

Release and Adoption of Modern Potato Varieties in Southeast, East, and South Asia

Gatto, M.1*, Hareau, G.1, Pradel, W.1, Suarez, V.1, and Qin, J.1

Introduction

A key objective of international agricultural research is to improve the livelihoods of resource-poor farmers. Through crop genetic improvement research, international agricultural research centers (IARCs) and national research programs (NARS) jointly contributed to the development of modern varieties (MVs) for various crops.

During the early-Green Revolution (GR) of the 50s/60s the foundation was laid, with the focus on breeding high-yielding crop varieties. Only later, from mid-90s, breeding objectives have become more divers to provide farmers with crop technologies which enhance their resilience to climate change and (related) issues of pest and diseases. Since the start of the GR an increasing number of context-specific case studies have revealed that MVs have considerably contributed to improving livelihoods in many developing countries.

At the same time, there are large gaps in existing national statistics on release and adoption data of MVs for all major crops, including potato. This reality for many developing countries not only hampers a continuous and effective analysis of livelihood impacts, it also prevents scaling-up research findings, and thus obscures the magnitude of the effect of agricultural research. Also, policy-makers are likely to make uninformed decisions on targeting areas and agricultural interventions, resulting in ineffective and inefficient spending of public funds.

To fill the gaps in existing databases, a couple of large-scale projects have been launched. In 2000, a global project documented release and adoption data. The main objective was to analyze IARCs contribution to high-yielding varieties and, related, to productivity increases (Evenson and Gollin, 2003a, 2003b). Ten years later, in 2010, another study was conducted which mainly focused on Sub-Saharan Africa. In comparison, a major improvement was the analysis at the varietal level which allowed for detailed analysis of varietal change (Walker and Alwang, 2015).

Against this backdrop, it becomes clear thatin the case of potato the last release and documentation efforts in Southeast and South Asia date back 15 years. In addition, the studies' objectives was mainly to assess productivity increases. Today's challenges of climate change and micronutrient deficiencies, however, require technologies and knowledge thereof for various other varietal traits. A release dataset, at the varietal level, including information on resistances against biotic and abiotic stresses, as well as other environmental traits such as earliness, does not yet exist.

¹ International Potato Center, Avenida La Molina 1895, Lima, Peru.

^{*} corresponding author: Marcel Gatto (m.gatto@cgiar.org)

In this study we close the identified gaps in the existing literature and databases by documenting release and adoption of modern potato varieties in seven major potato producing countries in Southeast, South, and East Asia.

Methodologically, this study adopts a refined expert elicitation (EE)approach applied inprevious projects.EE workshops were used as an inexpensive alternative to the collection of national representative adoption data. An average of 15 experts working in the potato value chain participated in a one-day event to elicit *perceived* adoption rates and to update release databases. In total, 347 experts attended in 23 workshops held during 2014-2016.

In this paper we summarize the main results of the study with a special emphasis on the contribution of the International Potato Center (CIP) to NARS breeding efforts and resulting releases and adoption.

The paper is structured as follows. In the next section we provide background information on the preceding projects which aimed to document release and adoption of MVs and we will render the context of this study. In section 3 we will describe materials and methods used. Section 4 provides the results and section 5 concludes.

Keywords: potato; release; adoption; modern varieties; Asia

Background

The first study at a global scale was conducted by the Standing Panel of Impact Assessment (SPIA) in 2000. Involving many CGIAR centers, the study documents the release and adoption of more than 8000 MVs in 11 crops in over 100 countries (Evenson and Gollin, 2003b). In DIIVA (CGIAR's Diffusion and Impact of Improved Varieties in Africa, 2009-2013) the project documented release and adoption for 20 crops in 30 countries in Africa. In contrast to the earlier study, DIIVA focused on the varietal level. Also, it applied a standardized methodology to collect the data. At the same time, Tracking Improved Varieties in South Asia (TRIVSA, 2010-2012) was conducted. In comparison, TRIVSA's scope was smaller concentrating efforts only on one season, 6 crops and 4 countries (Walker & Alwang, 2015).

This study is part of the project 'Strengthening Impact Assessment in the CGIAR' (SIAC). In more detail, it is part of the activities 2.1 which has the objective: 'Institutionalize the collection of diffusion data needed to conduct critical CGIAR impact evaluations'. An important component of this is the application of a standardized methodology to document release and adoption data. Overall, SIAC is under the auspices of SPIA and Michigan State University (MSU) and a joint effort revolving around12 important smallholder crops (e.g. rice, cassava, potato, lentils) in 15 Southeast, East, and South Asian countries.

Materials and Methods

Sampling and Methodology

For this study we selected seven countries in Southeast Asia which are considered major potato producing areas. Since CIP's impact is an important aspect of the study, discussion with CIP colleagues influenced the final selection of countries, which are: Bangladesh, China, India, Indonesia, Nepal, Pakistan, and Vietnam. Due to the relativelylarge sizes of China and India, we sampled 12 Provinces in China and 6 States in India. Combined we sampled a total of 23 crop-country-combinations (CCCs) which are depicted in Map 1.

Map 1. Study countries and adoption estimates in Southeast, East, and South Asia

We collected two databases for each CCC, one on release and one on adoption. The release database is comprised of data, such as year of release, release institution, genetic pedigree, level of biotic and abiotic resistances, and nutritional values. We usually collaborated with a partner institute in a country to collect these data prior to the workshop. The adoption database which includes detailed estimations for each released variety was established during a one-day workshop. During this workshop the release database was also validated. Following a standardized methodology, in collaboration with our local partners we first established a list of experts and potential participants. Experts were retired or still working in the potato value

1417

chain as breeders, extension agents, crop management specialists, seed traders. In doing so, we aimed at inviting experts from the private sector and from NGOs. Special attention was also placed on inviting female experts to create a great diversity of participants.

Country	No. of CCCs	No. of participants	No. female	Share female
Bangladesh	1	16		
China				
Chongqing	1	10		
Gansu	1	16		
Guangxi	1	11		
Guizhou	1	8		
Hebei	1	8		
Heilongjiang	1	9		
Inner Mongolia	1	9		
Ningxia	1	11		
Shaanxi	1	9		
Shanxi	1	12		
Sichuan	1	10		
Yunnan	1	13		
India				
Bihar	1	25		
Gujarat	1	19		
Karnataka	1	24		
Punjab	1	19		
Uttar Pradesh	1	19		
West Bengal	1	24		
Indonesia	1	14		
Nepal	1	17		
Pakistan	1	23		
Vietnam	1	21		
Total	23	347		
Average		15.09		

Table 1Summary statistics of EE workshops

During 2014-2015, in total, 347 experts participated in 23 EE workshops which is an average of 15.09 per workshop. In spite of our efforts to identify and invite female experts, overall attendance rates are low (Table 1). This underlines that the potato sector in our study region may still be considered a 'men's world'.

Generally, CIP staff facilitated the workshops or exceptionally also well-trained partners. This was the case in four States in India (i.e. Bihar, Gujarat, Karnataka, and West Bengal) and Pakistan.

At the beginning of the EE workshops, discussions on total area, major production areas, seasons, and agro-ecological zones, established the basis for adoption estimates. In a next step, we validated parts of the release database by checking the list of varieties against the expert opinion. To do so, we invited experts to individually write down on sticky notes according to their knowledge the names of varieties currently cultivated. We then presented the results on a wall and discussed these in the entire group.

After that, the entire group was split into smaller groups based on prior discussion on major production areas which resulted in disaggregated areas by sub-region or agro-ecology. We generally split the group on a randombasis unless experts were knowledgeable only in specific areas. Then we purposively divided the group. Usually, not more than 2 groups were created. In case the amount of identifiedsub-regions and created groups was not equal, groups worked on more than one sub-regions, depending on the group knowledge. The next step

involved individual expert adoption estimations in which we invited experts to give estimations for the allocated sub-region(s) or agro-ecological zone(s) by season. For this purpose we handed out a standardized form – we call instrument (see Appendix). We ensured, to the extent possible, that communication among participants was kept at a minimumduring this individual exercise. These individual opinions formed the basis for the group discussions and estimations. These were generally established through two different approaches. First, the appointed group leader listed individual estimates and calculated averages. The second approach entailed discussion on individual estimates, usually starting from the most important variety. Here, it was important to ensure the participation of all group members. A final overall validation in the entire group took place by projecting the results by region/agro-ecology and season.

At the end of the workshop, we had general discussions on opportunities and challenges for the respective CCC which greatly helped to better explain results.

Release classification

Release classifications are required to identify the origin of varieties and to specify the relationship with CIP material. This is in particular important to assess CIP's contribution to breeding and developing varieties in NARS. We adapt release classifications from Thiele et al. (2008):

- 1. Developing country NARS (NARS-developing):
 - NARS-bred varieties with no CIP role
 - NARS-selected varieties from crosses unrelated to CIP
 - NARS-released native variety
 - NARS borrowing non CIP-related varieties from other developing countries NARS
- 2. Developed country NARS (NARS-developed):
 - Varieties introduced from developed country NARS and private sector
- 3. NARS-CIP
 - NARS-bred varieties distributed/facilitated by CIP
 - NARS selection from CIP crosses
 - NARS crosses from CIP progenitors
- 4. Other:
 - Native varieties (i.e. landraces)

Thiele et al. (2008) further write: "The [third] category includes the three principal ways in which attribution to CIP can be documented. In the first, CIP has played a role in maintaining and making available selected advanced clones and varieties developed by NARS breeding programs in developing countries. CIP makes these materials available to other users as

pathogen-free clones for testing and varietal release (...). In the second situation, CIP has used native and improved gene bank materials to make crosses and supplied them to NARS who have made selections leading to variety release. In the third situation CIP provided breeding materials for use by NARS with the capacity to make their own crosses for selection and variety release."

Results

Varietal Release

Since the start of documenting varietal release, NARS have released a total of 604 MVs in our study region. By 2015, a total of 290 MVs are currently adopted and cultivated (Table 2). China is by far the country with the most releases (367) and adoptions (180). Bangladesh has released 73 MVs and thus released more than India (70). However, in terms of adoption in India almost four times the amount of varieties are adopted (37) compared with Bangladesh (10). The remaining countries have relatively small national breeding programs which have released between 12 and 35 varieties, and adopted between 14-18 MVs.

In addition to adoption which follow a formal release process, MVs are frequently cultivated without being released in a particular country. Considering all countries, 17% of adopted MVs (or 50 varieties) are not officially released. There are large differences across countries. For instance, in Bangladesh and Indonesia, MV adoption only occurs when MVs are released. In contrast, other countries such as Vietnam (47%), Pakistan (39%), and Nepal (29%) have many adopted varieties which have not been released. In these countries, it seems that NARS have insufficient capacities to compete (1) with varieties developed in other NARS, (2) with varieties developed by private sector, or (3) national MV adoption is faster than its release.

	Rele	ase	Ado	oted	Adopted no release	
Country	(No)	(%)	(No)	(%)	(No)	(%)
Bangladesh	73	0.12	10	0.03	0	0.00
China*	367	0.61	180	0.62	24	0.13
India	70	0.12	37	0.13	8	0.22
Indonesia	35	0.06	16	0.06	0	0.00
Nepal	12	0.02	14	0.05	4	0.29
Pakistan	29	0.05	18	0.06	7	0.39
Vietnam	18	0.03	15	0.05	7	0.47
Total	604	1.00	290	1.00	50	0.17

Table 2 Modern varietal release and adoption by country

Notes: *for 12 Provinces only; for varietal release and adoption results for 12 Chinese Provinces see Table 1A in Appendix.

Sporadic release and adoption of MVs occurred in the beginning of the 20th century. Only decades later, since 1950s release and adoption has started to be more systematic yet little, as Figure 1 depicts¹. In the 1960s and 1970s, a period often referred to as the first wave of the Green Revolution (GR) no considerable increase in varietal release can be found (apart from a

¹ The cut-off point is the year 2014. With some CCCs completed in 2014, in 2015 data collection was still ongoing. Thus, we do not have a complete dataset for all CCCs for 2015.

peak in 1968 where 25 varieties were released). Only later, during the 1990s, varietal release has been picked up. On the one hand, our results confirm earlier findings by Everson and Gollin (2003) stressing that the Late GR period (1981-2000) contributed significantly more to the GR than the Early GR period (1961-1980). On the other hand, our results point at another intriguing phase following the Late GR. In the Post GR period (2001-), release and adoption continue to increase significantly.

For varietal release in particular the cumulative data appears to follow an exponential trend, to which the Post GR has contributed much. Compared with the Late GR period, in the Post GR period total releases have increased from 125 to 412 varieties, a change of 230% (Table 3). Likewise, changes in adoption has been considerable (163%) but to a lower extent.

In spite of overall increasing trends, the gap between release and adoption continues to widen. In the Late GR period, almost 50% of the released MVs were adopted; in the Post GR period adoption rates dropped to 38%. This trend is likely to continue in the future.

Oftentimes, China is driving the results due to its size. However, comparing the total release and adoption with results without China points at a similar (exponential) trend (see Figure 1A in the Appendix).

	, <u>1</u> ,	Cumulative	Changes (in %)		
	Early GR	Late GR	Post GR	Early-Late	Late-Post
Total release	54	125	412	131	230
Total adoption	21	59	155	181	163
Ratio (adopted/released)	0.39	0.47	0.38		

Table 3 Cumulative release, adoption, and changes by Green Revolution period

Note: GR = Green Revolution

Abiotic and Biotic Stresses

One of the major breeding objectives in the Early GR was to breed for high-yielding varieties to boost farm productivity. Climate change and a rising emergence of pests and diseases has led to a change in breeding objectives to cope with these related biotic and abiotic stresses. In our database, we distinguish a total of ten traits; three provide resistance against abiotic stresses (i.e. drought, heat, and frost) and seven provide resistance against biotic stresses (i.e. late blight, bacterial wilt, x-virus, y-virus, s-virus, leaf curl, and nematode). A total of 594 traits of the category 'high resistance' are bred into 604 released varieties¹ (Table 4). It is worth noting that 87% of the traits can be found in Chinese varieties.

Trait	Released	Adopted	Ratio (adopted/released)
Resistances against abi	otic stresses		
Drought	62	38	(0.61)
Heat	24	20	(0.83)
Frost	26	13	(0.50)
Total abiotic	112	71	(0.63)
Resistances against bio	tic stresses		
Late blight	110	55	(0.50)
Bacterial wilt	42	23	(0.55)
X-virus	99	49	(0.49)
Y-virus	96	51	(0.53)
S-virus	25	18	(0.72)
Leaf curl	79	39	(0.49)
Nematode	31	23	(0.74)
Total biotic	482	258	(0.54)
Total traits	594	329	(0.55)

Table 4 Release and adoption of high resistant varieties

Notes: Traits shown are for category 'high' only; Trait categories 'medium', 'low', and 'susceptible' are not shown. Data refers to one trait per variety, multiple traits in same variety are not accounted for.

More efforts have been placed into breeding against biotic stresses (482 traits) than abiotic stresses (112 traits). Regarding the first, the main traits have been late blight (110 traits), X-virus (99 traits), and Y-virus (96 traits). In comparison, abiotic resistances have received lesser importance: drought (62 traits), heat (24 traits), and frost (26 traits). Also, in terms of adoption the mentioned biotic resistances are more often found in adopted varieties than their abiotic counterparts. Late blight is the most important trait in adopted varieties (55 traits), followed by Y-virus (51 traits) and X-virus (49 traits). It is striking, only 13 varieties with high frost resistance and 20 varieties with high heat resistance have been adopted.

In total, about 55% of the traits released through varieties are adopted. Varieties with abiotic traits (63%) have more often been adopted than biotic traits (54%).

Advanced breeding methods allowed for breeding more than one trait into a single variety. This makes varieties more suitable for areas which are affected by various biotic and abiotic stresses. In general, all different combinations of traits can be found in varieties (Table 5). Certain combinations, however, have been more prominent than others. The most dominant

¹ In the survey, we specified four categories: 'high', 'medium', 'low', and 'susceptible'. These are based on the perceptions, knowledge, and assessments of national experts in the different countries.

trait combination is X-virus and Y-virus, a total of 59 varieties have been released. X-virus and leaf curl has been another important trait combination (46 releases), followed by Y-virus and leaf curl (43 releases). Heat and drought resistance (18 releases) appears to be the most important abiotic trait combination. In addition, X-virus and drought (31 releases), and leaf curl and drought (31 releases) are the most important abiotic-biotic traits combinations. A matrix for varietal release for multiple traits (+2 traits) can be found in Table 2A in the Appendix.

	Abiot	ic Resista	nces		Biotic Resistances				_		
	Drought	Frost	Heat	Late blight	B. wilt	X-virus	Y-virus	S-virus	Leaf curl	Nema- tode	Total
Drought 👸 +1 trait		13	16	23	21	31	28	15	31	16	194
Frost tsis +1 trait	14		10	12	15	14	11	11	15	10	111
Heat Heat Heat	18	12		9	14	16	14	14	16	16	125
₽ Late blight +1 trait	26	13	11		21	26	28	16	28	14	177
B. wilt +1 trait	23	16	16	23		20	18	17	20	16	162
X-virus +1 trait	32	15	17	27	22		59	21	46	20	253 elease
မ္မိ Y-virus မြ +1 trait	29	12	15	29	20	62		18	43	17	236
S-virus +1 trait	16	12	15	17	19	22	19		18	16	146
ii Leaf curl œ +1 trait	32	16	17	29	21	48	44	19		14	231
Nematode +1 trait	18	12	19	16	18	21	18	17	15		139
Total	208	122	140	191	178	266 Adoption	248	156	241	154	

 Table 5
 Varietal release and adoption of multiple traits (+1 trait)

Notes: Data for 'high' resistance category only.

Looking at the year of release of varieties with traits against abiotic and biotic stresses reveals that breeding intensity has increased drastically since 2000 (Figure 2 & 3). With respect to abiotic resistances, this may be a result of increased adaptation efforts to climate change. Before 2000, especially varieties with frost and heat resistances have only been sporadically released. Drought resistant varieties have been released most throughout the entire period 1952-2014 (Figure 2).

Regarding biotic resistances, until the 1980s breeding efforts concentrated on late blight, X-virus, and Y-virus until the 1980s. Intensification of breeding for the remaining biotic resistances has started later during the late 70s/early 80s. In particular, bacterial wilt and S-virus traits started to receive more attention by breeders since the early 2000. As of 2004, all 7 traits included in our study have been released in varieties almost every year (Figure 3).

The 9th ASAE International Conference: Transformation in agricultural and food economy in Asia 11-13 January 2017 Bangkok, Thailand

1424

It is worth mentioning that these breeding efforts have mainly taken place in China and India which developed strong national breeding programs. This is reflected in Table 6 which reveals the year of first varietal release by trait. In other countries only a few high resistant varieties were released: in Indonesia one, in Pakistan two, in Vietnam three, and in Nepal four.

In all countries usually varieties with certain traits are adopted which are also released.¹ For instance in Bangladesh, a high resistant heat variety has not been released and accordingly, has not been adopted, not even through another channel, such as from a different NARS or private company. Likely, in these countries most of the released and adopted varieties have medium or low resistance to abiotic and biotic stresses.

Trait	Bangladesh	China	India	Indonesia	Nepal	Pakistan	Vietnam
Heat		1989	1967				1995
Drought	1960	1966	1910				
Frost		1983	1968				2008
Late blight	1970	1956	1964	1980	1999		
Bacterial wilt		1985					2007
X-virus	1970	1966	1964		2014	2013	
Y-virus	1960	1968	1962		2014		
S-virus		1966					
Leaf curl		1966			1999		
Nematode		1989	1910			2013	

Table 6 Year of first release of high resistant variety by country

Notes: blank boxes means that no variety of high resistant category has been released.

Release of CIP-Related Varieties

Until 2015, a total of 218 varieties have been released with a relationship to CIP. This is 36% of the total releases in our study region. Regarding adoption, 96 CIP-related released varieties are currently cultivated. This is 33% of the total adopted varieties. In different words, the ratio of NARS-related to CIP-related adopted varieties is 2/3 NARS – 1/3 CIP (Table 7).

Following Thiele et al. (2008), we further distinguished NARS-related varieties into 'NARS-developing' and 'NARS-developed'. In doing so, breeding efforts by NARS without any confounding of CIP and/or developed country material – at least in the first generation of parents– can be examined. A total of 250 varieties based on own NARS material were released and 101 were adopted. These represent 41% and 35%, respectively, of total release and adoption.

In all studied countries, CIP-related varieties have been released and adopted. China, however, stands out. Here, 155 CIP-related varieties have been released and 68 have been adopted. This represents both 71% of the total CIP-related releases and adoptions and thus translates into a considerable contribution of CIP to the Chinese potato sector.

In contrast, in India release and adoption of CIP-related varieties appears to be meagre. Only 12 and 7 CIP-related varieties have been released and adopted, respectively. Of total CIP-related varietal release and adoption this represents only 6 and 7%.²

¹ There are two exceptions. In Bangladesh, a high resistant X-virus variety has been released but no variety of this type has been adopted. Similarly, in Vietnam no high resistant Y-virus variety has been released but there is a variety adopted since 2005.

² Overall, these figures should be read with caution. Discussions with other than Indian experts resulted in higher CIP impact. At this point, we are unable to estimate to what extent we underestimate the true release and adoption figures.

In Nepal, though relatively small in terms of total contribution, 90% of the releases (9 varieties) were adopted (8 varieties). In contrast, in Pakistan no CIP-related variety has been adopted and only one released variety is related to CIP.

NARS-CIP				Ň	NARS-developing				NARS-developed			
Country	Release	(%)	Adopt.	(%)	Release	(%)	Adopt.	(%)	Release	(%)	Adopt.	(%)
Bangladesh	16	0.07	2	0.02	4	0.02			53	0.39	8	0.09
China*	155	0.71	68	0.71	186	0.74	78	0.77	25	0.19	33	0.36
India	12	0.06	7	0.07	42	0.17	16	0.16	16	0.12	14	0.15
Indonesia	16	0.07	5	0.05	9	0.04	5	0.05	10	0.07	6	0.07
Nepal	9	0.04	8	0.08	2	0.01	2	0.02	1	0.01	4	0.04
Pakistan	1	0.00	0		7	0.03			21	0.16	18	0.20
Vietnam	9	0.04	6	0.06		0.00			9	0.07	8	0.09
Total	218	1.00	96	1.00	250	1.00	101	1.00	135	1.00	91	1.00

Table 7 Varietal release and adoption until 2015 by country and release classification

Notes:*for 12 Provinces only; NARS-CIP is a vector of CIP-related variables including NARS selection from CIP crosses, NARS selection from CIP progenitors, NARSbred variety distributed by CIP.

See Table 3A in the Appendix for CIP-related varieties broken down for China and India by region and province.

The first CIP-related varieties were released in 1982 in Vietnam. In the years to come, CIP's contribution to NARS' breeding programs has been sporadic. In the early 1990s, CIP-related material has been used in breeding efforts in a more systematic way (Figure 4). After two years of reduced releases and adoption in 2002 and 2003, CIP-related varieties releases and adoption skyrocketed to reach its peak in 2006. In this year, CIP contributed to 25 of released and 20 of adopted varieties. All of which were released and adopted in China and India. The cumulative figures represented by the grey and yellow lines show that the amount of released CIP-related varieties increases faster than the amount of adopted CIP-related varieties. This trend is reflected in the ratio adopted over released varieties (Table 8).

Figure 4 Amount and changes of CIP-related varieties released and adopted between 1980-2014

Notes: Grey and yellow lines are cumulative release and adoption and refer to the right axis.

Comparing Late and Post GR periods, results suggest that the Post GR period has been relatively more important in terms of amount of CIP-related releases and adoption. Whereas in Late GR period 34 and 18 CIP-related varieties were released and adopted, respectively, in the following Post GR period release and adoption figures rose to 218 and 96. These are striking increases of 541 and 433% (Table 8).

Table 8	Cumulative I	NARS-CIP	release, a	doption,	and char	nges by	GR 1	period
			,			0	-	

	Cum	ılative	Changes (in %)
	Late GR	Post GR	Late-Post
Total Release	34	218	541
Total Adoption	18	96	433
Ratio (adopted/released)	0.53	0.44	

Notes: GR = Green Revolution

Both variations of CIP-related material (i.e. selected from crosses, selected from progenitors) have been equally successful (Table 9). Releases of varieties selected from CIP crosses (115) were only slightly more compared with varieties selected from progenitors (97). Also in terms of adoption, NARS have selected similarly from CIP crosses (53) and progenitors (42).

In all countries studied, varieties based on CIP-crosses were released whereas varieties based on CIP-progenitors were released in China, India, and Indonesia. Unsurprisingly, China has made most use of CIP-material, irrespective of the type of material. India, in contrast, has mainly used CIP-progenitors in breeding new varieties.

Variaty		CIP-r	elated			CIP-crosses				CIP-progenitors		
variety	Release	(%)	Adopt.	(%)	Release	(%)	Adopt.	(%)	Release	(%)	Adopt.	(%)
Bangladesh	16	0.07	2	0.02	16	0.14	2	0.04				
China*	155	0.71	68	0.71	67	0.58	33	0.62	83	0.86	35	0.83
India	12	0.06	7	0.07	1	0.01	1	0.02	11	0.11	6	0.14
Indonesia	16	0.07	5	0.05	13	0.11	4	0.08	3	0.03	1	0.02
Nepal	9	0.04	8	0.08	8	0.07	7	0.13				
Pakistan	1	0.00	0	0	1	0.01						
Vietnam	9	0.04	6	0.06	9	0.08	6	0.11				
Total	218	1.00	96	1.00	115	1.00	53	1.00	97	1.00	42	1.00

Table 9 CIP-related release and adoption until 2015 by country

Notes:*for 12 Provinces only; CIP-related is a vector of variables including NARS selection from CIP crosses, NARS selection from CIP progenitors, NARS-bred variety distributed by CIP; not shown is category CIP-distributed but included in CIPrelated.

Varieties which are adopted in 2015 have been cultivated for an average of 14.6 years. Since the first modern varieties were released in the first period of the GR for all studied countries, giving all countries a similar reference year, we can assess varietal turnover by looking at average years of adoption. As Table 10 further depicts, varietal turnover is rather low in India (29.5 years) and high in Pakistan (5.9 years). The remaining countries all lie within this range. The oldest adopted varieties have been bred by NARS with own material (20.5 years). Varieties re-released by NARS but bred by developed countries are also rather old (18.9

years). Finally, NARS released and adopted varieties which are based on CIP material are the youngest (11.4 years).

CIPs engagement with NARS dates back to more than 30 years ago. It has started in China 32 years ago and more recently in Indonesia (10 years ago). Strikingly, though the first CIP-related variety was released in Bangladesh 25 years ago, average years of adoption since release is only 1.5. In Bangladesh compared with other countries, CIP-related varieties have gained importance in more recent years. In particular, in India and Vietnam relatively older CIP-related varieties are still cultivated.

		-	•		
Country	Mean	NARS- developing	NARS-developed	NARS-CIP	Years since first release NARS-CIP
Bangladesh	10.3		12.5	1.5	25
China	15.6	17.9	22.1	9.5	32
India	29.5	28.8	44	18.4	27
Indonesia	10.1	12.4	11	6.7	10
Nepal	17.9	23	29.4	12.3	14
Pakistan	5.9		5.9		15
Vietnam	13.2		7.4	20	33
Total	14.6	20.5	18.9	11.4	22.3

Table 10Average years of adoption by release classification

Notes: base year is 2015

Varietal Adoption

The total area under potato amounts to 7.6Mha in selected countries in our study region in 2015. Although the total area was considerably smaller in 1997, about 5.4Mha, the pace of increase is slowing down. Between 1997-2007 total area has increased by 27%; in comparison, between 2007-2015 total area has increased by 11% (Table 11). Competition over land is likely slowing down potato extension which calls for increasing efforts to sustainably intensify existing cropping patterns.

A stunning 97% of the total area is planted to modern varieties. During the past 20 years, the share of modern varieties has grown by 4-5%. These are major developments considering that the share of modern varieties was very small (about 10%) in the Early GR period in the 1960s (Evenson and Gollin, 2003). Strong collaboration between NARS and IARC has contributed significantly to this development.

Table 11 Total potato area and ad	loption of modern	varieties in	study region
-----------------------------------	-------------------	--------------	--------------

	2015	2007	1997	Changes '97-'07	Changes '07-'15
Total area (ha)	7,648,570	6,860,400	5,415,900	0.27	0.11
MV (ha)	7,408,644	6,284,200	5,021,800	0.25	0.18
MV share (%)	97%	92%	93%	-0.01	0.05

Source: own calculations and adapted from Thiele et al. (2008). MV = modern variety

Our data allows us to have a more disaggregated look at adoption rates. We collected perceived adoption rates for the major potato growing countries in our study region. Adoption rates by country and the area share planted to modern varieties is presented in Map 1.

China is the potato powerhouse of Asia with a total potato area of about 4.97Mha in 2015. Having about 1.58Mha planted to potato, India is the second most important in terms of area. In contrast, Indonesia (75,772ha) and Vietnam (25,000ha) only have small potato areas. According to experts, the potato area in Indonesia has always hovered at this level and is not further increasing because of the cheaper imports which makes domestic production unprofitable. In Vietnam, potatoes have been very popular as it was prioritized by the government after the war ended. Losing prioritization to rice and other crops, and a stigma of being 'the poor men's crop', along with immense imports from China, have reduced the total potato area to its current level. Total potato area by region in China and India can be found in Table 4A in the Appendix.

It is striking that the area planted to modern varieties is 100% in three countries (i.e. China, Pakistan, and Vietnam), or close to (i.e. India and Indonesia). Only in Bangladesh (83%) and Nepal (82%) share of modern varieties is relatively smaller.

Adoption by Institutional Source

International agricultural research centers (IARCs) have played critical roles in supporting national agricultural research systems (NARS) in breeding for modern varieties. In 2015, total area planted to varieties which are based on CIP material amounts to 1.43Mha. These are increases of 166% and 263% since 2007 and 1997, respectively (Figure 5). In addition to overall increases of NARS-CIP area, its share of total potato area has increased considerably. Whereas in 1997 and 2007 the NARS-CIP share was between 7-8%, it more than doubled to reach 19% in 2015.

Source: own calculation and adapted from Thiele et al., (2008); category definitions from Thiele et al. (2008); ratio refers to right axis.

Most of the total NARS-CIP area is planted in China (87%); only 8% in India¹ and 5% in Nepal. In the other countries total NARS-CIP area is negligible (Table 12). However, at individual country China stands out again: 25% of the total potato area in China is planted to NARS-CIP varieties. Interestingly, in Nepal the NARS-CIP share amounts to 34%. In India, Indonesia, Vietnam, and Bangladesh only little area is planted to NARS-CIP varieties. In Pakistan, no land is planted to NARS-CIP varieties. This should not come as a surprise, in Pakistan there is only one NARS-CIP variety which was released in 2000. More intriguing is the low NARS-CIP share of total area in Bangladesh where 16 NARS-CIP varieties have been released during 1990-2014.

In spite of the increasing usage of CIP material, in our study region 48% of the total potato area is planted to varieties based on NARS material only (NARS-developing). In this respect, India stands out where 87% of the area is planted to NARS varieties. Chinese varieties without material from CIP or developed countries accounts for 46% of total area. In Nepal and Indonesia the NARS-developing share is relatively small and in Bangladesh, Pakistan, and Vietnam not existing.

Furthermore, 26% of the total area is planted to NARS varieties which are partly based on material from developed countries. Though this percentage appears low and mainly driven by China, 5 out of 7 countries have a higher percentage than this average: Pakistan (95%), Indonesia (92%), Bangladesh (83%), Vietnam (60%), and Nepal (30%).

	Ν	NARS-CI	Р	NAI	RS-devel	oping	NARS-developed			
Country	(ha)	(%)	Share of total area (%)	(ha)	(%)	Share of total area (%)	(ha)	(%)	Share of total area (%)	
Bangladesh	702	0.00	0.00				381,371	0.19	0.83	
China*	1,247,022	0.87	0.25	2,282,338	0.62	0.46	1,058,215	0.54	0.21	
India**	109,263	0.08	0.07	1,367,267	0.37	0.87	59,642	0.03	0.04	
Indonesia	2,304	0.00	0.03	3,884	0.00	0.05	69,583	0.04	0.92	
Nepal	69,726	0.05	0.34	27,609	0.01	0.13	60,968	0.03	0.30	
Pakistan	0						318,947	0.16	0.95	
Vietnam	1,965	0.00	0.08				15,103	0.01	0.60	
Total	1,430,982	1.00	0.19	3,681,098	1.00	0.48	1,963,829	1.00	0.26	

Table 12Total area by release classification

Notes: *for 12 Provinces; **for 6 States.

We can further distinguish CIP contribution by material type. In particular, NARS selection from CIP crosses and progenitors. The findings are summarized in Table 13.²

A total of 674,508ha is planted to varieties partly selected from CIP-crosses which represents 47% of the total NARS-CIP area. Slightly more important, varieties partly based on

¹ The total area planted to NARS-CIP bred varieties may be underestimated due to unclear documentation and local recognition of institutional origin.

² We distinguished another category in which CIP facilitated the distribution of material to NARS. The total area covered with such varieties is, however, rather small. Only in Nepal, about 400ha are planted to these varieties.

CIP-progenitors are planted to 756,048ha (or 53% of total NARS-CIP area). In both cases, China contributes the largest share, 88% to CIP-crosses and 86% to CIP-progenitors. Nepal contributes about 10% to overall CIP-crosses which equals 99% of the total NARS-CIP area. In the remaining countries, potato area is only little planted to varieties partially based on CIP-crosses and no area is planted to varieties partially based on CIP-progenitors (i.e. Bangladesh, Nepal, Pakistan, and Vietnam). In India, most of the CIP related varieties planted are selected from CIP progenitors (105,221ha or 96%). However, this only contributes to 14% of the total area planted to varieties partially based on CIP progenitors.

		NARS-CIP		CIP-cr	osses		CIP-prog	enitors
Country	-	(ha)	(ha)	(%)	Share of NARS- CIP area (%)	(ha)	(%)	Share of NARS- CIP area (%)
Bangladesh		702	702	0.00	1.00			
China*		1,247,022	596,601	0.88	0.48	650,422	0.86	0.52
India**		109,263	4,040	0.01	0.04	105,221	0.14	0.96
Indonesia		2,304	1,899	0.00	0.82	405	0.00	0.18
Nepal		69,726	69,301	0.10	0.99			
Pakistan		0						
Vietnam		1,965	1,965	0.00	1.00			
	Total	1,430,982	674,508	1.00	0.47	756,048	1.00	0.53

Table 13Total NARS-CIP area by material type

Notes: *for 12 Provinces; **for 6 States. CIP-distributed not shown but included in total NARS-CIP area.

Adoption and Resistances

Knowledge about the released varieties and the respective area under cultivation allows us to infer the total area under varieties with resistances against abiotic and biotic stresses. We summarize our results for area under high resistance and susceptible varieties in Table 14.

Regarding abiotic traits, drought is most important in terms of area. About 13% is cultivated with high resistant drought varieties, 7% with high heat resistant, 3% with high frost resistant varieties. These results are mainly the aggregate for China and India results. In Bangladesh, the area under high heat resistant varieties is less than one percent. Even worse, the area under varieties susceptible to drought is 83% (or 381,723ha). This is troublesome because effects of climate change prolong drought periods, especially in Bangladesh's main potato growing areas (Shahid and Behrawan, 2008). Also in China drought is becoming a serious issue (Yu et al., 2014) and yet 8% (or 395,267ha) of the total potato area is still under varieties susceptible to drought. Likewise, in Nepal 13% (or 26,166ha) of the potato area is susceptible to drought.

Regarding heat resistance, 83% (or 381,723ha) in Bangladesh and 85% (or 1.3Mha) of the total potato area in India, respectively, are cultivated with a variety susceptible to heat. Interestingly, in China only 2% (or 119,322ha) of the total potato area is under a heat susceptible variety.

Adoption data for biotic stresses is more readily available, in particular for late blight and bacterial wilt. The total potato area which is under a susceptible varieties amounts to 33% (or 2.5Mha) for bacterial wilt and 30% (or 2.3Mha) for late blight. In particular in China and India substantial areas are under susceptible late blight varieties, 24% (or 1.18Mha) and 31% (or 484,351ha), respectively. But also in Bangladesh (82% or 380,969ha) and Pakistan (70% or 233,836ha) late blight susceptible varieties are prevalent. In terms of total high resistance area, 10% (or 756,803ha) is cultivated with late blight varieties.

	Drou	ight	Fr	ost	H	eat	Late	blight	Bacter	ial wilt
Country	% high res.	%suscept.	% high res.	% suscept.						
Bangladesh	0.00	0.83				0.83	0.00	0.82		0.83
China	0.20	0.08	0.05	0.09	0.10	0.02	0.15	0.24	0.13	0.13
India	0.03	0.00	0.00	0.95	0.03	0.85	0.01	0.31		0.95
Indonesia							0.01	0.01		
Nepal		0.13					0.06	0.13		
Pakistan				0.02				0.70		
Vietnam				0.05	0.01		0.02	0.06		0.37
Total	0.13	0.11	0.03	0.25	0.07	0.24	0.10	0.30	0.08	0.33
	X-vi	rus	Y-v	irus	S-v	irus	Leaf	curl	Nem	atode
Bangladesh	0.00	0.01		0.17				0.01		
China	0.18	0.09	0.23	0.10	0.09	0.09	0.28	0.07	0.09	0.02
India	0.01	0.00	0.01	0.00					0.02	0.49
Indonesia										0.02
Nepal	0.00		0.00				0.05	0.13		
Pakistan	0.28	0.15		0.21				0.08	0.05	
Vietnam			0.00							
Total	0.13	0.06	0.15	0.09	0.06	0.06	0.18	0.06	0.06	0.11

Table 1	4 Area	under	varieties	with	high	resistance	and	suscer	ptible	bv	stress	and	count	rv
I doite I	- I II Cu	unuer	varieties	vv I tIII	mgn	resistance	anu	susce	puole	υy	Sucss	ana	count	-y

Notes: Blank boxes refer to missing rather than to not available data; medium and low resistance not shown.

Bacterial wilt susceptibility of varieties is equally wide-spread in comparison. Though in China (13% or 631,272ha) fewer susceptible varieties are cultivated compared with late blight, in India a stunning 95% (or 1.5Mha) of the total area is cultivated with susceptible bacterial wilt varieties. In terms of total high resistance area, 8% (or 624,489ha) is cultivated with bacterial wilt varieties.

Area under varieties with other resistances, such as X-virus, Y-virus, S-virus, Leafcurl, and Nematodes, are relatively small in terms of high resistance as well as susceptibility. However, China stands out in terms of adoption of high resistant varieties. Leafcurl (28% or 1.38Mha), Y-virus (23% or 1.12Mha), and X-virus (18% or 872,261ha) are the most dominant traits.

The share of high resistant NARS-CIP varieties of total area and at country level can be found in Table 5A in the Appendix.

Earliness

An important trait potato varieties are increasingly equipped with is earliness or earlymaturing. This allows the potato variety to mature within 75-90days without to comprise on yield. There is in particular potential in terms of intensification of cereal-based systems. For instance, between two rice cycles, these have a fallow period which allows for the cultivation of an early-maturing potato variety. Since rice is dominating as a crop in our study region, intensification with potato holds huge potentials.

In our study region, about 0.9Mha are planted to early-maturing potato varieties which is about 12% of the total area (Table 15). Most of the potato area (2.46Mha) is planted to medium-maturing varieties which accounts for 32% of the total area. Finally, 25% of the total area is planted to late-maturing potato varieties.

In China and Nepal, at the country level the highest percentages of early-maturing varieties can be found; these are 15% and 13%, respectively. Similarly, in India and Pakistan 6% is planted to early-bulkers. Strikingly, in Indonesia there are no varieties adopted with earliness.

Much of the area is planted to medium-maturing varieties. In Indonesia this is 97%, and Bangladesh 79%. In India, 50% of the total area is planted to medium-bulkers. Regarding medium-late-maturing varieties, most of the area in China (37%) and Nepal (31%) is planted to these varieties. Interestingly, late-maturing varieties are relatively less popular. Only 11% in China and 8% in India. In contrast, Nepal has most of its potato area (24%) planted to late-maturing varieties.

The share of early/medium/late-maturing NARS-CIP varieties of total area and at country level can be found in Table 5A in the Appendix.

	Total	Early	7	Medium l	Early	Mediur	n	Medium I	Late	Late	
Country	(ha)	(ha)	(%)	(ha)	(%)	(ha)	(%)	(ha)	(%)	(ha)	(%)
Bangladesh	462,030	17,403	0.04			363,671	0.79				
China	4,969,569	756,622	0.15	261,087	0.05	1,174,929	0.24	1,860,682	0.37	531,490	0.11
India	1,576,956	92,125	0.06			740,971	0.47	22,420	0.01	133,043	0.08
Indonesia	75,772					73,742	0.97	2,030	0.03		
Nepal	205,000	26,166	0.13			19,084	0.09	63,403	0.31	49,649	0.24
Pakistan	334,242	19,413	0.06			92,491	0.28				
Vietnam	25,001	606	0.02			222	0.01				
Total	7.648.570	912.335	0.12	261.087	0.03	2.465.111	0.32	1.948.535	0.25	714,182	0.09

Table 15 Area planted to varieties by earliness

Notes: early = 75-90 days; medium = 90-120 days; late = 120 days; medium early and medium late do not have clear cut-off points but lay between early-medium and medium-late, respectively. By country, the total area does not always add up to 100% which means that data is partly unavailable. However, it is safe to assume that most the area planted to varieties of unknown earliness traits is in the category

medium or late. This is because early-maturing is a trait which need to be bred for and thus should be identifiable in currently adopted varieties.

Most Dominating Varieties

The ten dominating varieties in our study region cover 48% of the total potato area in 2015. We summarize these in Table 16. Ranking first, the Chinese variety Kexin No.1 covers alone almost 10% (0.7Mha) of the total area. Compared with 2007, Kexin No.1 remains the most adopted potato varieties in the region. The Indian early-maturing variety, Kufri Pukhraj, made a large jump from rank 17 in 2007 to rank 2 in 2015. Now it covers about 7% (0.51Mha) of the total area. Other varieties, such as Favorita, Hui-2, Cardinal, and Zhuangshu No.2 have also gained in importance. Whereas Kufri Jyoti and Kufri Bahar lose in importance.

The ten most important NARS-CIP varieties all together cover 74% of the total NARS-CIP area and 14% of the total potato area (Table 17). Cooperation 88 is the most important NARS-CIP late blight resistant variety covering 164,328ha. E-potato No.5 and Longshu No.3 closely follow with 155,200ha and 149,280ha, respectively. In the overall picture, these rank 11, 12, and 13. Nine out of ten NARS-CIP varieties were bred in China. Only Kufri Chipsona 1, an Indian variety used for processing is in the top ten ranking seventh from being 37 in 2007. Interestingly, apart from Longshu No.3, all NARS-CIP varieties have in increasing trend.

Rank 2015	Country	Variety Name	Source	Estimated area	Share of total (%)	Rank 2007	Trend	
1	China	Kexin No. 1	NARS-developing	716,297	0.094	1	=	
2	India	Kufri Pukhraj	NARS-developing	521,376	0.068	17	1	
3	China	Favorita	NARS-developed	489,879	0.064	12	1	
4	China	Mira	NARS-developed	430,502	0.056	4	=	
5	India, Nepal	Kufri Jyoti	NARS-developing	343,810	0.045	3	\downarrow	
6	India	Kufri Bahar	NARS-developing	272,642	0.036	2	\downarrow	
7	China	Weiyu No.3	NARS-developing	271,111	0.035	11	\downarrow	
8	China	Hui-2	NARS-developing	262,107	0.034	9	Ť	
9	Bangladesh, India, Nepal, Pakistan	Cardinal	NARS-developed	184,698	0.024	25	ſ	
10	China	Zhuangshu No.3	NARS-developing	167,880	0.022		1	

Table 16Ten most cultivated varieties

Source: SIAC survey and Thiele et al. (2008)

Rank 2015	Country	Variety Name	Туре	Estimated area	Share of NARS-CIP total	Rank 2007	Trend
1	China	Cooperation 88	Crosses	164,328	0.11	13	<u>↑</u>
2	China	E-potato No.5	Crosses	155,200	0.11		1
3	China	Longshu No.3	Progenitor	149,280	0.10	7	\downarrow
4	China	Xuanshu No.2	Progenitor	137,417	0.10		1
5	China	Tacna	Crosses	133,215	0.09		↑
6	China	Unica	Crosses	121,936	0.09		<u>↑</u>
7	India	Kufri Chipsona 1	Progenitor	60,840	0.04	37	1
8	China	Zhongshu No.3	Progenitor	52,627	0.04		↑
9	China	Chuanyu 117	Crosses	50,863	0.04		1
10	China	Lishu No.6	Crosses	40,196	0.03		1

Table 17Ten most cultivated NARS-CIP varieties

Source: SIAC survey and Thiele et al. (2008)

Linking Area to Households

Knowledge about NARS' use of CIP-related material allows us to make inferences about the 'NARS-CIP' total area. Rather than measuring CIP's impact in terms of area, the amount of beneficiaries reached is most important. Expert elicitation workshops were only used to collect perceived area of adoption. Questions on the numbers of households planting CIP-material was beyond the scope of the project. In absence of primary data, we infer the number of households planting CIP material. Census data on number of smallholdings in various countries where used to calculate the average farm size in the year 2000 (Lowder et al., 2016). We utilize this crude measure to infer the total numbers of potato smallholdings (total area/avg. farm size) for total area and area planted to modern and NARS-CIP varieties. The results of this exercise are summarized in Table 18.

A total of 10,5M smallholdings utilize the total area under potato (7.65Mha). Most of the smallholdings are located in China (7.3M). Given Bangladesh relatively small average farm size (0.3), the total number of smallholdings planting potatoes reaches 1.54M, slightly more than in India where 1.2M smallholdings crop potatoes. Similarly, the amount of households planting modern potato varieties is high (10.1M). Regarding CIP's impact, in 2015 about 2M households (i.e. beneficiaries) are planting varieties which are CIP related. Of which, 1.8M in China, about 87,000 in Nepal, about 84,000 in India, and around 2,000-3,000 in Indonesia, Vietnam, and Bangladesh.

Country	Avg. farm size in 2000	Total (No.)	Modern (No.)	NARS-CIP (No.)
Bangladesh	0.3	1,540,100	1,273,580	2,340
China*	0.68	7,308,190	7,308,190	1,833,856
India**	1.3	1,213,043	1,120,358	84,048
Indonesia	0.8	94,715	92,096	2,880
Nepal	0.8	256,250	209,519	87,158
Pakistan	3.1	107,820	107,820	
Vietnam	0.7	35,716	35,716	2,807
Total		10,555,833	10,147,279	2,013,089

Table 18Estimation for number of potato smallholdings

Notes: *for 12 Provinces; **for 6 States. Average farm size based on Lowder et al. (2000)

Discussion and Conclusions

In close collaboration with NARS, international agricultural research centers have greatly contributed to the development and release of modern varieties. During the GR (1960-

2000), breeding objectives strongly focused on breeding for high-yielding varieties to combat undernourishment. Global challenges such as climate change, related biotic stresses, and the awareness of the important of micronutrients in rural diets induced changes in breeding objectives. The focus shifted from high-yielding varieties to breeding for other traits which allowed farmers to be more resilient and improve local diets.

In this study we find that these changes induced a tremendous increase in releases of modern potato varieties in Southeast, East, and South Asia in the Post GR (2000 – today). Compared to the Late GR (until 2000), releases of MVs increased by 230% to reach 604 in the Post GR. Most of the contribution, however, stems from Chinese NARS considerable breeding efforts. Of those total releases about 40% have found their way onto the farmers' fields. In Nepal and Vietnam, adoption rates are close to 100%, in China it is 62% and, strikingly, in Bangladesh it is only 7%. It seems that in Bangladesh many resources are allocated to the development of new varieties rather than the dissemination thereof.

In the wake of an increasing prevalence of abiotic and biotic stresses, we find that changing breeding objectives resulted in substantial releases of high-resistant varieties since 2000. On average, more emphasis has been placed on biotic than abiotic traits. We further find that all combinations of 10 abiotic and biotic traits (2 traits per variety), and 3 different traits per variety are available. However, there are regional differences. In China and India, for instance, high resistances against almost all major stresses can be found. In the other countries in our study region, less than half of the 10 major traits are bred into a high resistant variety, making these vulnerable to the immediate effects of climate change. In particular Indonesia, Nepal, and Pakistan have not released a single high resistant variety with an abiotic trait.

In 2015, the potato area in our study region was 7.65Mha. An incredible 97% of the area is planted to modern varieties. The area increased by 11% compared to 2007. Between 1997 and 2007, the area increased by 27% which means that expansion has slowed down. Nevertheless, between 1997 and 2015, share of area planted to MVs increased by 4%. Whereas MVs are generally widely adopted, in Bangladesh and Nepal adoption of MVs are about 80% each. For Bangladesh, this again points at the (1) importance of landraces and (2) the relative weakness in disseminating MVs.

In terms of traits, leafcurl, Y-virus, and drought are the most important resistances to be found in adopted varieties. However, in total none of these exceed adoption rates of more than 20%. This may not pose a problem because the prevalence of abiotic and biotic stresses is context-specific. It is troublesome that in Nepal, Pakistan, and Vietnam, almost no area is planted to varieties with abiotic high resistances, which is in line with the release data. Secondly, in total, about 30% of adopted varieties are susceptible to late blight and bacterial wilt.

To facilitate the process towards more sustainable intensification, earliness is a required trait which allows the variety to bulk within 75-90 days. Especially in rice-dominating countries, intensification with potato could diversify diets and create additional incomes. In 2015, only 12% of the total area is cultivated with early-bulkers. In China, the highest share of

early-maturing varieties can be found covering about 15% of the area. In other countries, such as Bangladesh, India, and Vietnam, where sustainable intensification has huge potential, only 2-6% of the area is planted to early-bulkers.

The 10 most important varieties cover about 60% of the total area. Kexin No.1, released in China in 1967, ranks number 1 with about 10% of the total area. Kufri Pukhraj, released in India in 1998, is the second most important variety covering about 7% of the total area. All of 10 varieties are older than 10 years, most of them are released 20-30 years ago. Compared with more recent releases, these varieties have weaker resistances to abiotic and biotic stresses. To analyze the determinants of adoption in spite of availability of better varieties, could be an interesting avenue for future research.

Impact of CIP

As part of international agricultural research centers, by 2015 CIP has contributed to the development of 218 MVs which is 36% of the total releases. 44% (96 MVs) of the released varieties have been adopted afterwards. This makes CIP material more successful than NARS and other material in terms of amount of varieties released and adopted. In general, CIP-related releases and adoption follow a similar increasing trend compared to the overall trend. In China, 155 released varieties are CIP-related. In Bangladesh, 16 CIP-related varieties have been released and only 2 have been adopted. In Pakistan, CIP has not had much impact in terms of varietal release and adoption. Only one released variety which was not adopted.

About 53% of the CIP-material used was selected from CIP-crosses and 42% was selected from CIP-progenitors. All countries utilize CIP-crosses making these overall more popular. CIP-progenitors are only used by China, Indonesia, and India. The latter country has a strong preference for CIP-progenitors.

In terms of area, CIP-related varieties are planted to about 1.43Mha which is about 19% of the total area. In China, 25% of the total potato area is planted to CIP-related varieties (1.24Mha). In Nepal, CIP has made much impact as well. Here, 34% of the total area is planted to CIP-related varieties. In other countries, CIP's impact in terms of area is marginal or not existing, which is the case in Pakistan. In spite of the tremendous impact in China, in relative terms CIP's impact has been greater in Nepal. The area per capita in Nepal is 408.9ha whereas in China it is 1108.5ha in 2015.

Regarding the tem most important CIP-related varieties, nine out of ten varieties are cultivated in China. Cooperation 88, released in China in 2001, covers about 165,000ha and is the most important CIP-related variety. Kufri Chipsona, released in India in 1998, covers 61,000ha. Compared to 2007, almost all CIP-related varieties are increasing in trend, especially Chipsona 1, which jumped from rank 37 to 7. Further research could analyze the adoption determinants of this varieties to better understand why certain varieties are successful and others not.

There are a couple of challenges this research has dealt with. For instance, expert opinions have been criticized to be less accurate compared with household surveys. Though we cannot fully refute this claim, the adoption estimates in this study should be considered as *perceived* adoption. Second, the categorization of level of resistances (i.e. high, medium, low) is also based on experts opinion. Unfortunately, objective experimental data is not widely available which is often related to NARS's financial capabilities to fund appropriate experiments. Third and finally, data on nutritional values is very limited, mostly because of the same reasons as before, the lack of adequate financial resources. However, in times where we attempt to combat micronutrient deficiency, data on nutritional values is critical.

References

- Evenson, R. E., & Gollin, D. (2003a). Assessing the impact of the green revolution, 1960 to 2000. *Science (New York, N.Y.)*, *300*(5620), 758–62. http://doi.org/10.1126/science.1078710
- Evenson, R. E., & Gollin, D. (2003b). Production Impacts of Crop Genetic Improvement. Crop Variety Improvement and its Effect on Productivity. The Impact of International Agricultural Research. Wallingford (UK) Cabi publisher.
- Shahid, S., & Behrawan, Æ. H. (2008). Drought risk assessment in the western part, 391–413. http://doi.org/10.1007/s11069-007-9191-5
- Thiele, G., Hareau, G., Suárez, V., Chujoy, E., Bonierbale, M., Maldonado, L., ... Maldonado, L. (2008). Varietal change in potatoes in developing countries and the contribution of the International Potato Center: 1972-2007, 1972–2007.
- Walker, T., & Alwang, J. (2015). Crop Improvement, Adoption, and Impact of Imprved Varieties in Food Crops in Sub-Saharan Africa. CGIAR Consortium of International Agricultural Research Centers and Cab International.
- Yu, M., Li, Q., Hayes, M. ., Svoboda, M. ., & Heim, R. R. (2014). Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index : 1951 – 2010 ?, 558(May 2013), 545–558. <u>http://doi.org/10.1002/joc.3701</u>

Appendix

	Rele	ease	Adoj	oted	Adopted	no release
Province	(No)	(%)	(No)	(%)	(No)	(%)
Chongqing	18	0.05	6	0.03	4	0.67
Gansu	36	0.10	19	0.11	2	0.11
Guangxi	37	0.10	17	0.09	5	0.29
Guizhou	36	0.10	13	0.07	0	0.00
Hebei	11	0.03	13	0.07	2	0.15
Heilongjiang	37	0.10	15	0.08	1	0.07
Inner Mongolia	17	0.05	12	0.07	2	0.17
Ningxia	24	0.07	10	0.06	1	0.10
Shaanxi	17	0.05	16	0.09	0	0.00
Shanxi	32	0.09	16	0.09	2	0.13
Sichuan	44	0.12	26	0.14	2	0.08
Yunnan	58	0.16	17	0.09	3	0.18
Total	367	1.00	180	1.00	24	0.13

Figure 1A: Without China – amount of varieties released and adopted between 1952-2014 Notes: Cumulative trend lines refer to right axis

			1		,			
	late blight	bwilt	xvirus	yvirus	svirus	leaf curl	nematode	frost
drought								
+ 1 trait + heat	8	13	14	12	13	14	14	9
+ 1 trait + late blight		13	16	13	10	16	8	9
+ 1 trait + bwilt			16	14	14	17	13	11
+ 1 trait + xvirus	•			23	15	24	14	9
+ 1 trait + yvirus					13	21	12	8
+ 1 trait + svirus	•					15	13	9
+ 1 trait + leaf curl							13	11
+ 1 trait + nematode	•				•		•	8
heat								
+ 1 trait + late blight	•	9	8	9	9	8	9	7
+ 1 trait + bwilt			13	13	14	13	14	9
+ 1 trait + xvirus				13	13	15	14	8
+ 1 trait + yvirus					13	13	13	8
+ 1 trait + svirus						13	14	9
+ 1 trait + leaf curl							13	8
+ 1 trait + nematode								9
late blight								
+ 1 trait + bwilt	•		12	12	12	11	11	10
+ 1 trait + xvirus				20	13	19	10	8
+ 1 trait + yvirus					13	17	12	9
+ 1 trait + svirus						12	11	9
+ 1 trait + leaf curl							9	9
+ 1 trait + nematode								8
bwilt								
+ 1 trait + xvirus				17	15	17	14	12
+ 1 trait + yvirus					15	15	14	11
+ 1 trait + svirus						15	16	11
+ 1 trait + leaf curl							14	12
+ 1 trait + nematode								10
xvirus								
+ 1 trait + yvirus					17	33	15	10
+ 1 trait + svirus						18	14	10
+ 1 trait + leaf curl							14	13
+ 1 trait + nematode								9
y-virus								
+ 1 trait + svirus						16	14	10
+ 1 trait + leaf curl							13	9
+ 1 trait + nematode								9
svirus								
+ 1 trait + leaf curl							14	10
+ 1 trait + nematode								10
leaf curl								
+ 1 trait + nematode			•					9

Table 2A. Varietal release for 1	multiple traits	(+2 traits)
----------------------------------	-----------------	-------------

Notes: Traits refer to 'high' resistance category.

	NARS-CIP			NARS-developing			NARS-developed					
Province	Release	(%)	Adopt	. (%)	Release	(%)	Adopt.	(%)	Release	(%)	Adopt.	(%)
Chongqing	11	0.07	1	0.01	6	0.03	2	0.03	1	0.04	3	0.09
Gansu	5	0.03	3	0.04	31	0.17	14	0.18			2	0.06
Guangxi	13	0.08	8	0.12	21	0.11	6	0.08	3	0.12	3	0.09
Guizhou	12	0.08	6	0.09	21	0.11	5	0.06	3	0.12	2	0.06
Hebei	4	0.03	4	0.06	5	0.03	5	0.06	2	0.08	3	0.09
Heilongjiang	7	0.05	4	0.06	28	0.15	8	0.10	2	0.08	3	0.09
Inner Mongolia	6	0.04	4	0.06	6	0.03	3	0.04	5	0.20	5	0.15
Ningxia	9	0.06	3	0.04	12	0.06	5	0.0	2	0.08	2	0.06
Shaanxi	6	0.04	6	0.09	8	0.04	7	0.09	3	0.12	3	0.09
Shanxi	11	0.07	6	0.09	20	0.11	7	0.09	1	0.04	3	0.09
Sichuan	26	0.17	13	0.19	15	0.08	10	0.13	3	0.12	3	0.09
Yunnan	45	0.29	10	0.15	13	0.07	6	0.08			1	0.03
Total	155	1.00	68	1.00	186	1.00	78	1.00	25	1.00	33	1.00

Table 3A. Varietal release and adoption until 2015 by Chinese Provinces and release classification

Notes:*for 12 Provinces only; NARS-CIP is a vector of CIP-related variables including NARS selection from CIP crosses, NARS selection from CIP progenitors, NARSbred variety distributed by CIP.

Table 4A.	Area and	share of	modern	area by	region	in	China	and	India

	Area (ha)	Modern (ha)	Modern (%)
China			
Chongqing	346,653	346,653	1.00
Gansu	708,324	708,324	1.00
Guangxi	54,667	54,667	1.00
Guizhou	700,000	700,000	1.00
Hebei	200,000	200,000	1.00
Heilongjiang	253,333	253,333	1.00
Inner Mongolia	566,667	566,667	1.00
Ningxia	177,333	177,333	1.00
Shaanxi	386,631	386,631	1.00
Shanxi	200,000	200,000	1.00
Sichuan	789,334	789,334	1.00
Yunnan	586,627	586,627	1.00
Total	4,969,569	4,969,569	1.00
India			
Bihar	314,837	194,526	0.62
Gujarat	112,400	112,400	1.00
Karnataka	41,500	41,500	1.00
Punjab	90,000	90,000	1.00
Uttar Pradesh	607,000	607,000	1.00
West Bengal	411,219	411,037	1.00
Total	1,576,956	1,456,463	0.92

Table 5A. Share of modern varieties plante	I to NARS-CIP area by	y trait and earliness
--	-----------------------	-----------------------

	Country	Bangladesh	China	India	Indonesia	Nepal	Pakistan	Vietnam	Total
NARS-CIP area	(ha)	702	1.2M	109,263	2,304	69,726		1,965	1.43M
High resistant tr	aits								
Drought	(%)	0.50	0.24						0.21
Frost	(%)		0.04						0.03
Heat	(%)		0.18	0.01				0.10	0.16
Late Blight	(%)	0.50	0.19	0.17	0.18	0.17		0.26	0.18
Bacterial wilt	(%)		0.26						0.23
X-virus	(%)		0.44			0.01			0.38
Y-virus	(%)		0.43			0.01		0.01	0.38
S-virus	(%)		0.15						0.13
Leafcurl	(%)		0.36			0.14			0.32
Nematode	(%)		0.15						0.13
Earliness									
Early	(%)		0.10	0.01				0.31	0.09
Medium	(%)	1.00	0.13	0.78	1.00	0.01		0.11	0.17
Late	(%)		0.22			0.58			0.22

Table 6A. List of most important and NARS-CIP varieties.

Rank 2015	Country	Variety Name	Source	Estimated area	Rank 2007	Trend
1	China	Kexin No. 1	NARS-developing	716,297	1	=
2	India	Kufri Pukhraj	NARS-developing	521,376	17	↑
3	China	Favorita	NARS-developed	489,879	12	Ť
4	China	Mira	NARS-developed	430,502	4	=
5	India, Nepal	Kufri Jyoti	NARS-developing	343,810	3	\downarrow
6	India	Kufri Bahar	NARS-developing	272,642	2	\downarrow
7	China	Weiyu No.3	NARS-developing	271,111	11	\downarrow
8	China	Hui-2	NARS-developing	262,107	9	1
9	Bangladesh, India, Nepal, Pakistan	Cardinal	NARS-developed	184,698	25	1
10	China	Zhuangshu No.3	NARS-developing	167,880		1
11	China	Cooperation 88	NARS-CIP	164,328	13	1
12	China	E-potato No.5	NARS-CIP	155,200		Î
13	China	Longshu No.3	NARS-CIP	149,280	7	Ļ
14	Banglades, Pakistan	Asterix	NARS-developed	147,871		Î
15	Bangldesh, India, Pakistan, Vietnam	Diamant	NARS-developed	138,231	5	Ļ
16	China	Xuanshu No.2	NARS-CIP	137,417	••	Î
17	China	Tacna	NARS-CIP	133,215		Ť
18	China	Unica	NARS-CIP	121,936		Ť
19	China India Indonesia Viatnam	Zaodabai	NARS-developing	89,300		1
20	China, India, Indonesia, Vietnam	Atlantic Source (sublice)	NARS-developed	78,550		 •
21	Pakistan	Sante (White)	NARS-developed	75,539		 ★
22	China	Chuonyay 56	NARS-developing	10,539		
23	Indonesia	Granola I	NARS-developing	62 708	20	↓ _
24	China India	Shepody	NARS-developed	62,708	24	
25	Undia	Kufri Chinsona 1	NARS-developed	60.840	 37	 ↑
20	China	Kevin No 13	NARS-developing	58 267	57	 ↑
28	China	Zhongshu No 3	NARS-CIP	52 627		⊥ ↑
20	India Pakistan	Kuroda	NARS-developed	50,965	••	⊥ ↑
30	China	Chuanyu 117	NARS-CIP	50,863	••	⊥ ↑
38	China	Lishu No 6	NARS-CIP	40,196	••	, ↓
39	China	Zhongshu No.5	NARS-CIP	38,707		↑
41	Nepal	Janakdev	NARS-CIP	37.914		ŕ
48	China	Chuanvu No.5	NARS-CIP	31.227	22	, ,
53	India	Kufri Chipsona 3	NARS-CIP	24,758		Ť
56	China	Xingjia No.2	NARS-CIP	23,800		ŕ
58	China	Jinshu No.16	NARS-CIP	22,833		ŕ
60	China	Tongshu No.23	NARS-CIP	22,000		Ť
62	India	P2	NARS-CIP	18,340		1
67	China	Kangqing 9-1	NARS-CIP	15,400	202	1
68	China	Youjin	NARS-CIP	15,200		1
71	China	Zhongshu No.2	NARS-CIP	12,987	70	\downarrow
74	China	Khumal Rato-2	NARS-CIP	11,643	120	1
76	China	E-potato No.3	NARS-CIP	11,017		1
81	China	Khumal Seto 1	NARS-CIP	9,703	96	Î
92	China	Chuanyu 39	NARS-CIP	6,837	195	Î
92	China	Chuanyu No.6	NARS-CIP	6,837	97	Î
94	China	Chuanyu No.10	NARS-CIP	6,737	194	Î
97	China	Dianshu No.6	NARS-CIP	6,611	159	Î
103	Nepal	TPS	NARS-CIP	6,015	••	Ť
109	China	Qianyu No.6	NARS-CIP	5,000		Ť
112		Y USIKAP	NARS-CIP	4,040	237	 •
115	China	Kulisliu N0.2 Vunshu 401	NARS-CIP	3,969		 ↑
120	China	Dongnong 211	NARS-CIP	2,044	••	 ↑
129	Nepal	Khumal Laxmi	NARS-CIP	2,333	••	 ↑
132	China	Cooperation 23	NARS-CIP	1 983		 ↑
135	China	Mengshu 13	NARS-CIP	1,505		⊥ ↑
140	China	Jingshu No 1	NARS-CIP	1 328	••	⊥ ↑
142	India	Kufri Surva	NARS-CIP	1,326	••	⊥ ↑
146	China	Tongshu No.20	NARS-CIP	1,000	••	, ↓
148	China	Minshu No.4	NARS-CIP	950		, ↓
149	Nepal	MS-42-3	NARS-CIP	938		ŕ
150	Nepal	Khumal Upahar	NARS-CIP	815		ŕ
152	China	Zhongshu No.18	NARS-CIP	702		ŕ
153	Indonesia	Tenggo	NARS-CIP	684		ŕ
157	Vietnam	07	NARS-CIP	625		ŕ
158	Vietnam	KT3	NARS-CIP	606	190	ŕ
163	Vietnam	PO3	NARS-CIP	513		ŕ
165	Nepal	Khumal Ujjwal	NARS-CIP	426		↑
166	Indonesia	Dea	NARS-CIP	405		↑
167	Indonesia	Andina	NARS-CIP	405		Î

Rank 2015	Country	Variety Name Source	Estimated area	Rank 2007	Trend
168	Indonesia	Medians NARS-CIP	405		1
169	Indonesia	Repita NARS-CIP	405		↑
173	Bangladesh	LB 7 NARS-CIP	351		↑
174	Bangladesh	LB 6 NARS-CIP	351		↑
177	Vietnam	KT2 NARS-CIP	202	226	↑
182	India	Kufri Himalini NARS-CIP	50		↑
183	Vietnam	KT1 NARS-CIP	20		1

Expert-level Data Collection Instrument

(To be completed by each Expert)

A1. Name:

A3. Today's Date:___

A2. Affiliation:

A4. Country:	A5. Crop:
A6. Sub-Region/agro-ecological domain:	A7a. Season:
	A7b. Year:

Note: The frame of reference for all the following questions is the <u>crop, sub-region and season/year</u> noted above.

B. Please provide your estimate of the relative importance of improved varieties vs. local landraces as measured by percentage area harvested:

Varietal type	% Area	E. Please provide a brief explanation in s of the estimates in B1 and B2 (<i>use a sepa</i> <i>sheet if more space is required</i>)		
Traditional/Local/Landraces	B1.			
Modern/Improved	B2.			
Total		100%		
C. Please list all the improved crop varieties (in descending rank order) you believe farmers are currently growing in this sub-region by season combination	D. Pl perce devo list is varie the to your sense varie	lease share your perception entage share of area harves ted to each variety identi- s significantly more than eties, restrict to varieties op 95% of MV adoption of own judgment on when i te to aggregate 'all other to eties')	on of ested fied (<i>if the</i> 12 occupying urea. Use t makes improved	E. Please provide a justification for the basis of your estimates of perceived adoption or a brief explanation in support of this perception (<i>use a separate sheet if</i> <i>more space is required</i>)
C1.	D1.			
C2. D2.				
C3. D3.		D3.		
C4. D4.		04.		
C5. D5.		5.		
C6. D6.		96.		
C7. D7.				
C8. Local/Traditional varieties	D8.			
Total	100%	6		

Conference Proceedings

The 9th ASAE International Conference 2017 : **Transformation in Agricultural** and Food Economy in Asia

Hosted by: Asian Soceity of Agricultural Economics Kasetsart University Thailand Development Research Institute Agricultural Economics Association of Thailand under Royal Patronage

ASIAN SOCEITY OF

515INO

11-13 January 2017 Bangkok, Thailand

Department of Agricultural and Resource Economics Faculty of Economics, Kasetsart University 50 Ngam Wong Wan Rd, Ladyaow Chatuchak Bangkok 10900, Thailand Tel. +662942-8651 Fax. +662579-9429 www.agri.eco.ku.ac.th/asae2017

The 9th ASAE International Conference Transformation in Agricultural and Food Economy in Asia

Date: 11-13 January, 2017 Venue: The Emerald Hotel, Bangkok, Thailand

The Asian Society of Agricultural Economists (ASAE) is a recognized association of agricultural economists and other professionals in Asia. The ASAE International Conference effectively promotes scientific and technical interactions among agricultural economists, development practitioners, policymakers, academicians, researchers, and students from all over the world. It provides an excellent opportunity to share knowledge and ideas for research, teaching, as well as real-world policy making. The 9thASAE International Conference in 2017 will be a good opportunity for participants around the world to learn about agricultural economic issues in Thailand and in Asia to cope with challenges in transforming agricultural and food economy.

1. Introduction

Asia has experienced remarkable economic growth in the past 4-5 decades. Asian economy accounts for one third of total global economic activity and plays a significant role in the world economy today. In recent decades, fast growing economy in Asia, particularly in East and Southeast Asia, has been representing the most dynamic region in the world. More than 2.2 billion people in Asia still rely on agriculture for their livelihoods. Although agricultural GDP and the share of employment in agriculture has declined significantly in some Asian countries, agriculture is still the sector that engages over 700 million workers—about 40% of Asia's total employment.

Many Asian countries are also facing new challenges from disruptive forces such as rising wage, aging society, rapid urbanization, climate change, and globalization that would require a transformation in agricultural and food sectors. Changes in food diet towards safety, healthy and quality products; changes in preferences for environmental and ethical concerns regarding animal welfare, carbon emission, water consumption, child labor, and fair trade are among transformations in food demand. At the same time, agricultural and food production encounters challenges that requires new technology, farm management and practice, and institutional reform.

These emerging issues require reconsideration of existing economic concepts, theories, and research tools to understand the patterns of economic transformation in agricultural and food sectors. These challenges require academia, researchers, scientists, and practitioners (from public, private, and civil society) to analyze and provide implications and give suggestions towards the achievement of sustainable economy in Asia.

ii

2. Objectives

This international conference aims to provide a venue by bringing together a good mix of acknowledged policymakers, university researchers, professionals and specialists from development agencies and private industry to share experiences, exchange perspectives, and discuss consequences, emerging issues, and challenges in transforming Asian agricultural and food economy. Furthermore, it aims to draw up intellectual inputs that can help in shaping agriculture policy design in the region.

3. Dates/Venue:

Dates: 11-13 January 2017

Venue: The Emerald Hotel, Bangkok, Thailand

4. Conference Theme

Transformation in Agricultural and Food Economy in Asia

Paper & poster presentation: under the following sub-themes

Sub-themes

- Rural transformation processes in Asia: experiences, lessons learned and challenges.
- Food value chain development in the Asian countries
- Changing consumer behavior
- Technological innovations in support to agricultural development and agricultural transformation
- Institutional innovations in support to agricultural development and agricultural/rural transformation
- Demographic changes: their implications on agricultural production and food consumption
- Prospects of Asian agriculture under the regime of AEC and other trade agreements in the Asia and Pacific region and beyond
- Agriculture and sustainable development goals
- International cooperation in facilitating agricultural and rural transformation

5. Organizers:

Asian Society of Agricultural Economists (ASAE)

Kasetsart University

Thailand Development Research Institute (TDRI)

Agricultural Economics Association of Thailand under Royal Patronage

6. Important dates

Deadline of submission of extended abstract (2-3 pages) and organized parallel session abstract: *15 September 2016*

Notification of abstract acceptance for oral and poster presentation: *15 October 2016* Submission of full paper: *1 December 2016*

7. Official website

http://agri.eco.ku.ac.th/asae2017/

8. Registration fees

US \$300: participants from OECD countries

- US \$200: participants from non-OECD countries and ASAE members
- US \$100: participants from the academe, government, and institutions (Thai)

US \$100: students (other than Kasetsart University)

US \$50: students (Kasetsart University)

9. Contacts

Orachos Napasintuwong, the 9th ASAE conference secretariat [orachos@gmail.com] Karen Quilloy, the 9th ASAE conference secretariat [karenquilloy@gmail.com]