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A qualitative theory of similarity pseudogroups
and

an analogy of Sacksteder’s theorem

TosHIYUKI NISHIMORI

1. Introduction

The qualitative theory of foliations has been developed for foliations of codimension one
(see Sacksteder [7], Cantwell-Conlon [1] and Hector [4] for example). Now we intend
to study qualitative propertiés of foliations of higher codimensions. Note that all the
non-singular dynamical systems can be considered as foliations and there are numberless
researches on the qualitative theory of dynamical systems. Such researches are not our
intention. So we must make our purpose more concrete. The most typical result in the

qualitative theory of codimension one foliations is the following theorem.

'THEOREM (Sacksteder’s Theorem, see Sacksteder [7]) Let F be a codimension one C?
foliation of a closed manifold M, and M C M an exceptional minimal set with respect to
F. Then there exists a leaf F of F contained in M such that F has a contracting element
in its linear holonomy group LHol( F).

We demand that our intended study should contain an analogy of the above Sack-
steder’s theorem, and look for a propriate and simple category of foliations on which we
~should work. A natural idea is to consider foliations with transverse geometric structure
(see Godbillon [3] for example). The automorphism groups of the propriate geometric
structures are requested to contain contracting elements for an expected analogy of Sack-
steder’s theorem. These considerations guide us to investigate foliations with transverse

similarity structure (see Ghys [2] and Nishimori [6]).



In this paper, we are going to treat similarity pseudogoups I on RY in place of codi-
mension ¢ foliations F with transverse similarity structure. As is well known, there exist
natural correspondences between the terms in the qualitative theories of these objects. For
example, one consider T-orbits in place of leaves of , and the stabilizer at a point in a
I'-orbit in place of the holonomy group of a leaf of F. It is easy to translate results on
pseudogroups to those on foliations. The reason why we treat pseudogroups is to avoid the
ambiguities completely and to make the skeleton of our arguments simple and apparent.

The plan of this paper is as follows. In §2, we give our formulation for similarity
pseudogroups. In §3, we introduce a concept “I'-orbits with bubbles” and state our main
theorem (Theorem 3.3), which is an analogy of Sacksteder’s theorem. In §4, we prove this

theorem.

2. Similarity pseudogroups and the qualitative theory

In this section, we give a convenient formulation of similarity pseudogroups for our purpose.
This formulation makes the arguments simple and avoids the ambiguities (for example,
those on the domains of elements of pseudogroups) but does not lose the generality of

phenomena in the view point of the qualitative theory.

DEFINITION 2.1. (1) Denote by I‘:ifll_'* the set of homeomorphisms h : U — V satisfying

the following conditions:

~ (a) The domain U and the range V of h are non-empty, bounded, convex, open
subsets of R?. (We denote D(h) = U and R(k) = V.)
(b) There exists an orientation preserving similarity transformation & : R¢ — RY
such that A(U) =V and k|y = h. (Such k is determined uniquely by A& and
we call h the eztension of h.)
(2) Let Isim = I‘:ifi’* U {idrs,idg }, where idy is the unique transformation on the empty
set §. (We bring in the transformation idy in order that we can consider the composition

for any pairs of elements of pseudogroups and make the description simple.)

DEFINITION 2.2. (1) For f,g € T5%, let U = g~'(R(g) N D(f)) and V = £(R(g) N D(f)),
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and define the composition fog:U — V by

(f o g)(z) = f(g(=)) forall 2 € U.
(2) For f € T5%, let U = R(f) and V = D(f), and define the inverse f~1 : U - V by
F U f(z)== forall z € V.

(Note that if f, g € T5™ then fog, ™' € T%im)

DEFINITION 2.3. A subset T' of I‘Zi,’i is called a pseudogroup if it satisfies the following

conditions:

(a) idRq er.
(b) If f,g €T, then fogeT.
(¢) X feTl, then f~ T.

(Note that I‘;ﬁ is itself a pseudogroup.)

DEFINITION 2.4. Let Iy be a subset of I‘Zi,r_';‘_’*.

(1) T'p is called symmetricif h € Ty implies R~ eTy.

(2) Denote by (T'g) the intersection of all the pseudogroups I' C I‘Zi,’fﬁ which contains T'y.
(Clearly (T'o) is a pseudogroup.) We call (I'g) the pseudogroup generated by I'y.

Hereafter let T'y be a symmetric subset of I‘:i,’_':’*, and T' = (T).

DEFINITION 2.5. (1) Denote by W(I'p) the set of words with I'y as the alphabet. In order
to distinguish a word from a composition, we prefer to write a word w € W(I'q) in such a
way as w = (h,,:, -+ ,hy) rather than w = hp, -+ hy. In this way, we identify W(I'g) with
the disjoint union I _o(To)™, where (T'g)™ denotes the product of m-copies of I'y and
(To)? is the singleton consisting of the empty word ( ).

(2) For w = (hy, -+ ,h1) € (To)™ (m 2 1), let g,y = hyp 0 --- 0 hy. For the empty word
(), let gy = idrs.



The following proposition gives a description of elements of the pseudogroup I' gen-

sim,*

erated by the symmetric subset I'g C | R

PROPOSITION 2.6. (1) For each w € W(I'y), g, € T = (Ty).
(2) The map & : W(T'o) — T defined by

®(w) = gy for all w € ‘W(I‘o)
is surjective.
Proor: (1) is clear. (2) follows from the assumption that Ty is symmetric. (J

The terms in the quailtative theory are defined as follows.

DEFINITION 2.7. (1) For 2 € RY, we call

I'(z) = {g9(2): g € T, = € D(g)}

the I'-orbit of 2. (Note that z € I'(z).) ’
(2) A subset E of RY is called a I'-orbit if there exists z € R? with E = I'(z).

‘DEFINITION 2.8. A subset A C R is called T-invariant if, for any # € A, the I'-orbit I'(z)

is contained in A.

DEFINITION 2.9. A subset M C RY is called a T-minimal setif M is a minima.i element of

the set of closed, non-empty, I'-invariant subsets of R? partially ordered by the inclusions.

The concept for a I'-orbit corresponding to the limit set of a leaf of a foliation is the

derived set in the following.

DEFINITION 2.10. For a subset A of R?, denote by Der(4) the set of the points y € RY
such that there exists a sequence 21, 2;,: - € A—{y} with y = lim,,_,, 2,. We call Der(A)
the derived set of A.



DEFINITION 2.11. A T-orbit E is called infinite if #(E) = oo, bounded if E is bounded as
a subset of R4, and proper if E N Der(E) = §.

We give the following propositions as typical examples of the propositions in the
qualitative theory of similarity pseudogroups, and omit the other natural propositions in

it.

ProPoSITION 2.12. Ifa subset A of RY is I'-invariant, then so are the interior Int(A), the

closure A and the derived set Der(A).
ProoF: This follows from the standard arguments. [J

ProrosiTioN 2.13. If a T-orbit E is infinite and bounded, then the derived set Der(E)

contains a compact I'-minimal set.

PrOOF: The assumption implies that the derived set Der(E)‘ is non-empty, compact and

I'-invariant. Hence the proposition follows from Zorn’s lemma. []



3. Statement of the main theorem

The purpose of this section is to describe briefly how we reaches the concept “I'-orbits with
bubbles” and to state our main result.

We are going to find an object corresponding to an exceptional minimal set M of a
codimension one foliation. Note that a boundary leaf of such M is non-compact, non-
proper and semi-proper. We begin by describing a I'-orbit which may be considered as an
analogy of such a leaf.

Hereafter let T' be the pseudogroup generated by a ﬁmte symmetric subset I'y of I‘slm *
and zo & point in the bounded T'-invariant open subset  := Uyer, D(h) of RY such that
the T-orbit I'(2¢) is infinite and non-proper. Since I'(29) C £, it follows that I'(zo) is
bounded.

An observation on the holonomy pseudogroup of an exceptional minimal set of a
codimension one foliation leads us to make the following natural assumption, which can

always be satisfied for such a holonomy pseudogroup.

AssuMPTION (S). There exists a constant € > 0 such that the distance dist(T'(zq), A) is

greater than €, where A = Uhero0D(ho).

Note that A is a compact subset of R?. This assumption (S) implies that the closure
-IW is compact and contained in the open subset 2 — A of R9.

In order to obtain a result analogous to Sacksteder’s theorem on codimension one foli-
ations, we must look for a point z in the closure I'(zg) such that there exists a contracting
element in the stabilizer I, :={g €T :2 € D(g), g(z) = 2}, which is the concept for the
I'-orbit I'(2) cprrespondmg to the holonomy group of a leaf of a codimension one foliation.

Here we investigate the following two examples.

EXAMPLE 3.1. Consider the case ¢ = 2.

() Let U=]~¢€1+¢[ x ] —¢1+¢ for some e € ]0,1/100]. Take four points

2o = (0,0), 21 = (1,0), zg = (1, 1), g = (0,1) S R?
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and define similarity transformations g ,’El, iz;, hs : R? — R? by
- 1 2
hi(z)zg(z—z;)+z; for all z € R?,

and let h; = hiJy : U — h;(U). Denote by T the pseudogroup generated by the finite

symmetric subset

Lo i= {ho, -+ b, by, hg '} C THR™.

It is easy to see that I'(zo) = I'(21) = I'(22) = I'(23) = C x C, where C is the standard
Cantor set. Note that the stabilizer I';, contains the contracting element hq. -

(2) Let U = {z € R?: ||2|| < 1+ €} for some € € ]0,1/100[. Take an irrational rotation
h:R? - R? fixing the origin 0 € R? and let h = hjy : U — U. Denote by I' the
pseudogroup generated by I'o := {h,h™'} and put 2o = (1,0) € R%. Then we see that

T(zo) = S':={z € R?: [lof| =1}.

Clearly the stabilizer T',, contains no contracting element.

The first example is aflirmative for our problem but the second one is not. By watching
carefully these examples (and also boundary leaves of exceptional minimal sets of codi- ‘
mension one foliations), we find the difference : the first example admits “bubbles” defined

below and the second one does not.

DEFINITION 3.2. A T-orbit E C RY is called with bubbles if, for each z € E, there exists
a non-empty, bounded, convex, open subset B, (called a bubble at z) of RY satisfying the

following conditions:

(a) =€ 8B,, where 8B, := B, — B,,.
(b) B,NB,=0ifz+#y. |
(c) X h€Toandz e D(h)NE satisfy h(z) # ¢, then h(B,) = Bi(a),

where h is the extension of k.



One can easily find “bubbles” for the I-orbit I'(zo) in Example 3.1 (1) and cannot in

the case of Example 3.1 (2). Our main result is the following theorem.

THEOREM 3.3 (An Analogy of Sacksteder’s Theorem). Let T' be the pseudogroup gener-
ated by a finite symmetric subset Ty of].‘:ifi’* and zg a point in the union ) 1= Uner, D(h)
such that the I'-orbit I'(2o) is infinite and non-proper. Suppose that the condition (S) is
satisfied and the I'-orbit T'(z¢) is with bubbles. Then there exists a point 2 in the closure

I'(zo) such that the stabilizer T, containes a contracting element,

We consider this result as a starting point for the qualitative theory of foliations of
higher codimension. Now we have two immediate ways to proceed. Onme is t6 prove this
theorem in the more general situation. The other is to prove an an#logy of another theorem
in the qualitative theory of codimension one foliations. An attempt in this way is &one by

Matsuda [4].

4. The proof of Theorem 3.3

Let T' be the pseudogroup generated by a finite symmetric subset 'y of I’:ifi’* and zg a
point in Q = Unery D(h) such that the orbit I'(zo) is infinite and non-proper. Suppose
that the condition (S) is satisfied and the I'-orbit I'(zo) is with bubbles {B,},,Ep(a,;).

We begin by some definitions.

DEFINITION 4.1. (1) For a word w € W(T's), denote by |w| the word length of w; that is,
|wl =mif w=(hpm, - ,h1), and |w| = 0 if w is the empty word ().
(2) For 2,y € R? with y € I'(2), put k

dr,(2,y) = min{Jw| : w € W(Ty), = € D(g,) andrgw(a:) = y}

(Distinguish dr,(2,y) from the Euclidean distance ||z — yll.)

DEFINITION 4.2. Let 2, y € R%. A word w € W(T'y) is called a shori-cut at z to y if
2 € D(gu); 9u(2) =y and |w| = dry(2, y).



The bubbles {B; }2cr(s,) are preserved by short-cuts as follows.

LeMMA 4.3. Let #, y € T'(2¢) be distinct points and w = (Rumy+++ yh1) a short-cut at = -
to y. Then g,(B,) = By, where g,, is the extension of g, = h,, 0 - o hi. |

ProOF: Fori=1,---,m,let y; = hjo---ohy(e) € I'(2o) and put yo = # € I'(2g). Since w
is a short-cut at #, the points # = yo, -+, ym = y are pairwise distinct. Clearly h;,, € I'

and y; € D(hi41) NT(2q) for i = 0,--- ,m — 1. Therefore

Gw(Ba) =hpo---0 h, ol_z.l(Byo)
=hpmo--- 0712(3211)

== i"m(Bqu) = By,, = B,.

This completes the proof of Lemma 4.3. O
The following is a key observation.
LeMMA 4.4. The union B := Uger(s,)Ba is bounded.

Proor: Take a cone C,, with z¢ as vertex such that Int(C,,) C B,,. For each 2z € T'(zy),
choose a short-cut w € W(T'g) at 2 to 2, and put Cp = §y(Cs,). Then C, is a cone with
z as vertex and Int(C’z) C B,. Note that C, is similar to C., and the similarity ratio of
C: to C,, coincides with that of B, to B,,. We proceed by intuitive arguments. Take a
very large sphere S with 2 as center. We may suppose that S is sufficiently large in such a
way that the.union‘ Q2 = Uper,D(h) can be almost identified with #o. There exists a large
sphere S’ with 2y as center such that if a bubble B, intersecté S, then the corresponding
cone C, intersects S'. By taking S’ of a propriate size, we may suppose that, for all the
points 2 € I'(zo) with B, NS # @, the inersections C, N S’ are almost congruent and so
“their ¢ — 1 dimensional volumes have almost the same positive value v. The number of
such 2’s is finite since it is almost over estimated by the ratio of the volume of S’ to the

value v. Hence the union B = U;,,Ep(;,,‘u yBs is contained in the union of the disk surrounded

by S and the finite number of bubbles, which implies that B is bounded. [J
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As an application of Lemma 4.4, we have the following.

LeMMA 4.5. (1) 32, cr(ay) VOU(Ba) < 0.
(2)-EzEF(zg)(dia‘m(B3))q < 0.

(3) There exists a sequence {p1,}.; of positive numbers such that

(a) pn > pnt1 foralln € N,
(b) limn-—»oo Hn = 0)
(¢) ifwe W(Ty) is a short-cut at zg, then diam(B,, (5,)) < fin,

where n = d(z9, gw(20)) = |w|.

Proo¥F: (1) This follows directly from Lemma 4.4.

(2) Since the bubbles {B,},cr(s,) are similar, fhe volumes {vol(B.)}scr(s,) are directly
proportional to the numbers {(diam(B.))?}zcr(a,).- Hence (1) implies (2).

(3) For n € N, let

én = sup{ diam(B,) : 2 € I'(20), dr,(2,20) = n },
which is not infinity because

(6)7 = Y (diam(B.))7 < co.
2€T(w0)
Since the sequence 81, &, 63; +++ is weakly decreasing and has a lower bound 0, there
exists the limit 6, := lim, 00 8, = 0. If 6o, > 0, then there exists an infinite nﬁmber of
z € (o) with diam(B,) 2 6 /2, which contradicts the inequality in (2). Hence 8, = 0.
Now put g, = 6, +1/n for each n € N. Ii is easy to see that the sequence {p.n},‘f:l satisfy
the conditions (a), (b) and (c). O

In contrast with the action of a group of diffeomorphisms on a manifold, we must
always worry about the domains of elements in the pseudogroup T', which occupies an
important part in our arguments. Here we give a lemma which follows immediately from

the assumption (S). For # € R? and » > 0, put U(z;7) = {y e R9: |y — 2z < r}.

10



LEMMA 4.6. If h € Ty and 2 € T'(29) N D(R), then U(z;€) C D(h).

PrOOF: Suppose that U(z;¢€) ¢ D(h) and take a point y € U(2;¢) — D(h). Since U(z;¢)

is a convex subset of RY containing the ,points z and y, the line segment L connecting =
and y lies in U(;¢). Since z € D(h) and y ¢ D(h), the line segment I must intersects
OD(h). Hence U(z;¢) NOD(h) # §. This contradicts the inequality dist(T'(z0),A) > € in
the condition (S). O

The following lemma is an analogy of a useful lemma in Sacksteder [7]. Let § =

sup{ diam(B,) : = € I'(zo) }.

LEMMA 4.7 (The Short-cut Theorm). If w € W(L'y) is a short-cut at o, then

diam(B

Ueo;e- T2 Be0)y ¢ pg ),

ProoFr: We proceed by an induction on m = |w].
(I) If m =1, then h := g, is an element of the generating set T'y. Since diam(B,,)/§ < 1
and 2o € I'(29) N D(h), Lemma 4.5 implies that

diam(B,

U(zo;e€ s zo)) C U(zo;¢€) C D(h) = D(gu)-

(II) Suppose that Lemma 4.7 is proved for short-cuts of word length less than m. For a
short-cut w = (hpm, - ,h1) € W(To) at 2q, let w' = (hpm_1,--- ,h;) and g’ = g,. Note
that w' is also a short-cut at 2o and that g'(2¢) € I'(29) N D(hy). By the induction
hypothesis, it follows that U(zo;€ - diam(Ba,) /6) C D(g') and the following computation
has the meaning:

dla.m(B diam(Bzo) dia.m(Bg:(,,o))

TemPeed)) = (g (o) ¢ T Pee) . S0,
C U(g'(z0);€)
C D(hum).

g'(U(zo;e

This implies that

U(zo;e -

ii_im;__ﬁz_)) C D(hp 0g') = D(gw). O

11



Now we are in the final stage of the proof of Theorem 3.3. Let € = ¢ - diam(B,,)/§
and take n € N with g, < diam(B,,)/3. Since the I-orbit I'(2¢) is non-proper, there
exists a point ¢ € (I'(z0) — {20}) NU(20; €0/3) and a short-cut w = (hp, -+ k) € W(To)

at 2o such that g, (2¢) =z and m = n. Then

diam(B,) = diam(By, (s,)) < pm < pm < 'dlampEBzL).

By Lemma 4.7, the domain D(g, ) contains U(zg;€o). It follows that

: diam(B w(20 )
9w (U(20; €0)) = U(gw(z0); €0 - dia,m(gB( )) )
&0
S |
CU(z3
2
C U(2o; 3 - €o)-

Hence, according to the Brouwer’s fixed point theorem, there exists a point z € U(zo;2€0/3)
fixed by g,,. Furthermore we see that the similitude ratio of g, is smaller than one. There-

fore g,, is a contracting element of I' and
z= kli’n;o(gw)k(zo) € I'(zo)-

This completes the proof of Theorem 3.3.

12
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