dicke [12, 13] andMach-Zehnder [14, 15] effects,
inter- and intra-dot correlation effects [16–18], coherent transportmodification by externalmagnetic fields and
gate voltages. [19–21], have been exploited to control the performance of thermoelectric heat devices.

The system composed by two single-level quantumdots coupled to each other (c-2QD) viametallic leads, in
two terminal ormultiterminal setups [22], and via an interdot tunneling aremost appropriate to probe how the
Hamiltonian systemparameters and external conditions can be varied to optimize the energy conversion
efficiency and the output power of the thermoelectric device. This is a demanding task because such parameters
often play conflicting roles in the optimization process. Strategies for increasing thermoelectric performances
utilizing a steep slope in the transmission function  (E), or its specific shape, or its resonances, have beenwell
described in [23]where also a comparison between the thermoelectric efficiency of inorganic and organic
materials is discussed.
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It is worth noticing that in addition to the numerous papers dealingwith two quantumdots tunnel-coupled
to the leads and between themselves, alsoCoulomb-coupled quantumdots [24, 25] have attracted increasing
interest in the recent years [for a general perspective see [26]. This has beenmotivated by the advances in the
fabrication of nano-devices, energy harvesting [22]with quantumdots, and the experimental possibility to
taylor TE properties exploiting Coulomb interaction and the charge carriers correlation [27].Moreover, in
recent years parallel coupled quantumdotsmade of semiconductors with high spin-orbit interaction have
proven promising systems to realize two-spin qubit in quantum information processing [28, 29].

Enhancing thermoelectric performance in linear regimes, requiresmaximization of the dimensionless
thermoelectric figure ofmerit ZT S T2s k= whereσ is the electrical conductance, S the thermopower
(Seebeck) coefficient,T is the temperature andκ=κe+κp is the thermal conductance (which includes
electronic and lattice contributions). In the search of optimal thermoelectric response of the device,most
important quantities are itsmaximum efficiency as thermoelectric generator, and the efficiency at themaximum
of the output power.

A crucial aspect both in the implementation of experimentalmethods [30], and in the evaluation of the
thermoelectric response of bulk and nanostructuredmaterials, is thewide parameters range to be explored
simultaneously to determine its optimal functioning. In this context, the possibility of using analytic expressions
for all the involved thermoelectric functions greatly simplifies the task. In the literature, the analytic treatment of
the c-2QD is confined at sufficiently small temperatures bymeans of the Sommerfeld expansion, extendedwhen
necessary to fourth order in kBT in the evaluation of kinetic parameters [9]. In the case of Lorentzian shape of the
transmission function, analytic expressions of the thermoelectric transport coefficients have been obtained in
terms of digamma functions [31]. In themore complicated transmission function of coupled double dot, we
provide here, in terms of trigamma functions [32, 33], analytic expressions for the relevant quantities describing
the thermoelectric behavior of a c-2QD. The description of the c-2QD electronic transport is performedwithin
theGreen’s function framework.We have exploited such expressions to study the variation of Seebeck
coefficient, figure ofmerit, energy conversion efficiency and output power, as function of temperatures and
chemical potentials of the reservoirs, and of themagnetic field threading the c-2QD. In particular we focus on
the thermoelectric efficiency of the c-2QDdevice, in contact with left and right reservoirs, when it operates at
maximumoutput power conditions.

We adopt the convention that the left reservoir is the hotter one (TL>TR)while no a priori assumption is
done on the relative position of the chemical potentialsμL andμR of the left and right reservoirs.We consider a
two-terminal quantumdot setup, stationary transport conditions, absence of lattice contributions to thermal
conductivity (k≈ke ), and no electronic correlation effects. The general expression for thermoelectric transport
charge current I through the c-2QD, in stationary conditions, is given by [34]
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where fL, R denote the Fermi functions of the two reservoirs. The electric power output ((E)> 0) is given by
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whereΔV=(μL−μR)/(−e) is the voltage drop and e e= ∣ ∣ is absolute value of the electron charge.
The thermoelectric efficiency of the device is given by the ratio between thework done and the heat extracted

from the high temperature reservoir:
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In steady state conditions the heats per unit time are the thermal currents andW per unit time is the output
power  . Then
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Expressions from (1) to (4) depend on the thermodynamic parametersμL,TL,μR,TR and on the c-2QD
transmission function  (E), and hold in the linear and nonlinear regimes. In this paperwe are interested in the
linear response of the system so thatΔμ=μL−μR andΔT=TL−TR are infinitesimal quantities. Tofirst
order inΔT andΔμ, we can thuswrite
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For convenience, the thermodynamic parametersμL,TL and the Fermi function fL are denoted below
dropping the now inessential subscript L.

In section 2we report details on the c-2QD system and its description in terms of localized functions. In
section 3we provide analytic expressions of the transport parameters relevant to control and design of the
thermoelectric response of the c-2QD, in the linear response regime. Application of the above expressions and
discussion of the results are reported in section 4where contour plots are reported to better evidence the energy
andmagnetic field values eventually responsible of efficiency at themaximumoutput power.We have found
that the thermopower Smay be enhanced bymore than ten times and the figure ofmeritZT bymore than
hundred times due to a threadingmagnetic field.We look for chemical potential andmagnetic flux values which
give themaximumoutput power and demonstrate that themagnetic flux also increases the corresponding
efficiency. Section 5 contains our conclusions. Several usefulmathematical details are contained in the
SupplementaryMaterial sections.

2. Systemdescription andmodel

In this sectionwe establish a localized basismodel for the c-2QD electronic system in contact with the left and
right reservoirs, in the presence of a threadingmagneticfield.

Consider a double dot electronic system, with a single orbital per dot, describedwithin the one-electron
approximation in the tight-binding framework. The one-electronHamiltonian can be partitioned in the left
lead, central device, right lead, and coupling interaction

H H H H W . 5left dots right dots leads= + + + - ( )( ) ( ) ( ) ( )

The electronic system is schematically pictured infigure 1, where the presence of a uniformmagnetic field is also
considered.

The central device, a double dotmolecule, is described by theHamiltonian of the type in the bra-ket
notations

H E E t t , 6dots
d d d d1 1 2 2 1 2 2 1f f f f f f f f= ñá + ñá + ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )( )

whereEd is the energy of both dots orbitalsf1,f2, and td (supposed real and negative) is the off-diagonal coupling
between the two dots.

For what concerns the description of two electrodes not yet coupled to the dots, we can proceed as follows.
Consider, for instance, the left lead and specifically the ‘left seed state’ af>∣ that carries the couplingwith the
central device. The effect of all the other (infinite) degrees of freedomof the left electrode are embodied in the
Green’s function gaa on the end seed state. In principle, the Lanczos procedure can be applied to generate the
Lanczos chain and, then, to determine theGreen’s function [see for instance [35]]. The same considerations
apply for the right lead.We have

g E
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g E
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1
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. 7

aa
R

a left a bb
R

b right bf
h
f f

h
f= á

- +
ñ = á

- +
ñ( ) ∣ ∣ ( ) ∣ ∣ ( )( ) ( )

Following the routinely adopted ‘wide-band approximation’we consider explicitly only the imaginary part of
the aboveGreen’s functions and disregard the energy dependence. The leads are replaced by the corresponding
end states, with the retarded and advancedGreen’s functions purely imaginary quantities, independent from

Figure 1. Schematic representation of the double dot electronic system in a symmetric environment for the analysis of thermoelectric
properties. In the absence ofmagnetic field, the four hopping parameters of the ring are equal to t (taken as real). Themagneticfield, in
the chosen gauge,modifies t te ta

i
a1

2
1* =q- and t te tb

i
b1

2
1* =q- , where θ=2πΦ(B)/Φ0,Φ(B) is theflux of themagnetic field

through the entire two-loop (fa,f1 ,fb,f2) plaquette, and hc e0F = is the quantumofflux. In the case of degeneracy E1=E2=Ed.
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energy. In a symmetric geometrical environment, we have

g E g E i g E g E i, 0 , 8
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where ρ=−(1/π) Im gR represents the local density-of-states, assumed to be constant in the typical energy
region of actual interest.

The coupling between leads and central device in the absence ofmagnetic field is represented by a loopwith
nearest neighbor interaction t (taken as real for simplicity). In the presence ofmagnetic field, appropriate Peierls
phases are introduced. The Berry phases corresponding to themagnetic field are set on the hopping parameters
connecting the upper quantumdotf1 with the end orbitalsfa,fb of the electrodes:
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Wehave now all the ingredients for the calculation of theGreenʼs function and of the transmission function of
the electronic device.

2.1. Greenʼs function of the degenerate double dot inmagneticfields
The central part of the device is constituted by the two orbitals of the two quantumdots, coupled one to the
other.We can use the renormalization-decimation procedure to fully eliminate the degrees of freedomof the
leads, now represented by the end seed states af>∣ and bf >∣ [see for instance [35]]. The retarded self-energies
produced by the left lead on the central device become
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Similar procedures can be followed for the right lead and for the advanced self-energies.
It is convenient to define the real and positive quantity γ/2=πρ t2>0. The total self-energies of the left

and right leads are then
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Finally the coupling parameters are given by the expressions
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It should be noticed that the self-energiesΣ and the broadening parametersΓ depend on the appliedmagnetic
field, but are completely independent from the energy variable. This nice feature is a consequence of thewide
band approximation and fosters the possibility of a fully analytic treatment of transport parameters, which is a
key aspect of this article.

The retarded effectiveHamiltonian for the double-dot in the central device, after the full decimation
procedure of the leads, is given by the expression
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The retardedGreen’s function is represented by the symmetricmatrix
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The advancedGreenʼs function is the hermitian conjugate of the retarded one. Since thematrixGR(E) in
equation (12) is symmetric, it follows

G E G E . 13A R *=( ) [ ( )] ( )
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2.2. Transmission function of the symmetric double dot inmagneticfields
Wecannowproceed to the explicit calculation of the transmission function E( ) of the double dots, coupled
one to the other and immersed inmagnetic fields. Using the general Keldysh nonequilibrium formalism
(applicable to interacting or noninteracting systems) or the Landauer-Büttiker procedure (specific for the latter
case) [see for instance [36, 37]], we have that the transmission coefficient of the non-interacting nanostructure is
given by the familiar relation

E G E G ETr , 14left R right A = G G( ) [ ( ) ( )] ( )( ) ( )

wherewe have taken notice that, in thewide band approximation, the left and right coupling are independent
from energy.

To perform the product of the fourmatrices in equation (14), we begin to consider the product of thefirst
twomatrices. Using equation (11b) and equation (12) one obtains
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From equation (11b) and equation (13), we also have

G E G E .right A left R *G = G( ) [ ( )]( ) ( )

Multiplication of thematrix of equation (15) by its complex conjugatematrix, followed by the trace operation,
gives the transmission function.

After somewhat lengthy but straightmanipulations one obtains the expression of the transmission function
of a coupled double quantumdot in a uniformmagnetic field and symmetrical geometry:

E
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The same procedure can be exploited in the case the dot levels are non degenerate, or the geometric environment
is non-symmetric, themagnetic field is nonuniform, formultilevel dots, and other similar situations.

For instance, in the case of a non-degenerate double quantumdot, with energy levels E E1 2¹ in a symmetric
geometrical environment the transmission function becomes

E
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In the case of degeneracy E1=E2=Ed, one recovers back equation (16).

2.3.Magneticfield effects on the transmission function
The transmission function, given in equation (16), versus θ is periodic with period 4π, corresponding to two
additionalflux quanta, or equivalently to oneflux quantum for each of the two loops offigure 1.

In the absence ofmagnetic fields (or in the presence of an even number offlux quanta), from equations (16)
one obtains

E
E E t

, 0
4

4
, 18

d d

2

2 2


g
g

=
- - +

( )
( )

( )

which is just a Lorentzian function centered at E E t E td d d d= + = - ∣ ∣, the bonding state, and effective width
Γeff=2γ. In the presence of oneflux quantum (or any odd integer number offlux quanta) equation (16) gives

E
E E t

, 2
4

4
, 19

d d

2

2 2
 p

g
g

=
- + +

( )
( )

( )

which is a Lorentzian function centered at E E t E td d d d= - = + ∣ ∣, the anti-bonding state, and effective width
Γeff=2γ. At semi-integer flux quanta θ=π (or any odd integer number ofπ) the transmission function versus
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E takes the symmetric structure with respect to the dot energy Ed, with expression

E
t

E E t E E t
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. 20d

d d d d

2 2
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- - + - + +

( )
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For tdg  ∣ ∣ (including also tdg ∣ ∣) the transmission function of equation (20) exhibits two peaks at
td

2 2 1 2g -( ) , and a valley around E=0. The two peaks arewell separated if td g∣ ∣ .
It is ofmuch importance to notice that, apart the special values θ=0,π, 2π, 3π (modulus 4π) discussed

above, forfinite values ofE, the transmission function of equation (16) has a unique zero; namely:
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Thus the antiresonance is at the right of the anti-bonding state for 0<θ<π, while it is at the left of the bonding
state forπ<θ<2π.

From the above discussion, it is seen how the application of themagnetic fieldmay transform a trivial
unstructured Lorentzian function into a peaked-valley-peaked-valley (with zerominimum) sharply structured
function, withmuch benefit in the entailed thermoelectric properties. In general, the transmission function can
be qualitatively described as the sumof a Lorentzian-like curve around the bonding level and a Fano-like curve
around the anti-bonding level (or vice versa, depending on the appliedmagnetic field), with separation
connected to the coupling energy td∣ ∣.

3. Structure of the transmission function and analytic evaluation of the kinetic parameters

Once the transmission function is known, we can access the kinetic transport coefficients that control, in the
linear approximation, the thermoelectric properties of the nanoscale device. The kinetic transport coefficients,
of order n, in dimensionless form, are linked to the transmission function E( ) by the relations:
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whereμ is the chemical potential,T the absolute temperature, and f (E,μ,T) the Fermi function.
In the literature, the evaluation of the kinetic coefficientsK0,1,2 is in general carried out either with the

Sommerfeld expansion [38], possibly extended up to fourth order [9], or by numerical integration. A nice aspect
of the Sommerfeld expansion is that the procedure is analytic; however it holds only at sufficiently low
temperatures and reasonably smooth transmission function in the energy interval kBT. The alternative
procedure, based on numerical integration, requires particular caution because of the presence of sharp
resonances and anti-resonance produced by the interference effects of themagnetic fields. The purpose of this
section is to develop a brand new analytic procedure for the evaluation of the kinetic parameters, valid for any
temperature range and applicable in any desired domain of the other parameters at play.

Thefirst step to elaborate analytically the kinetic functionals requires the examination of the pole structure
of E( ). The transmission function can in fact be resolved into the sumof just two simple poles, with appropriate
weighting factors. This is shown in detail in the S1 section of the SupplementaryMaterial6.

The result is reported in the upper part of table 1. The evaluation of kinetic parameters is now
straightforward and their analytic expression is reported in the lower part of table 1 in terms of the trigamma
function z z n1t n 0

2Y = å +=
¥( ) ( ) . Trigamma functions andBernoulli-like numbers are the ingredients for the

analytic evaluation of the kinetic functional of interest. Details of their analytic evaluation are reported in the S2
section of the SupplementaryMaterial (see footnote 5).

It becomes now routine to investigate the thermoelectric transport properties. Following closely [39], in
table 2we report for sake of completeness the expressions of the electric and thermal conductances, of the
Seebeck coefficient and the other transport parameters of interest, in terms of the kinetic coefficientsK0,K1,, and
K2.

In the next sectionwe evaluatemagneto transport properties of specific double dot devices, and discuss the
variety andwealth of effects occurring in spite of the reasonable simplicity of themodel.

4. Results and discussion

Webegin to examine a realistic space domain for the thermoelectric device under attention. Formolecular
junctions, we can set γ≈0.25 eV and td≈−1.0 eV. The fact that td g∣ ∣ (almost an order ofmagnitude)

6
see SupplementaryMaterial.
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assures that in the transmission function the Lorentz lineshape and the Fano lineshape are in general well
resolved, with linewidths 2 cos 42g q( ) and 2 sin 42g q( ), respectively, as it is seen from equation (16). The
values of θ explored to better highlight periodicity as function of θ, are in thewhole range [0, 4π], and in
particular θ=0,π/2,π, 3π/2 and 2π. The range of θ fromoneflux to twoflux quanta (2π<θ�4π) retraces
back the range fromoneflux to zero, and does not need to be considered explicitly. The room temperature
considered entails k T 0.025 eVB = . The dot energyEd is taken as the reference energy and set equal to zero. In
summary,: the figures reported below in this section refer to the set of parameters Ed=0, γ=0.25 eV,
td=−1.0 eV, k T 0.025 eVB = and θ=0,π/2,π , 3π/2 and 2π.When useful, other temperatures, phases or
parameter domain have been explored and commented (but in general not explicitly reported). Infigure 2 the
thermoelectric functions of the c-2QD, for varying chemical potentialμ andmagnetic flux parameter θ are
provided. The left panels show the landscape of electrical conductivityσ, electrical thermal conductivityκe,
Seebeck coefficient S, andfigure ofmeritZT. The right panels show sections of the same quantities for
−2 eV<μ<2 eV at θ=0,π/2,π, 3π/2 and 2π, to better highlight their shape and symmetry. The curves
profiles reported in the left panels respect the color sequence shown in the corresponding right panels. From

Table 1.Transmission function E( ) and kinetic integralsK0,1,2 in analytic formof the symmetric double quantumdot, with two orbitals of
the same diagonal energyEd, coupled together by the off-diagonal hopping element td, in thewide band approximation of parameter γ. The
phase θ equals 2πΦ(B)/Φ0, whereΦ(B) is theflux ofmagneticfield through the nanodevice in units of a single quantum fluxΦ0. The
trigamma function is denotedwithΨt.

Transmission function E( ) for the coupled degenerate double dot

E 8 Re
A

E E t

E z A

E E t

E z
2 1 cos 2 1 cos 2d d d d

1

2

1 2

2

2
 g= +q q- +

-
- +

-{ }( ) [ ( ) ( ) ] [ ( ) ( ) ]

where

A i i t i t

A i i t i t

z E t i i

z E t i i

16 cos 4 cos 2

16 sin 4 cos 2

cos 2

cos 2 .

d d

d d

d d

d d

1
2

2
2

1

2

g q g q g
g q g q g

g g q
g g q

= - - + - +
= - + - - -
= + - -
= - - +

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) [ ( ) ] [ ]
( ) [ ( ) ] [ ]

( )
( )

Dimensionless kinetic parameters for the degenerate double dot system in the linear regime:
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Table 2.Transport parameters in the linear approximation for thermoelectricmaterials, with electronic transmission function E( ). The
kinetic parametersK0,1,2 are defined in dimensionless form. The electric conductanceσ, Seebeck coefficient S, power-output  , electronic
thermal conductanceκe, Lorenz number L, performance parameter p,figure ofmeritZT and efficiency η are reported. The quantity ηc
denotes theCarnot efficiency ηc=ΔT/T, whereΔT is the temperature difference between the hot reservoir and the cold one.

Expressions of the thermoelectric functions in terms of the kinetic parameters
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Expressions of the thermoelectric natural units for nanoscale devices
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figures 2(a) and (b)we observe thatσ andκe have behavior similar to  (E), as expected from their expressions;
we also verified that the value ofσ increases (not shown in thefigures) decreasing the temperature, and that the
opposite occurs forκe.

We observe that in the absence ofmagnetic field, i.e. θ=0,  (E)presents a Breit-Wigner resonance around
Eb=−1 eV, and similarlyσ(μ, 0), andκe(μ, 0) present a Breit-Wigner resonance aroundμ=Eb.Moreover,
near the resonant energy the thermopower S vanishes while forμEb (μEb) S is negative (positive),
indicatingmainly n-type (p-type) behavior of the device. Thefigure ofmeritZT vanishes where S vanishes as
expected from its definition, and remains small (< 0.01) for anyμ. As temperature increases both S andZT
values increase.

When themagnetic field is switched on, both Breit-Wigner- and Fano-like resonancesmay contribute to the
transmission spectra. In particular, for n2q p= , with n integer number, only Breit-Wigner resonances occur,
which are located at the bonding energy for n even and at the antibonding energy for n odd [see equations (18)

Figure 2. (a)Electrical conductivityσ (in units e2/h). (b)Electrical thermal conductivityκe (in units k T hB
2

0
2 ). (c) Seebeck coefficient S

(in units kB/e ). (d)figure ofmeritZT of the c-2QDunder attention in the (μ−θ ) plane. The left panels report the landscape of the
thermoelectric functions in the (μ−θ) plane, the right panels report sections of the same quantities at θ=0,π/2,π, 3π/2 and 2π.
The black dashed lines in the right (c) and (d) panels evidence the results in the absence ofmagnetic flux. For θ=2π nomultiplication
by 10 or by 100 has been performed, to better emphasize the enhancement effect of themagnetic field. The colored curves in the left
panels respect the sequence of the graphs shown in the corresponding right panels.
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and (19)]. For θ=(π/2+nπ) both Breit-Wigner- and Fano-like resonances are present in the  (E) spectrum,
with Breit-Wigner (Fano) features centered at the bonding (antibonding) energies for n even and vice versa for n
odd.Wenotice that  (E) is symmetric around Ed for θ=π or n2 1q p= +( ) as required by equation (20). It is
important to observe that S∣ ∣ increases bymore than 10 times andZT bymore than 100 timeswith respect to the
case θ=0, for specific values of themagnetic flux threading the c-2QD circuit as evidenced in the plots in the
right side offigures 2(c) and (d). In particular S∣ ∣assumes large values k e4 B»( ) in the regions around θ∼π/2
and θ∼3π/2 in the resonance and in the antiresonance regions. The above results are in agreementwith the
ones obtained for the benzenemolecule junction inmagnetic flux [40]. Figure 2(d) shows that for the chosenT
and γparameters,ZT can reach values≈6 in the regions θ∼π/2 and θ∼3π/2. The above results evidence that
temperature andmagnetic flux can be exploited to increase the thermoelectric factor ofmerit.

Most interesting is the evaluation of the performance of the c-2QD as heat engine, in this case a study of the
efficiency at themaximumoutput power is required. Several recent papers [41–46]have shown that themere
knowledge of themaximum efficiency of a heat engine is of limited importance since the useful operative
information concerns the conditions corresponding to themaximumpower output [47, 48]. It is known in fact,
that even if the figure ofmeritZT of a thermoelectric device can assume large values (?1)mainly for
nanostructured systems [10, 49, 50], what reallymatters is just the efficiency evaluated at themaximumpower
output.

To better clarify this point, we report infigure 3(a) the thermoelectric efficiency and infigure 3(b) the output
power, respectively, as function ofμ and θ, as defined in table 2.

Once againwe observe that themagnetic field strongly enhances the thermoelectric efficiency bymore than
two orders ofmagnitudewith respect to the case of absence ofmagnetic field, in the resonance and
antiresonance regions, while output power increasesmore than 25 times and can assume values of the order of
104 (in units k T hB

2
0
2 ). Figure 4 summarizes the results of the evaluation of the efficiency at themaximumpower

output, which is themost appropriatemetric tomeasure the performance of the device. For this aimwe have
scanned theflux θ parameter in the [0–4π] range and, for any θ, we have looked for themaximumoutput power
for varying values of the chemical potentialμ. This has allowed to evaluate the efficiency for the values of θ andμ
which determine themaximumpower conditions.

Figure 3. (a)Thermoelectric efficiency η/ηc in the (μ−θ) plane. b)Output power c
2 h (in units k T hB

2
0
2 ). The left panels of

figures 3(a) and (b) report the landscape of the thermoelectric efficiency and power output in the (μ−θ) plane, the right panels report
sections of the same quantities at θ=0,π/2,π, 3π/2 and 2π. The black dashed lines in the right panels evidence the results in the
absence ofmagneticflux.
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The set of all themaximumpower and corresponding efficiency data have been exploited to produce figure 4
which reports the curve of themaximumefficiency at themaximumoutput power. Fromfigure 4we can
observe that themaximum efficiency is higher than the efficiency at operating conditions where themaximum
output power is realized.We can see that the highest value of the power output M C

2 h is 16800 (in units
k T hB

2
0
2 ) for the values θ≈1, and θ≈(4π−1), atμ≈1.062 eV, and for θ≈(2π−1) and θ≈(2π+1), at

μ≈−1.062 eV. Correspondingly, the normalized efficiency atmaximumpower is 0.33M Ch h =( ) .
Moreover, we can see that the highest value of efficiency ηM/ηC is 0.43which occurs for the values θ≈π/4 and
15π/4, atμ≈1.068 eV and for θ≈7π/4 and 9π/4, atμ≈−1.068 eV. Correspondingly, the power output is

14200M C
2 h h =( ) (in units k T hB

2
0
2 ).

Before concludingwe verify explicitly that the results reported infigures 3 and 4 satisfy the general bounds
for the output powerworked out byWhitney [44, 51]. According toWhitney, the output power  for a single-
channel heat engine,must satisfy the upper bound required by quantummechanics

A
k

h
T T A

k T

h
with A 0.32B

L R
B L
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2

2
2
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2

2 2
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where T T T T Tc L R L L Rh = - >( ) ( ) is the Carnot efficiency. The upper bound for the output power divided
the the square of theCarnot efficiency becomes
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(where of courseT0 is chosen as the unit temperature in Kelvin degree). In themanuscript we have taken the
temperature of the left reservoirTL=300K, andwe arrive at the constraint

in units
k T
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28000 .
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B
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2
0
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⎞
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Infigures 3 and 4 of ourmanuscript, the plotted values c
2 h extend in the range up to about 18000 (in units

k T hB
2

0
2 ), in agreementwith the above constraint.

5. Conclusions

Wehave presented in this paper a systematic analytic study of the thermoelectric response functions of a coupled
double quantumdot system, pierced by amagnetic field, connected to left and right reservoirs, in the linear
regime.Ourmethod is based on theGreen’s function formalism. The results are analytic and can be expressed in
terms of easily accessible trigamma functions andBernoulli numbers; this has allowed to scanwide ranges of
values of chemical potentials and temperatures of the reservoirs, different threadingmagnetic fluxes, dot
energies and interdot interactions. Our results show that thermoelectric transport through the c-2QD can be
strongly enhanced by themagnetic flux,mainly in the energy regions around the bonding and antibonding
resonances of the system, which can be experimentally reached varying the system chemical potential by
appropriate gate. The thermopower S can be enhanced bymore than ten times and the figure ofmeritZT by
more than hundred times by the presence of a threadingmagnetic field.Most important, we have also found in

Figure 4.Maximumefficiency at themaximumoutput power. M C
2 h is the highest value of the output power; ηM/ηC is the

maximumvalue of the device efficiency.
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this simple system that themagnetic flux increases the performance of the device undermaximumpower output
conditions.
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