
TECHNICAL REPORT

Report No. CS2011-02
Date: May 2011

An Event-Driven Language for
Cartographic Modelling of Knowledge
in Software Development
Organisations

Mark Micallef
Christian Colombo

University of Malta

Department of Computer Science
University of Malta
Msida MSD 2080
MALTA

Tel: +356-2340 2519
Fax: +356-2132 0539
http://www.cs.um.edu.mt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/158809405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Event-Driven Language for
Cartographic Modelling of Knowledge in

Software Development Organisations

Mark Micallef, Christian Colombo
Department of Computer Science

University of Malta
Msida, Malta

{mark.micallef,christian.colombo}@um.edu.mt

Abstract: With software engineering now being considered a
fully-fledged knowledge industry in which the most valuable asset to
an organisation is the knowledge held by its employees [BD08], high
staff turnover rates are becoming increasingly worrying. If software
engineering organisations are to maintain their competitive edge,
they need to ensure that their intellectual capital continues to grow
and is not lost as people move in and out of their employ.

In this paper, the authors present work involving the formali-
sation of a language that enables organisations to create and analyse
maps of their organisational knowledge. In a more elaborate version
of the traditional yellow-pages approach utilised in the cartographic
school of thought, the proposed language models various relation-
ships between knowledge assets, uses an event-driven mechanism
to determine who knows what within the organisation, and finally
provides metrics for detecting three types of risk related to knowl-
edge management in modern software engineering. A three month
evaluation of the language is also outlined and results discussed.

An Event-Driven Language for
Cartographic Modelling of Knowledge in

Software Development Organisations

Mark Micallef, Christian Colombo
Department of Computer Science

University of Malta
Msida, Malta

{mark.micallef,christian.colombo}@um.edu.mt

Abstract: With software engineering now being considered a
fully-fledged knowledge industry in which the most valuable asset to
an organisation is the knowledge held by its employees [BD08], high
staff turnover rates are becoming increasingly worrying. If software
engineering organisations are to maintain their competitive edge,
they need to ensure that their intellectual capital continues to grow
and is not lost as people move in and out of their employ.

In this paper, the authors present work involving the formali-
sation of a language that enables organisations to create and analyse
maps of their organisational knowledge. In a more elaborate version
of the traditional yellow-pages approach utilised in the cartographic
school of thought, the proposed language models various relation-
ships between knowledge assets, uses an event-driven mechanism
to determine who knows what within the organisation, and finally
provides metrics for detecting three types of risk related to knowl-
edge management in modern software engineering. A three month
evaluation of the language is also outlined and results discussed.

1 Introduction

Software engineering is now a fully-fledged knowledge industry. Even though prac-
titioners have a systems-centric view of their day and think in terms of specifying
systems, designing systems, coding systems and so on, they are in fact going to work
everyday to create, store, retrieve, transfer and apply knowledge. The authors ar-
gue that what most people perceive as developers’ jobs (designing, coding, etc) is in

1

fact simply the application phase of an implicit knowledge management cycle. Most
software development processes cater for knowledge management solely through cod-
ification strategies, which tend to focus on generating documentation at the end of
each development phase. This, coupled with high staff turnover rates and the ex-
tensive role played by tacit knowledge in the industry, exposes software engineering
organisations to knowledge risk.

Knowledge risk is defined as operational risk that is caused by a dependency on,
loss of, unsuccessful intended or unintended transfer of knowledge assets and results
in a lack of, or non-exclusivity of these assets [BM06]. When employees leave, com-
panies lose not only human capital, but also accumulated knowledge [DH03]. As a
result, information technology firms are realising that their “whole business is pretty
much locked away in the minds of employees” [Kou03], yet this knowledge is rarely
shared, swapped, traced and fertilised to ensure that it remains, at least in part,
with the firm when employees leave [DH03]. When an employee does hand in her
notice, managers usually spring to action, doing their best to capture her knowl-
edge by means of knowledge transfer activities such as exit interviews [Bra98]. At
this point however, such activities may be disruptive to other employees at best and
too late to have any meaningful effect at worst. The work presented here seeks to
address these issues based on insights from the cartographic school of thought [Ear01].

The cartographic school of thought is one of nine schools in knowledge management
identified by Earl [Ear01]. The driving principle here is that of connectivity. That is
to say, maximising the use of knowledge within the organisation by focusing on lead-
ing knowledge seekers directly to the knowledge providers who can satisfy their needs.
This is usually accomplished using a yellow-pages style directory and has been shown
to be useful for allocating resources, searching for competence, identifying project
opportunities and upgrading skills [DDR05].

In this paper, the authors extend the yellow pages concept in order to realise a
number of benefits. Firstly, it would be useful for an organisation to model various
relationships between its knowledge assets, thus paving the way for structural analysis
of its knowledge landscape. Secondly, the proposed approach makes it possible to not
only model who knows what within the organisation but also how much they know
it when compared to their colleagues. This is achieved by means of an event-driven
mechanism which relates an employee’s involvement in the life cycle of a knowledge
asset to the likelihood of her ‘knowing’ the knowledge asset to some degree. Finally,
as a result of the first two benefits, the proposed approach enables the definition of
metrics that enable a company to detect the build up of three types knowledge risks
and thus be able to take mitigating action when required.

2

This paper is organised as follows. In section 2, the basic concepts of knowledge
map creation are introduced, as well as an example which will be used as a running
example throughout the paper. Section 3 introduces an event-based mechanism for
keeping knowledge maps representative of the knowledge landscape they model. Sec-
tions 4 and 5 then go on to showcase the languages features when it comes to drawing
conclusions about organisational knowledge and identifying knowledge risks. Finally,
a three-month evaluation of the language is outlined and results discussed in section
6.

2 Basic Concepts

Consider a typical software development organisation with a number of persons em-
ployed, and a number of knowledge assets which the organisation has identified as
being valuable to it. Persons are organised into teams and knowledge assets have
various attributes. For example, an organisation has identified seven knowledge as-
sets: Java, Smalltalk, OOP, SQL, JDBC, Serlvets, and WebDevelopment and em-
ploys a single team of three people: Chris, Mary and Jane. The team members are
knowledgeable of different topics and some persons are more expert than others on
particular topics. For example, whilst everyone knows Java, Chris is clearly far more
knowledgeable about it than Mary and Jane. Furthermore, knowledge assets are re-
lated to each other: the use of Java and Smalltalk is dependent on OOP, similarly
the knowledge of JDBC depends on SQL; on the other hand, the knowledge of JDBC
and Servlets is part of the knowledge of Java; and the knowledge of Servlets is related
to WebDevelopment. This scenario is depicted in figure 1.

Please note that the convention for graphical representation is specified when rela-
tionships are introduced in section 2.1.

In the following subsections, we formalise the concepts necessary to specify such a
scenario. This paves the way for building knowledge maps which reflect organisations’
knowledge landscapes, which in turn can be analysed for various types of knowledge
risks as discussed in section 5.

3

Figure 1: A graphical depiction of a scenario example.

2.1 Knowledge Assets

Knowledge assets are intangible firm-specific knowledge resources that are indispens-
able to create value for firms [BM06], and as such form the basis of any attempt to
create a knowledge map of an organisation. For the purposes of richer knowledge
modelling, it is desirable to model properties of knowledge assets. More specifically,
we consider four properties of knowledge assets:

Category A property can fall under one of three categories: technical, business,
or general. These categories are an adaptation of the those proposed by Ra-
mal [RMA02] who proposed that software engineers know three categories of
knowledge: computer science, business and general. The authors felt that the
renaming of the “Computer Science” category to “Technical” was required be-
cause the term “Technical” knowledge provides an umbrella term for knowledge
which may have otherwise been confusing given that computer science refers to
a specific subset of topics in the academic world.

Visibility The second property of knowledge assets is visibility and refers to the
widely cited tacit and explicit knowledge taxonomy of knowledge [AL01][Duf99][Szu96][Tiw00].

Sociality Another property is the sociality property which classifies a knowledge
asset as either individual knowledge or social knowledge [Non94].

4

Operationality Finally, the language also models an operationality property which
classifies a knowledge asset as declarative (know-about), procedural (know-how),
causal (know-why), conditional (know-if) or relational (know-with)[NNI98][Zac98].

In summary and more formally, we define four corresponding types: CAT, VIS, SOC,
and OPR as follows:

CAT
def
= {technical, business, general, undefined}

VIS
def
= {tacit, explicit, undefined}

SOC
def
= {individual, social, undefined}

OPR
def
= {declarative, procedural, causal,

conditional, relational, undefined}

Given a type K of knowledge assets, we assign an attribute of each of the above types
through the following four total functions:

category : K −→ CAT
visibility : K −→ VIS
sociality : K −→ SOC

operationality : K −→ OPR

Further to assigning attribute to knowledge assets, we relate knowledge assets to each
other through the following four kinds of relationships of type P(K ×K):

Related - A related relationship signifies that the two knowledge assets are related in
some way. For example, in the example provided at the beginning of section 2,
the servlets knowledge asset and web development knowledge asset are related.
This does not imply that one cannot exist without the other, but merely that
if a person is knowledgeable about one asset, there is a likelihood that she
is knowledgeable about the second. This relationship is the weakest form of
relationship between two knowledge assets in the proposed model and is denoted

by the symmetric relation ←related−−−→. In graphical depictions of knowledge maps,
the convention is adapted that two related knowledge assets are linked together
by a dashed edge.

Dependency - One knowledge asset ka is said to be dependent on a second knowl-
edge asset kb if in order to learn ka, one first has to learn kb. A typical example
from the knowledge map depicted in figure 1 is “java depends on oop”. That is
to say that before one can effectively use the Java programming language, one
must understand the concepts of object oriented programming. We denote this

5

relation by
deps on−−−→. Note that

deps on−−−→ is antisymmetric, i.e. if an assets ka depends
on kb, then kb cannot depend on ka. In graphical representations of knowledge

maps, the convention is being adapted that ka
deps on−−−→ kb is represented by a

continuous directed edge between ka and kb with a solid arrowhead.

Composition - A knowledge asset kb is said to be partially composed of another
knowledge asset ka when ka represents a subset of knowledge represented by

kb. This relation, which is also antisymmetric, is denoted by
part of−−−→. Note that

part of−−−→⊆ deps on−−−→, i.e. if an asset ka is a part of kb, then ka depends on kb. A typical

example is provided in figure 1 whereby servlets
part of−−−→ java and jdbc

part of−−−→ java.
In graphical representations of knowledge maps, the convention is being adapted

that ka
part of−−−→ kb is represented by a continuous directed edge between ka and kb

with a hollow arrowhead.

Having outlined the attributes of, and the relationships between knowledge assets,
we next define the relationship between people and knowledge assets.

2.2 People and Knowledge

Our interest in reasoning about knowledge assets is to be able to reason about what
people in an organisation know. Thus we relate people to knowledge assets by assign-
ing a magnitude relative to how much the person knows that knowledge asset. More

formally let P be the type representing people in the organisation, the relation
knows−−→

of type P × K × N is a set of triples representing a person, a knowledge asset and
a magnitude. To facilitate reasoning about people, we also define a set T of teams
whereby each team is a subset of people, T ⊆ PP .

Finally, we define the whole scenario in terms of a graph structure as follows:

Definition 1 The graph G, representing the knowledge landscape, is a triple (V, L,E)
where: (i) a set of vertices, V , made up of persons and knowledge assets, V = P ∪K;
(ii) a set of labels, L, made up of natural numbers and L′ = {related , deps on, part of },
L = N ∪ L′; and iii a set of edges, E, a subset of V × L× V .

Given relations, ←related−−−→,
deps on−−−→,

part of−−−→, and
knows−−→, defined over knowledge assets K and

persons P , we can derive the corresponding graph edges as follows:

E
def
= {(ka, related , kb) : V × L′ × V | (ka, kb) ∈←

related−−−→}
∪ {(ka, deps on, kb) : V × L′ × V | (ka, kb) ∈

deps on−−−→}
∪ {(ka, part of , kb) : V × L′ × V | (ka, kb) ∈

part of−−−→}
∪ {(p, n, k) : P × N× V | (p, k, n) ∈ knows−−→}

6

As abbreviation we use v
label−−→ v′ for (v, label, v′) ∈ E.

Example 1 Referring back to the example given at the beginning of section 2 and
depicted in figure 1, we now give the formal definition of the knowledge landscape, g,
by instantiating the graph structure we have just defined:

K
def
= {Java, Smalltalk, OOP, SQL,

JDBC, Serlvets, WebDevelopment}
P

def
= {Chris, Jane, Mary}

E
def
= {Servlets

related−−−→WebDevelopment,

WebDevelopment
related−−−→ Servlets, JDBC

part of−−−→ Java,

Java
deps on−−−→ OOP, Smalltalk

deps on−−−→ OOP,

JDBC
deps on−−−→ SQL,Mary

1−→ Servlets,

Mary
3−→ Java,Chris

45−→ Java,

Jane
3−→ Java, Jane

1−→ JDBC}
g

def
= (P ∪K,L,E)

One can note that the example defines certain knowledge relationships and their mag-
nitudes explicitly. This is indeed useful when one first starts building a knowledge
map. However, it is desirable for knowledge relationships to be created and adjusted
automatically over time based on some mechanism. This is the subject of section 3.

3 Maintaining the Knowledge Landscape

Knowledge is never static in an organisation. People learn new knowledge and forget
other knowledge, other people join and leave the organisation bringing/taking knowl-
edge with them, and so on. Therefore it is important to model such changes so that
the knowledge landscape remains up to date and representative of the organisation’s
knowledge landscape. We model such changes in terms of events. For example, if an
event is modelled whereby a person p is applying a knowledge asset ka over a period
of time, then it can be inferred that the longer the period of time over which p applies
ka, the more p knows ka. Conversely, if there are no events in the model which link
p to a second knowledge asset kb, then it can be inferred that p does not know kb.

The events we consider here fall under one of three categories: Asset-Changing Events,

7

Relationship-Changing Events, and Time Events. In the following subsections, we in-
troduce the different event types and explain the changes that occur to the underlying
knowledge map upon the triggering of an event. To this end, we define a function
Prog, of type (G×Events)→ G, which takes a graph and an event (the type Events
is defined to be the union of the events defined below) and returns a modified graph.
This new graph represents the organisation’s updated knowledge landscape.

3.1 Asset-Changing Events

Resource events deal with the changes in the personnel and knowledge assets of the
organisation. For simplicity we parametrise events over persons and knowledge assets,
virtually having an event for each possible person/knowledge asset.

• Upon a person p joining the organisation, we simply add a vertex to the graph:
Prog((V, L,E), p left org(p))

def
= (V ∪ {p}, L, E)

• Upon a person p leaving the organisation, we simply remove the vertex from
the graph and remove the edges concerned:
Prog((V, L,E), p left org(p))

def
= (V \{p}, L, {(v, l, v′) ∈ E | v 6= p ∧ v′ 6= p})

• When a knowledge asset k is identified, a vertex is added to the graph:
Prog((V, L,E), k ident(k))

def
= (V ∪ {k}, L, E)

• When a knowledge asset k is discarded, the vertex and the edges concerned are
removed:
Prog((V, L,E), k disc(k))

def
= (V \{k}, L, {(v, l, v′) ∈ E | v 6= k ∧ v′ 6= k})

3.2 Relationship-Changing Events

Several researchers within the knowledge-based perspective of the firm have come to
see organisations as knowledge systems consisting of a set of socially enacted knowl-
edge processes[?][?]. Much in the same way that software systems have a life cycle
or development process, so do knowledge assets. Although various, more detailed
delineations of knowledge processes exist, these can all be generalised to four primary
elements: (i) knowledge creation, (ii) knowledee storage/retrieval, (iii) knowledge
transfer, and (iv) knowledge application [?][?][?][?]. When these processes are en-
acted, the organisation’s knowledge landscape changes and peoples’ knowledge of
particular knowledge assets can grow or shrink. The events in this section are thus
modelled on these four basic knowledge processes.

8

A considerable challenge here is the calculation of how much to influence the mag-
nitude of individual knowledge relationships based on some event. It is arguably
impossible to model learning and forgetting with a simple formula and achieve 100%
accuracy. The amount one learns or forgets depends on a number of factors such as
the individual’s age, background and cognitive ability. For this reason, the language
outsources these calculations to an oracle. This provides us with the ability to plug
in oracles based on the organisation’s context and/or the state of understanding of
human learning (and forgetting) over time.

• When knowledge is created, the likelihood is that the person p who creates
knowledge about knowledge asset k has increased his knowledge about k. Thus
the magnitude of the relationship between p and k increases and a relationship
is created if it does not already exist. Note the use of oracle-decided m (of type
N) which signifies the new magnitude of the relationship.

Prog((V, L,E), create(p,k,m))
def
= (V, L,E ′ ∪ {p,m, k})

where E ′ = {(v, l, v′) ∈ E | v 6= p ∧ v′ 6= k}.

• Similarly, when knowledge about a knowledge asset k is stored, retrieved, trans-
ferred of applied, the people involved in those events gain more knowledge about
k. Please note that we are splitting knowledge transfer events into two such that
the “giving” and “receiving” ends of a knowledge transfer activity are modelled
as separate events. This is mathematically more elegant and also facilitates the
modelling of one-to-many and many-to-many transfer activities. Therefore the
definitions of Prog for events store(p,k,δ), retrieve(p,k,δ), apply(p,k,δ), given(p,k,δ), and
recvd(p,k,δ) are all identical and are defined as follows (we use the event store(p,k,δ)

as an example):

Prog((V, L,E), store(p,k,δ))
def
= (V, L,E ′)

where
E ′ = {(p, l, k) ∈ E • (v, l + δ, v′)}
∪ {(v, l, v′) ∈ E | v 6= p ∨ v′ 6= k • (v, l, v′)}

• The authors also propose the modelling of events whereby existing knowledge
is modified. This is perceived as being important for two reasons. Firstly,
since the knowledge map clearly shows who knows a particular knowledge asset,
this information can be used to notify all knowers when it changes. Also, the
fact that knowledge has been modified is likely to result in an increase in the
knowledge of the person who modified it but also a decrease in the knowledge of
all other persons who knew the knowledge asset before it was modified. Thus,
the modification event is parametrised over a person p, a knowledge asset k,

9

an upward change δ and a downward change δ′: Prog((V, L,E), mod(p,k,δ,δ′))
def
=

(V, L,E ′)
where
E ′ = {(p, l, k) ∈ E • (v, l + δ, v′)}
∪ {(p′, l, k) ∈ E | p′ ∈ P • (v,max(0, l − δ′), v′)}
∪ {(v, l, v′) ∈ E | v /∈ P}

3.3 Time Events

Knowledge decreases over time if not used. Thus, to keep the graph realistic, we
propose a time event which decreases all the knowledge magnitudes as follows:

Prog((V, L,E), time(δ′))
def
= (V, L,E ′)

where
E ′ = {(v, l, v′) ∈ E | v ∈ P ∧ v′ ∈ K • (v,max(0, l − δ′), v′)}
∪ {(v, l, v′) ∈ E | v /∈ P}

3.4 Bringing it all Together

Starting from an initial graph g1, which may either be the empty graph (∅, L, ∅) or
an initialised graph (V, L,E), one can apply a number of events through the function
Prog to keep the graph updated. Each application of Prog would then result in a new

version of the graph g2, g3, By representing Prog(gi, ev) = gi+1 as gi
ev−→ gi+1, we

get the following:

g1
ev1−−→ g2

ev2−−→ g3 · · ·
evn−−→ gn+1

Example 2 Building on example 1, consider a scenario whereby on the following
events occur: (i) Mary reads a book about Smalltalk and considers herself knowledge-
able on the subject, (ii) Mary applies her knowledge of Smalltalk for 5 days, (iii) Mary
teaches Chris about Smalltalk. Assuming g is a graph representing the knowledge map
from example 1, the language can be used to model these events as follows:

10

g
create(mary,smalltalk,1)−−−−−−−−−−−−−→ g1

apply(mary,smalltalk,1)−−−−−−−−−−−−→ g2

g2
time(0)−−−−→ g3

apply(mary,smalltalk,1)−−−−−−−−−−−−→ g4

g4
time(0)−−−−→ g5

apply(mary,smalltalk,1)−−−−−−−−−−−−→ g6

g6
time(0)−−−−→ g7

apply(mary,smalltalk,1)−−−−−−−−−−−−→ g8

g8
time(0)−−−−→ g9

apply(mary,smalltalk,1)−−−−−−−−−−−−→ g10

g10
time(0)−−−−→ g11

given(mary,smalltalk,1)−−−−−−−−−−−−→ g11

g11
recvd(chris,smalltalk,1)−−−−−−−−−−−−→ g12

In the name of simplicity, this example assumes that the oracle being utilised always
increases knowledge relationship magnitudes by 1 and time has no negative affect on
knowledge relationships in the short timeframe of 5 days being considered here. At
this point, the graph g12 is an update version of the original graph g such that it has
been updated relevant knowledge relationships as depicted in in figure 2.

Figure 2: The resulting graph after events from example 2 have been logged.

One can note that Mary now knows Smalltalk with a magnitude of 8 whilst Christ

11

knows Smalltalk with a magnitude of 2. Mary’s knowledge comes from reading a
book (creating knowledge), applying her newly acquired knowledge for 5 days and
transferring it to Chris. Chris on the other hand, only interacted with Smalltalk
during the knowledge transfer activity. Hence his knowledge is considerably less than
Mary’s.

4 Cartographic Queries

Much in the same way that the traditional yellow-pages style knowledge maps can
be used for allocating resources, searching for competence, identifying project oppor-
tunities and upgrading skills, so can the language presented in this paper. However,
since the technique presented here maintains knowledge relationship magnitudes, it
allows for a number of interesting queries. In this section, a number of cartographic
queries which operate on knowledge maps are outlined. Please note that due to length
restrictions, it is impractical to give a mathematical definition of these functions here.
Consequently, in this section name a number of functions and describe their purpose
but will not provide a mathematical definition.

knows is a function which given a graph g, a person p and a knowledge asset k,

returns the magnitude of p
knows−−→ k in the context of g. This is a simple query

function which is utilised in the definition of other functions and the metrics
presented in section 5.

who knows is a function which given a graph and a knowledge asset, returns an
ordered tuple of persons who know the knowledge asset. The tuple is sorted in
descending order of the magnitude of the knowledge relationships. This query
enables organisations to analyse their knowledge of particular assets and can
thus prove useful in project sourcing.

knows what is a function which given a graph and a person, returns an ordered tuple
of knowledge assets which the person knows. The tuple is sorted in descending
order of how much the person knows the asset. This query is useful for team
formation and planning of training for individual staff members.

experts is a function which given a graph and a knowledge asset, returns an ordered
list of people whose knowledge of the asset is statistically much stronger than
that of their colleagues and can thus be considered to be the experts on the
topic. This list is sorted in descending order of knowledge magnitude. This
query is similar to the who knows query but since it only returns people who

12

are statistically considered to be experts would prove more useful when the
expertise of such people is being sought.

person similarity is a function that given a graph g, a person p and a set of knowl-
edge assets Ka, returns an ordered tuple of persons whose knowledge of the
assets in Ka is similar to that of p. The list is sorted in descending order of
similarity. This query enables organisations to find suitable candidates during
team formation or in cases where for example, a person needs to be transferred
to a different team and thus needs to be replaced.

team knows is a function which given a graph and a team assignment, returns
the knowledge assets which the team knows, in descending order of knowledge
magnitudes. This enables organisations to reason about the knowledge of groups
of people rather than individuals.

assets with attribute is a function which given a graph and a knowledge attribute
assignment function, returns a set of assets which exhibit the attribute. Such
queries can be useful when analysing a knowledge landscape from different
points of view. For example, it might be useful for an organisation to analyse
its knowledge landscape from the point of view of the Operational Classification
of it’s knowledge assets (see section 2). In such cases, it could detect that for
example, the organisation has very little causal knowledge about what it does
and this might present problems in future.

5 Knowledge Metrics

This section defines a number of metrics which can be used to analyse a model with
a view to understand the health of the organisation’s knowledge landscape. Please
note that due to length contraints, only a few salient metrics could be defined in this
paper.

5.1 Knowledge Mobility Risk

The term knowledge mobility risk refers to the chance of the company loosing a valued
knowledge asset as a result of a particular person or persons leaving. In general, the
greater the number of people that know a knowledge asset, the less mobility risk that
knowledge asset exhibits. However, one must consider ‘how much’ each person knows
the knowledge asset. If (for example) four people in a team are vaguely familiar with
a critical part of a system but a fifth person is an expert about it, then with respect

13

to that particular knowledge asset, loosing that one expert will probably hurt more
than loosing any number of the other four members.

Two mobility risk metrics are defined:

Knowledge Asset Mobility Risk (KMR) - Assesses the risk of individual knowl-
edge assets being lost should certain personnel movements occur. Any risky
assets identified by this metric should lead to the organisation taking risk-
mitigation action such as knowledge transfer activities.

Person Mobility Risk (PMR) - Assesses the risk posed by individual persons
should they suddenly leave the company. This metric operates in the context of
a subset of knowledge assets chosen by the user so as to provide provide more
meaningful information. For example, one could calculate PMR in the context
of the subset of knowledge assets related to database technologies in the organ-
isation. This localises the metric and provides more useful information. If a
person is identified as being risky by this metric, it implies that if the person
leaves, the organisation’s knowledge of one or more knowledge assets is likely
to be severely damaged. In such a case, the organisation should take risk miti-
gation and transfer the person’s knowledge to other people in the organisation,
thus spreading the risk.

Both metrics are adaptations of centrality metrics presented by Botafogo et al [BRS92]
which measure the social importance of vertices in a graph. However, Botafogo’s work
calculated centrality based on the length of paths between pairs of vertices. This is
not suitable in our context because (a) the maximum length of a knowledge path be-
tween a person and a vertex is 1 and (b) knowledge relationships exhibit a magnitude
property which must be taken into account.

Definition 2 Given a graph g with k1, ..., kn knowledge asset vertices and p1, ..., pm
person person vertices, then the knowledge distance matrix M for the graph is defined
as a n×m matrix in which:

Mn′,m′ =


K if knows(g, pm′ , kn′) = 0

maxKM
knows(g,pm′ ,kn′)

otherwise

Where:

14

K is a constant which represents infinity in the graph. Throughout this paper, K will
be maxKM + 1.

maxKM is the highest knowledge magnitude assigned to knowledge relationships in
the graph. This is used as a normalising value whereby a simulated path distance
of 1 is assumed for knowledge relationships of maxKM magnitude. All smaller
values of magnitude will be translated to a proportionately larger path size. This
allows us to use centrality metrics.

Definition 3 Given a knowledge distance matrix M representing k1, ..., kn knowl-
edge asset vertices and p1, ..., pm person person vertices, we define the knowledge in
distance (KID) and the knowledge out distance (KOD) for each person vertex as
follows:

KID(kn′) =
∑m

i=1Mn′,i

KOD(pm′) =
∑n

i=1Mm′,i

We also define the concept of knowledge distance (KD) as:

KD =
∑n

i=1

∑m
j=1Mi,j

Definition 4 At this point we can define the metrics for knowledge asset mobility
risk (KMR) and person mobility risk (PMR) as:

KMR(kn′) = KD
KID(kn′)

PMR(pm′) =
KOD(pm′)

KD

The higher the value of KMR for a particular knowledge asset, the more at risk it
is of being lost due to personnel movements. Similarly, the higher the value of PMR
for a particular person, the more knowledge the company stands to loose if the person
leaves.

Example 3 Consider the subgraph of a model depicted in figure 3. In this example,
the organisation is analysing whether any knowledge risks exist when considering its
knowledge of dynamic web technologies (jsp and servlets). The calculations for KMR
and PMR would be carried out as follows:

15

Figure 3: An example for use in knowledge mobility risk definition.

jsp servlets KOD PMR
Saviour 1 42 43 8.96
Sergio 85 85 170 2.27
Shirley 1 1.25 2.25 171.22
Stephen 85 85 170 2.27
KID 172 213.25 385.25
KMR 0.44 0.55

One can make a number of observations after examining the results. Firstly, Sergio
and Stephen present no risk in this particular context. This is because according to
the model, they have no knowledge of the knowledge assets in question. So if any
of them leave, the organisation’s knowledge of servlets and jsp will not be affected.
The reason why they have a PMR value greater than 0 is related to our choice of
the constant K. Secondly, Shirley has an astronomical PMR value when compared
to other people in the organisation. This means that if Shirley leaves tomorrow,
the organisation stand to loose substantial knowledge about servlets and jsp. In fact,
Shirley has strong knowledge of both when compared to Saviour’s knowledge magnitude

16

of 2 when considering servlets. Finally, jsp and servlets exhibit a KMR of 0.44 and
055 respectively. This essentially means that the servlets knowledge asset exhibist
25% more risk than jsp, due to the fact that even though two people know servlets,
Saviour’s knowledge is minuscule compared to Shirley’s.

Figure 4: A knowledge map resulting from a three month evaluation exercise, which
is coloured according to KMR values.

Generally speaking, KMR is useful for identifying high risk knowledge assets from
all (or a large selection of) your model whilst PMR provides more useful information
when you limit your context to a small subset of knowledge assets of interest. Figure 4
depicts a larger knowledge map which was constructed by a team of four people during
a three-month evaluation exercise. The vertices in this map are coloured according
to the following criteria:

17

1. Let σ be the standard deviation of the KMR values for all knowledge asset
vertices in the graph

2. Let µ be the average of the KMR values for all knowledge asset vertices in the
graph

3. Colour all nodes with KMR ≤ µ green (represented as white in this paper)

4. Colour all nodes with µ > KMR ≤ (µ + σ) orange (represented as light-grey
in this paper)

5. Colour all nodes with KMR > (µ + σ) red (represented as dark-grey in this
paper)

Filtering the graph to red (dark grey) vertices results in figure 5. This demonstrates
how the metrics in question can take all the clutter out of a complex knowledge map
and provide a much clearer view of where the problem areas might be.

5.2 Knowledge Transfer Risks

Knowledge transfer risks refer to situations which might compromise the likelihood
of a knowledge transfer activity to be successful. Knowledge transfer activities are
amongst the most important activities which enable organisations to hold on to or-
ganisational knowledge despite staff turnover. Although research carried out seems to
indicate that most knowledge transfer success factors can only be detected and influ-
enced by company culture and management practices, Cummings and Teng [Cum03]
developed a research model consisting of nine key factors which affect knowledge
transfer, two of which can be detected using the event-based cartographic approach
proposed in this paper. These are knowledge embeddedness and knowledge distance.
The former refers to the extent to which a particular knowledge asset is linked to
other knowledge assets within the organisational knowledge landscape. Cummings
and Teng found that the more embedded a knowledge asset is, the more difficult
it is to transfer. Knowledge Distance refers to the difference between two people’s
knowledge in relation to the knowledge asset being transferred. If two people share
a relevant common basis of knowledge, their knowledge distance is said to be small.
This makes a knowledge transfer exercise between such persons more likely to succeed
than if they had a large knowledge distance separating them.

Both knowledge embeddedness and knowledge distance can be inferred from knowledge
models constructed using the language presented in this paper.

18

Figure 5: A filtered version of the knowledge map in figure 4 showing only high
knowledge mobility risk assets.

5.2.1 Embeddedness

The following measure of embeddedness is propopsed:

embeddedness(k) = |dep(k)|

Where dep(k) is a function that given a knowledge asset k, returns the set of all
knowledge assets which k depends on. Please note that since dependency is tran-
sitive, this set will also include knowledge assets which are depended on by direct
dependencies of k. Also, since composition is a form of dependency (see section 2),
dep(k) will also return elements which k forms part of.

For any knowledge asset k, a higher value of embeddedness(k) implies a higher level
of knowledge transfer risk exhibited by k.

19

5.2.2 Knowledge Distance

Consider a knowledge transfer exercise whereby a person who is a knowledge source
psrc is transferring a knowledge asset k to a second person who is a knowledge receiver
prec. The knowledge distance measure takes into account prec’s lack of knowledge of
all assets in dep(k) (see section 5.2.1):

distance(psrc, prec, k) =
∑

∀k′∈dep(k)

distabs(psrc, prec, k
′)

Where:

distabs(psrc, prec, k) =
0

if knows(g, psrc, k)− knows(g, prec, k) < 0

knows(g, psrc, k)− knows(g, prec, k)
otherwise

6 Evaluation

An evaluation exercise was carried out involving two four-member undergraduate
student teams participating in a three-month development project for which they
received academic credit. The project required students to work for an actual indus-
try client and delivery software using agile methodologies. A number of workshops
about agile development and knowledge management were delivered to all students
participating in the exercise. They were also tasked with creating and maintaining
a knowledge map using the techniques presented in this paper. In order to facilitate
this, a GUI tool for creating and analysing knowledge maps was developed and made
available to the students.

The exercise was targeted at evaluating participants’ perceived accuracy of conclu-
sions drawn from their knowledge maps with regards to (i) knowledge relationships
regardless of magnitudes, (ii) knowledge relationship magnitudes and (iii) risk met-
rics. At the end of the three month exercise, each team’s knowledge map was analysed

20

by researchers and a custom survey was designed for each team. Each survey con-
sisted of two sections: section one was to be answered by the team as a whole and
section two consisted of a personalised question for each team member. In section
one, participants were asked to rate their agreement with a number of statements
such as “All team members can write unit tests”, “Elise knows Javascript more than
Ian” and “if Joseph leaves the team, we will have no knowledge of photoshop”. Each
question was designed to assess the team’s perceived accuracy of various aspects of
the knowledge map as discussed above. Team members discussed each statement and
jointly provided a rating on a scale of 1 (strongly disagree) to 5 (strongly agree).
Section two consisted of one personalised question for each team member whereby
they were provided with five knowledge assets and asked to rank them in descending
order of their familiarity with them. This made it possible to compare each team
member’s ranking with the ranking provided by the knowledge map.

6.1 Evaluation Results

Table 1 summarises the average scores for questions designed to measure the per-
ceived accuracy of conclusions drawn from the knowledge maps. With regards to the
questions designed to gauge participants’ perceived accuracy of the model’s knowl-
edge relationships regardless of magnitude, the results are highly encouraging. Teams
score a high level of agreement with statements like “Sergio is the only person who
knows JDBC” with the average score being 4.3 (agree). This essentially means that
the proposed technique effectively models who knows what within the organisation.

Perceived accuracy of... Avg Score Comment
Knowledge relationships 4.3 Agree
Knowledge rel magnitudes 3.6 Weak Agree
Knowledge metrics 3.9 Agree

Table 1: Results of perceived accuracy questions

The next area of interest involved investigating whether or not a knowledge map
accurately represents knowledge magnitudes. That is to say, not only “what” peo-
ple know but also “how much” they know it. This was approached from two angles.
Firstly, in section one of the survey, a number of statements were specifically designed

21

to query participants about conclusions involving magnitudes. Typical statements in-
clude “Jacqueline and Elise are the team’s experts on Javascript”, “Jacqueline, Elise
and Ian are similarly knowledgeable about Liferay”, and so on. The results in this
case were slightly disappointined with this category of questions scoring an average of
3.6 (weak agree). However, upon further investigation, it was discovered that the re-
sults reflected errors by participants when building the knowledge map. For example,
the knowledge map for one team indicated that there was one expert on a knowledge
asset labelled as Liferay. In fact, it transpired that a second person was also highly
knowledgeable but his activities with regard to the Liferay knowledge asset were not
properly logged. This skewed the results towards disagreement. The second angle
from which this question was approached involved providing each participant with
a list of five knowledge assets and asking them to rank them in descending order of
familiarity. These rankings were then compared with rankings derived directly from
the knowledge maps using the Spearman Rank Correlation Coefficient. This measure
provides a value between -1 and 1 where a value close to -1 indicates that your data
is negatively correlated, a value close to 0 indicates no linear correlation of your data
whilst a value close to 1 indicates a positive correlation of your data. The Spearman
Rank Coefficient was calculated for each of the eight team members’ rankings and the
results plotted on a frequency distribution graph (see figure 6). The results indicate
that there is a positive correlation between the rankings provided by participants
and those derived from the knowledge maps. Even though the level of correlation
varies, one should keep in mind that the participants made some errors when logging
events throughout the exercise. If these mistakes are corrected, correlation is likely
to improve.

Finally the effectiveness of the metrics presented in this paper was investigated. This
was done by drawing certain conclusions based on metrics and then soliciting partic-
ipants to score their agreement with the conclusions. Typical conclusions include “if
Joseph leaves the team, our knowledge of photoshop will suffer”, “it would be diffi-
cult to transfer your knowledge about servlets to someone who does not know Java
or HTML”, and so on. These conclusions were drawn from values of KMR, PMR,
Embeddedness and Knowledge Distance metrics. Statements designed to gauge the
validity of such conclusions scored an average of 3.9 (agree). Although this is pos-
itive, further investigation into individual results revealed an unexpected problem.
There were knowledge assets used by the team which were easy to learn, apply and
remember. Usually this was because the knowledge assets were ‘small’ in size. Even
though such knowledge assets were not necessarily applied very often, participants
still felt they had a strong knowledge of them. This was contrary to what the event-
based mechanism of the knowledge map concluded. This development gives rise to
the possibility of modifying the work presented here to reflect these types of situations.

22

Figure 6: Distribution graph of Spearman Rank Coefficients for the knowledge mag-
nitude ranking test

In summary, although the evaluation has its limitations, it does give encouraging
results. It did however uncover two potential issues. The first is a question of incor-
porating the use of the language into a process so that knowledge maps are correctly
created and maintained. This may sound simple but could be a challenge considering
the tendency of knowledge workers to resist routine tasks. The second issue refers to
the fact that the language does not differentiate between knowledge assets of different
sizes. In some cases, this can skew conclusions derived from a knowledge map.

References

[AL01] Maryam Alavi and Dorothy E. Leidner. Review: Knowledge management
and knowledge management systems: Conceptual foundations and research
issues. MIS Quarterly, 25(1):107–136, 2001.

[BD08] F. Bjørnson and T. Dingsøyr. Knowledge management in software engi-
neering: A systematic review of studied concepts, findings and research

23

methods used. Information and Software Technology, 50(11):1055–1068,
October 2008.

[BM06] Florian Bayer and Ronald Maier. Knowledge risks in inter-organizational
knowledge transfer. In Proceedings of the International Conference on
Knowledge Management and Knowledge Technologies. ACM ICPS, 2006.

[Bra98] S. Branch. You hired ’em. but cab you keep ’em? Fast Company, September
1998.

[BRS92] Rodrigo A. Botafogo, Ehud Rivlin, and Ben Shneiderman. Structural anal-
ysis of hypertexts: identifying hierarchies and useful metrics. ACM Trans.
Inf. Syst., 10:142–180, April 1992.

[Cum03] J. Cummings. Transferring r&d knowledge: the key factors affecting knowl-
edge transfer success. Journal of Engineering and Technology Management,
20(1-2):39–68, June 2003.

[DDR05] Torgeir Dingsøyr, Hans Karim Djarraya, and Emil Røyrvik. Practical
knowledge management tool use in a software consulting company. Com-
mun. ACM, 48:96–100, December 2005.

[DH03] Scott B. Droege and Jenny M. Hoobler. Employee Turnover And Tacit
Knowledge Diffusion: A Network Perspective. Journal of Managerial Is-
sues, 15(1):50+, 2003.

[Duf99] N. Duffy. Benchmarking knowledge strategy. Leveraging Knowledge for
Business Performance 1999: Knowledge In Action, 1999.

[Ear01] Michael Earl. Knowledge management strategies: Toward a taxonomy.
Journal of Management Information Systems, 18(1):215–233, May 2001.

[Kou03] S. Koudsi. Actually, it is brain surgery. Fortune, March 2003.

[NNI98] The Nolan Norton Institute. “Putting the knowing organization to value”
white paper. Nolan Norton Institute, 1998.

[Non94] I. Nonaka. A dynamic theory of organizational knowledge creation. Orga-
nization Science, 5(1):14–37, 1994.

[RMA02] M. F. Ramal, R. de Moura Meneses, and N. Anquetil. A disturbing result
on the knowledge used during software maintenance. In Proceedings of
the Ninth Working Conference on Reverse Engineering (WCRE’02), pages
277–, Washington, DC, USA, 2002. IEEE Computer Society.

24

[Szu96] Gabriel Szulanski. Exploring internal stickiness: Impediments to the trans-
fer of best practice within the firm. Strategic Management Journal, 17:27–
43, 1996.

[Tiw00] A. Tiwana. The Knowledge Management Toolkit: Practical Techniques For
Building A Knowledge Management System. Prentice Hall, 2000.

[Zac98] M. Zack. What knowledge-problems can information technology help to
solve. In Proceedings of the Fourth Americas Conference on Information
Systems, pages 644–646, 1998.

25

View publication statsView publication stats

https://www.researchgate.net/publication/266441444

