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Abstract. The current paper investigates how to model human play
styles. Building on decision and persona theory we evolve game playing
agents representing human decision making styles. Two methods are de-
veloped, applied, and compared: procedural personas, based on utilities
designed with expert knowledge, and clones, trained to reproduce play
traces. Additionally, two metrics for comparing agent and human de-
cision making styles are proposed and compared. Results indicate that
personas evolved from designer intuitions can capture human decision
making styles equally well as clones evolved from human play traces.

1 Introduction

The current paper investigates how to create generative models of human player
behavior or playing style in games. This can be seen as a method for under-
standing game-playing behavior. Generative models of playing behavior are also
potentially useful in procedural play testing for procedural content generation,
for simulation based testing, and within mixed-initiative game design tools for
instant feedback during the design process. In other words, agents that play like
humans can help understand content as it is being created, by playing it. This
paper assumes that game players exhibit bounded rationality, i.e. they play to
optimize some objective or set of objectives, but that they might not be very
good at it. Playing style could then be characterized by how the players’ in-game
decisions differ from those of an agent that played rationally (given some set of
objectives). We investigate this by using AI methods to train agents that behave
rationally, and see to what extent they can predict human players’ behaviors.

In previous work we have designed a simple turn-based, tile-based roguelike
game which features monsters, treasures and potions in mazes [6]. 38 players
played 10 levels of this game, and we recorded their every action. Next, we
analyzed the design of the game to extract a number of possible affordances which
we translated into partially conflicting objectives that a player might seek to
fulfill (e.g. kill all monsters, avoid danger or get to the exit quickly). Using these
affordances we trained agents to play the game rationally for each objective.
We call these agents procedural personas. Both Q-learning [6] and evolutionary
algorithms [5] were used to train high-performing agents; the evolved agents have
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the benefit that they generalize to levels they were not trained on. The agents’
behavior was compared to play traces of the human players through a metric we
call the action agreement ratio (AAR) which compares agents and humans at the
action level. But is this really the right level of analysis for comparing players to
agents? It could be argued that the microscopic level of comparing actions gives
a biased view of how well an agent’s behavior reproduces player behavior, and
that it is more interesting to look at behavior on the level of conscious decisions.
Further, are we right to assume boundedly rational behavior given some set of
objectives? It might be that with the same agent representation, we could train
agents that reproduce player behavior better by using the actual playtraces as
training data.

The current paper tries to answer these two questions. We propose a new
playtrace comparison method (tactical agreement ratio) that instead of asking
whether an agent would perform the same action as the player in a given state
asks whether it would choose to pursue the same affordance in that state. We
also train agents to behave as similarly as possible to human players using play-
traces as objectives; we call such agents clones. Clones are compared to personas
on both seen and unseen levels, using both action-level and affordance-level com-
parison. In the following we briefly outline the relations between persona theory,
decision theory, player modeling, and the resulting concept of procedural per-
sonas. We briefly describe our testbed game, MiniDungeons, and the methods we
used to create game playing personas and clones, before we present the results
from comparing the resulting agents to the human players.

2 Related Work

In this section we outline our concept of procedural personas, relating it to its
roots in decision theory and the use of personas for game design.

Decision Theory and Games: The personas used for expressing designer
notions of archetypical player behavior in MiniDungeons are structured around
the central concepts of decision theory. Decision theory states that whenever a
human makes a rational decision in a given situation, the decision is a result of
an attempt to optimize the expected utility [7]. Utility describes any positive out-
come for the decision maker and is fundamentally assumed to be idiosyncratic.
This means that in principle no definite assumptions can be made about what
can provide utility to the decision maker. The problem is further complicated by
the fact that the effort a decision maker directs toward attaining maximum util-
ity from a decision can be contingent on the expected utility itself. For problems
that are expected to provide low utility even in the best case, humans are prone
to rely more heavily on heuristics and biases for the decision making process
[11, 4]. In practice, however, for structured, well-defined problems, insights from
e.g. psychology or contextual information about the decision maker or the de-
cision problem may provide us with opportunities for assuming which decisions
are important and which outcomes may be of utility to the decision maker. As
decision spaces, most games are special cases since the available decisions and



their consequences are highly structured by the game’s mechanics and evaluation
mechanisms. Games, through their design, often provide specific affordances [3]
to the player, and suggest utility for various outcomes. This perspective forms
the basis for our understanding of player behavior in our testbed game, as we
assume that players are interacting with the game in accordance with the rules,
understanding and responding to the affordances of our game. This, in turn, mo-
tivates our use of utility for attaining game rule based affordances as the defining
characteristics of the personas we develop. Similar theoretical perspectives have
been described by other authors, notably Dave Mark in [8].

When attempting to characterize player decision making styles in games using
utilities, it is important to consider the level of decision making relevant for
the game, as described in [1]. Here, we model players at both the individual
action level as well as at the more tactical level of game affordances. Below we
describe how we apply simple utility based agents by using linear combinations
of utilities to define personas that represent archetypical decision making styles
in our testbed game at two levels of abstraction.

Player Modeling: The concept of personas was first adapted to the domain
of (digital) games under the headline of play-personas by Canossa and Drachen
who define play-personas as “clusters of preferential interaction (what) and nav-
igation (where) attitudes, temporally expressed (when), that coalesce around
different kinds of inscribed affordances in the artefacts provided by game de-
signers” [2]. Our long term research agenda is to operationalize the play-persona
concept into actual game playing procedural personas, by building generative
models of player behavior from designer metaphors, actual play data, or combi-
nations of the two.

Generative models of player behavior can be learned using a number of dif-
ferent methods. A key dichotomy in any player modeling approach lies in the
influence of theory (vs. data) for the construction of the player model [15]. On one
end, model-based approaches rely on a theoretical framework (in our case per-
sona theory or expert domain knowledge) and on the other hand, computational
models are built in a model-free, data-driven fashion. In this paper, personas
represent the model-based approach while what we term clones represent the
data-driven approach. Model-free player modeling can be done by imitating the
player directly, using supervised learning methods on the playtraces, or indirectly
using some form of reinforcement learning to train agents to behave in a way that
agrees with high-level features extracted from the playtraces [12]. Evolutionary
computation can be used to optimize an agent to behave similarly to a playtrace
or optimize it to exhibit the same macro-properties as said playtrace [9, 12, 14].
Direct imitation is prone to a form of overfitting where the agent only learns to
cope with situations which exist in the playtraces, and might behave erratically
when faced with new situations. Indirect imitation to a large extent solves this
problem by learning a more robust, general strategy, which could be termed a
decision making style. In the following section we give a brief introduction to
our testbed game.



3 MiniDungeons

The testbed game, MiniDungeons, implements the fundamental mechanics of
a roguelike dungeon exploration game where the player navigates an avatar
through a dungeon containing enemies, powerups, and rewards. The turnbased
game puts the player in a top-down viewed tilebased 12 by 12 dungeon con-
taining monsters, potions, and treasures. Impassable tiles constitute the walls
of the dungeon, while passable tiles contain enemies or items for the player. All
of the level is visible to the player who can move freely between passable tiles.
When the player moves to a tile occupied by a monster or item, immediately the
monster is fought or the item is collected and applied. The player has a 40 hit
point (HP) health counter and dies if this drops to zero. Monsters randomly deal
between 5 and 14 HP of damage while potions heal 10 HP up to the maximum
value of 40 HP. Treasures have no game mechanical effect other than adding to a
counter of collected treasure. The game contains one tutorial level and 10 “real”
levels. For further details on the test-bed game and discussion of its properties,
we refer to [6]. The necessary data for developing and evaluating the agents was
collected from 38 anonymous users who played MiniDungeons online; this re-
sulted in 380 individual playtraces on the 10 MiniDungeons levels provided. The
data was subsequently used to evolve clones and baseline agents as described be-
low. Fig. 1 shows a selected level from the game, along with human play traces
from the level, exemplifying the diversity of human decision making styles ex-
pressed in even a simple game like this.

Fig. 1: Heatmaps of six selected human playtraces in Level 2 of MiniDungeons,
showing a diversity of player decision making styles.

4 Method

This section describes the two agreement ratio metrics used to evaluate persona
and clone likeness to humans, the fitness functions for personas and clones, and
the evolutionary approach used. The metrics address the problem of decision
characterization at two different levels of abstraction.

Action Agreement Ratio: The first metric used to evaluate agent to hu-
man likeness is the action agreement ratio (AAR). AAR considers each step of
a human playtrace a distinct decision. To produce the AAR between an agent
and a human player, all distinct game states of the human playtraces are recon-
structed. For each game state, the agent being tested is inserted into the game



state and queried for the next preferred action, essentially asking: “What would
you do?”. If the action is the same as the actual next human action, the agent
is awarded one point. Finally the AAR is computed by dividing the points with
the number of decisions in the human playtrace.

Tactical Agreement Ratio: The second metric used for evaluating the
likeness between agents and humans is the tactical agreement ratio (TAR). TAR
only considers reaching each distinct affordance in the level a significant decision,
ignoring the individual actions in between. For MiniDungeons the affordances
considered relevant are: fighting a monster, drinking a potion, collecting a trea-
sure, or exiting a level. For each affordance reached in the human play trace,
the resulting game state is reconstructed and the agent being tested is inserted
into the game state. The agent is then allowed as many actions as necessary to
reach the next affordance, again asking the question “What would you do?”,
but at the tactical affordance level. If the next encountered affordance matches
the actual next human one, the agent is awarded a point. Finally the TAR is
computed by dividing the points with the number of affordances reached in the
human playtrace.

Evolved Agent Controllers: The controllers of the game agents are rep-
resented as seven linear perceptrons. Each perceptron takes 8 inputs describing
safe and risky path distances to the nearest affordances in the map. Further de-
tails of the controller representation is given in [5]. Controllers are evolved using
a (µ+α) evolutionary strategy without self-adaptation. For each generation the
top 2% performing elite individuals remain unchanged, the lowest performing
half of the remaining population is removed, and single-parent offspring from
the remaining individuals are produced to maintain the population size. Finally
all individuals not existent in the elite are mutated. Mutation is accomplished by
changing each connection weight in the network with a random number drawn
from a Gaussian distribution centered around zero with a standard variation of
0.3, a value recommended in [13] and confirmed as useful for this game by in-
formal experimentation. All experiments are done using a population size of 100
individuals, trained for 100 generations. Controllers are initialized with random
connection weights for all connections in the linear perceptrons.

Personas: For the purpose of the experiments 5 individual personas with
different utility configurations were defined, based on designer interpretations
of likely gameplay in MiniDungeons. The personas were intended to represent
five hypothetical extreme decision making styles in interacting with the game: an
Exit (E) persona who simply tries to escape the level, a Runner (R) persona who
tries to escape the level in as few steps as possible, a Survivalist (S) persona who
tries to avoid risk, a Monster Killer (MK) persona who tries to kill all monsters
and escape the level, and a Treasure Collector (TC) persona who attempts to
collect all treasures and escape the level. The decision making styles are defined
by the utility weights presented in Table 1, and serve as a metaphor for the rela-
tive importance of the affordances to the archetypical player represented by the
persona. When assigned to personas, utility points from a level are normalized by
the maximally attainable utility for the same level. Personas are evolved by, for



each generation, exposing them to 9 of the 10 levels of MiniDungeons, yielding
50 agents in total. For each generation, their fitness is computed as the average
of the normalized utility scores from the seen levels. All subsequent evaluations
presented in this paper are done using 10-fold cross validation, i.e., a persona is
evaluated on the level which it was not exposed to during evolution.

Clones: Clones, like personas, are evolved by exposing them to 9 of the
10 levels of MiniDungeons. Their fitness value is computed as the average nor-
malized AAR across all 9 seen levels. One clone per player per map is evolved,
yielding 380 agents in total. All subsequent tests are done using 10-fold cross
validation, evaluating the clones on unseen levels.

Baseline Agents: In order to evaluate the limits of the perceptron-based
representation, a set of baseline agents is evolved, one agent for each human
playtrace, 380 total. These are exposed to a single level of MiniDungeons. Their
fitness scores are computed directly from AAR in an attempt to establish the
closest fit to each human player that the representation can achieve.

5 Results

This section compares the two presented evaluation metrics, and compares the
ability of personas, clones, and baseline agents to represent human decision mak-
ing styles in MiniDungeons.

Table 2 shows the mean of the agreement ratios for each kind of agent evolved,
using both the AAR and TAR metrics. The ratios indicate that all agents achieve
higher agreement with human playtraces when evaluated with the AAR metric
than with the TAR metric. Additionally, they indicate that when using AAR
clones perform only slightly better than personas (t = −3.23, df = 753.00, p <
0.001) while when using TAR the clones perform substantially better than the
personas (t = −39.26, df = 721.51, p < 0.001), as tested using Welch’s t test.
Using AAR, the baseline agents perform significantly better than both personas
and clones (df = 2, F = 62.59, p < 0.001), but when using TAR they perform
significantly worse than the clones (df = 2, F = 59.1, p < 0.001), as tested using
ANOVA.

Table 1: Utility weights for the five de-
signed personas.

Affordance E R S MK TC

Move -0.01 -0.02 -0.01 -0.01 -0.01
Monster 1
Treasure 1
Death -1
Exit 0.5 0.5 0.5 0.5 0.5

Table 2: Agreement ratios for per-
sonas, clones, and baseline agents.

Agent Metric Mean SD

Personas AAR 0.75 0.08
Clones AAR 0.77 0.08
Baseline Agents AAR 0.81 0.09

Personas TAR 0.62 0.11
Clones TAR 0.66 0.13
Baseline Agents TAR 0.61 0.13



Table 3: Best persona matches based on Action Agreement Ratio (AAR) and Tactical
Agreement Ratio (TAR), respectively.

AAR TAR

1 2 3 4 5 6 7 8 9 10 Total 1 2 3 4 5 6 7 8 9 10 Total

E 0 2 5 1 0 1 5 1 2 3 20 0 1 2 0 0 1 0 0 1 1 6
R 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1 0 3 6 0 1 0 16
S 0 1 0 0 0 0 0 0 0 0 1 0 1 4 0 0 0 0 0 0 1 6
MK 8 8 0 2 3 1 7 2 2 0 33 5 3 1 4 0 1 2 3 4 0 23
TC 30 27 33 35 35 36 26 35 34 35 326 33 31 28 33 38 33 30 35 32 36 329

Total 38 38 38 38 38 38 38 38 38 38 380 38 38 38 38 38 38 38 38 38 38 380

Table 3 shows which personas exhibited the best ability to represent human
playtraces, for each MiniDungeons level and in total. For each human playtrace,
the personas with the highest AAR and TAR, respectively, are identified. Both
metrics generally favor the Treasure Collector persona as the best match for
most playtraces, although there is some discrepancy between the two measures
in terms of which personas represent the human playtraces best.

6 Discussion

It seems that the AAR metric achieves higher agreement ratios than the TAR
metric. The two metrics aren’t directly comparable, however, as the level’s spe-
cific layout has a higher influence on the AAR value than the TAR value. Ad-
ditionally, clones and baseline agents were evolved toward AAR, rather than
TAR, for these experiments. Evolving toward TAR might have yielded different
results. Other external playtrace comparison metrics could advantageously be
used for calibration such as aggregated statistics of in-game event occurrences
or other action/edit-distance based methods such as the Gamalyzer metric [10].
The fact that personas and clones perform roughly equally well, when mea-
sured by AAR, suggests that the persona method is a viable approach to mod-
eling player decision making styles from expert knowledge. The method is less
playtrace-dependent and computationally expensive than the cloning method,
but needs an expert game designer. Still, some players may exhibit decision
making styles that cannot be captured by the designer’s intuition, and would be
captured better by the cloning approach, as suggested by the higher agreement
ratios obtained from the clones. In order to address this issue, we would propose
using observed deviation from initial persona behavior to guide the evolution
of new utility configurations for subsequently derived personas, combining the
persona and cloning approaches.

7 Conclusion

This paper presented two methods of modeling player decision making styles.
One was based on personas, evolved from designer expert knowledge, the other



was based on clones, based on human playtraces. Two metrics were used to
evaluate the agents’ abilities to represent human decision making styles. The
methods were shown to perform almost equally well when compared at the ac-
tion level, while clones performed better than personas when compared at the
affordance level.
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