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COUPLED EFFECTIVE STRESS ANALYSIS OF INSERTION PROBLEMS IN GEOTECHNICS 

WITH THE PARTICLE FINITE ELEMENT METHOD 

 

This paper describes a computational framework for the numerical analysis of quasi-static soil-

structure insertion problems in water saturated media. The Particle Finite Element Method is 

used to solve the linear momentum and mass balance equations at large strains. Solid-fluid 

interaction is described by a simplified Biot formulation using pore pressure and skeleton 

displacements as basic field variables. The robustness and accuracy of the proposal is 

numerically demonstrated presenting results from two benchmark examples. The first one 

addresses the consolidation of a circular footing on a poroelastic soil. The second one is a 

parametric analysis of the cone penetration test (CPTu) in a material described by a Cam-clay 

hyperelastic model, in which the influence of permeability and contact roughness on test 

results is assessed. 

1. Introduction 
Many activities in geotechnical engineering (probing, sampling, pile installation….) involve the 

insertion of a rigid body into the soil. In this kind of problem, large displacements and 

deformations of the soil mass always occur. The coupled hydro-mechanical response of the soil 

adds further complexity, even in cases where insertion speed is tightly controlled. Analysis of 

problems of rigid body insertion into soil masses had traditionally relied on highly idealized 

approaches such as geometrically simple cavity expansion mechanisms (Yu & Mitchell, 1998). 

Although much insight is gained from such analyses, a number of basic features of the problem 

are left aside and, as a consequence, a host of not fully understood empirical corrections and 

methods have been relied upon for practical applications. Current interpretation of CPTu 

results (Mayne, 2007; Schnaid, 2009; Robertson & Cabal, 2015) is a clear example. 

Numerical simulation seems an obvious alternative to advance understanding in this area. 

However, the numerical simulation of rigid body insertion into soils is a complex task because 

the system exhibits many non-linearities, contact-related, material-related and also 

geometrical.  The geometrical non-linearity was a fundamental obstacle to the Lagrangian 

formulations of the finite element method (FEM) that are successful in other areas of 

geotechnical engineering. Strong mesh distortion resulted in large inaccuracies and/or stopped 

calculation at relatively small displacements (De Borst & Vermeer, 1984). 

In the last decades several numerical frameworks have been developed to address those 

problems. Some approaches are not based on continuum mechanics and use instead discrete 

element methods (Arroyo et al. 2011; Ciantia et al. 2016). Continuum-based approaches are 

however dominant, particularly for fine-grained soils. Within continuum-based methods the 

approach most frequently applied to geotechnical insertion problems has been that of 

Arbitrary Lagrangian-Eulerian formulations (ALE). ALE finite element formulations combine the 

Lagrangian and Eulerian kinematic descriptions, by separately considering material and 

computational mesh motions (Donea et al. 2004). Several slightly different ALE methods have 

been applied in geomechanics; a comparative review was recently presented by Wang et al. 

(2015). 



A second continuum-based numerical framework is that of the Material Point Method (MPM). 

A set of particles (material points) move within a fixed finite element computational grid. 

Material points carry all the information (density, velocity, stress, strain, external loads…) 

which, at each step, is transferred to the grid to solve the mechanical problem. The computed 

solution allows updating of position and properties of the material points. Several 

implementations of MPM have been already used to model rigid body insertion into soils 

(Sołowski & Sloan, 2015; Ceccato et al. 2016 a,b).  

The Particle Finite Element Method (PFEM) is a third continuum-based approach that seems 

suitable to address geotechnical insertion problems. PFEM is actually an updated Lagrangian 

approach, but one that avoids mesh distortion problems by frequent remeshing. The nodes 

discretizing the analysis domain are treated as material particles the motion of which is 

tracked during the numerical solution. Remeshing in PFEM is based in Delaunay tessellations 

and uses low-order elements. PFEM was first developed to solve fluid-structure interaction 

problems (Oñate et al. 2004) and then extended to other areas, like erosion, solid-solid 

interaction and thermo-plastic problems (Oñate et al. 2011, Rodriguez et al, 2016). 

Within geomechanics, PFEM was initially applied to tool-rock interaction problems by 

Carbonell et al (2010, 2013). Later, Salazar et al (2016), extended that code to include 

Bingham-like rheology to model flowslides. Zhang et al (2013, 2017) have also used PFEM in 

the context of soil flow problems. 

G-PFEM is a PFEM-based code for the analysis of solid insertion problems in soils. G-PFEM has 

been implemented into Kratos (Dadvand et al. 2010), an object-oriented multi-disciplinary 

open-access platform for numerical analysis tool development. Previously (Monforte et al. 

2017a), the authors have demonstrated the good performance of G-PFEM in total stress 

analysis. In Monforte et al. (2017b), the numerical stabilization techniques that underpin the 

method, both for the single phase and for two-phase cases, was presented in detail. 

This work documents G-PFEM developments to model two-dimensional coupled 

hydromechanical problems for water-saturated soils in quasi-static conditions. Some initial 

developments along this line were briefly illustrated by Monforte et al (2015) and Gens et al 

(2016). The paper is structured in two main sections. The first one presents the main features 

of the numerical method: governing equations, discretization, stabilization and mixed 

formulations, constitutive relations and the contact model. The second one illustrates the 

performance of the method in two reference problems: consolidation of a circular footing 

loading a poroelastic soil and CPTu insertion into a modified cam clay soil of varying 

permeability. 

2. Numerical model 

2.1 PFEM 
PFEM is a mesh-based continuum method: the solution is computed in a finite element mesh 

built with well-shaped low order elements. This computational mesh evolves during problem 

solution by means of frequent remeshing. A cornerstone of the PFEM implementation used 

here is an efficient remeshing strategy (Oñate et al. 2004). Basic tasks used in that strategy 

include adaptive inclusion of new nodes, Delaunay tessellation based on nodes and element 



smoothing. A Lagrangian description of the continuum is used and information between 

meshes is transferred using interpolation algorithms. This general PFEM scheme is enriched 

with the inclusion of rigid bodies of specified motion that may contact, penetrate and reshape 

the discretized continuum. 

Although it is not strictly necessary (e.g. Zhang et al. 2013), low order finite elements are 

typically used in PFEM: linear triangles in two-dimensional models and linear tetrahedra in 

three dimensions. Linear interpolated elements have several advantages based on their 

simplicity: particles usually define exclusively the mesh nodes and no additional interpolations 

are needed after remeshing. The computational cost is also reduced with respect to high-order 

elements, even if stabilized mixed formulations are required. 

The interpolation of state variables plays a crucial role in the accuracy of the results. To avoid 

excessive smoothing of internal variables, information is transferred from the previous Gauss 

points to the new ones. In this work, a nearest neighbor interpolation procedure is used; 

hence, new integration points inherit the information of the closer Gauss point of the previous 

mesh. This strategy ensures that information is maintained in elements that do not change 

during the meshing process. When new particles are inserted in the domain, variables are 

linearly interpolated from those of the previous mesh element.  More details about remeshing 

and interpolation in PFEM can be found elsewhere (Monforte et al. 2017a; Rodriguez et al. 

2016). 

PFEM has some commonalities with some ALE methods previously used in geomechanics, like 

the remeshing and interpolation technique by small strain (RITSS) (Hu & Randolph, 1998) or 

the so-called efficient ALE approach (EALE) (Nazem et al. 2006); a discussion of similarities and 

differences with those techniques may be found in Monforte et al. (2017a). 

2.2 Governing equations 
We consider only water saturated soils. They are modeled as a two-phase continuum 

employing a finite deformation formulation. The equations of linear momentum and mass of 

the mixture are written following the movement of the solid skeleton, considering as unknown 

fields the solid skeleton displacements and fluid pressure. This is the u-pw formulation, an 

approximation of the generalized Biot equations valid at moderate velocities (Zienkiewicz et al. 

1980). For pseudo-stationary cases, these equations may be expressed as (Borja & Alarcón, 

1995; Larsson & Larsson, 2012): 

 
 
 
 
 

 
 
 
 

                         
 

  
                               

                    

                      

                         

                     

                           

                       

  

(1) 

where           is the total Cauchy stress tensor,              is the effective Cauchy 

stress tensor,     stands for the appropriate constitutive equation for path dependent 



materials,     is the total deformation gradient whereas    represents the set of internal 

variables of the constitutive model.    is the spatial description of the soil density, defined as 

                  
  
 

 
  

   

 
  ,     and    are the density of the solid and water 

phase respectively.   is the porosity, whose variations changes in time due to deformation and 

it is actualized according to :     
    

 
, where    is the initial state whereas           is 

the Jacobian between the initial state and the deformed configuration. It is assumed that the 

solid phase is incompressible, whereas the water phase is almost incompressible, with bulk 

volume stiffness given by Kw. 

A Large strain generalization of Darcy’s law (Carter et al, 1979; Larsson and Larsson, 2002) is 

employed: 

                    (2) 
 

where   is the permeability tensor. When permeability is anisotropic it is advantageous to 

consider it constant in the material description and rotate it following the solid skeleton 

deformation (Larsson and Larsson, 2002). Anisotropic and void-ratio dependent (Kozeny-

Carman (Chapuis & Aubertin (2003)) permeability definitions have been implemented in 

GPFEM (Hauser, 2017) but they are not considered further in here; all cases presented use a 

constant isotropic value of permeability, denoted k. 

2. 3 Weak form and discretization 
The weak form of equation (1) is obtained following standard procedures (Zienkiewicz & 

Taylor, 2005), multiplying both field equations by a set of virtual displacements,  , and virtual 

water pressure,    integrating the equations over the deformed domain,    , and applying the 

divergence theorem:  

 
 
 

 
   

   

   
    

            
  

              
  

            
   

    
   
  

  
   
   

 
 

 
     

  

  
  

   
  
  

 
   

  

     
 

 
   

   

  

 

(3) 

Note that the integration of the mass balance equation takes place over the reference domain. 

This is not the only possibility and, for instance, Borja and Alarcón (1995) integrate the mass 

balance equation directly over the current configuration (in other words, multiplying the 

equation by  ) whereas Larsson and Larsson (2002) formulate the mass balance in terms of 

fluid content (i.e, scaling the equation by       .  

After obtaining the weak form of the balance equations, the discrete equations of the 

hydromechanical formulation are obtained. First, let us introduce the interpolants: 

 
 
 

 
            

           

     
       

         

  

(4) 



where    is the finite element approximation of the field   whereas    are the nodal values.  

                and                    are the shape functions, identical for the 

displacement and water pressure fields. 

Introducing the spatial discretization and using a fully implicit time marching scheme, the 

governing equations read: 

 
                   

 
      

           
 

  
                

 
      

  
  

 

(5) 

where the velocity is approximated as    
  

  
  

       

  
   and the material time 

derivative of the water pressure with respect to the solid skeleton as       
   

  
  

  
       

 

  
 

. Note that the definition of the Darcy’s law has been introduced in matrix H. Detailed 

expressions for all matrices appearing in the governing equations are given in the Appendix. 

 

2.4 Stabilization 
The governing discretized equations in GPFEM are jointly inverted in a monolithic solution. 

Therefore, using equal order interpolants for displacement and water pressure fails to satisfy 

the inf-sup stability condition in the undrained limit (Pastor et al, 1999). As a result, large 

amplitude spatial oscillations appear on the water pressure field, and stiffer responses are 

observed in the system. To avoid this problem several numerical techniques are available. The 

most popular uses displacement interpolants one order higher than those in the water 

pressure field. Another technique, which is the one adopted here, is the inclusion of stabilizing 

terms in the field equations.  

To stabilize the mass conservation equation, the Polynomial Pressure Projection technique 

(PPP) is used (Bochev et al, 2006; Sun et al, 2013). That means that the following term is added 

to the weak form of the mass balance equation of the hydromechanical problem: 

        
  

              
 

 

 

(6) 

where   stands for the stabilization parameter and    and     are the best approximations of 

the virtual water pressure and water pressure in the space of polynomials of one order less 

than the shape functions (which, in our case, are simply constant-valued functions) .  

The stabilization term has similar effect on the output as the minimal time step stability 

conditions that are applied for implicit FE time integration of consolidation problems (Cui et al. 

2016). Indeed, a similar analytical procedure as that employed by Cui et al. (2016) to obtain an 

stable time step limit was used here to establish an evaluation rule for the stabilization 

parameter,    The stabilization parameter in each element is obtained as:  



  

 
 
 

 
  

 
  

       

       
           

  
 

    

             
  
 

    

  

 

(7) 

where   is the constrained modulus,    is the element size and                is the 

consolidation coefficient. 

2.4 Mixed formulation 
Incompressibility in soils may not only arise from the hydro-mechanical response (i.e, 

undrained conditions) but also from the effective response of the medium. This is the case, for 

example, when failure is reached in Critical State soil models, as a constant volume condition 

defines the behavior at the Critical State Line.  

To deal with this second source of incompressibility mixed formulations have been proven 

effective (Sun et al, 2013). In a previous work (Monforte et al. 2017b), the authors explored in 

detail several alternatives of mixed formulations for the hydromechanical problem. The  

formulation that showed best performance was the displacement-Jacobian (or Volume 

change) -Water-pressure (      ) formulation and it is employed here. In essence the 

effective response of the medium is computed with an assumed deformation gradient,   , 

whose deviatoric part is computed as usual whereas its volumetric part is approximated by the 

Jacobian,  . A separate field equation is introduced to express that approximation, an 

equation that is also stabilized using the PPP technique.  Further details are given in Monforte 

et al (2017b). 

2.5 Constitutive relations 
The constitutive equations are formulated in a large strain framework. For the first example 

below, a purely linear elastic response is assumed between the Kirchhoff stress and the 

Hencky (or logarithmic) strain: 

      
       

  
 

(8) 

For more realistic modelling of soil behavior, large strains elasto-plastic constitutive equations 

are generally employed. These models are based on a multiplicative split of the deformation 

gradient into elastic and plastic parts and the use of a hyperelastic model (Simo & Hughes, 

1998). At the price of some added complexity, hyperelastic constitutive equations have the 

advantage of ensuring thermodynamic consistency (Houlsby et al, 2005). 

Here the hyperelastic model first proposed by Houlsby (1985) and later modified by Borja et al 

(1997) is used. The main feature of the model is that it is able to capture the pressure-

dependent nature of the bulk and shear modulus by defining them as a function of the first 

and second invariants of the deformation measure (Housbly, 1985; Borja et al, 1997). 

Using the computational geomechanics sign convention (that is, compression is considered as 

negative), the stored energy function,      , is then given by: 
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where    
      

 
  is the elastic Hencky strain tensor,      a reference pressure whereas 

      and     are two parameters of the model,    
 

    
 and   is the swelling slope. 

The effective Kirchhoff stress,     is computed according to: 

   
  

 
 
      

   
        

   
 

  
    

 

  
   

                     
   

 

  
    

  
(10) 

where the first term stands for the effective pressure whereas the second one represents the 

deviatoric stresses and   is the second order identity tensor. Then, the following tangent 

matrix may be obtained: 

  
       

     
 
   

   
                 

  
 

   
  

 
  
 

   
  

     

 

(11) 

where: 
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where         is the Kirchhoff effective pressure. These last equations show that if     

then     and the volumetric and deviatoric elastic behavior is coupled.  

The modified Cam-clay model is completed specifying the yield surface and the hardening law: 
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(16) 

where       is the reference preconsolidation pressure,   = 
 

    
   is the slope of the virgin 

consolidation line and M is the slope of the critical state line in the          plane. The 

shape adopted for the yield surface in the deviatoric plane is a convex reformulation of the 

Matsuoka-Nakai failure criterion (Panteghini & Lagioia, 2014) that may simply be described as 

a smoothed generalization of the Mohr-Coulomb criterion. 

Associated plasticity is assumed. The integration of the elasto-plastic constitute relations is 

performed with an explicit scheme, which is an extension of Sloan’s scheme at large strains 

(Sloan et al. 2001). The scheme considers adaptive substepping and correction for the yield 

surface drift and it is described elsewhere (Monforte et al, 2014, 2017a) 

2.6 Contact model 
The problems analyzed typically involve contact between a very rigid object and deformable 

soil. A simple way to model such contact describes the rigid object by a parametrized surface 

that imposes contact constraints on the soil using the Penalty Method (Wriggers, 2006). With 



this approach, an additional term due to the contact contribution is added to the linear 

momentum balance equation: 

      
  

               
(17) 

 

where    is the part of the boundary in contact,    is the normal total contact stress,   is the 

outwards normal whereas   stands for the tangential contact stress.  

The total normal stress acting on the contact is obtained as: 

       
  

 
(18) 

where   is the penalty parameter and    
  is the penetration function. That is, the normal 

stress is proportional to the amount of the penetration of the deformable body into the rigid 

structure. 

The tangential part of the contact condition is modelled using an elasto-plastic analogy 

(Wriggers, 1995; Wriggers, 2006) in terms of effective stress. In this approach the so-called 

stick conditions corresponds to the elastic regime, whereas the slip conditions are represented 

by the plastic flow. The model may be expressed as: 

 
  
 

  
 

     
     

 

           
 

                       
       

   
      

   
  

    
 

   
 

       

  

 

(19) 

where    is the tangential gap that decomposes in an elastic,   
 , and plastic,   

 , part;      

stands for the Lie derivative of the tangential contact stress,  t is the tangential contact factor, 

   is the slip yield condition    is the plastic multiplier and    is a hardening (strain-like) 

variable. In addition to these equations, the solution must fulfill the Kuhn-Tucker conditions.  

After discretizing these equations, an implicit time integration scheme is obtained formally 

equivalent to the well-known one-dimensional return mapping of elasto-plastic constitutive 

equations (Simo and Hughes, 1998). 

Several slip yield conditions have been implemented in GPFEM. In the work presented here it 

is assumed that the clay-steel interface obeys a Coulomb law formulated in terms of the 

effective stress: 

                      
  (20) 



 

3. APPLICATIONS 

3.1 Consolidation beneath a circular footing 
The first example of application involves the computation of the loading and subsequent 

consolidation of a linear elastic soil by an impermeable, rough, rigid circular footing. This 

problem has been previously used as benchmark (Wang et al, 2015), so it allows comparison 

with other numerical approaches. 

The example is used to explore the influence of the temporal and spatial discretizations, stress 

the benefits of the stabilization procedure and study the performance of the mixed 

formulation. To concentrate on those aspects neither the contact nor the remeshing 

algorithms are used in the solution.  Therefore, instead of simulating the footing as a rigid body 

indenting the soil, the footing is discretized as a deformable but very rigid body –with elastic 

modulus two orders of magnitude larger than that of the soil. Load is applied on top of the 

footing. Additionally, and due to the relatively small displacements involved, remeshing 

algorithms may be disabled so that the solution is unaffected by mesh interpolation.  

The analysis is set up following Wang et al. (2015). The circular footing radius and height are 

equal to 0.5 m. The loading boundary condition is ramped from 0 to 150 kPa in one day; 

afterwards it is held constant to observe consolidation. The domain is 12 radii in width and 6 

radii in height. The relevant material properties are Young Modulus, E = 500 kPa, Poisson’s 

ratio,   = 0.3, and a permeability k = 10-4 m/d.  As in Wang et al. (2015), we also specify unit 

weight    = 19.6 kN/m3 and K0 = 0.43, although these input values do not have any effect on 

the output of this quasi-static elastic problem. The initial condition for water pressure is 

hydrostatic; drainage is only allowed at the free upper boundary. 

The problem is discretized with three different meshes, progressively refined (Figure 1 and 

Table 1).  In all of them the footing and the nearby zone have structured meshes. Element sizes 

at the footing are given by he = 0.5R (MeshA), he = 0.25R (MeshB) and he = 0.125R (MeshC). 

Therefore between 3 and 9 nodes are shared by the footing and the soil. In Wang et al. (2015) 

an element size of 0.25R is used but, since the elements are quadratic, the discretization level 

is similar to that of mesh C. A constant time-step is used during the loading phase; during the 

consolidation phase the time increment is updated according to                  . 

Figure 2a shows the evolution of vertical displacement at the centerline of the footing for the 

three grids, computed using both the primal and mixed formulations. Figure 2b presents the 

pore pressure evolution at depths of one, two and three radii beneath the footing centerline.  

Both mesh coarsening and problem formulation have a small but perceptible influence on the 

results: a finer mesh results in slightly larger settlements and pore pressures. 

Coarser meshes hence result in a modest stiffening of the model response; the same happens 

when the primal (u - pw) formulation is used instead of the mixed one (      ). Figure 3 

presents these effects at the end of the loading phase, showing a linear dependency with 

element size. The (small) difference between mixed and primal formulation may be explained 

as a result of volumetric locking, which would affect the primal formulation during undrained 



loading. Indeed, as shown in Figure 2, differences between primal and mixed formulation 

results are practically constant during the consolidation phase. 

Figure 2a also includes the results reported by Wang et al. (2015) for simulations of the same 

problem, using RITSS and EALE. At a comparable level of discretization (mesh C), the GPFEM 

solution is practically coincident for the undrained phase, but a small difference appears during 

consolidation. Indeed, GPFEM shows a slightly stiffer response predicting a final settlement 

value of 0.168 m, about 96% of the value attained by Wang et al. (0.175 m). 

This difference may be explained by the different variables used in the basic formulation. In 

GPFEM the elastic moduli relates Kirchhoff stress and Hencky (logarithmic) strain. In RITSS and 

EALE the modulus relates an objective rate of Cauchy stress and the rate of deformation 

tensor. Using identical values of elastic moduli in both formulations will not produce the same 

results, except at very small strains. In the problem analyzed Hencky strain levels attain peaks 

above 10%. Interestingly, for uniform Hencky strains of that magnitude, a one-dimensional 

analysis indicates that the required modulus to obtain equivalence is 95% of the small strain 

value.  

The problem has been recomputed using a soil modulus increased 100 times to 50,000 kPa and 

modifying the permeability so as to maintain the same coefficient of consolidation. The 

increased stiffness results in strain levels well within the small strain range. A normalized 

settlement evolution plot (Figure 4) shows that, when small strains are guaranteed, the GPFEM 

computation follows quite closely the reference solution.  Garino et al (2006) present other 

comparisons between hypoelastic and hyperelastic formulations that further clarify this effect. 

Booker & Small (1986) published analytical solutions for the problem of consolidation beneath 

a smooth impermeable circular raft of finite stiffness. The normalized consolidation curve from 

that solution is compared with the numerical solutions in Figure 5. All numerical solutions plot 

very close to one another and the small differences with the analytical solution are likely due 

to the different mechanical interface condition (smooth contact vs perfect adherence). The use 

of stabilization in the mass conservation equation does not seem to produce any over-diffusive 

effect. 

A separate parametric analysis was performed to examine the influence of the time step and 

the performance of the numerical stabilization procedure. The footing consolidation problem 

was thus recomputed using different time-steps, ranging from 1 day to 0.01 days. Figure 6 

shows the influence of the time step size on the settlement at the end of the loading phase. 

For this particular mesh the stabilization term activation condition (see Equation (7)) is fulfilled 

when the time step falls below 0.38 days. Once stabilization is active, the slight reduction in 

settlement that initially accompanies time step reduction is eliminated.  However, the more 

visible benefits of stabilization appear examining the spatial oscillations of the water pressure 

solution, (Figure 7) which disappear when the stabilization term is active. Although this kind of 

spatial oscillation may be relatively inconsequential here, that is not the case for more 

challenging simulations such as those considered next.  



3.2 Cone penetration test: effects of permeability and interface friction 
In this section, the proposed numerical technique is applied to an axisymmetric case: the Cone 

Penetration Test. A CPTu with standard dimensions (D = 37.5mm; apex angle 60º) is pushed 

into a Modified Cam Clay (MCC) soil. A parametric study is presented in which permeability 

and interface friction angles are varied to observe their effect on net cone resistance, sleeve 

friction and pore pressure generation at the three standardized measurement positions: u1 

position (at the midface of the cone), u2 (at the apex between the cone and the shaft) and u3 

position (just above the friction sleeve, at 7.5 cone radii above the apex); the position of these 

measurement points is depicted in Figure 8(b). 

Several researchers (Obrzud et al. 2011; Yi et al.  2012;  Sheng et al. 2014) have addressed this 

problem using the commercial code Abaqus, although Yi et al  (2012) did not use MCC, but 

rather a Drucker-Prager model, in which sometimes a separate volumetric hardening cap was 

included. A frictionless contact has been generally favoured to avoid numerical breakdowns: 

only Obrzud et al. (2011) report successful simulations with a frictional contact. However, they 

also reported numerical difficulties in that case which restricted their work to relatively small 

penetrations (z < 6D) and relatively low friction values (  < 5°). Such friction values are well 

below those observed in steel-clay interface friction experiments, (for instance, Tsubakihara et 

al. 1993, report   within a range of 22° to 27°).  

Ceccato et al (2016a; 2016b) have used a code based on the material point method (MPM) to 

study this problem using MCC. The approach followed is powerful but computationally 

demanding: the code is three-dimensional and the problem is described within a fully dynamic 

setting, where both solid and fluid velocities (v-w) are used as primary variables to describe 

fluid-solid coupling.  Both mass-scaling and local damping were introduced to speed-up and 

stabilize the semi-explicit time integration scheme. 

The basic constitutive parameters used here are listed in Table 2, alongside those of previous 

work which is later used for comparison (unfortunately, parameters in Obrzud et al. (2011) are 

not clearly reported). The selected values try to mimic the example reported by Sheng et al 

(2014), although here the effect of the weight of the soil has been omitted and the initial 

effective stress and water pressure have been chosen to match those encountered in Sheng et 

al (2014) at final penetration depth (Table 3). 

The domain (Figure 8a) has 30 times the cone radius for width and 60 times for the depth. 

Computation starts with the cone pre-installed at a depth of 3 cone radii. This avoids the 

numerical problems that may arise at the first steps of the calculation, when only a node of the 

soil is in contact with the rigid structure. The cone is pushed at the standard velocity (20 

mm/s). Drainage is only allowed through the bottom boundary of the soil domain. A constant 

vertical stress is applied at the top boundary. The radial displacements are fixed on the left and 

right boundaries whereas null displacement in all directions is precribed at the bottom of the 

domain.  

The simulations used        elements due to their good numerical performance for CPT 

simulation in undrained conditions (Monforte et al, 2017b). Good performance in this context 

means: smoother cone resistance curve, smaller oscillations in calculated water pressure at 

the measurement positions –u1, u2 and u3- and oscillation-free stress states. Intense 



remeshing takes place during cone advance (Figure 8b); despite that the final mesh typically 

has around 1500 elements. This final number is around one order of magnitude smaller than 

the number of elements employed by Ceccato et al (2016) or Sheng et al (2014). Note also that 

the elements are here linear triangles, instead of tetrahedra or 8-noded quadrilaterals. 

Smooth interface 

Figure 9  illustrates the effect of permeability on the basic cone measurements (net tip 

resistance, qn  and excess pore pressures at the three measurement positions). In all cases the 

interface soil-cone interface is perfectly smooth. It can be seen that for the highest 

permeability value employed (10-3 m/s) no excess pore pressure is generated. On the other 

hand, the differences in excess pore pressure for the two cases with smallest permeability 

values (10-6 m/s and 10-8 m/s) are minimal, so undrained conditions may be assumed for the 

lowest permeability case. 

The profiles in Figure 9 have been filtered using a mobile average of window width 0.1R (0.2R 

for u2). This smoothens numerical oscillations due to remeshing at the soil-cone interface. This 

filtering is very effective for the pore pressures -where the remeshing induced error is just due 

to a slightly variable sampling position in areas of high pressure gradients. It is somewhat less 

effective for the tip resistance in the stronger soils, as the remeshing induced error for that 

variable is mostly due to jumps in equilibrium conditions. In Table 4 the mean values at steady 

state (i.e. computed averaging between 15 < z/R < 25) are reported. Excess pore pressure at 

the u2 position lies between 75 and 80% of that measured at the u1 position, in good 

agreement with typical observations in soft low OCR soils (Lunne et al. 1997). 

Undrained penetration requires less force than drained penetration. This is a well-known 

result that can be explored further examining, for drained and undrained conditions, total and 

effective stress profiles alongside the cone (Figure 10). Vertical equilibrium at the tip identifies 

the main cause of increased tip resistance: in drained conditions much larger tangential stress 

is mobilized at the tip interface (0 < z/R < 2). On the other hand, total vertical stress in that 

zone appears not much affected by drainage.  A more distant cause can be found in the 

effective stress levels below and around the cone tip (say for z/R < 2). Pore pressure increases 

result in much smaller effective stress normal components for the undrained case; 

consequently mobilized strength and stiffness in that zone will be much reduced.  

Following proposals by Randolph & Hope (2004) it has become customary to assess the 

influence of permeability on cone penetration results using normalized plots. In Figure 11 two 

such plots are provided, comparing the outputs of the GPFEM simulations and equivalent 

results obtained with ALE (Sheng et al. 2014) or MPM (Ceccato et al. 2016 a,b). The horizontal 

axis for both plots is the normalized velocity, defined as 
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where v represents penetration velocity, D cone diameter and cv is the “in situ” coefficient of 

consolidation. That “in situ” cv is used only for data normalization purposes; consolidation 

around the cone may be governed by different values (Mahmoozadeh & Randolph, 2014) a 



discussion of which is outside the scope of this work. The vertical axis in Figure 11a (qn/qref) 

shows net cone tip resistance normalized by the value at the undrained limit, whereas in 

Figure 11b it shows the excess pore pressure at position 2, also normalized by the value at the 

undrained limit. 

Overall, the results in Figure 11 show good agreement between the different numerical 

approaches. The normalized velocity transition range that appears (roughly from 0.03 to 100) 

fits well with that noted by De Jong & Randolph (2012) summarizing previous experimental 

and numerical research on soft contractive soils.  Comparing with that work, it does also 

appear that the numerically obtained upper bound of the normalized net tip resistance ratio 

(qn/qref) is somewhat low (around 1.5 here instead of 2.5 on average for De Jong & Randolph). 

A large part of that discrepancy may be due to interface friction. 

Interface friction 

The precedent CPTu analyses have been repeated using friction angles at the cone-soil 

interface,  , of 10°, 20° and 25° corresponding to interface friction ratios μ betwen 0 and 0.47. 

Also, if we consider that the soil friction angle, φsoil, is 25.4°, the values explored correspond to 

interface efficiencies (tan ( ) / tan (φsoil)) between 0 and 0.98. 

Figure 12 shows the effect of this parameter for the main test results for the extreme 

conditions of permeability (corresponding to fully drained or undrained penetration). When 

cone penetration is undrained interface friction appears to have a relatively small effect on 

either tip resistance or pore pressure increase. When cone penetration is drained the tip 

resistance does increase quite significantly as friction increases. 

The effect of interface friction on some aspects of the penetration mechanism is illustrated in 

Figure 13. One obvious difference is that friction results in significant settlement next to the 

cone at the upper surface.  Also induced radial and vertical stress around the cone tip are 

significantly affected by interface friction: larger friction values increases the size of the stress 

bulb in front of the cone tip, which also exhibits a more vertical orientation. 

A more systematic view is presented in Figure 14, showing the effect of interface friction on 

the relation between normalized test velocity and normalized test results. The average 

summary curves proposed by De Jong & Randolph (2012) are also included as reference. Again 

interface friction seems to have a moderate effect on pore pressure, (the somewhat erratic 

influence of friction at the undrained end is likely due to numerical  noise). Again, the effect on 

normalized resistance increases as the penetration rate gets closer to drained conditions. For 

the upper values of interface friction the backbone curves become significantly steeper and 

get closer to the average reported by De Jong & Randolph (2012).  

The effect of relative stiffness also plays a role here. Yi et al (2012) show that higher 

normalized elastic stiffness (G/p’) results in an increased drained tip resistance and the 

backbone curve becomes steeper. The same happens when relative plastic stiffness (κ/ λ) 

decreases (Yi et al. 2012; Sheng et al. 2014). In the GPFEM analyses presented here, the values 

of those parameters are kept constant at a relatively low level (G0/p’ = 10; κ/ λ = 0.16). A more 

systematic analysis of this effect is beyond the scope of this paper. 



Similar effects have been reported by Ceccato et al (2016 a,b),  although the pattern of net tip 

resistance increase with interface friction is somewhat different to that found here (Figure 15), 

with stronger effects of small friction for fast penetration. The differences in the contact 

algorithm employed may explain this discrepancy. 

Finally, as shown in Figure 12c, the mobilized stress at the friction sleeve, fs, increases linearly 

with interface friction, and has a value that is practically independent of drainage conditions. 

This result may be related to the repeated field observation of poor repeatability on CPTu 

friction sleeve readings (Lunne, 2012). Although other aspects of friction sleeve design may be 

involved, Lunne & Andersen (2007) already pointed out at sleeve roughness as a possible 

contributing factor. The numerical results support that idea: poorly controlled sleeve 

roughness will result in significant variance on interface friction and, therefore, on fs. 

4. Conclusion 
A PFEM formulation has been presented that is capable of tackling large deformation problems 

often encountered in geotechnical problems that involve the partially drained insertion of rigid 

bodies into the soil. Particular attention has been paid to the stabilization procedure, the use 

of a mixed formulation, the large-strain constitutive equations and the contact model. 

The performance of the method is examined by reference to two examples of application. The 

first one involves the loading and consolidation of a poroelastic soil under a circular footing. 

The effect of mesh discretization and of the use of the stabilized formulation is assessed. In 

addition, the results show a good correspondence with those obtained using alternative 

numerical formulations. 

The second example addresses the more challenging case of the insertion of a cone simulating 

the conditions of a CPTU test. It is shown that the proposed method is able to perform the 

numerical analysis efficiently even when significant contact friction angles are involved. Cone 

resistance, sleeve friction and pore pressures at three potential measurement points are 

obtained. The results span the full range from drained to undrained conditions and the effect 

of the contact friction can be readily explored throughout. The numerical results also allow a 

better understanding of the mechanisms underlying CPTu observations under different 

conditions. The PFEM method, therefore, provides a very promising and effective procedure 

for the analysis of large-deformations coupled geotechnical problems provided the 

enhancements described in this paper are incorporated.  

In this respect it is worth noting that several applications of the methodology here described 

are currently being developed: enhanced interpretation of CPTu in complex soils, like 

lacustrine varved clays (Hauser, 2017); systematic examination of current procedures for 

permeability identification using CPTu (Monforte et al. 2018a); evaluation of specific recovery 

ratio during quasi-static sampling (Monforte et al., 2017c). Those applications are 

simultaneous with further developments of the GPFEM platform, like element technology for 

three-dimensional cases (Monforte et al. 2018b) or a full-Biot formulations (Navas et al, 

2017a,b) for impact problems. New developments like these would allow to address more 

challenging problems within the area of soil investigation, such as DMT insertion, dynamic 

driving or impact coring. A medium term goal is to use GPFEM as a unique simulation platform 



in which both site investigation and foundation installation can be treated, thus facilitating the 

always complex connection between in situ testing and geotechnical design. 
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5. Appendix A: auxiliary formulation 
The expression for the matrices used in the discretized expression of the governing  equation 

of the problem are 

          
  

       

         
  

   

          
  

  

        

       
  

         

        
  

       
 

 
     

       
  

        

       
  

        
 

 
     

        
    

            
  

     
    

 
     

 

 

6. Appendix B: notation 
B Strain-displacement finite element matrix 

   Coefficient of consolidation 

   Contact contribution 

D Cone diameter 

   Initial void ratio 

E Young modulus 

F Deformation gradient 

   Assumed deformation gradient 

   Slip yield condition 

     Mechanical external forces 



    Hydraulic external forces 

   Friction sleeve resistance 

g Gravity vector 

G Shear modulus 

   Parameter of the Houlsby hyperelastic model 

  
  Penetration function 

   Tangential gap 

  
 
 Elastic tangential gap 

  
  Plastic tangential gap 

   Hardening variable (strain-like) 

H Finite element hydraulic conductivity matrix 

   Element size 

   Fourth order deviatoric tensor 

   Second invariant of the deviatoric stress 

J = det(F) Jacobian 

j Imposed water flux at Neumann 

    Permeability tensor, permeability (scalar) 

   Water bulk modulus 

K Volumetric modulus 

   Coefficient of lateral earth pressure 

   Lie derivative 

M Constrained modulus 

M Critical state line 

M Finite element mass matrix 

N Shape functions of scalar fields 

N_u Shape functions of the displacement field 

N Outward normal 

     Internal forces due to   

   Reference pressure (Houlsby hyperelastic 
model) 

   Preconsolidation pressure 

    Initial presconsolidation pressure 

   Water pressure 

    Initial water pressure 

       Water pressure at the dirichlet boundary 

  Finite element coupling matrix 

   Finite element coupling matrix 

Q Virtual water pressure 

   Net cone resistance 

R Radii of the footing. Radii of the CPT. 

t Time  

t Tangential contact stress 

U Degree of consolidation settlement 

u Solid skeleton displacement 

   Initial solid skeleton displacement 

   Prescribed solid skeleeton displacement 

   Discretized solid skeleton  displacement field 

   Nodal solid skeleton displacement 

V Normalized CPT velocity 

V Generic internal variables of the constitutive 
model 

v Cone velocity 



v Solid skeleton velocity 

   Darcy’s velocity 

w Virtual displacement 

  Position at the deformed configuration 

  Position at the reference configuration 

  

1 Second order identity tensor 

  

  

  Parameter of the Houlsby hyperelastic model 

   Time-step 

  Interface friction angle 

    Kronecker delta 

  Plastic multiplier 

   Mixture specific weight 

    Boundary with prescribed displacement 

    Boundary with prescribed water pressure 

    Boundary with prescribed traction 

    Boundary with prescribed water flux 

    Boundary in contact 

  Penalty factor 

 t Tangential penalty factor 

  
  Elastic deviatoric hencky strain 

  
  Elastic volumetric hencky strain 

   Elastic Hencky strain 

  
 
 Plastic volumetric Hencky strain 

  Assumed jacobian 

   Lode’s angle 

    

      
 

  Swelling slope 

    

      
 

  Slope of the virgin consolidation line 

          Interface friction ratio 

  Poisson’s ratio 

   Effective Kirchhoff mean stress 

   Mixture density 

  
  Initial mixture density 

   Solid phase density 

   Water density 

  Cauchy total stress 

   Cauchy effective stress 

   Normal total contact stress 

  
  Normal effective contact stress 

   
  Initial vertical Cauchy effective stress 

  Stabilization parameter 

   Kirchhoff effective stress 

    Deviatoric stress component of the Cauchy 

stress tensor. 

φ Soil friction angle 



  Soil porosity 

   Initial soil porosity 

  Stored energy function 

   Reference domain 

   Deformed domain at time t 
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8. Tables 
 

Table 1 Finite element meshes of the circular footing example 

 Number of nodes Number of elements 

A 352 636 

B 902 1712 

C 3203 6236 

 



Table 2 Constitutive parameters of Modified Cam Clay CPTu coupled analyses 

Ref.             
(kPa) 

OCR      
(kPa) 

υ k (m/s) 

This work 2.0 0.05 0.3 1 70 1.2 23.5 400 -           
Sheng et al. 

(2014) 
[z/D=40] 

2.0 0.05 0.3 1  1.21 - - 0.33            

Ceccato et al. 
(2016a; 
2016b) 

1.41 0.04 0.2 0.92  1 - - 0.25 
        

          

 

Table 3: In situ stress state for the Modified Cam Clay CPTu coupled analyses 

Ref.      (kPa)      (kPa)    
This work 57.85 28.93 0.5 

Sheng et al. (2014) 
[z/D 40] 

57.85 28.93 0.5 

Ceccato et al. 
(2016a; 2016b) 

50 34 0.68 

 

Table 4: CPTu simulations: average values at steady state 

δ 
(º) k (m/s) qn (kPa) ∆u1 (kPa) ∆u2 (kPa) ∆u3 (kPa) fs (kPa) 

0 1.00E-08 155.9247 149.1725 116.8521 47.8765 0 

0 1.00E-07 157.9149 145.3006 116.7007 50.2512 0 

0 1.00E-06 171.913 139.035 113.8241 40.9969 0 

0 5.00E-06 188 91.9542 71.1219 21.9292 0 

0 1.00E-05 193.4498 62.1941 46.4524 14.5118 0 

0 5.00E-05 225.2794 14.7636 11.6343 5.1592 0 

0 1.00E-04 228.8778 7.7077 6.2003 2.9622 0 

0 1.00E-03 228.4996 0.82064 0.64933 0.30679 0 

10 1.00E-08 168.6917 147.332 113.8916 42.6165 10.0502 

10 1.00E-07 170.7917 147.6641 102.8217 44.4423 9.2191 

10 1.00E-06 198.016 139.1674 101.2809 38.8121 9.2646 

10 5.00E-06 228.9542 97.5366 65.5577 21.9336 7.4521 

10 1.00E-04 306.4265 7.9372 5.7246 2.9266 8.6699 

10 1.00E-03 311.473 0.77502 0.60076 0.33279 8.8945 

20 1.00E-08 178.4367 156.3127 111.0797 29.9754 19.8684 

20 1.00E-07 175.4394 150.6554 86.8759 42.9122 16.8615 

20 1.00E-06 206.5035 151.232 86.4064 32.8562 17.6686 

20 5.00E-06 257.1764 115.4293 65.527 21.3735 17.351 

20 1.00E-04 371.8288 7.8541 5.2757 3.6126 18.7267 

20 1.00E-03 381.3202 0.77079 0.56783 0.40083 17.2323 

25 1.00E-08 183.2952 164.3057 97.4744 24.6536 23.5184 

25 1.00E-07 179.5185 152.5107 88.0873 41.5211 20.9896 

25 1.00E-06 209.2947 154.2808 90.8293 34.1315 22.132 



25 5.00E-06 285.1025 115.1756 57.3074 19.052 20.6526 

 

  



9. Figures 
 

 
(a) 

 
(b) 



 
(c) 

Figure 1 Rigid circular footing: Finite element meshes (a) he = 0.5R (b) he = 0.25R (c) he = 0.125R 

  



 
Figure 2 Rigid circular footing. Effects of mesh refinement and mixed formulation (m).  Evolution 

of the settlements at the footing centerline (a) and water pressures at depths of one, two and three 

radii below the footing centerline (b). 

  



 

 
Figure 3 Rigid circular Footing. Influence of element size on the settlement (at the end of the 

loading  phase) and excess water pressure (at the end of the loading phase) for the primal and 

mixed formulations. [  = 0.02 day] 



 

Figure 4 Rigid circular Footing. Normalized settlement evolution for high and low moduli values. 

  



 
Figure 5 Rigid circular footing. Normalized settlement below the footing during the consolidation 

phase 

 

 
Figure 6 Rigid circular footing. Influence of the temporal discretization on the settlement at the end 

of the loading phase for the primal and mixed formulation. The vertical dotted line separates 

simulations that have elements whose stabilization parameter is larger than zero from those that all 

elements have a null stabilization parameter [Mesh B] 



 

(a) 

 

(b) 

Figure 7 Excess water pressure at t = 0.01 days using mesh C.    = 0.01 day. On top, stabilized 

solution, on the bottom, unstabilized solution. 

 

 



 

 

 

(a) (b) 
Figure 8 CPTu penetration. (a) sketch of geometrical and boundary conditions (b) mesh after 20 

radius penetration 

 

 



 
Figure 9 Cone penetration test. Profiles of net cone resistance and water pressure at the three 

measurement positions vs normalized penetration depth. Smooth interface with Ko = 0.5 

 

 

 

 
(a) 

 
(b) 

Figure 10 Cone penetration test, smooth cone. Profiles along the probe of pore pressure and total 

stress (a) or effective stress (b) for the two extreme values of permeability. The cone tip is located at 

Z/R = 0. 



 

  

 
(a) 

  
(b) 

Figure 11 Simulated backbone curves for a frictionless CPTu in Cam Clay (a) cone tip resistance 

(b) excess pore pressure 

 



 
(a) 

 
(b) 

 
(c) 

Figure 12 Cone penetration test. Influence of interface friction ratio for conditions of drained and 

undrained penetration on (a) net cone resistance (b) pore pressure at position 2 and (c) friction 

sleeve resistance. 

 



  
(a) (b) 

  
(c) (d) 

  
Figure 13 Effect of interface friction on stress fields around the CPTu (a) radial effective stress, 

drained,   = 0; (b) radial effective stress, drained,   = 20
°
; (c) vertical effective stress, drained,   = 

0; (d) vertical effective stress, drained,   = 20
°
. 

 

 



 
(a) 

 
(b) 

Figure 14 Effect of interface friction angle on simulated backbone curves for CPTu in Cam Clay (a) 

cone tip resistance (b) excess pore pressure 

 

 



 

Figure 15 Effect of interface friction on net tip resistance increase for different normalized 

velocities 

 


