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Abstract: 

This paper explores the use of chaos theory, as well as the neural networks, for predicting 

the Production of Total Industry in Greece. We have found that our data (from 1961 up to 

2011) obey to the chaos theory. More specifically, the results from evaluation show that the 

minimum emending dimension is 4 suggesting chaos with a high dimensionality. We have 

also found that it is predictable the behavior of this production in the near future. The same 

results were evaluated using neural network, confirming our prediction.  
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1. Introduction 

 

Non linear dynamics (Medio, 1992) in combination with neural networks had 

applied in a wide variety of fields, e.g. physics, engineering, ecology and economics. 

The economist interest is focused on the ability of forecasting an economic time 

series using time series analysis (Thalassinos and Pociovalisteanu, 2007). In this 

work we have applied non linear time series analysis in monthly values of Greece 

Total Industry index. We cover time period from 01.01.1962 until 01.04.2011. We 

have applied the method of Grassberger and Procaccia (Grassberge and Procaccia, 

1983a and 1983b) to evaluate the minimum embedding dimension of each the 

system. In a second stage using the neural network (Hanias, Curtis, Thalassinos, 

2007; Thalassinos et al., 2008 and 2009) we achieved an out of sample multi step 

time series prediction. 

 

2. Time Series 

 

The data for the Production of Total Industry in Greece are collected from 

Organization for Economic Co-operation and Development and presented as a signal 

x=x(t) as it shown at Figure 1 (01.01.1962 – 01.04.2011). The sampling rate is Δt=1 

month and the number of data are N=592.  

 
Figure 1: Time series of Total Industry Production 
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3. State Space Reconstruction 

 

For a scalar time series, in our case the time series is the Production of Total 

Industry index, the phase space can be reconstructed using the methods of delays. 

The basic idea in the method of delays is that the evolution of any single variable of 

a system is determined by the other variables, with which it interacts. Information 
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about the relevant variables is thus implicitly contained in the history of any single 

variable. On the basis of this an “equivalent” phase space can be reconstructed.  

From our data we construct a vector iX


, i=1 to N, in the m dimensional phase space 

given by the following relation (Kantz and Schreiber, 1997; Takens, 1981). 

iX


 = {xi,xi-τ,xi-2τ,…..xi+(m-1)τ}     (1) 

 

This vector represents a point to the m dimensional phase space in which the 

attractor is embedded each time, where τ is the time delay τ=iΔt. The element xi 

represents a value of the examined scalar time series in time corresponding to the i-

th component of the time series. Use of this method, reduces phase space 

reconstruction to the problem of proper determining suitable values of m and τ. The 

choice of these values is not always simple, especially when we do not have any 

additional information about the original system and the only source of data is a 

simple sequence of scalar values, acquired from the original system. The dimension, 

where a time delay reconstruction of the phase space provides a necessary number 

of coordinates to unfold the dynamics from overlaps on itself caused by projection, 

is called embedding dimension m. 

 

a. Time delay τ 

Using the average mutual information we can obtain τ less associated with linear 

point of view, and thus more suitable for dealing with nonlinear problems. The 

average mutual information may be expressed by the following formula (Kantz and 

Schreiber, 1997; Takens, 1981). 

   
 
   





























ii

ii

xx

ii
xPxP

xxP
xxPI

ii

,
log, 2

,

    (2) 

where P(xi) represents probability of value xi and P(xi, xi+τ) is joint probability. In 

general, I(τ) expresses the amount of information (in bits), which may be extracted 

from the value in time xi  about the value in time xi+τ. As τ, suitable for the phase 

space reconstruction, is the first minimum of I(t).  
 

Figure 2: Average mutual information Ι(τ) vs time delay τ 
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As shown in Figure 2, in our case the mutual information function I(t) exhibits a 

local minimum at 4 time steps and, thus, we shall consider τ =4 to be the optimum 

delay time. 
 

b. Embedding dimension m 

One method to determine the presence of chaos is to calculate the fractal dimension, 

which will be non integer for chaotic systems. Even though there exists a number of 

definitions for the dimension of a fractal object (Box counting dimension, 

Information Dimension, etc.), the correlation dimension was found to be the most 

efficient for practical applications. Firstly we calculate the correlation integral [7, 8] 

for the time series for lim r0 and N  by using the equation 3 [2]. 
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In this equation, the summation counts the number of pairs for which the distance 

(Euclidean norm) is less than r, in an m dimensional Euclidean space. Η is the 

Heaviside step function, with H(u)=1 for u>0, and H(u)=0 for ,where 

 Ji XXr



,  

Ν denotes the number of points and expressed in equation 4. 

    
2)1(

2




mN
N pairs

       (4) 

Where r is the radius of the sphere centered on Xi or Xj.  

 

If the time series  is characterized by an attractor, then for positive values of r, the 

correlation function is related to the radius with a power law C(r)~αrv , where α is a 

constant  and ν is the correlation dimension or the slope of the logC(r) versus logr 

plot. Since the data set will be continuous, r cannot get to close to zero. To handle 

this situation, from log C (r) versus log r plot we select the apparently linear portion 

of the graph. The slope of this portion will approximate ν. Practically one computes 

the correlation integral for increasing embedding dimension m and calculates the 

related ν(m) in the scaling region. Using the appropriate delay time τ=4 we 

reconstruct the phase space. The correlation integral C(r) by definition is the limit of 

correlation sum of Equation (3) for different embedding dimensions, m=1.10. Ιn 

Fig.3, the corresponding average slopes v are given as a function of the embedding 

dimension m, indicating that for high values of m, v tends to saturate at the non 

integer value of 3.10. For this value of v, the minimum embedding dimension can be 

mmin = 4 [5], and thus, the minimum embedding dimension of the attractor for one 

to one embedding will be equal to 4. 



63 
Predicting the Production of Total Industry in Greece 

with Chaos Theory and Neural Networks 

 
Figure 3: Correlation dimension v vs embedding dimension m 
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4. Time Series Prediction with Chaos Theory 

 

The predictability of a time series using phase space techniques can be considered as 

a test for the deterministic nature of the system. These prediction techniques have 

been based on the fact that nearby trajectories, either converge or do not diverge fast 

enough for small sample steps in the phase space. For this purpose we calculate 

weighted average of evolution of close neighbours of the predicted state in the 

reconstructed phase space. The reconstructed m-dimensional signal projected into 

the state space can exhibit a range of trajectories, some of which have structures or 

patterns that can be used for system prediction and modelling. To predict k steps 

into the future from the last m-dimensional vector point, we should find all the 

nearest neighbours 
}{ m

NNx
 in the - neighbourhood of this point.  

Let 
)( m

NxB  be the set of points within  of }{ m

Nx  (i.e. the -ball). Thus any point in 

)( m

NxB  is closer to the }{ m

Nx  than  [5]. All these points 
}{ m

NNx
 come from the 

previous trajectories of the system and hence we can follow their evolution k-steps 

into the future 
}{ m

kNNx  . This evolution depends on the shape of corresponding 

strange attractor. The final prediction for the point }{ m

Nx  is obtained by averaging 

over all neighbours’ projections k-steps into the future. The number of k depends on 

how the stretching and folding is done. The methodology is expressed in equation 5 

[9].  
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where 
)( m

NNxB
 is the number of nearest neighbours in the neighbourhood of the 

point }{ m

Nx  representing the last known sample from which we want to predict one 

and two steps into the future. Using the values of τ=4, m=4 and the number of 

nearest neighbours equal to 27 the actual and predicted time series for k= 5 time 

steps out of sample ahead are presented at Figure 4. 

 
Figure 4: Actual (squares) and predicted (circles) values for k=5 time steps ahead 
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The corresponding values with the Normalized mean Square error are presented at 

Table 1. 
 

Table 1: Actual and predicted values of Production of Total Industry 
 

Time  

Index 

Actual 

Value 

Predicted 

Value 

Error  

(NMSE) 

588 85.7 85.34552 0.08726 

589 85.7 86.66168 0.36475 

590 82.9 82.48828 0.22426 

591 82 80.7035 0.24815 

592 79.3 79.89868 0.08415 
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5. Time Series Prediction with Neural Networks 

 

In order to predict the time series we construct a backpropagation network [4, 10,11] 

that consists of 1 input layer 1 middle or hidden layers and 1 output layer. The input 

layer has number of neurons equal to an integer multiple of m as a rule of thumb and 

the 1st hidden layer has m neurons as a rule of thumb too. We choose the input and 

1st hidden layer to have this number of inputs to avoid temporal correlation, and 

because the attractor is embedded at a m phase space the last hidden layer has m 

neurons. As an example beginning with the first set of inputs x1,x2,x3…x48 the 

output is the x49. Then with an iterative process we attempt to predict the next 4 

values until x52. We repeat the process for all training sets. We train the network 

with a training set of 588 exemplars using the 75% of data set. The learning rate was 

β=0.05 and the momentum α=0.5[4]. Each network was training for 5000 epochs. In 

Figure 5, in sample actual and predicted values during the learning process are 

presented, while, in Figure 6, out of sample actual and predicted values are 

presented using the multistep iterative prediction process. 

 
Figure 5:      Figure 6: 

In sample, actual (crosses) and predicted values  Actual (squares) and predicted (circled) 

(solid line) during the learning process  out of sample values 
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6. Conclusion 

 

In this paper, we use a non linear analysis in combination with neural networks to 

predict the Production of Total Industry in Greece. After estimating the minimum 

embedding we point out that the system is chaotic with high dimensionality. Based 

on the systems’ strange attractor’s reconstruction we achieved a 5 time steps out of 

sample prediction. Also we construct a backpropagation neural network with 1 

hidden layer and achieved a reliable 4 time steps out of sample prediction. 
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