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THE EULER CHARACTERISTIC OF
A GENERIC WAVE FRONT IN A 3-MANIFOLD

S.IzuMIiYA AND W.L.MARAR

Abstract. We give a relation between Euler characteristics of a generic closed Legendrian
surface and its wavefront.

INTRODUCTION

In this note we shall compute the Euler characteristic of a generic wave front in a 3-
manifold.

Let N be a (2n + 1)-dimensional smooth manifold and K be a contact structure on N
(i.e. K is a nondegenerate tangent hyperplane field on N). An immersion i : L — N
is said to be Legendrian if dimL = n and di (T, L) C K, for any z € L. We say that
a smooth fibre bundle n : E — M is Legendrian if its total space E is furnished with a
contact structure and its fibres are Legendrian submanifolds. For a Legendrian immersion
t:L— E,mo0i:L— M is called a Legendrian map and the image of the Legendrian map
7 o1 is called the wave front of i. It is denoted by W(4).

From now on, we only consider the case of n = 2. Then it is known that a generic wave
front has (semi cubic) cuspidal edges (A2), swallowtails (A3) and points of transversal self
intersection (A3 A;, A1Az, A1A414;) as singularities ([1], see Fig. 1). We shall refer to the
A1A1A;-type point as a triple point of i.

Az A A1 4, A4, A1A A
Fig.1

If L is a closed surface, then the number of swallowtails and triple points are finite. Our
main result is the following :

THEOREM. Let ¢ : L — E be a generic Legendrian immersion of a closed surface. Then
we have

X(WE) = (D) +76) + 22,
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where x(X) is the Euler characteristic of X, T(i) is the number of triple points on W (i)
and S(i) is the number of swallowtails.

We remark that the corresponding result for a generic wave front in a 2-manifold is easily
verified and that
x(W(3)) = —d(3),

where d(z) denote the number of double points on W(32).

On the other hand, we consider an equidistant surface of a closed surface in 3-dimensional
Euclidian space. If the distance is sufficiently small, then the equidistant surface is diffeo-
morphic to the original surface. However, for some distances, singularities may be appeared
in the equidistant surface and it may not be homeomorphic to the original surface. Hence,
it is interesting to study the relation between topologies of the equidistant surface and of
the original surface. These subjects are studied in the theory of Legendrian singularities.
In fact, it is known that singularities of equidistant surfaces are locally diffeomorphic to
singularities of wave fronts (see [1]). Then we show the general property of the Euler
characteristic of global wave fronts.

In order to prove the theorem, we shall apply the method which has been introduced to
compute the Euler characteristic of the image of a stable perturbation of an A-finite map
germ in [2].

All maps considered here are class C* unless stated otherwise.

1.PROOF OF THE THEOREM

In this section we shall give a proof of the theorem. Let i : L — E be a géneric
Legenendrian immersion of a closed surface. Since the Euler characteristic is a topological
invariant, then we can ignore cuspidal edges. We now define the following sets:

D%(3) = cl{z € S|§(x o) m 0i(z) > 2},
Ds(i) ={z € Dz(i)l (7o i)"17r oi(z) = 3},
D%(3,(2)) = {z € D*(i)|§(x 0 i) w0 i(z) = 1},
where c/X is the topological closure of X. Then we have the following diagram:
D3(i)

h

D*(;,(2)) —— D(i)

k

I — W@ CM,
where h, j, k are inclusions.

By the characterization of generic wave fronts (see [ ]), D?(i) is a union of curves on L
with self-intersection and circles, D?(i) is the inverse image of triple points and D?(s,(2))
is the set of swallowtails of m o1. It follows that these are immersed submanifolds of L with
dim D?(:) = 1 and dim D3(i) = dim D?(3,(2)) = 0.

In order to prove the theorem, we need the following formula.
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LemMa 1.1, x(W() = x(Z) - $x(D*(1) + bx(D*(;, (2)) - 2x(D*()).
PRrOOF: Consider the equation

*) X(W(E)) = ax(L) + Bx(D*(5)) + 7 x(D*(i,(2))) + 8§ x(D*(3)),

where @, B,7 and é are unknown variables. We solve this by a purely combinatorial
method.

We now construct a triangulation K; of the stratified set W(7) as follows: We start
to triangulate W (:) by including the image of D?(7,(2)) and the image od D3(i) among
the vertices of K;. After this, we build up the one-skeleton Kgl) of K; so that the image
of D?%(4) is a subcomplex of K,-(l). We complete our procedure by constructing the two-
skeleton K ,(2).

Since 7o and its restrictions to D%(3), D?(4,(2)) and D3(¢) are proper and finite-to-one
mappings, then we can pull back K to obtain a triangulation for L, D?(s), D?(4,(2)) and
D). Let C§¥ be the number of j-cells in X, where X = W(3), L, D?(i), D?(5,(2)) or
D3(z). Then the equation (*) can be written by

S C] = a 3 (-1iCk + B Y (-1yic]
j J J

. . 2¢(: . 37
+7 Z(_I)JCJ{J (i,(2)) + 52(_1).10]? (t)’
j i
where C'JK = 0 if ¢ > dimX. So, if we can find real numbers «, 8, ¥ and § such that
- . 2/ 2 i 3¢z

for any j, then we have solutions of the equation (*). By the construction of the trian-
gulation, we may concentrate on solving (**) in the case when j = 0. We remark that
moiis 3 to 1 over the points in the image of D3(7), 1 to 1 over the points in the image of

D?(¢,(2)), 2 to 1 over the points in the image of D?(z) — (D?(3,(2)) U D3(i)), and 1 to 1
over the points in the image of § — D?(f). It follows that the equation

CJVG) — OZC({' + ,3052(1.) + ‘70()Dz(i'(2)) + 50(?3(')

is equivalent to the system of linear equations :

1 1 00 0\ /«a
1| (2 200})[58
1711110}~
1 3 3 0 3 )

We can easily solve this equation, so that a =1, § = ~1/2, v = 1/2 and § = —1/6. This
completes the proof.



Then we can prove the theorem.

PROOF OF THE THEOREM: By the definition we have x(D?(7,(2))) = S(i) and x(D3(:)) =
3T(¢). Since D?(z) is a union of closed curves on the surface L with 3T(¢) crossings, then
we can triangulate it with 3T°(¢) +n 0-cells and 67'(:) + n 1-cells, where n is the number of
circles in D2(i). It follows that x(D?(i)) = —37T(¢). If we substitute these on the formula
in Lemma 1.1, then we have

X(W(5)) = X(E) + T(E) + 550,

This completes the proof of the theorem.
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