
Using Control Flow Analysis to Improve the Effectiveness
of Incremental Mutation Testing∗

Luke Bajada
PEST Research Lab,

University of Malta
luke.bajada@um.edu.mt

Mark Micallef
PEST Research Lab,

University of Malta
mark.micallef@um.edu.mt

Christian Colombo
PEST Research Lab,

University of Malta
christian.colombo@um.edu.mt

ABSTRACT
Incremental Mutation Testing attempts to make mutation testing
less expensive by applying it incrementally to a system as it evolves.
This approach fits current trends of iterative software development
with the main idea being that by carrying out mutation analysis in
frequent bite-sized chunks focused on areas of the code which have
changed, one can build confidence in the adequacy of a test suite
incrementally. Yet this depends on how precisely one can charac-
terise the effects of a change to a program. The original technique
uses a naïve approach whereby changes are characterised only by
syntactic changes. In this paper we propose bolstering incremental
mutation testing by using control flow analysis to identify semantic
repercussions which a syntactic change will have on a system. Our
initial results based on two case studies demonstrate that numerous
relevant mutants which would have otherwise not been considered
using the naïve approach, are now being generated. However, the
cost of identifying these mutants is significant when compared to
the naïve approach, although it remains advantageous when com-
pared to traditional mutation testing so long as the increment is
sufficiently small.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Reliability, Performance

Keywords
Test Suite Adequacy Analysis, Incremental Mutation Testing, Dataflow
Analysis

∗Project GOMTA financed by the Malta Council for Science &
Technology through the National Research & Innovation Pro-
gramme 2013

1. INTRODUCTION
Mutation testing [9] is a technique which analyses the adequacy
of a test suite using fault injection. Whilst it has been shown to
be more effective in finding test suite deficiencies than other mea-
sures such as code coverage analysis, the expense associated with
the approach is still a significant barrier to entry to the industry. To
improve the performance, we have proposed a way of splitting the
cost of mutation testing over the iterations of the software develop-
ment process [4]. This was achieved by applying mutation testing
to only the changed parts of the code base since a previous commit,
thus carrying out mutation testing incrementally over time.

The main challenge in this approach is to precisely characterise the
semantic impact of a syntactic change in the code base, given that
a change in one part of a program can affect parts which would
have been modified indirectly through calls to changed methods,
data flows, or through shared resources with modified parts of the
system.

In this paper, we recount our experience of attempting to improve
the technique by leveraging control flow analysis (see Section 3). In
particular, the paper discusses work done to answer the following
research questions:

RQ1: Can the effectiveness of incremental testing be improved by
using control flow analysis to more precisely characterise the
effects of changes between two evolutions of a program?

RQ2: What tradeoffs exist between expense and effectiveness when
using this approach?

Two case studies were carried out as part of our research (see Sec-
tion 4), one on an open source project and the other on an industry
case study with a partner in the payment processing industry.

2. BACKGROUND
In this section, we provide a brief overview of incremental mutation
testing and relevant static analysis techniques which were used in
this research.

2.1 Incremental Mutation Testing
In essence, mutation testing works as follows: given a program P
and a test suite T which tests P, the approach involves generating
faulty variations of P (called mutants) and checking whether for
every mutant, there is at least one test case in T which fails. We
write T (P) to denote a successful run of test suite T on program P

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/158809379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and ¬T (P) to denote that at least one of the tests in the test suite
has failed on P.

Mutation testing begins by generating a set of programs P1, P2, . . . , Pn

using a set of mutation operators represented by the functionM on
the program P,M(P) = {P1, P2, . . . , Pn}. These programs are usu-
ally syntactically similar to P but never (syntactically) equivalent
to it. That is to say ∀i : 1..n · Pi . P.

Subsequently, T is executed against all Pi ∈ M(P). For each mu-
tant Pi, if at least one test results in a failure, we say that T has
killed the mutant. Otherwise, we say that the mutant remains un-
killed. Unkilled mutants might indicate a diminished adequacy of
T with respect to P. This brings us to our definition of coverage.

Definition 1. (Coverage) A test suite T is said to cover a pro-
gram P, denoted T . P if and only if P satisfies T , T (P), while any
Pi∈M(P) fails the test suite, ¬T (Pi):

T . P def
= T (P) ∧ ∀Pi∈M(P) · ¬T (Pi)

The ratio of killed mutants to total mutants is known as the mu-
tation score and provides a measure of test suite coverage in the
context of the generated mutants. Mutation operators are usually
designed to change P in a way that corresponds to a fault which
could be introduced by a developer. Consequently, in comparison
to techniques such as statement coverage analysis, mutation testing
provides a significantly more reliable measure of test suite thor-
oughness [3, 5]. Despite its effectiveness, mutation testing suffers
from a significant problem [9]: Whilst the polynomial computa-
tional complexity of mutation testing does not seem prohibitive, in
a typical commercial system the large amount of potential mutation
points would make the computational expense considerably high.
Furthermore, once mutants have been generated, each one needs to
be tested against the original program’s test suite. Considering that
test suites on large systems will optimistically take a few minutes
to execute, the time required for this task would be considerable.

Incremental mutation testing attempts to alleviate the prohibitive
computational expense associated with mutation testing by leverag-
ing the evolutionary nature of modern software development prac-
tices such as Agile development. The underpinning idea is that
of limiting the scope of mutation testing to code that has changed
within the context of two particular versions of the code. This ef-
fectively selects areas of the code with elevated code churn — a
measure of changes made to a software component over a period
of time which has been shown to effectively predict defect density
during system evolution [12]. By applying mutation testing on each
change across successive versions of the code, over the entire evo-
lutionary process, one would have effectively applied mutation test-
ing over the whole system, incrementally. More precisely, incre-
mental mutation testing assumes two programs P and Pev where Pev
is an evolution of P such that Pev consists of two parts: a changed
part (Pδ

ev) which has evolved from a corresponding part of P (Pδ),
and an unchanged part (P6 δ = P6 δev = P6 δ) with respect to P. We there-
fore represent P and Pev as P = Pδ + P6 δ and Pev = Pδ

ev + P6 δ. In this
context, the composition operator + assumes that there is a way of
splitting a program into two parts such that the parts can be tested
independently. Similarly, the technique assumes that there is a way
of splitting the test suite into (potentially overlapping) parts which
test the corresponding program parts. Formally:

Definition 2. (Independent testability) For any program P = Pδ+

P6 δ and test suite T = T δ + T 6 δ, the program passes the test suite if
and only if its parts pass the corresponding parts of the test suite
respectively:

T (P)⇐⇒ T δ(Pδ) ∧ T 6 δ(P6 δ)

Using these assumptions, given that a test suite has been shown to
adequately cover a system under test, in the following evolution
of the code, this information can be used to minimise the num-
ber of mutations required to check the test suite. Intuitively, this is
achieved by eliminating the unchanged part of the system from mu-
tation testing: if the second version of the code can be split into the
changed part and the unchanged part, incremental mutation testing
assumes that tests relating to the unchanged part do not need to be
analysed for thoroughness because this would have been done in
previous evolutions of the code. More formally, this idea is cap-
tured in the following theorem:

Theorem 1 (Incremental mutation testing). If the system code
P = Pδ+P6 δ has been shown to be adequately covered by a test suite
T , T .(Pδ+P6 δ), then to show that the new version is also adequately
covered, Tev . (Pδ

ev + P6 δ), it suffices to check that T δ
ev . Pδ

ev:

T . (Pδ + P6 δ) ∧ T δ
ev . Pδ

ev =⇒ Tev . (Pδ
ev + P6 δ)

Whilst this theorem has been shown to be true [4], the significant
assumptions described above which make the theorem work, can-
not be overlooked. In particular, being able to split a program into
the changed and the unchanged part such that the subparts can be
tested independently, is in general a difficult task. In our previous
work [4], we have taken the naïve approach of simply separating
the new/changed methods from the unchanged methods (and their
corresponding tests respectively). Clearly, this approach does not
satisfy our assumption since this does not guarantee independent
testability — for example changed methods might be called from
unchanged methods, or unchanged methods may share global vari-
ables with changed ones.

In order to mitigate this issue, we propose to use control flow anal-
ysis techniques to analyse the structure of the code under consid-
eration and find better approximations of the impact of a syntactic
change. This should enable us to move closer to satisfying the as-
sumption which is crucial for Theorem 1 to hold.

2.2 Static Analysis
Due to the issue of independent testability (see Definition 2), we
attempt to utilise information about the coupling within a software
system — a qualitative measure that shows the degree of interde-
pendence between modules. Whilst Lethbridge and Lagamiere [10]
identify nine types of coupling, in this work we choose to target
routine call coupling since the design principle of separation of
concerns in the object-oriented paradigm naturally leads to a com-
mon occurrence of this type of coupling as objects delegate func-
tionality to each other through method calls. To this extent, we
turn our attention to static analysis which enables us to elicit the
necessary information about the coupling features of interest.

Control flow analysis is used to determine the control flow rela-
tionships in a program [2]. The control flow is the order in which
statements or function calls in code are executed. Of particular in-
terest to us is Shivers’ work in identifying the possible set of callers



to a function or method call [14]. This is because, due to the no-
tion of indirect inputs1, a change in a particular method is likely to
affect the behaviour of methods which call (or transitively call) the
changed method. Shivers’ work uses a call graph as the internal
representation of choice during static analysis. The call graph of
a program is a directed graph that represents the relationships be-
tween the program’s procedures or methods [6]. According to the
method being analysed in the call graph, the calling relationships
between that method and the methods that call it can span over sev-
eral depths.

In the next section, we explain how using the call graph, we identify
the indirectly affected parts of a code base so that this is considered
for mutation testing.

3. PROPOSED APPROACH
Recall from Section 2.1 that in incremental mutation testing, we
consider a program Pev, an evolution of P, to be composed of two
parts Pδ

ev + P6 δ. In [4], we approximate Pδ
ev by identifying the set

of methods (which we will refer to as Mδ) that contain syntactic
differences between P and Pev. We consider this approach as being
naïve because the impact of a syntactic change to the code base is
not necessarily limited to the location of that change — unchanged
locations of the code which depend on changed locations could po-
tentially be impacted. Therefore our naïve approach risks a situa-
tion whereby potentially valuable mutants would not be generated
and analysed.

In this work, we improve the approximation of Pδ
ev by including a

set of methods (referred to as callSet) which call (transitively up to
a particular depth) the methods in Mδ as follows:

Definition 3. (callSet) Assuming we have a call graph 〈V,E〉
where V represents methods and E represents tuples of methods
(m′,m) signifying that m′ calls m,

callSet(Mδ, d) =

Mδ ∪


∅ if d = 0⋃
m∈Mδ

callSet ({m′ ∈V | (m′,m)∈E}, d−1) otherwise

Intuitively, consider a call graph of a program as depicted in Fig-
ure 1. The grey circle in the middle of the call graph represents a
method in which a syntactic change has occurred whilst unshaded
circles connected by a directed edge indicate pairs of methods in
which one method calls the other (as indicated by the direction
of the edge). Whereas in [4], the naïve approach only considered
the shaded circle for analysis, in this paper we also take the other
circles into account. We are only interested in including methods
which call (or transitively call) a method where a syntactic change
has occurred because their behaviour could potentially be effected
by the change.

Note that we refrain from defining the value of d because as part
of our investigation we look at how various depth values affect the
performance of our approach.
1The notion of indirect inputs refers to situations whereby method
behaviour is influenced by means other than parameter values, most
commonly return values of called methods [11].

Depth 1

Depth 2

Depth 3

Figure 1: Example of call graph analysis at various depths

Finally, we remark that we do not extend this same approach to
refine which tests are executed for each mutant, since in [4] we al-
ready selected tests which directly call mutated methods. We con-
sider this to be adequate since we are dealing with unit tests (which
should be only concerned with testing the called methods directly).

4. EVALUATION
As with most approximation techniques, there is a trade off between
effectiveness and performance. In general, a more precise approxi-
mation comes with a higher cost. To this end, our evaluation takes
the form of a cost-benefit analysis of the proposed technique via
two case studies: one is an open source project having 5KLOC,
which has also been used in our previous study [4] — the Apache
Commons CLI library, while the second is an 10KLOC industrial
system provided by a partner in the payments processing industry
who utilises an iterative development cycle. The CLI library was
selected in order to maintain consistency with our previous study,
as well as having the characteristic of being very mature (thirteen
years old with 97% code coverage) and maintained by a community
of developers. On the other hand, the payments processing system
was selected in order to provide a case study of a system still under
development (one year old with 60% code coverage) by a focused
team of developers.

Following our previous approach, we selected three different time
periods in the life time of each project such that: (i) all periods had
the same commencement timestamp and (ii) the end timestamp of
each time period resulted in a day’s worth of development, a week’s
worth of development, and finally a month’s worth of development.
In the case of the Apache library which was used for a case study
in [4], the same time periods were retained in order to maintain
consistency.

For each case study, we carried out mutation testing runs2 as fol-
lows: First using the naïve approach from [4], and then using the
control flow analysis technique whilst increasing the depth analysis
level until no further methods are identified for mutation. Each mu-
tation testing run was executed three times to ensure consistency in
the data, with less than 10% variation observed. Due to the fact that
the non-disclosure agreement with our industry partner required
that source code does not leave their premises, experiments on the
two case studies where done on different machines as shown in Ta-

2We also kept the same set of seventeen basic mutation operators
from [4], relying on the mutation coupling effect hypothesis stating
implying that complex mutants do not give any significant advan-
tage on simple ones.



Lab Machine Industry Machine
CPU Intel Core i7 2.2 GHz Intel Core i7 2.93 GHz
RAM 6 GB 8 GB

OS Windows 8.1 (64 bit) Windows 7 SP1 (64 bit)
Java 1.7 (64 bit) 1.7 (64 bit)

Table 1: Hardware setup details for each case study

Apache Commons CLI
Experiment Depth Mutants Killed Score Time (s)

Day
Trad. 253 110 43% 20

0 95 45 47% 5
1 122 58 48% 18

Week
Trad. 340 113 33% 20

0 183 57 31% 9
1 210 68 32% 20

Month

Trad. 349 131 38% 16
0 158 73 46% 6
1 306 108 35% 19
2 312 111 36% 20
3 315 112 36% 21

Industry
Experiment Depth Mutants Killed Score Time (s)

Day

Trad. 954 577 60% 63
0 57 42 74% 4
1 182 140 77% 23
2 191 149 78% 24

Week

Trad. 954 577 60% 63
0 347 210 61% 25
1 415 237 57% 39
2 418 240 57% 39

Month

Trad. 954 577 60% 63
0 700 374 53% 35
1 728 399 55% 54
2 731 402 55% 54

Table 2: Absolute results obtained for both case studies

ble 1. The full results of the experiments, including the mutation
score, are shown in Table 2.

The following subsections focus on the benefit and the cost of ap-
plying static analysis in the context of our case studies, followed by
a discussion in the final subsection.

4.1 Benefit: Mutant Increase Analysis
The main concern of adopting the naïve approach in distinguish-
ing the changed part from the unchanged part of a system is that
potentially valuable mutants might never be generated — meaning
that test suite deficiencies might not be detected simply due to such
missing mutants.

Thus, measuring the benefit of introducing static analysis mainly
consists of counting the number of mutants which would otherwise
not have been tested.3 Table 3 show the percentage increase in the
number of mutants from one depth to another.

3Note that we assume that it is useful to generate mutants from
methods (possibly transitively) calling changed methods. Thus, we
ignore whether or not such mutants are actually killed or not. Such
information would only have a baring on the quality of the test
suite, not the effectiveness of our technique.

Apache Commons CLI
Experiment Depth 0→1 Depth 1→2 Depth 2→3

Day 28% 0% 0%
Week 15% 0% 0%
Month 94% 2% 1%

Industry
Experiment Depth 0→1 Depth 1→2 Depth 2→3

Day 219% 5% 0%
Week 20% 1% 0%
Month 4% <1% 0%

Table 3: Mutant percentage increase according to depth change

Analysing the results horizontally suggests that most changes do
not occur deeper than one level below the surface of the call graph,
showing significant increase in mutants only when going from depth
zero to depth one. Although our case studies show that the influ-
ence of a change never reaches beyond a depth of three method
calls, this is highly dependent on the topology of the individual
system’s call graph and the location of the change itself.

Whilst the rows of the tables give us insight into the topology of the
call graph — namely its depth and how this is distributed, we hy-
pothesise that the columns of the tables can shed light on the kind of
changes in the code churn. More specifically, on how the changes
were distributed along the call graph: if the changes are focused
along a particular branch of the call graph, then one would not ex-
pect to find many affected methods which have not been directly
modified. On the contrary, if several unrelated branches have mi-
nor changes away from the root, then one would expect to find nu-
merous methods which would have been affected. Naturally, such a
distribution depends on numerous factors including the maturity of
the project (mature projects would tend to have more minor and un-
related modifications in deeper methods) and on the way the work
on the project is managed (an industry team of developers would
tend to work more on a feature by feature approach whilst in the
case of an open source project, one would expect many unrelated
parts of the project to be touched). The observations seem to be
corroborated by the disparaging results of the tables where in the
case of our industry case study, the changes were more focused
on a day by day basis and yet covered most of the system over a
month since the system was still being developed. On the other
hand, in the case of the open source library the wider breadth of
the changes over a month meant that the number of mutants added
through static analysis was at its highest point.

4.2 Cost: Execution Time
Compared to the traditional mutation testing approach which at-
tempts to kill all the mutants (irrespective of whether they were
affected by the changes), the proposed approach has the advantage
of typically excluding a substantial number of mutants from anal-
ysis but still has the disadvantage of carrying out analysis on what
we consider to be valuable mutants. Effectively, the gains can be
characterised as follows:

Total Gains = Time(all muts.) − Time(selected muts.)
Actual Gains = Total Gains − Time(static analysis)

More concretely, this means that unless the number of included mu-
tants multiplied by the time required to execute the test suite is high



Apache Commons CLI
Experiment Depth 1 Depth 2

Measure %muts. speedup %muts. speedup
Day 48% 1.1x 48% 1.1x

Week 83% 1.0x 83% 1.0x
Month 88% 0.8x 89% 0.8x

Industry
Experiment Depth 1 Depth 2

Measure %muts. speedup %muts. speedup
Day 19% 2.7x 20% 2.6x

Week 44% 1.6x 44% 1.6x
Month 76% 1.2x 77% 1.2x

Table 4: Performance gain from traditional mutation testing

enough to at least counteract the time spent in static analysis, the
approach is not beneficial. In fact, referring to the results shown in
Table 4, we note that in the case of the month time period for the
Apache library, where most of the mutants were selected anyway,
incremental mutation testing approach was actually slower than tra-
ditional mutation testing.

The proposed technique, whilst still generally faring better than tra-
ditional mutation testing, when compared to the naïve approach of
mutating only directly changed methods, is naturally slower due to
two main reasons: the generation of the call graph and the genera-
tion and analysis of the extra mutants. Arguably, the time spent on
the latter is justifiable by the increased effectiveness, otherwise one
should stick to the naïve approach in the first place. However, the
time spent generating the call graph is significant when compared
to the time required to analyse the call graph: eight seconds for
the Apache library case study and twelve for the industrial one. Ta-
ble 5 provide the total execution time for the naïve and the proposed
approach including the time to generate the call graph. Whilst at
face value the difference is staggering, when one considers the in-
crease in mutants being considered and the cost of generating the
call graph, the numbers add up: For example the seemingly huge
nineteen second gap from four to 23 seconds in the industry day
scenario is composed of twelve seconds to generate the call graph,
and seven seconds which is approximately 219% of four seconds
required in the naïve approach.

Finally, considering the very small differences in readings between
the values in depth 1 and depth 2 columns, notwithstanding the
minimal increase in the number of changed methods identified, we
note that compared to the cost of generating the call graph, the cost
of analysing it to consider deeper methods is negligible.

We conclude this section by noting a number of limitations our
analysis currently has:

Runtime resolution of dependencies There are cases where a con-
trol dependency is resolved at runtime: one such case is when
a method call is resolved polymorphically, while another ex-
ample would be J2EE XML configurations. At the moment
we do not take these into consideration, possibly missing out
on a number of useful mutations.

Depth estimation Due to the limited number of case studies, we
are not able to estimate the depth required in general to iden-
tify all methods requiring mutation. From our experience, in

Apache Commons CLI
Experiment Naïve Proposed

Measure (depth 0) depth 1 depth 2
Day 5 18 18

Week 9 20 20
Month 6 19 20

Industry
Experiment Naïve Proposed

Measure (depth 0) depth 1 depth 2
Day 4 23 24

Week 25 39 39
Month 35 54 54

Table 5: Execution time compared to naïve approach

both cases most methods were identified at depth one, very
few at depth two, and even fewer at depth three. Whilst it is
desirable to have a way of calculating the depth required up-
front, we note that the analysis of the call graph for an extra
level is negligible compared to the time needed to carry out
mutation operators and rerun the test suite for each mutant.

Effectiveness approach with respect to changes demographic
While we have made a number of remarks regarding how the
distribution of code modification across the call graph may
affect the effectiveness of our approach, we believe that this
can be explored more in the future. Ideally, one could have
an indication of how useful the technique would be before
actually wasting time generating the call graph.

Incrementally building the call graph Our current implementa-
tion rebuilds the call graph each time the incremental mu-
tation process is carried out. This is a substantial limitation
given how expensive it is to build the call graph. In the fu-
ture, this can be built incrementally by simply updating the
call graph to reflect the changes in the code.

5. RELATED WORK
Several related works dedicated to making mutation testing more
feasible already exist, each of which falls into one of three cate-
gories: “do smarter", “do faster" and “do fewer" [8]. Perhaps in-
cremental mutation testing could loosely fit under “do fewer”, al-
though our aim is to split the cost of mutation testing over iterations
rather than reducing the number of mutants per se. In this particular
paper, our focus was on improving an existing technique rather than
develop a new one. To the best of our knowledge, there is no other
work on improving incremental mutation testing, so we will focus
this section on work from the field of regression test selection, our
main influence of this work.

In the field of regression test selection, given a program P, the mod-
ified version of P, P′, and a test suite T , the test case selection
problem involves finding a subset of T , T ′, with which to test P′

[16]. This problem has strong parallels with our problem of find-
ing a subset of methods in an evolution of the program, which are
likely to produce valuable mutants during mutation analysis.

The literature contains a wide variety of approaches to address-
ing the problem including amongst others dynamic program slic-
ing [1], data flow analysis [7], symbolic execution [15] and graph
walking [13]. Of these, the latter is most closely related to the
work presented here. Graph walking techniques involve the gen-



eration of graph-based internal representations of a program which
are subsequently analysed with respect to a certain question. In
general, graph walking techniques involve the generation of one of
the graph-based representations for both P and P′, and then walking
through the graphs looking for paths which lead to modified code.
Once these paths have been identified, test cases which execute
control-dependent predecessors4 of the modified code are selected.
In this work, we adopt the same technique albeit to select methods
for mutation generation rather than tests for regression testing.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a technique which utilises control flow
analysis in order to more precisely characterise the differences be-
tween two versions of a program. We also discussed results from
two case studies which indicate that the technique does in fact im-
prove the effectiveness of incremental mutation testing, albeit at a
cost in performance. Having said that, in most cases, the loss in
performance still resulted in a substantial speedup over traditional
mutation testing. We also observed that whilst the nature of change
and the topology of the call graph will influence performance, in
general, the more frequently incremental mutation testing is exe-
cuted, the more cost-effective it becomes. That is to say that car-
rying out mutation analysis at the end of each day is more cost
effective than carrying it out once a month. This is because a large
number of changes would have occurred in the longer time period,
resulting in more mutants needing to be generated and analysed in
one run.

We acknowledge that the results presented here suffer from threats
to validity in the same way that all case study based evaluations
do. Two case studies are by no means representative of the entire
population of software systems and further studies are required in
order to generalise the results. However, we argue that the results
have provided some interesting initial insights into the costs and
benefits of the present technique.

6.1 Future Work
There are several avenues of exploration to further improve the ef-
fectiveness of incremental mutation testing. Firstly, we would like
to carry out wider-reaching case studies on projects in both the
industry and the open-source world. This should help us form a
better understanding about the contexts in which the technique is
likely to be beneficial when compared to traditional mutation test-
ing. Secondly, we would also like to consider other types of cou-
pling when analysing the impact of a syntactic change on a system.
More specifically, we would like to investigate how considering
data flow within the system would affect incremental mutation test-
ing and what (if any) overlap this would have with control flow
analysis.

7. REFERENCES
[1] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London.

Incremental regression testing. In International Conference

on Software Maintenance (ICSM), volume 93, pages
348–357, 1993.

[2] F. E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19,
July 1970.

[3] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Proceedings of

4Control dependent predecessors of a node N in a control-oriented
graph representation of a program are nodes which at some point in
the execution have an influence as to whether or not N is executed.

the 27th international conference on Software engineering,
ICSE ’05, pages 402–411, New York, NY, USA, 2005. ACM.

[4] M. A. Cachia, M. Micallef, and C. Colombo. Towards
incremental mutation testing. Electronic Notes in Theoretical
Computer Science, 294:2 – 11, 2013. Proceedings of the
2013 Validation Strategies for Software Evolution (VSSE)
Workshop.

[5] M. E. Delamaro, J. Maldonado, A. Pasquini, and A. P.
Mathur. Interface mutation test adequacy criterion: An
empirical evaluation. Empirical Softw. Engg., 6(2):111–142,
June 2001.

[6] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph
construction in object-oriented languages. SIGPLAN Not.,
32(10):108–124, Oct. 1997.

[7] M. J. Harrold and M. L. Soffa. Interprocedual data flow
testing. In ACM SIGSOFT Software Engineering Notes,
volume 14, pages 158–167. ACM, 1989.

[8] Y. Jia and M. Harman. An analysis and survey of the
development of mutation testing. Software Engineering,
IEEE Transactions on, 37(5):649–678, 2011.

[9] H. M. Jia Y. An analysis and survey of the development of
mutation testing. ACM SIGSOFT Software Engineering
Notes, 1993.

[10] T. C. Lethbridge and R. Lagamiere. Object-oriented software
engineering - practical software development using UML
and Java. MacGraw-Hill, 2001.

[11] G. Meszaroz and A. Wesley. Xunit test patterns: Refactoring
test code. Citado na, page 27, 2007.

[12] N. Nagappan. A Software Testing and Reliability Early
Warning (STREW) Metric Suite. PhD thesis, 2005.

[13] G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software
Engineering and Methodology (TOSEM), 6(2):173–210,
1997.

[14] O. Shivers. Control flow analysis in scheme. SIGPLAN Not.,
23(7):164–174, June 1988.

[15] S. S. Yau and Z. Kishimoto. A method for revalidating
modified programs in the maintenance phase. In Annual
International Computers, Software & Applications
Conference (COMPSAC), volume 87, pages 272–277, 1987.

[16] S. Yoo and M. Harman. Regression testing minimization,
selection and prioritization: a survey. Software Testing,
Verification and Reliability, 22(2):67–120, 2012.


	Introduction
	Background
	Incremental Mutation Testing
	Static Analysis

	Proposed Approach
	Evaluation
	Benefit: Mutant Increase Analysis
	Cost: Execution Time

	Related Work
	Conclusions and Future Work
	Future Work

	References

