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Abstract
Improving the efficiency of selection in conventional 
crossbreeding is a major priority in banana (Musa spp.) 
breeding. Routine application of classical marker assisted 
selection (MAS) is lagging in banana due to limitations in 
MAS tools. Genomic selection (GS) based on genomic 
prediction models can address some limitations of classical 
MAS, but the use of GS in banana has not been reported 
to date. The aim of this study was to evaluate the predictive 
ability of six genomic prediction models for 15 traits in a multi-
ploidy training population. The population consisted of 307 
banana genotypes phenotyped under low and high input 
field management conditions for two crop cycles. The single 
nucleotide polymorphism (SNP) markers used to fit the models 
were obtained from genotyping by sequencing (GBS) data. 
Models that account for additive genetic effects provided better 
predictions with 12 out of 15 traits. The performance of BayesB 
model was superior to other models particularly on fruit filling and 
fruit bunch traits. Models that included averaged environment 
data were more robust in trait prediction even with a reduced 
number of markers. Accounting for allele dosage in SNP markers 
(AD-SNP) reduced predictive ability relative to traditional bi-
allelic SNP (BA-SNP), but the prediction trend remained the same 
across traits. The high predictive values (0.47– 0.75) of fruit filling 
and fruit bunch traits show the potential of genomic prediction to 
increase selection efficiency in banana breeding.
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Core Ideas

•	 First empirical evidence of genomic prediction in a 
multi-ploidy banana population is presented.

•	 The effect of allele dosage single nucleotide polymorphism 
on prediction accuracy depends on the trait.

•	 Use of averaged environmental data improves 
prediction accuracy.

•	 BayesB model can be used across all traits during 
genomic prediction in banana breeding.

•	 The high predictive values show the potential of 
genomic prediction in banana breeding.
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Bananas are large, perennial, herbaceous monocots 
with a majority of cultivated types being triploid 

(2n = 3x = 33). They are a staple food to millions of 
people in many tropical countries and a source of income 
for many homesteads. Triploid bananas are mostly 
sterile although some cultivars have residual fertility that 
leads to limited seed production when hand pollinated 
(Ssebuliba et al., 2006). They are vegetatively propagated 
by means of suckers, a method that limits gene flow and 
recombination. The lack of genetic variability of bananas 
grown in particular regions renders all cultivars suscep-
tible to pests, pathogens and environmental stress. This 
causes reduced productivity of bananas that leads to food 
insecurity and income loss.

Given the importance of banana, improving the 
resistance of cultivated bananas is the most sustainable 
solution to declining production (Simmonds, 1986; Rowe, 
1990). This can be achieved by crossing with wild or 
improved diploids that carry host plant resistance genes 
for pathogens and pests. The triploid nature of culti-
vated bananas such as the East African highland banana 
(EAHB), impedes the breeding process due to low fertility 
or complete sterility of most cultivars. To overcome 
this problem, breeders have to develop intermediary 
improved diploids and tetraploids, which serve as parents 
to generate secondary triploids that are resistant and high 
yielding. Unlike a majority of crops, banana breeding 
involves crossing parents of different ploidy levels (Fig. 1). 
Partial fertility of polyploids relies on irregular meiosis 
and progenies consist of individuals with different ploidy. 
Due to linkage drag of undesirable alleles, several evalu-
ations and phenotypic selection at various stages are 
implemented making banana breeding (depicted in Fig. 2) 
expensive and slow. Clearly, the integration of molecular 
tools into conventional breeding programs is required to 
increase banana breeding efficiency.

Marker assisted selection (MAS) helps in selection 
of genotypes carrying the trait of interest at an early 
stage. However, very few reports on the use of MAS in 
banana improvement are available. For example, markers 
have been used to screen for Fusarium tropical race 4 
resistance and identification of banana hybrids that are 
devoid of infectious endogenous banana streak virus in 
the B-genome (Wang et al., 2012b; Umber et al., 2016; 
Noumbissié et al., 2016). Most MAS technologies aim at 
identifying molecular markers that are linked to traits 
through quantitative trait loci (QTL) analysis. Once the 
markers are identified, the breeder can use them to track 
the inheritance of the traits of interest. Marker assisted 
selection has been successfully implemented where traits 
are controlled by a few QTL with major genetic effects 
(Asíns, 2002; Collard and Mackill, 2008). However, some 
traits such as yield, drought tolerance, and some others 
may be controlled by numerous QTL, each explaining 
a small portion of the genetic variance (Asíns, 2002). 
Identifying all QTL controlling such traits and the 
markers that are in linkage disequilibrium with those 
QTL becomes a challenge. Even if it would be possible to 

identify small-effect QTL, their introgression into active 
breeding programs would be extremely challenging.

A relatively new approach of MAS in plant breeding 
known as genomic selection (GS) that uses genomic predic-
tion models was proposed by Meuwissen et al. (2001). 
Several variants of the original GS methodology have also 
been proposed (Goiffon et al., 2017). In GS, high-density 
markers spread across the entire genome are utilized to 
estimate the genetic value of a genotype using statistical 
models. As this estimate is based on genomic data, it is 
referred to as genomic estimated breeding value (GEBV). 
The primary advantage of GS over other forms of MAS is 
that the identification of individual QTL associated with a 
trait of interest is not necessary because QTL are assumed 
to be in linkage disequilibrium with at least one or more 
SNP (Meuwissen et al., 2001; Desta and Ortiz, 2014). The 
decrease in genotyping costs by next generation sequencing 
technologies and the emergence of GBS, which allows SNP 
discovery in large populations, made genomic prediction 
possible (Elshire et al., 2011). As the generation of marker 
data becomes increasingly cheaper than phenotyping, it is 
expected that GS will reduce breeding costs, increase selec-
tion intensity and accelerate the breeding efficiency.

Genomic selection is implemented in three phases 
that include: training, validation, and breeding (Jannink 
et al., 2010; Nakaya and Isobe, 2012). In the training 
phase, a model of the form “predicted phenotype = 
general phenotype mean in the population (inter-
cept) + GEBV + residual error” is generated from both 
phenotypic and genotypic data. The predictive ability 
of a genomic prediction model is determined by cross 
validation as the correlation between the predicted and 
observed value of a trait or the correlation between 
GEBV and observed phenotype (Jannink et al., 2010; 
Crossa et al., 2014; Crossa et al., 2016).

Genomic selection has been successful in animal 
breeding (Gorddard and Hayes, 2007). It is also expected 
to increase genetic gain per unit time and cost in plant 
breeding especially when applied on traits with low heri-
tability for which phenotypic selection is difficult and for 
crops with long selection cycle such as fruit trees, or banana 
(Wong and Bernardo, 2008; Crossa et al., 2010; Beaulieu 
et al., 2014; Crossa et al., 2014). Different studies in plants 
and animals have tested the predictive ability, or accuracy 
of different genomic prediction models (Legarra et al., 
2008; Heffner et al., 2011; Kumar et al., 2012; Würschum 
et al., 2013; Crossa et al., 2016; Weng et al., 2016; Momen 
et al., 2017). These include best linear unbiased predic-
tion (BLUP) and different Bayesian models (Robinson, 
1991; Tibshirani, 1996; Meuwissen et al., 2001; Park and 
Casella, 2008; Zhang et al., 2010; Pérez and de los Campos, 
2014). Characteristics of the models are summarized in 
numerous publications (Meuwissen et al., 2001; Habier et 
al., 2011; Desta and Ortiz, 2014; Pérez and de los Campos, 
2014). Although these models were originally developed 
and optimized for diploid organisms, they have then been 
extended to polyploid organisms (Crossa et al., 2014; Gezan 
et al., 2017). However, all studies used populations with 
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organisms of the same ploidy level. Polyploid organisms 
are challenging to model due to (i) uncertainty of allele 
frequency in the population and (ii) uncertainty of allele 
dosage at the loci (Blischak et al., 2016).

For bananas, besides the polyploid nature, there is 
a small effective breeding population. Yet the accuracy 
of genomic prediction depends on the size of training 
population. It should be large enough to capture all the 
segregating alleles in the breeding genetic pool (Crossa 
et al., 2014; Bassi et al., 2016). However, as noted by Bassi 
et al. (2016), no ideal population size exists for all species 
and traits. The parameters that need to be considered 
include relatedness of the individuals, the heritability of 
the trait, differences in linkage disequilibrium between 
markers and QTL across training and breeding popula-
tions, whether the population is bi-parental, or a mixture 
of several families and the cost involved in phenotyping 
the training population. For example, Beaulieu et al. (2014) 
used 1694 open pollinated genotypes of white spruce 
with 6385 SNP markers and obtained different accuracies 
of prediction depending on the trait and the relation-
ship between the training and validation data sets. The 
highest predictive ability observed was 0.44 for cell radial 
diameter. In contrast, Crossa et al. (2010) used a maize 
population of less than 300 individuals with less than 1200 
markers and obtained a predictive ability as high as 0.79 
for male flowering under well-watered conditions.

This study explored the potential of genomic predic-
tion in banana, a polyploid crop for which the population 
was composed of individuals with different ploidy levels, 
but mostly triploids (~85%) derived from EAHB. The 
objectives were to (i) compare the predictive ability of 
a set of six models with marker, pedigree, and both 
pedigree and marker information for 15 traits scored 
in the training population, and select the best genomic 
prediction model for each trait or a group of traits, (ii) 
determine the predictive ability of models with a training 
population grown under two different field manage-
ment practices (i.e., studying genotype × environment 
interaction), (iii) determine the predictive ability of the 
best model for prediction of traits within and across crop 
cycle 1/mother plants and crop cycle 2/first ratoons/first 
suckers (i.e., genotype × cycle interaction), (iv) determine 
the effect of accounting for allele dosage on the predic-
tive ability of the best genomic prediction model for each 
trait, (v) determine the effect of using genomic prediction 
models fitted with averaged environment phenotype data 
and allele dosage SNP (AD-SNP) markers on the predic-
tion of genotype performance in particular environments 
and (vi) determine the accuracy of selection based on 
GEBV relative to phenotypic data within the training 
population. To achieve these objectives, a training popu-
lation of 307 banana genotypes consisting of breeding 
clones and hybrids was phenotyped and genotyped.

Fig. 1. Conventional crossbreeding of East African Highland bananas (EAHB) starts with crossing a triploid parthenocarpic landrace 
with a wild, seeded diploid accession or a diploid cultivar showing fruit parthenocarpy. This cross gives diploids, triploids and tetra-
ploid hybrids. Tetraploids are selected and crossed with improved diploid hybrids selected from inter-diploid crosses. The resulting 
secondary triploids are evaluated, selected and advanced as promising improved genotypes aiming at new cultivars. The diploid and 
triploid (if fertile) hybrids can be further improved by crossing with other wild or improved diploids.
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MATERIALS AND METHODS
Phenotyping
The banana genomic selection training population used 
in this study and the traits measured were described in 
detail by Nyine et al. (2017). Briefly, the training popula-
tion consisted of 307 genotypes that included diploid (11%), 
triploid (85%), and tetraploid (4%) plants. The core breeding 
clones (parents) accounted for 12% of the population. The 
triploid parents were EAHB some of which were crossed 
with cultivar (cv.) Calcutta 4 to generate tetraploid hybrids, 
which are used as breeding clones (Supplemental Table S1). 
The diploid parents consisted of both wild and improved 
parthenocarpic genotypes. The rest were hybrids from 
early evaluation trials and advanced clones that had been 
selected over time during the 20 year of banana breeding 
by the International Institute of Tropical Agriculture 
(IITA) and the National Agricultural Research Organiza-
tion of Uganda. In total, 77 families (cross combinations) 
of variable sizes were represented in this population. 
Phenotyping was done at IITA research station located at 
Sendusu in Namulonge, 0.53° N 32.58° E, 1150 m above 
sea level with rainfall of about 1200 mm/year split into two 
rainy seasons, March-June and September-December, and 
an average annual temperature of 22°C.

Two phenotyping fields were established to mimic 
different agronomic practices that farmers use, thus 
creating a difference in growth environment. A completely 
randomized design with three replications per genotype 
was used to establish the fields. Sword and maiden suckers 
were used as planting materials with a spacing of 2 × 3 m. 
In the genomic selection trial one (GS1), 20 kg of manure 
was applied at planting, but neither mulching, nor nitrogen, 
phosphorus and potassium (NPK) fertilizer application 
was done afterward and this was considered a low input 
field management. The genomic selection trial two (GS2) 
was planted with 20 kg of manure, then mulched, and NPK 
fertilizer (25:5:5) was added at a rate of 480 g per plant 
mat per year, and this was considered a high input field 
management. In both fields, sucker management was done 
to maintain a maximum of three plants per mat.

Data were collected on two crop cycles in each field 
between 2013 and 2016. Fifteen traits were considered for 
genomic prediction modeling and these were categorized 
as plant stature, suckering behavior, black leaf streak 
resistance, fruit bunch, and fruit filling. For plant stature, 
plant height and girth at 100 cm from soil surface were 
measured at flowering. The total number of suckers and 
height of tallest sucker were recorded at flowering of crop 
cycle 1 and height of tallest sucker at harvest to represent 
suckering behavior. The number of standing leaves and 
index of non-spotted leaves were determined at flowering 
to characterize black leaf streak resistance. The index of 
non-spotted leaves was calculated according to the formula 
of Craenen (1998) with some modification as reported 
by Nyine et al. (2017). The fruit bunch traits scored at 
harvesting included the days to fruit maturity, bunch mass, 
number of hands, and number of fruits. For fruit filling, 
fruit length, fruit circumference, fruit diameter, and pulp 
diameter were measured at harvest. The data were checked 
for outliers and entry errors prior to use in model fitting. It 
should be noted that not all traits had full data sets because 
some genotypes had not completed the second cycle 
through harvest by the time of these analyses.

Genotyping
The population was genotyped by sequencing as 
described by Elshire et al. (2011). The restriction enzyme 
PstI was used in the genome complexity reduction during 
sequencing library preparation. Barcodes containing 
adaptors were ligated to the genomic DNA fragments. 
Ninety-six samples were multiplexed and sequenced on 
a single Illumina lane at the Institute of Genomic Diver-
sity, Cornell University. Each set of 96 samples was run 
twice to increase the number of reads per PstI tag. Single-
end reads of 100 bp were generated during sequencing. 
A workflow for the analysis of sequence reads was devel-
oped (Supplemental Fig. S1).

Sequence reads were filtered using fastq_quality_filter 
provided in the module fastx.0.0.13 (-q 20-p 90). Sequence 
reads were subjected to quality control analysis using 
fastqc provided in module FastQC.0.10.1. Reads from each 
lane were de-multiplexed into individual sample reads 

Fig. 2. Approaches to hybrid selection in banana breeding pro-
gram. (A) The classical phenotypic selection of banana hybrids 
and (B) integrated genomic selection and phenotypic selection 
approach being investigated.
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using fastx_barcode_splitter.pl provided in fastx.0.0.13. 
The barcodes were trimmed using fastx_trimmer in the 
module fastx.0.0.13. Any remaining adaptor sequences 
were removed using fastx_clipper also provided in module 
fastx.0.0.13. The PstI tag (5’-TGCAG—–3’) was retained 
on each sequence read to act as a reference point during 
read alignment to the reference genome. Reads of the same 
genotype were merged into one file for downstream analysis. 
Bowtie2 was used to align reads to the latest publicly avail-
able reference banana genome (Martin et al., 2016). Read 
groups were added to aligned sample reads after which the 
duplicate reads were marked and removed using picard-
1.100. Indels were realigned and all realigned reads from all 
samples were merged into one file before SNP calling.

Genome analysis tool kit (GATK) version 2.7.2, 
UnifiedGenotyper (https://software.broadinstitute.org/
gatk/documentation/) was used as the variant caller. 
First, all genotypes were considered as diploids and as 
such bi-allelic SNP (BA-SNP) were called. Second, the 
population was split and grouped according to ploidy 
level. The respective ploidy levels were set during SNP 
calling. Preliminary filtering of SNP was performed 
prior to output of variant call file (VCF). The filters used 
were QD < 2.0, FS > 60.0, MQ < 40 and Haplotypescore 
> 13.0. Further stringent filtering was done in R (R 
core team, 2016) where SNP loci with quality score less 
than 98 and more than 50% of the banana genotypes 
having missing data were excluded. Concordant SNP 
loci across all ploidy levels were selected to generate a file 
with SNP where allele dosage had been accounted for. 
The remaining missing data were imputed with impute 
function in R and SNP converted into numerical data 
for input into genomic prediction models using a custom 
R-script. The description of how the script works can be 
accessed here: http://olomouc.ueb.cas.cz/system/files/
users/public/scripts/AlleleDosage_R_function.docx

Comparison of Genomic Prediction Models  
and the Effect of Field Management and  
Crop Cycle on their Performance
Bayesian models accounting for additive genetic effects 
(Bayesian Ridge Regression [BRR], Bayesian LASSO [BL], 
BayesA, BayesB and BayesC), and reproducing kernel 
Hilbert space models with pedigree (P), markers (M), 
pedigree and markers (PM) accounting for non-additive 
genetic effects (RKHS_P, RKHS_M and RKHS_PM) 
were compared. All models were implemented in 
R-package BGLR (Pérez and de los Campos, 2014) using 
10807 BA-SNP markers. Since the training popula-
tion consisted of many small families and genotypes of 
different ploidy levels, both phenotype and SNP data 
were completely randomized in the same order. The aim 
was to minimize the effect of family structure and ploidy 
level during cross validation.

The phenotype data used were the average phenotypic 
observations per genotype per field. These were calculated 
using the function ‘aggregate’ provided in R-package plyr. 
The training population was divided into five groups and 

each group was used once as the testing (cross validation) 
set. The predictive ability of the model was determined 
as the average correlation between the predicted and 
observed phenotype of the testing sets from five cross 
validations. Across field management, cross validation was 
done so that data from one field were used to generate the 
model using the training set, and the predicted pheno-
types of the genotypes in the testing set were correlated to 
the observed phenotypes in the second field.

For all models, the priors for parameters such as 
shape, rate, and counts were estimated from the data. 
However, for BayesB and BayesC models, the prior 
probability of a marker having a non-null effect on the 
phenotype (probIn value) was set at 0.05 and the degrees 
of freedom were set according to the available phenotype 
and genotype data. The genetic variance in all models 
was set at 0.5. For every cross validation, 10,000 itera-
tions were run with a burnIn of 5000 and thin 10.

The fifteen traits mentioned above were predicted with 
all models to determine the best genomic prediction model 
for each trait or group of traits. The effect of using models 
generated with data from low input field management to 
predict performance of genotypes under high input manage-
ment and vice versa (G × E effect) was also evaluated.

Next, the effect of crop cycle on trait prediction was 
evaluated using one of the best identified genomic predic-
tion model. Cross validation across and within crop 
cycles was done using the 10807 BA-SNP markers and the 
average phenotype per crop cycle 1 and crop cycle 2 of 
each field. Five cross validations were performed without 
overlap of genotypes between the training and testing 
set in each round. Only a few traits representing the trait 
categories were considered because of high correlation 
of traits within trait categories (Nyine et al., 2017). They 
included plant girth at 100 cm from soil surface, index of 
non-spotted leaves, bunch mass, and fruit circumference. 
The total number of suckers was not analyzed because 
this trait was scored only in crop cycle 1.

Effect of Allele Dosage on Model Performance
The performance of BayesB, BRR, BL, and RKHS_M 
models fitted with BA-SNP and AD-SNP markers was 
compared for the 15 traits. Predictions based on BA-SNP 
markers were used as the baseline for comparison. Equal 
number of SNP from same loci for both BA-SNP and 
AD-SNP were used. Combined phenotypic data from the 
two fields for the two crop cycles (environment averaged 
data) were used to calculate the mean phenotype of each 
individual genotype. In this cross-validation strategy, 
first, genotypes were completely randomized. A five-fold 
cross validation was performed using similar priors to 
determine the predictive ability of the model for the trait. 
Second, the performance of parents’ model versus prog-
eny’s model was compared using BA-SNP and AD-SNP. 
Here, the training set consisted of either only parents 
(parents’ model), or progeny (progeny’s model). Third, 
the population was divided into three groups consisting 
of diploids, triploids, and tetraploids. The training set 

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage_R_function.docx
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comprised of any two of the ploidy groups while the 
testing set consisted of genotypes from one ploidy level. 
Due to differences in population sizes under different 
ploidy level, we also used only triploids to compare the 
effect of accounting for allele dosage.

The effect of using averaged environment model was 
assessed based on AD-SNP to predict plant girth at 100 
cm from soil surface, total number of suckers, index of 
non-spotted leaves, bunch mass, and fruit circumference 
under low and high input fields. The percentage differ-
ence in prediction (PDP) between low and high input 
fields was calculated in reference to the prediction in the 
low input field management.

To understand the variation and trend of predictive 
ability across traits, both broad (H2) and narrow (h2) 
sense heritabilities were estimated following the methods 
described by Kruijer et al. (2015). The BA-SNP markers 
(10,807) and phenotypic means from each field were used 
to estimate h2 using R-package heritability while the 
results from analysis of variance were used to estimate 
H2. Type B genetic correlation was also performed based 
on phenotypic means from GS1 and GS2 to determine 
the effect of G × E interaction on the trend of trait 
prediction across fields (Burdon, 1977).

The Accuracy of Genomic Prediction  
within the Training Population
The GEBV obtained from the models fitted with 
AD-SNP with best and worst predictive abilities for plant 
girth, total number of suckers, index of non-spotted 
leaves, bunch mass and fruit circumference were used 
to rank the genotypes. The top 100 genotypes were 
compared with the best 100 genotypes ranked on the 
basis of the environment averaged phenotypic data. The 
number of genotypes out of 100 captured by both GEBV 
and phenotypic data was reported as the estimated 
accuracy of genomic prediction within the training 
population. For this analysis, the best genomic prediction 
model identified above was used.

RESULTS
Genotyping
The discovery of SNP markers from GBS reads for the 
training population was based on the latest publicly 
available version of the double haploid Musa acumi-
nata cv. Pahang reference genome sequence (Martin 
et al., 2016). To account for allele dosage in genotypes 
of different ploidy, a workflow was developed for the 
analysis of sequence data and GATK, UnifiedGeno-
typer was used as SNP caller (Supplemental Fig. S1). It 
produced 52076 BA-SNP after pre-filtering. Less than 
one percent of the loci had multi-allelic SNP. They were 
eliminated from the data to avoid potential sequencing 
artifacts. After further stringent filtering in R (R core 
team, 2016), 10807 BA-SNP markers that were polymor-
phic with a minimum minor allele frequency of 0.01 were 
retained. These were distributed on 11 pseudomolecules 

as well as on unanchored scaffold of the banana refer-
ence genome (Fig. 3). The percentage of imputed missing 
genotypes was 16%. Accounting for allele dosage within 
the ploidy groups (diploids, triploids, and tetraploids) 
reduced the number of SNP markers to 5574.

Comparison of Genomic Prediction Models  
and the Effect of Field Management and  
Crop Cycle on their Performance
The best genomic prediction model for different traits 
was selected based on congruity of predictive ability 
results from cross validation between fields using 
BA-SNP markers. The predictive ability of all models 
varied across traits (Table 1; Supplemental Table S2). 
For 12 out of 15 traits, genomic prediction models that 
account for additive genetic effects gave the highest 
predictions ranging from 0.2 to 0.72. These were the 
correlations between the predicted and observed pheno-
types for the various traits. Reproducing kernel Hilbert 
space model combining both pedigree and marker 
information (RKHS_PM) gave the highest predictions 
ranging from 0.24 to 0.49 for 3 out of 15 traits and these 
were the days to fruit maturity, height of tallest sucker 
at flowering and height of tallest sucker at harvesting. 
BayesB and BayesC models predicted equally well and 
better than other models for fruit filling and fruit bunch 
traits. For example, the predictions of all fruit filling 
traits by both models ranged from 0.65 to 0.72. For plant 
stature, suckering behavior and black leaf streak resis-
tance traits, BayesB and BayesC models were not the best, 
but either had the same predictive ability, or were lower 
by 5 – 13 % in prediction as compared to other models.  
The trend of prediction starting from the highest to 
the lowest trait category was fruit filling, fruit bunch, 
plant stature, black leaf streak resistance, and suckering 
behavior. In general, genomic prediction models fitted 
with phenotypic data from GS1 underpredicted the 
performance of genotypes in GS2, and vice-versa (Fig. 
4), but this did not affect the trend of prediction across 

Fig. 3. Distribution of filtered SNP markers on 11 pseudomol-
ecules of the double haploid of M. acuminata cv. Pahang (Martin 
et al., 2016). Q represents the unanchored scaffolds.
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traits. Little difference in prediction was observed across 
all models for traits within the same category.

The performance of RKHS model fitted with marker 
data (RKHS_M) was comparable to BRR, BL, and BayesA 
models fitted with marker data. RKHS model fitted with 
pedigree information alone (RKHS_P) had the least predic-
tive ability that ranged from 0.12 to 0.5 (Supplemental Table 
S2). There was a 4 to 29% loss in predictive ability (LIP) of 
most traits when marker and pedigree information were 
combined in the RKHS_PM model. However, the same 
model gave a 4 to 21% gain in prediction for plant height, 
height of tallest sucker at flowering, height of tallest sucker 
at harvesting and days to fruit maturity.

The effect of crop cycle on trait prediction was tested 
with BayesB model using BA-SNP markers, because this 
model either out-performed other models, or performed 
equally well as noted in Table 1; Supplemental Table S2. The 
cross-validation strategies used were (a) within crop cycle 
cross validation for which both the training and testing sets 
were from the same crop cycle and (b) across crop cycle 
cross validation where the training and testing sets were 
selected from different crop cycles within the same field. 
The predictive ability of BayesB model fitted with crop cycle 
1, or crop cycle 2 data in both low input and high input 
fields yielded mixed results when within and across crop 
cycle cross validations were performed for different traits 
(Table 2). Predictive ability of the model for fruit circumfer-
ence and bunch mass ranged from 0.58 to 0.73, while for 
plant girth and index of non-spotted leaves ranged from 
0.39 to 0.61 and 0.26 to 0.44, respectively, in both fields and 
crop cycles. Less than 2% variation in prediction across 
and within crop cycles was observed in both bunch mass 
and fruit circumference. The highest difference of 20% in 
prediction across (0.28) and within (0.35) crop cycle was 

recorded in GS2 for index of non-spotted leaves when crop 
cycle 2 data were used to fit the model.

Effect of Allele Dosage
The effect of AD-SNP on predictive ability of the best 
genomic prediction models was evaluated for 15 traits in 
comparison to predictions based on BA-SNP markers. 
For both BA-SNP and AD-SNP, 5574 SNP markers from 
the same loci and combined phenotypic data from the 
two fields for the two crop cycles (environment averaged 
data) were used to fit the models. First, genotypes were 
completely randomized to minimize the effect of family 
structure and ploidy. Second, the training set consisted 
of either only parents (parents’ model), or progeny 
(progeny’s model). Third, the population was divided 
into diploids, triploids, and tetraploids. The training 
set comprised of any two of the ploidy groups while the 
testing set consisted of genotypes from one ploidy level. 
Lastly, only triploids were considered during cross vali-
dation since 85% of genotypes in the training population 
were triploids. The aim was to understand what traits 
and which ploidy level were mostly affected by allele 
dosage when implementing genomic predictions.

The results of the comparison of the effect of 
allele dosage on performance of BayesB, BRR, BL, and 
RKHS_M models are summarized in Table 3. When 
AD-SNP were used to fit the models, predictive ability of 
all models was trait dependent, but generally reduced by 
15% on average as compared to the traditional BA-SNP 
markers. When only triploids were considered during the 
cross validation, predictive ability for fruit circumfer-
ence fell by 10% from 0.76 to 0.68, while for bunch mass 
it decreased by 5% from 0.62 to 0.59. The highest loss in 
prediction (PLP) of 24 to 44% was observed in suckering 

Table 1. Comparison of average correlation (standard errors in parentheses) for five-fold cross validations 
between the predicted and observed phenotypes across models fitted with data from either low input (GS1) or 
high input (GS2) fields and 10807 bi-allelic SNP markers.

 
Trait category

 
Trait

BRR BayesB BayesC RKHS_M RKHS_PM
GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GS2

Plant stature Plant height 0.54 (0.06) 0.46 (0.09) 0.54 (0.06) 0.44 (0.09) 0.54 (0.07) 0.45 (0.09) 0.55 (0.06) 0.44 (0.09) 0.54 (0.05) 0.48 (0.07)
Plant girth 0.60 (0.06) 0.52 (0.05) 0.60 (0.06) 0.52 (0.06) 0.60 (0.06) 0.51 (0.05) 0.60 (0.06) 0.51 (0.06) 0.55 (0.04) 0.50 (0.05)

Suckering behavior Total number of suckers 0.16 (0.06) 0.17 (0.06) 0.16 (0.06) 0.1(9 (0.06) 0.15 (0.06) 0.19 (0.07) 0.17 (0.06) 0.18 (0.06) 0.16 (0.04) 0.17 (0.07)
Height of tallest sucker at flowering 0.28 (0.05) 0.18 (0.09) 0.27 (0.05) 0.20 (0.08) 0.26 (0.05) 0.2 (0.08) 0.28 (0.05) 0.19 (0.09) 0.30 (0.06)*0.24 (0.09)*
Height of tallest sucker at harvesting 0.27 (0.05) 0.26 (0.07) 0.28 (0.06) 0.24 (0.06) 0.27 (0.06) 0.25 (0.07) 0.26 (0.05) 0.26 (0.06) 0.29 (0.03)*0.32 (0.07)*

Black leaf streak Number of standing leaves at flowering0.36 (0.08) 0.42 (0.08) 0.43 (0.06) 0.40 (0.08) 0.36 (0.08) 0.41 (0.08) 0.37 (0.08) 0.41 (0.08) 0.29 (0.07) 0.34 (0.04)
Index of non-spotted leaves 0.35 (0.04) 0.42 (0.06) 0.34 (0.05) 0.43 (0.06) 0.34 (0.05) 0.43 (0.06) 0.35 (0.05) 0.42 (0.06) 0.32 (0.07) 0.36 (0.10)

Fruit bunch Days to fruit maturity 0.47 (0.07) 0.42 (0.09) 0.47 (0.07) 0.42 (0.09) 0.46 (0.07) 0.42 (0.09) 0.47 (0.07) 0.42 (0.10) 0.49 (0.06)* 0.44 (0.09)*
Bunch mass 0.63 (0.03) 0.61 (0.03) 0.64 (0.03)*0.62 (0.03)* 0.64 (0.03)*0.62 (0.03)* 0.61 (0.03) 0.61 (0.03) 0.52 (0.06) 0.55 (0.04)

Number of hands 0.60 (0.03)*0.62 (0.04)* 0.60 (0.02)*0.62 (0.04)* 0.59 (0.02) 0.62 (0.04) 0.59 (0.03) 0.62 (0.04) 0.48 (0.03) 0.53 (0.02)
Number of fruits 0.47 (0.03) 0.51 (0.04) 0.47 (0.03)* 0.52 (0.04)* 0.47 (0.02)* 0.52 (0.04)* 0.45 (0.03) 0.52 (0.04) 0.35 (0.04) 0.45 (0.04)

Fruit filling Fruit length 0.65 (0.04) 0.64 (0.02) 0.67 (0.04)* 0.65 (0.02)* 0.67 (0.03)* 0.65 (0.02)* 0.64 (0.04) 0.64 (0.02) 0.59 (0.07) 0.59 (0.02)
Fruit circumference 0.67 (0.02) 0.66 (0.01) 0.70 (0.01)* 0.69 (0.01)* 0.70 (0.01)* 0.69 (0.01)* 0.65 (0.02) 0.66 (0.01) 0.57 (0.05) 0.60 (0.02)

Fruit diameter 0.67 (0.01) 0.63 (0.05) 0.70 (0.01)* 0.71 (0.02)* 0.70 (0.01)* 0.71 (0.02)* 0.65 (0.02) 0.67 (0.03) 0.57 (0.04) 0.59 (0.02)
Pulp diameter 0.67 (0.02) 0.68 (0.04) 0.70 (0.01)* 0.72 (0.03)* 0.70 (0.01)* 0.72 (0.03)* 0.65 (0.02) 0.67 (0.04) 0.57 (0.04) 0.60 (0.03)

*Highest predictive value observed in both GS1 and GS2 for a trait using same model type. The values under GS1 column are the correlations between predicted and observed phenotype (predictive ability) in GS2 
when GS1 data were used to fit the model and vice versa for GS2 column.
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behavior traits when AD-SNP markers were used to fit 
model using genotypes from all ploidy levels. However, 
the trend of prediction within and across trait categories 
did not change by accounting for allele dosage. Fruit 
filling traits were the best predicted with the highest 
predictive ability of 0.68 for pulp diameter. BayesB model 
maintained its superior prediction accuracy over other 
models, especially for fruit filling and fruit bunch traits.

Although the number of SNP markers used in this 
prediction was reduced to 5574 because we wanted to 
eliminate the bias in predictions due to variable number 

and location of BA-SNP and AD-SNP, the environ-
ment (field management) averaged models with BA-SNP 
markers gave higher predictions than those obtained with 
across field cross validation with 10,807 SNP markers for 
all traits. The highest predictive ability recorded was 0.75 
for fruit filling traits with the BayesB model (Table 3).

When only parental data were used to fit BayesB model 
(parents’ model), the predictive ability of traits within the 
progeny ranged from 0.13 to 0.59 for BA-SNP and from 
-0.15 to 0.33 for AD-SNP (Supplemental Table S3). The LIP 
due to accounting for allele dosage was 63% on average 
(36–179%). Similarly, when progeny data were used to fit 
BayesB model (progeny’s model), the predictive ability of 
traits within parents ranged from 0.39 to 0.86 with BA-SNP 
and from -0.03 to 0.77 with AD-SNP markers. The LIP 
due to accounting for allele dosage was 35% on average 
(1.5–107%). The highest predictive value obtained with 
BayesB model fitted with BA-SNP was 0.86 for number of 
hands. This prediction dropped by nearly 50% (0.48) when 
AD-SNP markers were used. Prediction accuracy of the 
same trait in progeny using parents’ model was 0.45 with 
BA-SNP and 0.03 with AD-SNP markers. The prediction 
of bunch mass in the progeny using a parents’ model with 
AD-SNP was 0.17 while the prediction of the same trait in 
parents using a progeny’s model reduced to 0.08.

Since allele dosage varies with ploidy level, cross vali-
dation across ploidy levels was performed. Genotypes from 
two ploidy levels were used to train the model and only 
genotypes of same ploidy level were included in the testing 
set during cross validation. Accounting for allele dosage 
positively increased the predictive ability of all fruit filling 
traits in tetraploids with BayesB model, but the results from 
other trait categories varied greatly (Supplemental Table 
S4). For example, prediction of pulp diameter increased 
from -0.39 to 0.60, fruit diameter increased from -0.45 to 
0.53 and fruit circumference increased from -0.15 to 0.35. 
BayesB model fitted with triploid and tetraploid data, and 
BA-SNP gave the predictions ranging from 0.32 to 0.86 for 
traits among diploids. Tetraploids and diploids were the 
least represented in the training population (47 out of 307 
genotypes, or 15%) and of which the majority were parents. 
When their data were used to fit the model to predict traits 
in triploids the prediction varied from 0.20 to 0.54 and 
from -0.06 to 0.11 with BA-SNP and AD-SNP, respectively.

When BayesB model was fitted with the environment 
averaged data (including all ploidy levels) and AD-SNP 

Fig. 4. Prediction of plant height at flowering (PHF) using a Bayesian 
ridge regression model fitted with phenotype data from low input 
field (A) and high input field (B). Where A, shows underprediction 
and B, shows overprediction of PHF. The black and magenta circles 
represent genotypes in the training and testing sets, respectively.

Table 2. Average predictive ability (standard errors in parentheses) of BayesB model fitted with either crop cycle 
1, or crop cycle 2 phenotype data from low (GS1) and high (GS2) input field management using bi-allelic SNP 
markers to predict traits across and within crop cycles.

Low input field management (GS1) High input field management (GS2)
Cycle 1 model Cycle 2 model Cycle 1 model Cycle 2 model

Trait category Trait Across Within Across Within Across Within Across Within
Plant stature Plant girth 0.39 (0.04) 0.55 (0.03) 0.51 (0.02) 0.44 (0.05) 0.54 (0.02) 0.59 (0.02) 0.61 (0.02) 0.57 (0.02)
Black leaf streak Index of non-spotted leaves 0.42 (0.06) 0.44 (0.03) 0.40 (0.04) 0.41 (0.03) 0.30 (0.08) 0.26 (0.04) 0.28 (0.05) 0.35 (0.05)
Fruit bunch Bunch mass 0.58 (0.03) 0.60 (0.04) 0.60 (0.06) 0.59 (0.03) 0.63 (0.02) 0.65 (0.03) 0.65 (0.02) 0.62 (0.03)
Fruit filling Fruit circumference 0.72 (0.02) 0.71 (0.03) 0.72 (0.04) 0.72 (0.02) 0.73 (0.02) 0.73 (0.03) 0.71 (0.02) 0.72 (0.02)
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to predict the traits under low and high input fields, there 
was a 2 to 8% increase in predictive ability under high 
input field relative to low input field for plant girth, bunch 
mass and fruit circumference (Table 4). However, for total 
number of suckers and index of non-spotted leaves, the 
predictions reduced by 47 and 15%, respectively.

Estimated H2 and h2 had positive relationship with 
predictive ability. However, h2 varied across fields with 
some traits having higher h2 than H2 (Table 5). A similar 
trend was observed between Type B genetic correlation 
and predictive ability. The correlation varied between 
0.71 and 0.9 for fruit bunch, fruit filling and plant stature 
traits. The lowest correlation was recorded on the index 
of non-spotted leaves (Table 5).

The Accuracy of Genomic Prediction  
within the Training Population
The first 100 genotypes with the highest GEBV and 
the first 100 genotypes with the highest environment 
averaged phenotypic data were compared (Fig. 5). The 
GEBV used were obtained from BayesB model with best 
and worst predictive abilities based on AD-SNP markers. 
The number of genotypes out of 100 captured by both 
GEBV and phenotypic data was reported as the estimated 
accuracy of genomic prediction within the training popu-
lation for the trait. The accuracy of prediction ranged from 
76 to 84% for all the traits whereas the prediction values 
ranged from 0.04 to 0.76. Models that gave high predictive 
ability values had also the highest prediction accuracy.

DISCUSSION
Genotyping
Genomic selection as a form of marker assisted selec-
tion has been investigated in a range of plant species 
including, for example, maize and wheat (Heffner et 

al., 2011; Crossa et al., 2014; Crossa et al., 2016; Pérez-
Rodríguez et al., 2017), white spruce (Beaulieu et al., 
2014), sugar beet (Würschum et al., 2013), apples (Kumar 
et al., 2012), strawberries (Gezan et al., 2017), and rice 
(Onogi et al., 2016). In these experiments, genotypes of 
same ploidy level constituted the training population. 
The present study on banana is unique in this respect 
as three ploidy levels were represented in the training 
population. Within the three ploidy levels, both parents 
and progeny were represented in varying proportions. 
The hybrids in the training population arose from 77 
cross combinations, mainly involving crosses between 
tetraploids and diploids (Nyine et al., 2017). Innovative 
approaches in SNP calling, including custom R-script 
had to be adopted for such an unconventional popula-
tion (Supplemental Fig. S1). The script removes loci with 
monomorphic SNP, eliminates loci with more than two 
alternative SNP alleles, and converts the SNP file into a 
numerical format while accounting for allele dosage, and 
it can be customized to any polyploid plant species. Loci 
with multi-allelic SNP were eliminated because GBS is a 
low coverage sequencing technology. This makes it hard 
to differentiate true rare SNP from sequence artifacts 
especially when the population is small and the species is 
clonally propagated due to lower rate of multiple muta-
tions at the same locus. Bowtie2 was used as the sequence 
alignment tool while GATK, UnifiedGenotyper was the 
variant caller. However, as indicated by Clevenger et al. 
(2015), optimal alignment programs and variant callers 
may vary among species.

GATK (https://software.broadinstitute.org/gatk/
documentation/) in particular is useful when handling 
polyploid species. It allows setting the ploidy level and 
reduces false positive SNP calls arising from frameshifts by 
running INDEL realignment step (Clevenger et al., 2015). 
When Picard tools (https://sourceforge.net/projects/picard/

Table 3. Effect of accounting for allele dosage on the predictive ability of genomic prediction models using 
environment averaged phenotype data.

Bi-allelic SNP Allele dosage SNP
Trait category Trait BRR BayesB BL RKHS_M BRR BayesB BL RKHS_M

Plant stature Plant height 0.54 (0.03)† 0.53 (0.02) 0.52 (0.03) 0.53 (0.03) 0.46 (0.07) 0.45 (0.06) 0.44 (0.07) 0.45 (0.07)
Plant girth 0.53 (0.04) 0.53 (0.03) 0.52 (0.04) 0.52 (0.04) 0.48 (0.04) 0.47 (0.04) 0.47 (0.04) 0.48 (0.04)

Suckering behavior Total number of suckers 0.32 (0.06) 0.29 (0.06) 0.33 (0.05) 0.31 (0.06) 0.21 (0.05) 0.16 (0.05) 0.21 (0.05) 0.21 (0.05)
Height of tallest sucker at flowering 0.37 (0.04) 0.34 (0.04) 0.37 (0.04) 0.38 (0.04) 0.27 (0.06) 0.26 (0.05) 0.27 (0.05) 0.28 (0.05)
Height of tallest sucker at harvesting 0.35 (0.04) 0.33 (0.03) 0.34 (0.04) 0.35 (0.04) 0.24 (0.03) 0.23 (0.03) 0.23 (0.03) 0.25 (0.03)

Black leaf streak Number of standing leaves at flowering 0.49 (0.05) 0.48 (0.05) 0.48 (0.05) 0.48 (0.05) 0.48 (0.06) 0.48 (0.06) 0.48 (0.06) 0.49 (0.06)
Index of non-spotted leaves 0.58 (0.03) 0.59 (0.03) 0.58 (0.03) 0.58 (0.03) 0.53 (0.03) 0.52 (0.03) 0.53 (0.04) 0.53 (0.03)

Fruit bunch Days to fruit maturity 0.53 (0.05) 0.54 (0.06) 0.53 (0.06) 0.53 (0.06) 0.44 (0.05) 0.43 (0.05) 0.44 (0.05) 0.44 (0.05)
Bunch mass 0.61 (0.05) 0.62 (0.04) 0.61 (0.05) 0.61 (0.04) 0.54 (0.03) 0.56 (0.03) 0.54 (0.03) 0.54 (0.02)

Number of hands 0.63 (0.04) 0.62 (0.04) 0.62 (0.04) 0.63 (0.04) 0.56 (0.03) 0.56 (0.03) 0.56 (0.03) 0.56 (0.03)
Number of fruits 0.49 (0.04) 0.49 (0.04) 0.48 (0.04) 0.50 (0.04) 0.43 (0.03) 0.42 (0.04) 0.42 (0.03) 0.43 (0.04)

Fruit filling Fruit length 0.69 (0.02) 0.70 (0.02) 0.69 (0.03) 0.69 (0.02) 0.60 (0.03) 0.64 (0.02) 0.60 (0.02) 0.59 (0.03)
Fruit circumference 0.67 (0.03) 0.75 (0.02) 0.68 (0.03) 0.66 (0.03) 0.59 (0.03) 0.66 (0.03) 0.60 (0.03) 0.59 (0.03)

Fruit diameter 0.67 (0.03) 0.75 (0.02) 0.68 (0.03) 0.66 (0.03) 0.60 (0.03) 0.67 (0.03) 0.62 (0.02) 0.60 (0.02)
Pulp diameter 0.68 (0.03) 0.75 (0.03) 0.69 (0.03) 0.67 (0.03) 0.61 (0.03) 0.68 (0.03) 0.63 (0.03) 0.61 (0.02)

†The values in parentheses are the standard errors of predictive ability.

https://software.broadinstitute.org/gatk/documentation
https://software.broadinstitute.org/gatk/documentation
https://sourceforge.net/projects/picard/files/picard-tools/1.100
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files/picard-tools/1.100/) are used prior to SNP calling, 
normalization of sequence reads is possible by marking 
and removing duplicate reads. This allows regions with low 
reads coverage, but carrying SNP of interest to be included 
in the genotype data. Picard tools also allow merging of 
aligned sample reads by addition of read groups, which 
help in separating genotypes after SNP calling.

What is the Best Genomic Prediction Model  
for Each Trait or Group of Traits?
Different genomic prediction models were compared in 
this work in terms of their predictive ability, or accuracy 
for different traits as noted in Table 1 and Supplemental 
Table S2. We compared the performance of models that 
account for additive genetic effects and those that account 
for non-additive genetic effects. A good performance of 
models that account for additive genetic effects suggested 
that a large proportion of phenotypic variation observed 
in the training population was due to additive genetic 
effects. Indeed, traits with high narrow sense heritability 
(h2) had higher predictive values. A similar observation 
was made by Luan et al. (2009). They reported a strong 
relationship between prediction accuracy and trait herita-
bility in Norwegian red cattle. Differences in h2 between 
GS1 and GS2, and H2 were attributed to bias in residual 
error variance. Using phenotypic means reduces error 
variance leading to over estimation of h2 as compared to 
replicated phenotypic data used in estimating H2. Usually, 

proper estimation of heritability requires balanced pheno-
typic data (Piepho and MÖhring, 2007). However, it is 
hard to get balanced data for bananas because growth is 
not synchronized between plants as well as data collection, 
which causes high variation between genotypes and repli-
cates in the same environment. Generally, H2 is specific 
to a given population at a given location and period, but 
depending on the genetic architecture of the trait correla-
tions might be observed across populations. For example, 
our H2 results are comparable to those summarized by 
James et al. (2012) from various publications on bananas 
and plantains.

Additive genetic effect models BayesB and BayesC 
performed better than or equally well as other models. 
These models perform both shrinkage and variable selec-
tion on markers to include in the model (Desta and Ortiz, 
2014). The prior probability of a marker having a non-null 
effect (π) was set at 0.05 in both models because it gave the 
highest predictive ability values as compared to higher prior 
settings. It is likely that the same markers were selected and 
included in both models thus yielding closely related results.

Our results agree with other studies, which indicate 
that models that perform specific shrinkage and variable 
selection give better predictive ability values. For 
example, Crossa et al. (2010) showed that a BL model that 
shares some characteristics with BayesB outperformed 
BLUP, which assumes equal variance for each marker. 
Similarly, Clark et al. (2011) reported the superiority of 

Table 4. Performance of BayesB model fitted with average phenotype data for all fields (environments) and AD-
SNP markers for predictions of five traits representing the trait categories within low and high input fields.

Trait category Trait Low input field (GS1) High input field (GS2) Percentage loss in prediction (PDP)
Plant stature Plant girth 0.48 (0.07) † 0.52 (0.08) 8.3
Suckering behavior Total number of suckers 0.15 (0.05) 0.08 (0.05) −46.7
Black leaf streak Index of non-spotted leaves 0.39 (0.06) 0.33 (0.05) -15.4
Fruit bunch Bunch mass 0.56 (0.05) 0.57 (0.05) 1.8
Fruit filling Fruit circumference 0.66 (0.01) 0.69 (0.03) 4.5
†The values in parentheses are the standard errors of predictive ability, PDP is percentage difference in prediction.

Table 5. Estimated broad (H2), narrow (h2) sense heritability within low (h2_GS1) and high (h2_GS2) input fields and 
type B genetic correlation (r) between GS1 and GS1.

Trait category Trait H2 h2_GS1 h2_GS2 r GS1/GS2 (type B)
Plant stature Plant height 0.89 0.99 0.93 0.79

Plant girth 0.90 0.93 0.91 0.83
Suckering behavior Total number of suckers 0.80 0.45 0.36 0.49

Height of tallest sucker at flowering 0.82 0.70 0.93 0.56
Height of tallest sucker at harvesting 0.86 0.41 0.84 0.47

Black leaf streak Number of standing leaves at flowering 0.83 0.63 0.81 0.54
Index of non-spotted leaves 0.72 0.72 0.63 0.38

Fruit bunch Days to fruit maturity 0.89 0.65 0.85 0.71
Bunch mass 0.94 0.96 0.95 0.86

Number of hands 0.93 0.91 0.91 0.81
Number of fruits 0.89 0.97 0.94 0.74

Fruit filling Fruit length 0.96 0.97 0.98 0.84
Fruit circumference 0.97 0.94 0.96 0.87

Fruit diameter 0.97 0.93 0.99 0.89
Pulp diameter 0.97 0.93 0.92 0.90

https://sourceforge.net/projects/picard/files/picard-tools/1.100
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BayesB model over genomic BLUP. They argued that the 
superiority was highly dependent on the presence of large 
QTL effects. In relation to this argument, it is likely that 
even in banana, fruit filling traits could be controlled by 
large effect QTL that were selected by BayesB model in 
all cross-validations. However, this remains to be proved 
by QTL mapping and genome-wide association studies 
that are out of the scope of this study. Tagging of loci 
controlling fruit filling with DNA markers and selecting 
for favorable alleles should also be considered. Fruit 
filling is a bunch mass component that reflects the sink 
capacity of a fruit bunch. It was treated separately from 
other bunch mass components to better describe the 
proportion of edible part of the fruit. Variation in perfor-
mance of models that perform shrinkage and variable 
selection has also been reported. For example, in loblolly 
pine, BayesCπ (Habier et al., 2011) and BayesA had better 
prediction of fusiform rust disease-resistance traits than 
BL (Resende et al., 2012)

The predictive ability of all models varied across 
traits. Similar predictive values for traits within the same 
category confirmed the findings of Nyine et al. (2017) 
who reported a high correlation between these traits and 

recommended that only traits easier to phenotype should 
be considered for genomic predictions. The difference 
in model performance between trait categories suggests 
that variation in trait architecture, number of QTL 
controlling the trait and linkage disequilibrium between 
markers and QTL influence the performance of the 
models (Clark et al., 2011).

The RKHS_PM model, which accounts for non-addi-
tive genetic effects yielded mixed prediction results. While 
some traits had a slight increase in prediction, a majority 
showed loss in predictive ability (Table 1; Supplemental 
Table S2). Previous studies (Crossa et al., 2010) indicated 
minor improvement in trait prediction in wheat and maize 
when marker and pedigree information were included in 
the model. However, Pérez-Rodríguez et al. (2017) reported 
better prediction with RKHS_P for wheat lines in interna-
tional environments. The contradictions could be attributed 
to the training population structure. Our training popula-
tion consisted of 77 subfamilies (cross combinations) of 
varying sizes with diverse pedigree background (Nyine et 
al., 2017). This suggests that when the population consists 
of many subfamilies, the relationship by pedigree becomes 
less important. This is reflected by the poor performance of 
RKHS_P model, which gave the least prediction accuracy 
for all traits (Supplemental Table S2). A similar trend was 
observed by Beaulieu et al. (2014). Hence, the estimates 
of allele distribution within such a population is better 
performed with marker data, while addition of pedigree 
information distorts the relationship between the geno-
types. Zhong et al. (2009) also highlighted that knowledge 
of pedigree is less informative in populations where the 
average genetic relationship is low and homogeneity is high.

What is the Effect of G × E on Model Predictions?
We used a very conservative approach in determining 
the best genomic prediction model by carrying out across 
field (environment) cross validations. The purpose was to 
understand the effect of genotype by field management 
(G × E) interaction on the model performance. Nyine 
et al. (2017) performed analysis of variance on the same 
population and reported a variation in G × E interac-
tion across different traits. However, type B genetic 
correlations (Table 5) were high for traits related to fruit 
bunch and fruit filling, which explains why they had 
high predictive ability values across all cross-validation 
strategies. When Burdon (1977) proposed the use of type 
B genetic correlation, he noted that in the analysis of 
variance, any genetic expression variation between envi-
ronments can lead to statistical interaction that is not 
necessarily a true interaction characterized by a change 
in ranking of genotypes between different environ-
ments. The results showed that models fitted with GS1 
phenotype data underpredicted the phenotypic expres-
sion of genotypes in GS2 while the models fitted with 
GS2 phenotype data overpredicted genotypes in GS1 
(Fig. 4). However, the trend of prediction did not change 
(Table 1). A similar approach was used by Ly et al. (2013), 
who observed that across environment cross validations 

Fig. 5. Accuracy of genomic prediction in the training population. 
(A) Percentage of genotypes selected by both GEBV and pheno-
typic data within the first best ranked 100 genotypes. (B) Cor-
relations of the best and worst BayesB models used to generate 
GEBV. Where, PG is plant girth at 100 cm from soil surface, TS is 
total number of suckers, INSL is index of non-spotted leaves, BM is 
bunch mass, FC is fruit circumference and CV is cross validation.
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resulted into lower prediction accuracies. However, our 
prediction values were substantially higher as compared 
to those reported in other crops.

Trait overprediction in GS1 with models fitted with 
GS2 data and vice versa indicated a variation in genotype 
response to environment that influenced the training 
population trait mean, estimated marker effect and 
the predictive ability of the genomic prediction models 
(Crossa et al., 2016). The high correlation between the 
two fields shows that it is possible to use phenotype data 
from any of the field management conditions to predict 
genotypes that have the potential to perform well in other 
field management conditions. However, the predicted 
and the actual observed phenotype may differ for a single 
genotype. For example, plants that had poor fruit filling 
characteristics under low input field management did not 
fill under high input field management, as well. However, 
for genotypes that fill their fruits, there was an increase 
in fruit size depending on the amount of available nutri-
ents and soil moisture in the field. A similar trend was 
reported in maize flowering where QTL were consistent 
across environments and less affected by environment 
interaction (Buckler et al., 2009). This means that genomic 
prediction models could be used in ‘negative selection’ to 
discriminate the poor fruit filling hybrids from those with 
potential of fruit filling at an early stage.

In banana breeding, most triploid hybrids are sterile. 
The application of genomic prediction in its strict sense 
of selecting best parents for further crossing (Meuwissen 
et al., 2001; Gorddard and Hayes, 2007) may not be 
realistic, unless the focus is only on diploid and tetra-
ploid improvement. Since the prediction models give 
both GEBV and predicted phenotype (Pérez and de 
los Campos, 2014), these two parameters can be used 
to eliminate triploid hybrids that are likely to be of no 
value. Crossa et al. (2014) also proposed that another 
application of genomic prediction was to predict the 
genetic values of individuals for potential release as 
cultivars. Therefore, if the prediction accuracy remains 
high during the breeding phase, then breeders could 
save time, space, and money by excluding 90% of hybrids 
from phenotyping (Fig. 2). To achieve this, breeders 
have to set priority order of traits, which could serve 
as the ‘selection index’ for promising candidate culti-
vars (i.e., within triploids hybrids) and future parental 
clones (within diploid and tetraploid hybrids). Also, 
family based selection should be done to reduce future 
inbreeding and maximize genetic diversity to ensure 
increase in genetic gain (Jannink et al., 2010).

Although crop cycle was shown to influence varia-
tion in fruit filling, fruit bunch and plant stature, and 
no effect on black leaf streak resistance traits (Nyine et 
al., 2017), the predictions within and across crop cycle 
1 and crop cycle 2 did not vary much for fruit filling 
and fruit bunch traits. This is because fruit filling and 
fruit bunch traits increase in crop cycle 2 relative to 
crop cycle 1 (Tushemereirwe et al., 2015). However, for 
black leaf streak resistance, resistant hybrids remain 

resistant across crop cycles and field management. 
Variation may be observed among susceptible hybrids 
depending on the spore density in the field (Tushem-
ereirwe, 1996). Disease expression also depends on vigor 
of the plant due to available nutrients, seasonal changes 
and relative humidity in the field (Tushemereirwe, 1996). 
This probably explains the variation observed in the 
prediction within and across crop cycle for the index of 
non-spotted leaves.

In bananas, suckering behavior traits had the lowest 
prediction accuracy. One possible explanation is the low 
heritability and poor representation of markers linked 
to the QTL controlling these traits. Second, scoring total 
number of suckers at crop cycle 1 from a trial established 
with suckers, seems to result in biased phenotype data. 
Two types of suckers are used as planting materials, the 
sword and maiden suckers. Most maiden suckers are much 
closer to flowering than sword suckers (Ortiz and Vuyl-
steke, 1994) and tend to direct most of resources toward 
the initiation of the inflorescence, and less to the develop-
ment of lateral buds (future suckers). On the contrary, 
sword suckers commit most of their resources to lateral 
bud development. Hence, when a field is established with 
suckers, the variation in physiological age of suckers likely 
impacts sucker emergence that causes bias in total number 
of suckers produced by a genotype at first crop cycle.

When environment averaged models were used to 
predict the performance of genotypes in a particular 
environment, the predictions were high (0.75 for fruit 
filling traits) despite the lower number of SNP markers 
(Table 3). This indicated that incorporation of data from 
many environments could make the models more robust 
(Burgueño et al., 2012). As discussed by Burgueño et 
al. (2012), breeders either evaluate new breeding lines 
so that they can select the best to advance, or evaluate 
the performance stability of new, or old lines in a new 
environment. In each of these cases, the model should be 
robust enough to give accurate predictions in the respec-
tive environments (Pérez-Rodríguez et al., 2017). Hence, 
using data from multi-environment trials and crop cycles 
to fit the model has the advantage of incorporating infor-
mation due to genetic relationship and the interaction 
between genotype and environment (Crossa et al., 2014).

Traits that are stable across environments are much 
easier to predict using data from one environment. 
However, if there is a proportional change (collinearity) in 
the trait expression within an environment across geno-
types, then selection based on predictions is likely to be 
efficient (Burgueño et al., 2012). Plant environments vary 
and may refer to geographical locations with different 
weather and climatic conditions, difference in seasons 
within a same location and difference in soil conditions 
based on the different agronomic practices used. As peren-
nial plants, bananas suffer the consequences of nutrient 
deficiency and soil moisture variation across seasons 
and locations depending on field management practices 
(Ndabamenye et al., 2012; Taulya, 2015). These factors influ-
ence phenotypic expression of traits and are likely to affect 
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the predictive ability of prediction models. Although we 
considered field management and crop cycle as the major 
environment co-variables, phenotyping of the current 
training population in a different geographical location is 
ongoing. Once the data are available, they will be used to 
update the models to the benefit of the breeding program.

Bi-Allelic SNP vs. Allele Dosage SNP
Whereas many factors have been reported to influ-
ence the accuracy of genomic predictions (Crossa et al., 
2014), our results showed that allele dosage was another 
important factor to consider when conducting predic-
tions in multi-ploidy populations (Supplemental Table 
S4). The loss in predictive ability of the models fitted with 
AD-SNP relative to those fitted with BA-SNP could be 
attributed to variation in minor allele frequency across 
loci, a key factor for determining SNP effects on the traits 
and the allopolyploid nature of the training population. 
The negative correlations observed from across ploidy 
cross validation indicated a weak relationship between 
the training and testing sets (Crossa et al., 2016). Clearly, 
not all traits were affected equally by allele dosage 
(Supplemental Table S4). The effect of allele dosage 
becomes more important as the ploidy level increases. 
This suggests that additive genetic effects vary across 
traits. It is likely that the effect of deleterious recessive 
alleles is masked by the dominant alleles and the more 
copies of masking alleles the better the effect (Gu et al., 
2003). However, for traits controlled by exclusively reces-
sive alleles, the effect of allele dosage may be different. In 
cassava, a large proportion of deleterious alleles arising 
from mutations have not been eliminated by breeding 
due to limited recombination, but the maintenance 
of cassava yield through breeding has been attributed 
to masking of most damaging mutations (Ramu et 
al., 2017).

Predictions within multi-family population was 
shown by Heffner et al. (2011) to be accurate and cost 
effective. It is likely that genomic prediction models 
trained only on diploid segregating populations would 
be less efficient in prediction of traits among triploid 
banana hybrids, yet promising candidate cultivars are 
selected in this ploidy level. Second, allele dosage could 
be accounted for in the marker data especially when 
predicting fruit filling in tetraploids although use of 
models that assume diploid state of all genotypes still 
performed better in many cross-validation strategies.

To ensure that good hybrids are not left out, selection 
based on GEBV should be done with prior knowledge of 
ploidy level in multi-ploidy populations. Bunch mass and 
general phenology in bananas tend to increase with increase 
in ploidy level although in banana hybrids, the trend is 
not always uniform due to positive and negative heterosis 
(Tenkouano, 2000). Since banana breeding involves 
crossing parents of different ploidy levels, prediction of 
hybrid performance based on parental phenotype data 
is less accurate due to heterosis. That is why the parents’ 
model prediction accuracies were low. Although we did 

not measure heterosis in this study, the results of selection 
differential and response to selection reported by Nyine et 
al. (2017) show that it exists in this training population.

When the progeny’s model was used to predict the 
parental traits, the predictions were appreciably high 
(Supplemental Table S3). This indicated that a large size 
of the training set relative to the testing set improves 
prediction (Jannink et al., 2010; Clark et al., 2011; Crossa 
et al., 2014). The lesson learned is that in bananas, when 
the training population is made up of many diverse 
hybrids, the segregation of parental alleles is observed. 
Most of the additive genetic effects, heterosis, domi-
nance, and epistasis that control the phenotype are 
captured in the model when all these phenotypic variants 
are available (Lorenz et al., 2011). These results suggest 
that for plant species with small effective breeding popu-
lation sizes like banana that show heterosis, increasing 
the number of progeny from several parental crosses in 
the training population could improve the predictive 
ability of the models for future hybrids as compared to 
using only parental clones.

The Accuracy of Genomic Prediction
The prediction accuracy within the training population 
based on GEBV was above 75% even with models that 
had low predictive abilities. The accuracy of genomic 
prediction model is determined by the correlation 
between GEBV and the observed phenotype, or the 
correlation between predicted phenotype and observed 
phenotype (Jannink et al., 2010; Lorenz et al., 2011). This 
shows the proportion of genetic variance explained by 
marker data. It is therefore not surprising that even with 
low correlations, the accuracy of prediction can be high. 
Beaulieu et al. (2014) reported that with GEBV accura-
cies between 0.33 and 0.44, they were able to achieve 
90% of traditionally estimated breeding values during 
validation. Similarly, Heffner et al. (2011) reported a 95% 
prediction accuracy of genomic prediction compared to 
phenotypic selection in a multi-family wheat population 
even when the predictive values ranged from 0.22 to 0.76.

The true accuracy is estimated at the validation stage 
using the validation population. It depends on the size of 
the training population, heritability of the trait and the 
estimated number of effects (Lorenz et al., 2011). Some-
times, it is not possible to explain all the genetic variance 
due to missing marker data, or failure to capture other 
QTL affecting the trait. This is further confounded by 
uncontrolled environmental variable (Buckler et al., 
2009; Burgueño et al., 2012). That is why genomic selec-
tion is considered less accurate than phenotypic selection 
but its power lies in increased selection intensity within a 
much shorter time hence increasing the genetic gain per 
unit time and cost (Desta and Ortiz, 2014; Lorenz et al., 
2011). Our results suggest that even with low predictive 
values, the accuracy of prediction within the training 
population was high. It remains to be verified at the vali-
dation stage if the accuracy remains high. Given the long 
selection cycle observed in banana as depicted in Fig. 2, 
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prediction accuracies above 70% could result in acceler-
ated selection efficiency at reduced cost as compared to 
phenotypic selection.

Conclusion and Practical Implications
Polyploid breeding programs ought to use genomic 
prediction models that have been fitted with data from 
genotypes of all ploidy levels otherwise genomic selection 
will face similar limitations as other MAS techniques, 
which focus on bi-parental populations for QTL and 
marker discovery. Fruit filling and fruit bunch traits had 
the highest predictive ability hence, could be targeted for 
early selection of hybrids. Accounting for allele dosage in 
SNP markers (AD-SNP) reduced predictive ability of the 
models relative to traditional bi-allelic SNP (BA-SNP). 
Unlike autopolyploid, allele dosage seems to have less 
influence on genomic prediction in allopolyploid popula-
tions. However, if ploidy specific prediction models are 
required, the R script reported could be used to generate 
AD-SNP. The heritability of traits estimated in this 
training population were high and positively correlated 
with the predictive ability. The results demonstrate that 
genomic prediction in multi-ploidy population is possible 
and the prediction accuracy can be improved by using 
models based on data from many different environments.

To generate prediction models for each ploidy level 
is expensive in the initial stages of genomic selection, 
but as the training population keeps growing it becomes 
possible. To minimize costs, the current models based on 
multi-ploidy population should be validated and used with 
the following recommendations: (i) unlike other breeding 
programs where genomic prediction is used entirely for 
prediction of best parents for further crossing, in banana, 
selection among triploids should aim at identifying 
promising candidate cultivars because a majority of them 
are sterile and breeding clones should be selected from 
diploids and tetraploids, (ii) ‘selection index’ is required for 
efficient selection of new hybrids, i.e., the priority order of 
traits should be set for promising cultivars and breeding 
clones, (iii) family-based (cross combination) selection 
should be considered to avoid reducing genetic diversity, 
(iv) the lowest GEBV should be targeted for plant height, 
or else a ratio of plant height to plant girth at 100 cm from 
soil surface should be used. In the light of genomic selec-
tion, a potential area of research would be to investigate 
the level of fertility in triploid banana hybrids so that they 
are also selected as parents. This will allow ‘progressive’ 
breeding to be practiced in banana for faster genetic gain 
since some traits are already fixed in the triploids.

Supplemental Material
Supplemental Table S1: List of banana genotypes used in 
genomic predictions.
Supplemental Table S2: Comparison of average correla-
tion for five-fold cross validations between the predicted 
and observed phenotypes across all models fitted with 
data from either low input (GS1) or high input (GS2) 
fields and 10807 bi-allelic SNP markers.

Supplemental Table S3: Comparison of predictive ability 
of BayesB model fitted with parents’ data and progeny’s 
data using bi-allelic and allele dosage SNP markers.
Supplemental Table S4: Effect of ploidy level and allele 
dosage on the predictive ability of BayesB model fitted 
with environment averaged phenotype data.
Supplemental Fig. S1: Workflow used to analyze the 
genotyping by sequencing (GBS) reads to generate SNP 
marker data used in genomic predictions.
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