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Abstract
Ensuring an adequate food supply in systems that protect environmental quality and conserve natural
resources requires productive and resource-efficient cropping systems on existing farmland. Meeting
this challenge will be difficult without a robust spatial framework that facilitates rapid evaluation and
scaling-out of currently available and emerging technologies. Here we develop a global spatial
framework to delineate ‘technology extrapolation domains’ based on key climate and soil factors that
govern crop yields and yield stability in rainfed crop production. The proposed framework adequately
represents the spatial pattern of crop yields and stability when evaluated over the data-rich US Corn
Belt. It also facilitates evaluation of cropping system performance across continents, which can
improve efficiency of agricultural research that seeks to intensify production on existing farmland.
Populating this biophysical spatial framework with appropriate socio-economic attributes provides
the potential to amplify the return on investments in agricultural research and development by
improving the effectiveness of research prioritization and impact assessment.

Introduction

Agronomy is the science of crop and soil management
to produce food, fiber, and forage in a sustainable
manner that does not deplete or degrade resources
upon which future production depends. It is an applied
ecological discipline that relies heavily on field experi-
ments to identify improved farming methods involving
interactions amongst crop rotation, crop variety, tillage
practices, nutrient, water, weed, pest, and disease
management, and their longer-term effects on soil
properties that influence crop production. Each year
billions of dollars are invested globally by the public
and private sectors on agricultural research and devel-
opment (Pardey et al 2016). Field experiments across
many thousands of sites evaluating crop response to
new technologies7 that result from this investment seek
to identify those practices that raise yields, reduce risk,

increaseprofits, andaremore environmentally friendly.
However, extrapolation of findings from these experi-
ments to facilitate adoption by farmers is limited by the
lack of a robust spatial framework to identify cropland
‘cohorts’ with similar soils and climate where a com-
parable response to a given set of technologies would
be expected. Likewise, the ability to utilize these results
to support more effective research prioritization and
impact assessment is limited by the lack of an appro-
priate spatial upscaling method to estimate outcomes
of technology adoption on crop production and nat-
ural resources at regional, national, and global scales
(Grassini et al 2017, Kouadio and Newlands 2015).

7 Here we use technology in a broad sense to include single fac-
tors such as sowing dates, tillage methods, crop varieties, fertilizer,
irrigation, and pest management practices, as well as system-level
innovations such as a new crop rotation, an alternative crop, and
inclusion of cover crops.
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Hence, field-based agronomic research currently relies
far too much on ‘trial and error’, which slows progress
towards improved farm yields, profit, and environmen-
tal outcomes while also constraining effectiveness of
research prioritization.

A robust spatial analysis framework that can delin-
eate regions in which crop production technologies
perform similarly would help address current limita-
tions on extrapolation of results from agronomic field
experiments. In principle, the impact of a particular
agronomic technology, and the probability of adoption
by farmers, should be predictable and of reasonably
similar magnitude within a spatially defined region
with similar biophysical (primarily weather and soil
properties) and socio-economic (e.g. output and input
prices, farm size, access to markets, credit, legislation
and information) attributes. A unique combination
of biophysical and socio-economic circumstances is
hereafter referred to as a ‘technology extrapolation
domain’ (TED). As a first step towards identifying a
suitable TED framework, we focus on the biophysical
attributes that defineaTEDfor rainfed cropproduction
while acknowledging the need to supplement this bio-
physical framework with appropriate socio-economic
attributes.

While conceptually robust, the development of
an appropriate biophysical TED framework has been
an elusive goal for three reasons. The first concerns
availability of good quality data of sufficient spatial cov-
erage and resolution for climate and soil factors that
have greatest influence on crop yields and response
to management. These primary factors include rain-
fall and temperature regimes, as well as plant-available
water holding capacity in the root zone (PAWHC8).
Recent advances in database management and public
accessibility of climate and soil databases with com-
plete terrestrial coverage now make it possible to
overcome this deficiency (Leenaars et al 2018, Soil
Survey Staff 2016, van Wart et al 2013). A second
and more difficult challenge reflects the need for a
framework that strikes an effective balance between
being too coarse such that variability of climate and
soils within TEDs is so large that crop response to a
given technology also varies, or too fine such that the
benefits of aggregation are lost. Indeed, as noted by
van Wart et al (2013), previous attempts to delineate
TEDs have resulted in spatial frameworks that were too
fine (Danvi et al 2016, Singh et al 1999) or too coarse
(FAO 1978, Fischer et al 2002, Padbury et al 2002,
Soil Survey Staff et al 2006, Wood and Pardey 1998)
to be used to make agricultural research and develop-
ment more efficient (see section S1 in supplementary
material available at stacks.iop.org/ERL/13/054027/
mmedia). Third, and perhaps most important, is
the need to validate performance of a TED frame-
work for ability to predict crop and cropping system
performance. While several previous studies have eval-
uated the robustness of crop yield extrapolations and

their uncertainty using both crop simulation and
statistical models (e.g. Hochman et al 2016, Koua-
dio and Newlands 2015, van Bussel et al 2015), the
focus of these previous efforts was on assessing the
performance of these spatial frameworks at small geo-
graphic regions with approaches that require copious
amount of data inputs. In contrast, the focus of this
article is towards development and evaluation of a
generic spatial framework that can be used to help
prioritize agricultural research and development for
sustainable intensification of crop production systems
across spatial scales, from sub-national to national and
global.

Although continuing trends of lower cost data stor-
age and increased computing power, coupled with
publicly available databases onweather and soil proper-
ties with high spatial resolution may someday allow use
of ‘customized’ extrapolation domains for evaluation
of a specific technology or package of technologies,
(e.g. fertilizer efficiency products, tillage practices,
seeding rates, pest control measures, new crop cul-
tivar or hybrid, new crops and crop rotations, and
so forth), that capability is currently a bridge too
far. Current knowledge and models are not suffi-
ciently robust for development of such customized
spatial frameworks, especially when multiple interact-
ing technologies are involved.Until suchcustomization
is possible, the TED framework proposed here pro-
vides an initial, but substantive step towards the goal
of greater efficiency and impact from investments in
agricultural research worldwide, the more so because
it is possible to make it more customized by adding
other variables, including socio-economic variables,
that are relevant for out-scaling and adoption of
technology.

The objectives of this study were to: (i) develop
extrapolation domains for technology transfer in crop-
ping systems; (ii) perform a quantitative validation of
the TED scheme for its ability to represent spatial vari-
ation in rainfed crop yield and the associated temporal
variability; and (iii) demonstrate potential applications
of the TED scheme. Although the TED framework
can be applied worldwide, the evaluation of the TEDs
requires detailed and spatially explicit data of weather,
soil, crop management and yields. Hence, this paper
reports initial testing of the framework in data-rich
regions, including the US, Argentina, and Australia.

8 PAWHC (in millimeters) represents the capacity of soil to store
water to support crop growth. The size of this water reservoir
determines the degree to which a soil can buffer against transient
periods of water deficits when rainfall does not meet crop water
requirements. PAWHC depends on the depth to which roots can
grow, as determined by soil physical and chemical properties, and
on soil particle size (called soil texture). While other soil factors
are also important, such as nutrient stocks, pH, salinity, and soil
porosity, these can be modified by management and are therefore
considered secondary factors and are not used to delineate TED
boundaries.
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Methods

We build on the spatial framework of the Global Yield
Gap Atlas (www.yieldgap.org) (van Bussel et al 2015),
which was developed to estimate crop yield gaps at
local to global scales. A yield gap in rainfed agricul-
ture is defined as the difference between: (i) potential
rainfed yield when a crop is grown without limita-
tions from nutrient deficiencies or pests and diseases,
and (ii) actual yield obtained by the farmer. Potential
rainfed yields are determined by rainfall, temperature
regimes, and PAWHC, which also are dominant factors
governing crop response to management technologies
under rainfed conditions. Of these factors, the Global
Yield Gap Atlas framework delineates climate zones
(van Wart et al 2013) that account for rainfall and
temperature regimes, but does not explicitly delineate
PAWHC, which we include here as a primary categor-
ical variable to define a TED. We hypothesize that the
proposed framework is well suited for evaluation of
crop response to new technologies because yields and
yield stability (as quantified with the inter-annual coef-
ficient of variation [CV]) in rainfed cropping systems
are highly sensitive to these climate and soil factors
(Lawes et al 2009, Williams et al 2016). Moreover, risk
associated with temporal variation in climate is espe-
cially important indetermining farmer adoptionofnew
technologies (Koundouri et al 2006, Monjardino et al
2015).

The spatial framework we build utilizes four bio-
physical factors to delineate TEDs: (i) annual total
growing degree-days, which gives an indication of the
length of time during the year that crop growth is not
limited by cold temperature; (ii) aridity index, which
largely defines the degree of water limitation in rainfed
cropping systems; (iii) annual temperature seasonality,
which differentiates between temperate and tropical
climates; (iv) PAWHC, which determines the capac-
ity of a soil to store water to support crop growth
during rain-free periods (see section S2 in supplemen-
tary material). At issue, then, is the degree of detail in
PAWHC, as determined by the number of class inter-
vals for this variable, to optimize spatial resolution for
a robust TED framework. Hence, we develop TEDs at
two levels of spatial resolution as determined by degree
of detail in PAWHC categories (25- and 50 mm class
intervals). The trade-off between degree of detail used
to delineate TEDs and their applicability is illustrated
by estimating the number of zones (TEDs) required to
achieve a desired coverage of crop area.

We assess the performance of the spatial framework
to define TEDs in terms of crop performance by eval-
uating average yields and temporal yield variability of
maize across the US Corn Belt under the hypothesis
that a robust spatial framework will adequately repre-
sent yield differences across a wide range of climate
and soil types (see section S3 in supplementary mate-
rial). The Corn Belt provides an appropriate region of
focus to test this hypothesis because it represents 11%

of continental US land area, accounts for 30 and 28% of
global maize and soybean production (based on 2010–
2014 period) (FAOSTAT 2017, USDA-NASS 2016),
and includes considerable variation in climate and soil
properties that govern water holding capacity in the
root zone (Grassini et al 2015). We evaluate the capac-
ity of this spatial framework to account for variation
in crop performance and management practices across
spatial (a region with a wide range of climate and soil
types) and temporal (years) dimensions using two dif-
ferent databases: (i) county-level maize yield data over a
10 year (2005–2014) time period (USDA-NASS 2016),
and (ii) field-level soybean yield and management data
from 3276 producer fields across the US Corn Belt col-
lected over three years (2014–2016, see section S4 in
supplementary material). We then demonstrate poten-
tial applications of the TED scheme in two ways (see
section S5 in supplementary material). First, we use
the spatial framework to demonstrate how to maxi-
mize coverage of crop production with a minimum
number of testing locations for an existing field trial
network. Second, we assess performance of an alterna-
tive cropping system that involves production of two
crops per year in a TED in Australia, where most farm-
ers currently only grow a single rainfed crop each year.
This alternative cropping system with greater crop-
ping intensity was identified in an analogue TED in
Argentina where most farmers currently practice an
annual rainfed double-crop system.

Results and discussion

Evaluating the proposed technology extrapolation
domain framework
Estimating the number of zones required to achieve a
desired coverage of crop area is essential for efficient
evaluation of a new technology to ensure that field
experiments are located in the most important produc-
tion environments, as determined by climate and soil
type. The challenge is to achieve maximum coverage of
total crop production area with a minimum number of
locations, which reduces costs and increases the extrap-
olation potential from investment in field research. For
example, comparing two TED schemes that differ in
degree of detail in class intervals used for PAWHC
(figures 1(c) and (d)), either 50 mm for a ‘moderate
resolution’ scheme or 25 mm for a ‘high resolution’
scheme, gives a total of 620 (moderate resolution) and
1140 (high resolution) TEDs within the central-eastern
US, respectively. As a point of reference, an increase in
crop water supply of 25 mm in PAWHC can support
a cereal yield increase of about 0.5 Mg ha−1 in regions
like the Corn Belt where pre-plant rainfall is sufficient
to fully recharge soil water holding capacity in most
years but rainfall during the growing season does not
meet crop water requirements (Grassini et al 2015). A
0.5 Mg ha−1 yield increase is equivalent to about 5% of
current average Corn Belt maize yields.
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Figure 1. Climate zones, plant available water holding capacity and resulting technology extrapolation domains (TEDs). Maps of
central-eastern US showing (a) climate zones, (b) plant available soil water holding capacity in the root zone, and (c) moderate and
(d) high resolution TED schemes defined using different class intervals for plant-available water holding capacity in the root zone (50
and 25mm, respectively).

Figure 2. Crop area coverage as a function of number of moderate and high resolution technology extrapolation domains (TEDs).
TEDs were sorted from largest to smallest according to their 2015 harvested maize (a) and soybean (b) area. Black dashed lines indicate
50% of US national maize or soybean area coverage and downward arrows indicate the number of TEDs needed to achieve such
coverage with each TED scheme. Total maize and soybean area in 2015 was 34 Mha and 33 Mha, respectively (USDA-NASS, 2017).

Whilst the finer class intervals would be more
effective at detecting variation in yield response to man-
agement practices across different soil types, a trade-off
emerges in thenumberof field studies located inunique
TEDs required to achieve a desired coverage of crop
area. Using rainfed maize and soybean as examples, the
high resolution TED scheme requires field studies in
27 and 30 unique TEDs for US maize and soybean,
respectively, to reach 50% coverage of total produc-
tion area for both crops, versus field experiments in
only 16 and 18 unique TEDs for the moderate resolu-
tion scheme (figure 2). Achieving a level of coverage
above 50% of total maize or soybean area requires an

increasingly greater number of field studies in addi-
tional TEDs because the relative contribution of each
additional TED follows a strong diminishing return,
especially with the high resolution scheme.

At issue, then, is the degree of spatial resolution
needed to adequately represent crop and cropping
system performance for technology evaluation. Lack
of spatially congruent datasets for crop performance,
however, makes it difficult to compare TED schemes
with different spatial resolution. For example, average
TED size in the high resolution scheme is 4000 km2,
and, in many cases, the TEDs are smaller than coun-
ties, which is the smallest spatial scale at which US
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Figure 3. Average maize yield and its temporal variability across climate zones and soil types in the US Corn Belt. Map of the
central-eastern US showing groups of counties with (a) similar plant-available water holding capacity in the root zone (PAWHC) but
located in different climate zones (each color corresponds to a different climate zone) and (b) similar climate zones ((a) and (b): solid
and hatched colors within counties, respectively) but different PAWHC (each color corresponds to a different PAWHC). Connecting
lines in (a) correspond to NW-SE and SW-NE transects. Letters in (c) were assigned to climate zones following the NW to SE or the
SW to NE directions. Variation in average maize yields, within and amongst the groups of counties defined in (a) and (b), is shown in
(c) and (d), respectively, using box plots. Box indicates 25th, 50th, and 75th percentiles; error bars indicate minimum and maximum
yield within a given class. Values above horizontal axis in (c) and (d) indicate number of counties within each climate zone or PAWHC
class, respectively. Percentage values above box plots indicate the inter-annual coefficient of variation. LSD bar represents the least
significant difference (p = 0.01) among average yields for each climate zone (c) or PAWHC (d).

maize yields are reported. In contrast, average TED size
in the moderate resolution scheme is 7600 km2, which
is roughly the same size as large counties. Therefore,
we used the moderate resolution scheme portrayed in
figure 1(c) to evaluate maize yield and temporal yield
variability, quantified by the CV in yield across cli-
mate zones and soil types in the US Corn Belt based
on annual county-level data from 2005–2014 (USDA-
NASS 2016). For this analysis, counties were grouped
within the same TED if >50% of the maize area in
those counties was located within the same unique
TED. Because most US maize farmers use fertiliz-
ers and modern pest control measures to minimize
yield losses from nutrient deficiencies and pest dam-
age, average rainfed yields are relatively high at about
70% of potential rainfed yields (van Wart et al 2013),
which means that weather and PAWHC, as governed
by the categorical variables delineating TEDs rather
than socio-economic variables, have a dominant influ-
ence on yields. The CV provides a measure of risk
due to impact of year-to-year variation in water supply
as determined by weather and PAWHC, and can be
used as an indicator for yield stability.

Average yield and yield stability were evaluated
across groups of selected counties in two dimen-
sions, temporal and spatial, to assess the capacity of
the TED framework to account for variation in crop

performance across biophysical environments and
years. The spatial analysis was performed along two
transects (i) with different climate but with soil in
the same PAWHC class (figures 3(a) and (c)), and
(ii) with soils with different PAWHC class within the
same climate zone (figures 3(b) and (d)). Results show
that differences in average yields and associated CVs
vary in a manner consistent with expectations due to
climate and soil type. For example, counties with sim-
ilar PAWHC (250–300 mm) but located in different
climate zones exhibited significant differences in aver-
age yield and CV across two directional transects in
the US north-central region (figure 3(c)). In the NW
to SE direction, both average yield and yield stability
increase towards the SE due to longer growing season
and smaller aridity index (i.e. greater water supply).
In the SW to NE direction, yields and yield stability
likewise increase due to smaller aridity index. Simi-
larly, counties located in the same climate zone, but
with different PAWHC exhibited increasing yields and
decreasing CVs in TEDs with greater PAWHC (figure
3(d)). These trends are consistent with trends in rain-
fed yield potential as simulated with a well-validated
maize simulation model that accounts for the effects of
rainfall, temperature regime, and PAWHC (Grassini
et al 2009). In addition, a stepwise multiple regres-
sion analysis identified three of the four categorical
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factors that delineate TEDs as significant variables that
together explain 56% and 37% of the observed varia-
tion in county average farm yield and CV, respectively
(supplementary table S1).

Likewise, temporal analysis of county-level maize
yield indicated that the TED framework accounts for
differences in yield across the majority of years evalu-
ated (see section S4 in supplementary material). This
finding agrees with results from the analysis of field-
level soybean yield and management practices across
the Corn Belt (cultivar, tillage and pesticide use), which
shows that 80%–99% of the variance (excluding the
error term) in yield and management can be explained
by the TEDs alone, while the year term (including TED
x year) explained<20% of the variation in all cases (see
section S4 in supplementary material). To summarize,
the TED framework was satisfactorily evaluated on its
ability to distinguish regions with different yield level,
yield stability, and management practices for two crops
(maize and soybean), across two spatial scales (county-
and field-level), and two dimensions (temporal and
spatial) over a large geographic region with diversity
in climate and soil that account for about one-third
of global maize and soybean production. We are not
aware of previous efforts to quantitatively evaluate the
effectiveness of a spatial framework for characterizing
performance of crop production in this manner across
both time and space.

These results suggest that the moderate resolution
TED scheme is robust for capturing the influence of
key biophysical factors on crop productivity and its
variability and, by extension, to also capture differ-
ences in crop response to crop and soil management
practices that depend on the amount and reliability
of water supply and length of growing season in rain-
fed cropping systems. By contrast, a random selection
of counties did not identify differences in yield and CV
among regions (supplementary figures S1 and S2). And
while a higher resolution TED scheme would increase
precision in discerning the directional trends shown in
figures 3(c) and 3(d), the greater precision comes at
the expense of much larger costs associated with the
increasing number of field studies required to evalu-
ate new technologies at different locations to achieve a
desired level of coverage in total crop area.

Technology extrapolation domains as a tool to guide
evaluation and scaling out
Given the high cost of time and labor to implement
replicatedfield studies in commercial productionfields,
the TED framework presented here can help (i) opti-
mize the number of environments covered by a field
trial to maximize the crop area coverage in unique
TEDs for a given number of sites or, alternatively, to
reduce the number of sites without sacrificing crop
area coverage in unique TEDs, (ii) select specific envi-
ronments for testing a technology where it is most
likely to have the greatest impact based on biophysi-
cal attributes of the selected TEDs, (iii) delineate the

extrapolation domain for specific field trials, allowing
up-scaling of expected impact from trial locations to
TEDs in which the trials were conducted, and (iv) facil-
itate technology transfer across analog TEDs located
in different geographic regions. Potential to improve
efficiency of a field experimentation program is illus-
trated in figure 4(a). The curvilinear line represents
the crop production area coverage for a given num-
ber of field trials if each site is located in a unique
TED, starting from the origin with TEDs that include
largest crop production area to those with smallest
area to the right. Hence, any set of field experiments
can be compared against this ‘efficiency frontier’ line
to identify opportunities for greater coverage of crop
area within unique TEDs.

To illustrate this point, we evaluate maize area cov-
erage by a set of 96 field experiments conducted in
2015 and established in farmer fields to evaluate a prod-
uct thought to improve nitrogen fertilizer efficiency of
maize9 (supplementary figure S4). The 96 sites were
located within 19 TEDs (figure 4(b)) which accounted
for 42% of total US maize area (figure 4(a)). In con-
trast, strategic reallocation of each field experiment in a
unique TED with greatest crop area would achieve the
same coverage with only 11 field studies (figure 4(c)),
or double the coverage if each of the 96 trials would be
reallocated in a unique TED (figure 4(d)).

This case study relies on a number of assumptions.
It assumes that one site per TED is enough to capture
crop response to a given technology within that TED. It
also assumes no risk of losing sites to unforeseen events
such as flooding, hail, or heavy yield loss from factors
such as diseases, insect or pests. It may be worthwhile
to have more than one site per TED to account for
unforeseen events and to have a strategic focus onTEDs
with largest crop area or where the technology being
tested is expected to have greatest potential impact on
yields, profit, and environmental quality. In addition,
this TED framework for site selection can easily be
expanded to include other variables that have influence
onperformanceof a given technologyor its adoptionby
farmers, including irrigation, other biophysical factors
such as soil pH, organic matter content, or terrain slope
as well as socio-economic factors such as distance to
market, farm size, and so forth.

Extrapolating technology across large distances
Another application of the described spatial frame-
work is to compare cropping systems in the same TED
across different regions, countries and continents that
share a unique TED. For example, it is possible to
evaluate promising technologies to improve resource
capture and productivity of land and water resources
that have been widely adopted by farmers in one region
but have not yet been tested or are not widely used,

9 Field experiments were implemented by the NutrientStarⓇ evalu-
ation program (www.nutrientstar.org).

6

http://www.nutrientstar.org


Environ. Res. Lett. 13 (2018) 054027

Figure 4. Strategic choice of number and location of field experiments. Strategic location of field experiments to maximize coverage
of unique technology extrapolation domains (TEDs) based on a network of 96 field experiments conducted in 2015 and located in
farmers’ fields to evaluate a product that improves fertilizer use efficiency of rainfed maize. (a) The efficiency frontier shown by the
curvilinear line representing maximum maize crop area coverage for a given number of sites if each experiment was allocated in a
unique TED unit, starting from the TED with largest crop area on the left and sequentially smaller crop area to the right. Mapping the
96 sites showed that many were located in the same TED such that only 19 unique TEDs and 42% of total maize area was covered as
indicated by the red dot in (a). TEDs in which field trials were located are shown in (b). Strategic placement of field experiments such
that each was located in a unique TED reduces the number of trials by 90% to give the same crop area coverage within unique TEDs
as shown in (c) and the green dot in (a), while the same number of field experiments would more than double the crop area coverage
as shown in (d) and the blue dot in panel (a).

in an analog TED elsewhere. This hypothesis was
explored for a TED that is present in both Argentina
and Australia (figure 5). In Australia, a cropping inten-
sity of 0.9 rainfed crop per year (this crop may be a
winter crop such as wheat, barley or chickpea or a sum-
mer crop such as sorghum, maize or mungbean) is
currently the dominant cropping system (Hochman
et al 2014). Double cropping is a rare and opportunis-
tic practice in this TED. In contrast, 1.5 crops per year
are grown in the analogue TED in Argentina where
a two-yr rotation of soybean-wheat-soybean-fallow is
common, resulting in greater efficiency in utilization
of water and solar radiation, and larger total yield
when expressed on an annual basis (supplementary
table S4).

Given this large difference in cropping systems
within the same TED on different continents, we
investigated the feasibility of increasing annual pro-
ductivity and resource capture in the Australian TED
by increasingcrop intensity through inclusionof a sum-
mer legume (mungbean) in the traditional single crop
per season (here represented as wheat-fallow system).
Compared to soybean, mungbean is more suited to
this Australian TED because its growth period, from
sowing to harvestable maturity, better fits the period of
time when there is sufficient stored soil moisture and

rainfall to support crop growth. Simulation analysis
revealed that an annual rainfed double-crop of wheat-
mungbean (i.e. 2 crops per year) would be a superior
alternative to the traditional crop-fallow system that
currently dominates in the analogue Australian TED.
While the wheat-fallow system exhibited highest yield
for a single wheat crop, it had much lower annual
net income relative to the wheat-mungbean rotation
(figure 5). And although mungbean yields in the rota-
tion were less stable than for a single crop of wheat
(CV= 32% versus 12%), the higher risk can be reduced
by sowing mungbean only when soil water status at
sowing is above a minimum threshold of ≥ 60 mm
available soil water in the root zone. Hence, the inten-
sified wheat-mungbean cropping system improves
resource capture and increases Australian producer
income by 75% relative to the current wheat-fallow
system although year-to-year variability in net income
is greater. Remarkably, a relatively small number of
farmers in the Australian TED have recently started to
include opportunistic cropping of mungbean within
the traditional wheat monocrop system (Rachaputi
et al 2015), which adds confidence to broad applica-
bility of this type of cropping system analysis across
analogue TED zones as a tool for technology evaluation
and transfer.
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Figure 5. Technology evaluation in the same technology extrapolation domains (TED) on different continents. Argentinean and
Australian maps showing a unique climate zone (in red) shared by both countries. Within the climate zone in each country, zones
with similar plant-available water holding capacity in the root zone were compared (i.e. the same TED). Table shows the performance
of three alternative cropping systems of varying intensity in Gunnedah (Australian location within the TED) in term of simulated
water-limited yield potential, yield variation (CV, in brackets), annual net income (expressed as gross income minus variable and
overhead costs) and variation in annual income (CV, in brackets).

Conclusions

Combining high yields with efficient use of resources
and small environmental footprint represents a major
challenge and will require adequate investments in
research and development, as well as efficient and
effective prioritization of these investments. Likewise,
once new technologies are developed, new approaches
are needed to drive more rapid technology transfer to
achieve widespread adoption in other regions. A robust
spatial framework for evaluating the ‘extrapolation
domain’ for new technologies represents an essen-
tial tool for achieving these goals. Such a framework
for technology testing and transfer must account for
the most important factors governing crop productiv-
ity and environmental performance without requiring
an excessive number of variables and categories. To
that end, results from evaluation of the TED frame-
work presented here show promise for capturing
effects of dominant climate and soil factors respon-
sible for variation in rainfed crop yields, and for
facilitating greater efficiency in testing of new tech-
nologies and gaining adoption of those that improve
yields, yield stability, and profits while reducing neg-
ative environmental impacts through delineating the
area where they are likely to work best. An on-
line version of the TED framework that focuses on
US maize production, including tools to select TEDs

based upon different attributes (geographic location,
biophysical factors, crop harvested area), is available
at http://nutrientstar.org/about-teds/. The shapefile
delineating the TED spatial framework is available for
downloading at: www.yieldgap.org/cz-ted.
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