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Abstract 

The research presented in this paper has two main objectives. First, it aims to generate 

an assessment tool for ranking and selecting the most sustainable domestic water-

heating system (WHS) (with the lowest economic, environmental and social impact) that 

could be applied in any location and with any demand. Second, it aims to ascertain which 

WHS is the most sustainable in places with a climate and solar radiation like that of 

Barcelona, Spain, where a minimum solar contribution to domestic water heating is 

compulsory for new buildings and significant renovations. Multi-criteria decision analysis 

was employed to create the optimised flexible assessment tool. The Delphi method was 

followed to perform the surveys, and to provide the objectivity required in the 

identification of impacts, the definition of indicators and the assignment of weights. The 

most relevant criteria were determined: annual cost, material consumption, energy 

consumption, GHG emissions, space requirement, visual impact and occupational risks. 

The resulting tool was tested by analysing twelve domestic WHS, including two 

conventional systems, and ten combinations of five solar thermal technologies with two 

conventional systems as backup for a changing room in a sport centre located in 

Barcelona. The two conventional WHS studied were a natural gas-fired condensing 

boiler and an electric water heater. The five solar thermal technologies were: a flat plate 

with a harp design, a flat plate with a serpentine design, a heat-pipe evacuated tube, a 

direct-flow evacuated tube, and a direct-flow evacuated tube with CPC. The dynamic 

thermal simulation programme T*SOL was used to dimension the solar thermal systems. 

Two sensitivity analyses were carried out: one on weights and one on references. The 

tool proved very useful in the assessment of these systems, and could also help in 

decision-making processes to select the most sustainable WHS for other locations and 

domestic hot water demands. 

Keywords: sustainability, domestic water-heating systems, solar collectors, multi-

criteria decision analysis, indicators, environmental impact. 
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1. Introduction 

The final energy consumption of the residential sector in the European Union (EU) 

accounted for 26.8% of the total energy consumption in 2013. This was the highest 

percentage of all sectors; even slightly above that of road transport or industry [1]. Water 

heating was responsible for about a quarter of this energy consumption [2]. Furthermore, 

households accounted for 19% of greenhouse gas (GHG) emissions in the EU in 2012 

[1]. Residential energy consumption in Spain accounted for 18.5% of the total energy 

consumption in the same country, and 5.4% of the total residential energy consumption 

in the EU (28 countries) in 2015 [3]. Household GHG emissions in Spain accounted for 

20.4% of the total GHG emissions in the same country, and 7.5% of the total household 

GHG emissions in the EU in 2014 [4]. Thus, the appropriate choice of a domestic water-

heating system (WHS) can largely reduce energy consumption and operational costs, 

and protect the environment [5]. 

Domestic solar water heating is a well-developed technology that is used to reduce 

energy consumption for domestic hot water (DHW) supply [2]. Its potential for 

significantly reducing domestic energy consumption is recognised [2]. Legislation on 
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buildings is progressively introducing domestic solar WHS. Consequently, the total 

installed capacity is increasing every year, and reached 33.3 GWth in operation in 2015 

in the EU 28 and Switzerland, which generated an estimated 23.5 TWhth of solar thermal 

energy while contributing to a saving of 6.3 MtCO2 [6]. In the case of Spain, the total 

installed capacity in operation in 2015 was 2296 MWth [6]. 

All three pillars of sustainability, economic, social and environmental factors, must be 

considered in decisions on the most appropriate WHS for a given location and demand, 

to obtain a comprehensive view of the system. In fact, sustainability consists of finding a 

balance between these three dimensions, and is therefore an interdisciplinary problem. 

If an analysis is limited to one or two dimensions, the view of the problem will only be 

partial. However, in the literature review presented in the next section, few studies were 

found that compare types of solar collector systems including flat plates, evacuated tubes 

and conventional systems for producing DHW from a complete, sustainable, multi-

criteria perspective that includes social, economic and environmental aspects. Further 

comparative studies of solar and conventional commercial WHS are needed to help 

policy makers, installers and users to make decisions on the most sustainable WHS [7].  

The research presented in this paper has two main objectives: (1) to develop a multi-

criteria decision-making tool applicable to any location and demand that enables 

prioritisation and selection of the best WHS, including solar and conventional systems 

and considering the three dimensions of sustainability, and (2) to illustrate the use of the 

tool with a case study and determine the best WHS to be used in a sport centre located 

in Barcelona, Spain. 

This research extends knowledge by providing a multi-criteria tool for sustainable 

decision making on WHS. It is innovative as it applies multi-attribute utility theory (MAUT) 

to a new area: selection of the best domestic WHS. It explores the interdisciplinary 

connection between fields of knowledge in solar and conventional WHS. It connects 

engineering with economy, environment and society, in other words, it looks at 

engineering from the perspective of sustainability; and sustainability is fundamental for 

present and future generations.  

According to the present study and under the studied climatic and hot water demand 

conditions, policies that encourage the installation of flat plate solar WHS are justified, 

particularly in a society that increasingly recognises the value of the environment and 

calls for a reduction in GHG emissions and conventional energy consumption. 
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The rest of the paper is organised as follows. The second section presents a literature 

review of research on technical, economic and environmental aspects of solar WHS and 

multi-criteria decision analysis (MCDA) applied to the energy sector, particularly to 

renewable energies and domestic solar WHS. The third section develops a decision-

making tool for selecting optimal domestic WHS based on MAUT and the Delphi method. 

In the fourth section, a case study on determining the optimal WHS out of twelve 

alternatives is solved by using the proposed tool and simulations with T*SOL software. 

The fifth and last section of the paper presents the conclusions of the study. 

 

2. Literature review 

The definition of energy policies and the selection of the best WHS should be based on 

evaluating the sustainability of existing technologies, considering all three pillars of 

sustainability, economic, environmental and social factors, in an integrated way. 

However, much of the current literature on solar WHS has focused on technical, 

economic or environmental aspects separately. 

Some previous studies on solar WHS have focused on technical and economic aspects. 

For example, Tian and Zhao [8] and Jamar et al. [9] reviewed solar collectors for low- 

and high-temperature applications in terms of optical optimisation, heat loss reduction, 

heat recuperation enhancement and sun-tracking mechanisms. Allouhi et al. [10] studied 

the technical performance of flat plate and evacuated tube collectors in several locations 

in Morocco. Buker and Riffat [11] reviewed the current status of building-integrated solar 

thermal collectors. Wang et al. [12] reviewed solar WHS in terms of technical 

background, market potential and research questions. Gautam et al. [13] reported 

studies on technical advancements, economic feasibility and the overall scenario of solar 

WHS. Islam et al. [14] and Shukla et al. [15] discussed the design features, energy 

efficiency and cost effectiveness of solar WHS. Al-Badi and Albadi [16] and Benli [17] 

evaluated technical and economic aspects of solar WHS in Oman and Turkey, 

respectively. Vieira et al. [18] concluded that split systems performed better than 

thermosiphon in Brisbane, Australia, in terms of energy efficiency and level of service, 

and hence should be prioritised in energy efficiency policies. 

Additionally, several recent studies have reported on environmental and economic 

aspects of solar WHS. For example, Ibrahim et al. [5] qualitatively reviewed the 

operational costs, environmental effects and performance of existing WHS. Lamnatou et 

al. [19] critically reviewed the existing life-cycle analyses on building-integrated solar 
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thermal systems. Greening and Azapagic [20] quantified the environmental impact of 

solar WHS in regions with low solar radiation, such as the UK, while Koroneos and 

Nanaki [21] quantified the environmental impact and economic performance in 

Thessaloniki, Greece. Shaddel and Shokouhian [22] studied the payback period and the 

annual reduction in natural gas consumption and CO2 emissions due to the installation 

of solar thermal collectors in a multiple-dwelling complex in Mashhad, Iran. Bessa and 

Prado [23] assessed the reduction of CO2 emissions with the use of solar WHS in 

comparison with electric showers in social housing in several Brazilian climatic zones.  

Cassard et al. [24] and Friedrich Ferrer [25] analysed economic aspects of solar WHS, 

the former in the US and the latter in South Africa (SA). Their conclusions were similar: 

solar WHS are only economically attractive in a few regions. The high initial cost is a 

primary driver of the low penetration of residential solar WHS in the US: “the life-cycle 

benefits often do not greatly exceed the capital cost of the system” [24]. However, solar 

WHS provide other “benefits such as reduced reliance on fossil fuels and reduced carbon 

dioxide emissions” but these are somehow “external to the consumer and difficult to 

quantify” [24].  

In fact, the search for a logical, optimal solution to the sustainability of energy systems 

is a complex process that requires robust quantitative methods [26]. In this regard, 

MCDA could become a powerful tool for decision making on sustainable energy systems 

[26, 27]. There are several studies on renewable energies and domestic solar WHS 

based on MCDA. Troldborg et al. [28] assessed the sustainability of eleven renewable 

energy technologies considering three environmental, three technical, and three socio-

economic criteria using the PROMETHEE method. They considered uncertainty in the 

input information using a Monte Carlo simulation. As the assessment was performed at 

national level and hence was not specific, the uncertainty associated with the criteria and 

the ranking was high. They stated that the degree of uncertainty for actual site-specific 

projects would probably be lower. Stein [29] developed a model to rank nine renewable 

and non-renewable electricity production technologies considering financial, technical, 

environmental and socio-economic-political criteria using the analytic hierarchy process 

(AHP). A sensitivity analysis of the weights was performed considering four scenarios. It 

was concluded that solar, wind, hydropower and geothermal provide the most overall 

benefits and, therefore, policies to encourage the use of these type of energies should 

be expanded. Cavallaro [30] used the multi-criteria PROMETHEE method to rank twelve 

solar thermal technologies according to seven economic and technical criteria, and 

determined the weight stability intervals within which the weight of each criterion can be 

modified without changing the ranking. Nixon et al. [31] designed a new solar thermal 
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collector using an MCDA including quality function development, the AHP and the Pugh 

selection matrix and sixteen technical, financial and environmental criteria. 

Notwithstanding the increasing use of solar WHS, the improved technology, and the 

recognised environmental advantages in terms of energy consumption and GHG 

emissions, the overall sustainability (that covers all three pillars) of these methods in 

comparison with each other and in relation to conventional systems is not yet clear. 

Neither is it clear which is the best system from the perspective of sustainability for use 

in a specific location with specific demands. Comparative studies of all the main 

commercially available solar WHS configurations and types of solar collectors are 

needed [7]. In this area, Hang et al. [7] carried out a relevant study in which six types of 

domestic WHS including two types of solar collectors (flat plate and evacuated tube) in 

combination with two types of auxiliary systems (natural gas and electricity) and two 

conventional systems (natural gas and electricity) were evaluated from energy, 

economic and environmental perspectives. 

 

3. Methods 

MCDA can help to select the best of several alternatives taking into account possible 

conflicts between criteria, considering that the best alternative according to one criterion 

is not necessarily the best according to another criterion. Therefore, the best alternative 

overall cannot be determined directly. In this sense, the MCDA is an integrated approach 

that enables overall assessment, comparison, and ranking of alternatives, considering 

all the criteria in an integrated manner. While it is necessary to be aware of uncertainties 

and analyse how they may affect the result [28, 31], MCDA can be a useful technical-

scientific tool for decision-making support [30, 31]. 

As described in Martin-Gamboa et al. [26], an increasing number of studies on energy 

policy and management use MCDA for energy planning and to evaluate aspects of 

renewable energies [29,32]. Within MCDA, the multi-attribute utility theory (MAUT) [33] 

is the most commonly used for assessing the sustainability of energy systems, according 

to Martin-Gamboa et al. [26]. MAUT was chosen for the study presented in this paper as 

it helps to solve discrete problems, it can be understood intuitively, and it is based on a 

solid foundation [34].  

To improve and verify the quality and robustness of the tool generated using MAUT, 

several strategies and methods were followed: the Delphi method, controls in the surveys 

to minimise and avoid bias, and two sensitivity analyses in the case study to check the 
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robustness of the results. These strategies are explained in the present section and in 

Section 4.3. Sensitivity analyses. Fig. 1 shows the steps taken to develop an Impact 

Index for evaluating domestic WHS, according to MAUT in combination with the Delphi 

method, and the application of the Impact Index to a case study. 

 

 

 

 

 

 

Fig. 1. The main steps used to develop the decision-making tool based on MAUT for 

the optimal selection of domestic WHS, and a practical application. 

The Delphi method for construction and engineering management is a structured 

research method that can be used to obtain highly reliable data from certified experts by 

means of strategically designed surveys [35]. This method was used to select the 

experts, administer rounds of surveys, and define consensus to obtain the data required 

to apply the MAUT, including the identification of impacts, the definition of indicators and 

the weight assignment. Sixteen panellists were initially contacted to complete the 

surveys, following the Delphi method [35]. Thirteen responded and participated, which is 

more than the minimum number (8-12) recommended by Hallowell and Gambatese [35]. 

All the panellists met the expertise requirements of the Delphi method [35], either those 

of the rigorous or the flexible implementation of the method, since academic experience 

was not particularly relevant to the study. This results in the incorporation of highly 

qualified and well-rounded panellists. They were representative of stakeholders related 

to solar thermal systems for DHW: design, project, and management engineers and 

architects, including some academics. 

 

3.1. Identification of impacts 

Impacts were identified based on previous and preliminary research [26, 28-30, 34, 36, 

37] and adapted to the research goal according to the experts’ comments in the surveys. 

1. Identification of impacts 

2. Definition of indicators 

3. Weight assignment  

4. Definition of the Impact Index 

 

 
Delphi method 

 
Controls 

5. Case study Sensitivity analyses 
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The study evaluated the impacts presented in Fig. 2 classified into three criteria 

(economic impact, environmental impact and social impact) and seven subcriteria 

(annual cost, material consumption, energy consumption, GHG emissions, space 

requirement, visual impact, and occupational risks). 

 

3.2. Definition of indicators 

According to the experts’ comments, a quantitative indicator was defined for each 

subcriterion as presented in Fig. 2. Indicators 𝐼𝐼1  and 𝐼𝐼2  include the possibility of 

integrated solar collectors instead of some construction material. The space requirement 

(𝐼𝐼5) includes common and private space occupied by the WHS. In the case of solar 

collectors installed on sloping roofs or facades, there is the risks of falls to lower levels 

when working at heights during installation and maintenance (𝐼𝐼7).  
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1In case of integrated collectors that replace construction materials    

Fig. 2. Impacts of domestic WHS and their indicators.  

Definition of indicators 

 

Units 

 

Indicator 
number 

 

Subcriteria Criteria 

€
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

Annual installation, use and maintenance 
cost minus cost savings due to material 
savings1 

Annual cost I1 
Economic 
impact 

𝑘𝑘𝑘𝑘 Mass of the materials required for the 
installation minus material savings1 Material consumption 

 
I2 

Energy consumption Annual water-heating energy consumption 

 

𝑘𝑘𝑘𝑘ℎ
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

 
Environmental 
impact I3 

 

GLOBAL 
IMPACT 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘2𝑒𝑒
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  Annual mass of CO2e emissions due to 

water heating GHG emissions I4 

 

𝑚𝑚2 
Floor surface that cannot be used for 
other purposes because it is occupied by 
the water-heating installation 

Space requirement I5 

 

𝑚𝑚2 I6 

 
Visual impact Social impact 

Occupational risks 

Surface of non-integrated solar collectors 
that can be seen from the street 

ℎ
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

Time of work at heights on facades or 
sloping roofs 

 

I7 
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3.3. Weight assignment 

The weights reflect the importance of the criteria and subcriteria and, specifically in the 

present study, the importance of minimising the impacts. The Delphi method [35] was 

followed to perform the surveys and obtain the weights. Weights can be assigned using 

an ordinal method [30] or the analytical hierarchy process [31]. Alternatively, all the 

criteria can be considered to have the same importance [28], and a sensitivity analysis 

can be performed considering several scenarios [29]. For the analysis here, the direct 

assignment method [32] was used to assign weights to the criteria and subcriteria. Two 

rounds of surveys were enough to reach consensus on the weights.  

In the first round, the panellists were provided with the diagram presented in Fig. 2 and 

with instructions on how to assign the weights according to the direct assignment 

method. Panellists were asked to respond to the following question: “If you had to choose 

the best solar WHS, what importance do you think should be assigned ideally in the 

context of a developed country?”. The only restrictions were that the sum of the weights 

of the criteria (economic impact, environmental impact and social impact) had to be 100, 

the sum of the weights of the subcriteria within environmental impact (material 

consumption, energy consumption and GHG emissions) had to be 100, and the sum of 

the weights of the subcriteria within social impact (space requirement, visual impact and 

occupational risks) had to be 100. The weights assigned by the panellists in the first 

round are presented in Table 1. 

Table 1. Local weights of the criteria and subcriteria assigned by the 13 panellists in 

the first round of surveys and their average. 

Criteria 
 

Subcriteria 
 

Local weights (%) Panellist 
local 

weights 
average 

(%) 

Panellist 

1 2 3 4 5 6 7 8 9 10 11 12 13 
Economic 
impact Annual cost  30 50 50 70 80 50 40 50 30 30 30 20 40 44 

Environmental 
impact 
  
  
  

- 35 35 20 20 10 40 50 25 35 60 20 50 30 33 
Material 
consumption 40 25 30 40 10 20 20 40 30 20 20 25 25 27 

Energy 
consumption 30 50 40 30 80 60 40 40 40 20 50 50 30 43 

GHG 
emissions 30 25 30 30 10 20 40 20 30 60 30 25 45 30 

Social impact 
  
  
  

- 35 15 30 10 10 10 10 25 35 10 50 30 30 23 
Space 
requirement 20 60 5 75 10 40 30 50 25 5 25 30 40 32 

Visual 
impact 30 20 60 20 80 40 10 40 25 5 25 30 20 31 
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Occupational 
risks 50 20 35 5 10 20 60 10 50 90 50 40 40 37 

 

The variations in the weights assigned by the experts reflect differences in their 

preferences, especially in a new field in which there is no established formal knowledge. 

For example, as expressed in their comments, some panellists think that solar WHS 

must be economically advantageous over conventional solutions in order to choose the 

solar alternative, even though they consider that solar WHS are better environmentally. 

Therefore, they assigned higher weights to economic impact. In contrast, some panellists 

think that solar WHS should be preferred to conventional solutions, despite having a 

higher cost, because they are more environmentally friendly. Therefore, these panellists 

assigned higher weights to the environmental impact. 

Consequently, several rounds of surveys are needed for the experts to take into account 

the group’s feedback and reconsider their rationale and numerical assignments of 

weights, to eventually reach a consensus. According to the Delphi method [35], 

consensus is achieved when the median absolute deviation is <1/10 of the range of 

possible values for quantitative studies. As weights can adopt values between 0% and 

100%, consensus will be achieved when the median absolute deviation is <10%. As 

recommended in Hallowell and Gambatese [35], the median absolute deviation 

(Equation (1)) is used instead of the standard deviation, because it measures variability 

from the median, which is less likely to be influenced by biased results than the mean 

(used for calculating the standard deviation). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  ∑ |𝑥𝑥𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|𝑛𝑛
𝑖𝑖=1

𝑛𝑛
    (1) 

Where 𝑛𝑛 is the total number of data items and 𝑥𝑥𝑖𝑖 is the data 𝑖𝑖. According to Table 2, 

seven out of nine criteria and subcriteria did not meet the consensus requirement and, 

therefore, a second round of surveys was performed. 

Table 2. Median, median absolute deviation and consensus verification for the local 

weights of the criteria and subcriteria in the first round of surveys. 

Criteria Subcriteria 

Median of 
the local 

weight (%) 

Median 
absolute 
deviation 

Consensus 
(median absolute 
deviation <10%) 

Economic 
impact Annual cost 40 13.1 No 

Environmental 
impact - 35 11.2 No 

 Material consumption 25 6.9 Yes 

Energy consumption 40 10.8 No 
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GHG emission 30 8.1 Yes 
Social Impact - 25 11.2 No 

 
Space requirement 30 15.8 No 

Visual impact 25 13.8 No 

Occupational risks 40 18.5 No 
 

Hallowell and Gambatese [35] suggest providing the median response from round 1 as 

feedback for round 2. However, the median results do not meet the requirements for the 

local weights: the sum of the median of the weights of the criteria is not 100, the sum of 

the median of the weights of the subcriteria within environmental impact is not 100, and 

the sum of the median of the weight of the subcriteria within social impact is not 100. The 

average weights meet these requirements and, therefore, were provided instead of the 

median as feedback for the second round. The panellists were requested to reconsider 

their weight assignments taking into account the average weights from round 1 and to 

provide reasons if their assignments in the second round did not meet the consensus 

requirement. A total of six panellists described the rationale behind their assignments. 

Table 3 presents the resulting weights for this second round. The panellist numbers in 

Table 3 correspond to those in Table 1. 

Table 3. Local weights of the criteria and subcriteria assigned by the 13 panellists in 

the second round of surveys and their average. 

Criteria 
 

Subcritera 
 

Local weights (%) Panellist 
local 

weights 
average 

(%) 

Panellist 

1 2 3 4 5 6 7 8 9 10 11 12 13 
Economic 
impact Annual cost  

35 45 50 50 70 50 40 50 32 35 35 30 40 43 

Environmental 
impact 
  
  
  

- 
33 35 25 30 15 40 45 25 34 45 25 40 30 33 

Material 
consumption 

35 25 30 37 20 20 20 35 29 25 20 25 25 26 

Energy 
consumption 

35 45 40 30 60 50 45 40 41 35 50 50 35 43 

GHG 
emissions 

30 30 30 33 20 30 35 25 30 40 30 25 40 31 

Social impact 
  
  
  

- 
33 20 25 20 15 10 15 25 34 20 40 30 30 24 

Space 
requirement 

25 45 10 60 33 35 30 35 30 25 25 30 40 33 

Visual 
impact 

30 25 60 20 33 35 10 35 25 25 30 30 25 29 

Occupational 
risks 

45 30 30 20 34 30 60 30 45 50 45 40 35 38 
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As can be seen in Table 4, in this second round, all the criterion and subcriterion weights 

meet the consensus requirement. Therefore, consensus was reached, and the weights 

assigned in the second round are the proposed weights for the method. The local weights 

for criteria and subcriteria and the global weights are presented in Table 5. These are 

the resulting reference weights for the tool developed in this study. They can be used to 

evaluate domestic WHS and can be adjusted to the specific conditions of the case under 

evaluation. 

The following controls were implemented during the two rounds of surveys to minimise 

and avoid bias [35]: 

- Question order was randomised for each panel member and each round to reduce 

the contrast and primacy effect. 

- Panel members were anonymous to avoid the dominance effect. 

- Means were reported as feedback for the second round to minimise contrast, Von 

Restorff, recency and primacy effects, and myside bias. 

Reasons for the panellists’ weight assignments were going to be provided as feedback 

in the third round of surveys as indicated in the Delphi method [35], but consensus was 

already reached in the second round. 

Table 4. Median, median absolute deviation and verification of the consensus criterion 

for the local weights of the criteria and subcriteria in the second round of surveys. 

Criteria Subcriteria 

Median of 
the local 

weight (%) 

Median 
absolute 
deviation 

Consensus 
(median absolute 
deviation <10%) 

Economic 
impact Annual cost 40 8.3 Yes 

Environmental 
impact - 33 6.8 Yes 

 
Material consumption 25 4.7 Yes 
Energy consumption 41 6.5 Yes 
GHG emissions 30 3.7 Yes 

Social Impact - 25 7.0 Yes 

 
Space requirement 30 7.9 Yes 
Visual impact 30 7.2 Yes 
Occupational risks 35 8.5 Yes 

 

Table 5. Reference weights assigned by the experts to the impacts of domestic WHS. 

Criteria Local 
weights for 

criteria  

Subcriteria Local 
weights for 

Global 
weights  

(%) 
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(%) subcriteria 
(%) 

Economic impact 43 Annual cost 100 43 

Environmental 
impact 33 

Material consumption 26 9 
Energy consumption 43 14 
GHG emissions 31 10 

Social impact 24 
Space requirement 33 8 
Visual impact 29 7 
Occupational risks 38 9 

Total 100 - - 100 
 

Economic impact (43%) is considered the most important criterion in choosing the best 

domestic WHS. Minimisation of environmental impact is considered the second most 

important criterion (33%). The least important criterion is social impact (24%). Within the 

environmental impact criterion, the experts consider that minimisation of energy 

consumption is the most important subcriterion followed by the minimisation of GHG 

emissions. Material consumption is considered the least important subcriterion within 

environmental impact. Within social impact, the most important subcriterion is 

occupational risks, closely followed by space requirement and, finally, visual impact. 

 

3.4. Definition of the Impact Index 

The Impact Index (𝐼𝐼𝐼𝐼𝑖𝑖) of the 𝑖𝑖 domestic WHS (an alternative) is defined in Equation (1), 

according to the additive form of the multi-attribute utility function of Keeney and Raiffa 

[33], but with an impact approach instead of a value approach. The best alternative is 

the one with the lowest Impact Index. 

𝐼𝐼𝐼𝐼𝑖𝑖 =  ∑  𝑤𝑤𝑗𝑗 · 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑗𝑗       (1) 

Where 𝑤𝑤𝑗𝑗 is the global importance or weight assigned to the 𝑗𝑗 subcriterion from Fig. 2. 

The values presented in Table 5 can be referred to. The 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 is the relative impact 

produced by the 𝑖𝑖  alternative for the 𝑗𝑗  subcriterion. The  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖  can be defined as 

presented in Equation (2), using the alternative with the greatest impact for each 

subcriterion as a reference. 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑖𝑖𝑖𝑖
𝑚𝑚𝑎𝑎𝑥𝑥 �𝐼𝐼𝑖𝑖𝑖𝑖�𝑗𝑗=𝑐𝑐𝑐𝑐.

     (2) 

Where 𝐼𝐼𝑖𝑖𝑖𝑖 is the measurement of the 𝑗𝑗 indicator of the 𝑖𝑖 alternative and 𝑚𝑚𝑚𝑚𝑚𝑚 �𝐼𝐼𝑖𝑖𝑖𝑖�𝑗𝑗=𝑐𝑐𝑐𝑐.
is 

the maximum measurement of the 𝑗𝑗 indicator among all the alternatives considered. The 
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relative impact can, thus, adopt values between 0 and 1. Alternatively, the 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 can 

be defined using an alternative as a reference, as presented in Equation (3). 

 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑖𝑖𝑖𝑖
𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

     (3) 

Where 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the measurement of the 𝑗𝑗 indicator for the alternative taken as a reference. 

The impact of the alternatives is compared with the impact of a real alternative. The 

alternative taken as a reference generates a relative impact equal to 1 and the remaining 

alternatives, a proportionate impact, that is higher or lower than 1. Equation (3) can be 

applied when there is at least one alternative that produces all the impact types 

generated by the other alternatives, and that alternative would be the one taken as a 

reference. Otherwise, if one measurement of the reference alternative were 0, according 

to Equation (3), the relative impact of the rest of the alternatives would be infinite. All the 

relative impacts of all the alternatives must be calculated using the same equation, either 

(2) or (3), so that the alternatives can be compared.  

 

4. Case study 

4.1. Introduction 

A case-study approach was used to illustrate the practical use of the method. The 

method was used to compare twelve domestic WHS including combinations of two 

conventional and five solar thermal systems for a changing room designed for 100 

people in Barcelona, Spain. Three pieces of legislation are applicable [38]: national laws 

of the Spanish government [39]; regional laws of the Catalan government [40], and local 

laws of Barcelona City Council [41]. The three legislative acts establish the DHW demand 

at a reference temperature of 60º per person per day for different uses, as presented in 

Table 6 for a changing room. They also establish the annual minimum solar contribution 

to DHW, depending on the daily DHW demand and the climatic zone (I, II, III, IV and V), 

which, in turn, depends on the annual daily average solar radiation. According to Sancho 

et al. [42], Barcelona has annual average solar radiation of 4.56 kWh/m2, which 

corresponds with climatic zone III. For this climatic zone and the DHW demands, the 

Spanish, Catalan and Barcelona legislation establish 40%, 50% and 60% of annual 

minimum solar contribution respectively. Considering the DHW demand and the annual 

minimum solar contribution, the Catalan requirements are the most demanding (1000 

litres per day). Therefore, meeting the Catalan legislative requirements means fulfilling 

the three legislations. 
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Table 6. DHW demand at a reference temperature of 60º and annual minimum solar 

contribution for a changing room designed for 100 people in climatic zone III according 

to the three applicable legislative acts. 

Legislation DHW demand at a reference 
temperature of 60º 

Annual minimum 
solar contribution 

 (l/day·person)  (l/day)  (%)  (l/day) 
Spanish 21 2100 40 840 

Catalan 20 2000 50 1000 
Local from Barcelona 15 1500 60 900 

 

The use of the Joule effect (electric water heater) as a support system for the solar 

thermal domestic WHS system is penalised in the regional and local legislation by 

demanding a higher annual minimum solar contribution (70% and 63% respectively). 

However, alternatives must be similar if they are to be compared. Therefore, for this 

study, all the alternatives with a solar thermal contribution were calculated with a solar 

contribution of 50% (1000 l/day), whether supported by natural gas or the Joule effect. 

The domestic solar WHS studied were: two types of flat plate and three types of 

evacuated tube in combination with two types of conventional energy as a backup 

system, plus two types of conventional energy alone. Hence, there were a total of twelve 

alternatives, as presented in Fig. 3. Current legislation does not allow conventional 

energy alone for domestic water heating in new buildings, but such systems are still 

widely used in old buildings and including them in the comparison is interesting. Fig. 4 

and 5 present the configuration of the domestic solar WHS with a natural gas-fired 

condensing boiler and an electric water heater respectively as the backup system 

considered in this study. 
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Fig. 3. Solar thermal collectors in combination with conventional energy as a backup 

and conventional energy alone for domestic water heating, as analysed in this study. 

 

Fig. 4. Schematic diagram of the solar WHS with a natural-gas condensing boiler as a 

backup considered in this study. 

Solar
radiation

Solar
collector Solar heat

exchanger
Solar

storage
tank

Conventional
storage tank

Condensing
boiler

Hot water
supply

Cold water supply

Heat
exchanger

SOLAR ENERGY CONVENTIONAL ENERGY

Flat plate – harp design 

Flat plate – serpentine design 

Evacuated tube – heat pipe 

Evacuated tube – direct flow 
 

Evacuated tube – direct flow with CPC 
 

Natural gas-fired condensing boiler 

Electric water heater 

- 
 

Solar thermal collectors Conventional energy 



18 
 

 

Fig. 5. Schematic diagram of the solar WHS with an electric water heater as a backup 

considered in this study. 

The backup system must be dimensioned to cover the peak demand of DHW even if 

there is a solar thermal system. Therefore, the power of the natural gas-fired condensing 

boiler should be the same whether it works alone or as the backup for the solar thermal 

system. The same applies to the electric water heater. 

T*SOL (www.valentin-software.com), a dynamic thermal simulation programme, was 

used to dimension the five solar thermal systems in Fig. 3, considering the annual cycle 

of solar radiation and the hourly DHW demand of the changing room. The input data for 

the programme of the five solar thermal systems was obtained from current commercial 

systems. The most relevant of these data are presented in Table 7. The solar hot water 

storage tank was designed with a capacity of 2000 litres, and the DHW storage tank, 

1000 litres. The power needed for the condensing boiler or electric water heater is 35 

kW. 

Table 7. Data on the solar collectors used as input for the T*SOL simulation 

programme. 

Input data 

Flat plate Evacuated tube 

Harp Serpentine Heat pipe Direct flow Direct flow 
with CPC 

Tilt angle1 45º 45º 25º 25º 25º 
Gross area (m2) 2.51 2.51 4.62 4.15 2.9 
Aperture area 
(m2) 2.4 2.37 3.19 3.22 2.57 
Optical 
efficiency (%) 76.5 81.2 76.1 76.8 64.4 

Solar
radiation

Solar
collector Solar heat

exchanger
Solar

storage
tank

Electric
heater

Hot water
supply

Cold water supply

SOLAR ENERGY CONVENTIONAL
ENERGY

http://www.valentin-software.com/
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Thermal loss 
correction value 
k1 (W/m2·K) 3.653 3.478 1.047 1.36 0.749 
Thermal loss 
correction value 
k2 (W/m2·K2) 0.012 0.018 0.007 0.0053 0.005 
Dimensions 
(mm) 2187x1147x87 2187x1147x87 2241x2061x150 2125x1954x134 2057x1390x101 
Price (€) 657 727 2919 2627 1625 

1The tilt angles of the evacuated tubes are the closest to Barcelona latitude that can be 
achieved with the internal tilt angle of the tube. 

 

4.2. Results 

The main results of the simulation with T*SOL are presented in Table 8. As can be seen, 

the systems have a similar solar contribution, as this was a requirement of the legislation, 

but they have different surface occupation and cost. The total energy consumption 

including solar and conventional energy amounts to 41267 kWh/year. 

Table 8. Output data of the T*SOL simulation programme. 

Output data 
Flat plate Evacuated tube 

Harp Serpentine Heat pipe Direct 
flow 

Direct flow 
with CPC 

Nº of collectors needed 11 10 7 7 9 
Total aperture area (m2) 26.4 23.7 22.3 22.5 23.1 
Floor surface occupied by 
the solar collectors (m2) 20 (in a row) 17 (in a row) 50 45 40 
Solar contribution (%) 51.51 50.61 52.52 52.22 52.93 
System efficiency (%) 47.4 51.6 56.1 55.4 47.1 
Consumption of 
conventional energy (kWh) 20027 20397 19565 19741 19401 
Cost of the solar collectors 
(€) 7227 7270 20433 18389 14625 
 

Table 9 presents data used to calculate the indicator of annual cost (I1). The installation 

cost includes the solar collectors and the rest of the elements of the solar WHS in addition 

to the conventional system. All the installation and maintenance costs were either 

obtained from current catalogues of real products or reported by professionals from the 

sector. To calculate the annual cost, a lifetime of 20 years was considered for the solar 

collectors, and 10 years for the rest of the elements. The use costs for the natural gas 

systems were calculated with the following gas tariff obtained from a gas company 

operating in Spain in 2016: a fixed part of the price of 54.22 €/month, and a part of the 

price depending on the gas consumption of 0.037731 €/kWh plus a special tax on 
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hydrocarbons of 0.00234 €/kWh. The use costs for electricity consumption were 

calculated according to the time-of-use tariffs obtained from an electricity company 

operating in Spain for a contracted power of more than 15 kW as indicated in Table 10, 

plus a special tax on electricity of 0.051127 €/€ of the contracted power and energy 

consumption costs. As more precise data for calculating the electricity costs were 

lacking, the electricity consumption profile was assumed to be the same as the demand 

profile for a changing room used in the T*SOL simulation programme. VAT was not 

included in any of the costs in Tables 9 and 10. 

Table 9. Installation, use, maintenance and total costs for the domestic WHS. 

  
 Cost 

Conventional only Solar + natural gas-fired condensing boiler Solar + electric water heater 

Natural gas-
fired 

condensing 
boiler 

Electric 
water 
heater 

Flat plate Evacuated tube Flat plate  Evacuated tube 

Harp Serpentine Heat 
pipe 

Direct 
flow 

Direct 
flow 
with 
CPC 

Harp Serpentine Heat 
pipe 

Direct 
flow 

Direct 
flow 
with 
CPC 

Installation (€) 15078 13569 26625 26668 39831 37787 34023 25116 25159 38322 36278 32514 
Annual installation 
(€/year) 1507.80 1356.90 2301.15 2303.3 2961.45 2859.25 2671.05 2150.25 2152.4 2810.55 2708.35 2520.15 
Annual use (€/year) 2304.24 7611.16 1453.16 1467.96 1434.64 1441.68 1428.06 4075.65 4116.28 4022.99 4042.34 4004.97 
Annual maintenance 
(€/year) 60 10 1302.45 1189.5 1515.3 1367.25 1234.5 1252.45 1139.5 1465.3 1317.25 1184.5 
 Total annual 
(€/year) 3872.04 8978.06 5056.76 4960.76 5911.39 5668.18 5333.61 7478.35 7408.18 8298.84 8067.94 7709.62 

 

Table 10. Time-of-use periods and tariffs for electricity considered in the case study. 

Tariff periods and tariff concepts Period 
Peak Mid peak Off peak 

Summer 11-15 h 8-11 h and 15-24 h 0-8 h 
Winter 18-22 h 8-18 h and 22-24 h 0-8 h 
Contracted power (€/kW/month) 3.394071 2.036455 1.357616 
Energy consumption (€/kWh) 0.125362 0.106022 0.08082 

 

As can be seen from Table 9, the installation costs are much higher for the solar WHS 

than for the conventional systems. This is because solar WHS require the same 

investment as conventional systems, plus the investment in the solar part of the system. 

The annual use costs, i.e. costs due to conventional energy consumption, are much 

lower for the solar WHS, due to the savings on conventional energy consumption. The 

annual maintenance is much higher for solar WHS than for conventional systems, due 

to the maintenance costs of solar WHS (considered to be 45 €/m2/year). Regarding the 

total annual costs, the natural gas WHS is the most economical, followed by the solar 

WHS with natural gas as the backup system, then the solar WHS with an electric heater 

as the backup. Finally, the electric heater is the most expensive due to the high electricity 
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costs. Therefore, using a natural gas-fired backup system is more economical than using 

an electric heater. This result is in agreement with Zainine et al. [43] in Tunisia. Even 

with reduced use costs due to energy savings, the solar WHS have higher total annual 

costs than the natural gas WHS, due to the higher initial investment in installation and 

maintenance costs. 

Within the solar WHS, flat-plate collectors have lower installation costs than evacuated-

tube collectors. Regarding the annual use cost, all solar WHS with natural gas as a 

backup are very similar, because they have a very similar solar contribution (Table 8). 

The same applies to the various solar collectors with an electric heater as a backup. 

Regarding the total annual costs of the solar collectors with natural gas as a backup, the 

serpentine flat plate system is the most economical, closely followed by the harp flat 

plate, then the direct flow with CPC, direct flow and, finally, the heat pipe. As expected, 

the same ranking applies to the total annual costs of the various solar WHS with an 

electric heater. 

Table 11 presents the results of the indicators of Fig. 2 for the twelve WHS studied 

resulting from the combinations shown in Fig. 3. The annual cost (I1) includes the 

installation, use and maintenance costs. The material consumption indicator (I2) includes 

the materials from which the WHS is made. The annual energy (I3) and CO2 emissions 

(I4) include the use stage. The CO2 emissions have been calculated using the following 

factors: 0.357 and 0.252 kgCO2 per kWh of final energy for electricity and natural gas 

respectively, according to the Spanish Government [44]. The floor space used (I5) 

includes the space occupied by the WHS including the backup system, if any. None of 

the WHS can be seen from the street, resulting in no visual impact. Likewise, none of 

the studied alternatives are located on facades or sloping roofs. Therefore, none of them 

present risk of falls to lower levels during installation and maintenance operations. 

Therefore, the visual impact (I6) and occupational risks (I7) are not included in the 

subsequent stages of the analysis. The global weights of these subcriteria have been 

redistributed among the rest of the subcriteria (the subcriteria that are relevant to the 

comparison), so that the sum of their global weights is 100. They are presented in Table 

12. Table 12 also presents the relative impacts and the Impact Index using Equation (2), 

which takes as a reference the worst result of the twelve alternatives for each indicator.  
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Table 11. Indicators of the impact caused by the twelve domestic WHS analysed in this 

study. 

Subcriteria 

 Conventional Solar + natural gas-fired condensing boiler Solar + electric water heater 
 

Natural 
gas 

Electric 
water 
heater 

Flat plate Evacuated tube Flat plate Evacuated tube 

Indicator Harp Serpentine 
Heat 
pipe 

Direct 
flow 

Direct 
flow with 

CPC Harp Serpentine 
Heat 
pipe 

Direct 
flow 

Direct 
flow with 

CPC 
Annual cost 
(€/year) I1 3872.04 8978.06 5056.76 4960.76 5911.39 5668.18 5333.61 7478.35 7408.18 8298.84 8067.94 7709.62 
Material 
consumption 
(kg) I2 268 230 1249 1235 1318 1318 1161 1211 1197 1280 1280 1123 
Energy 
consumption 
(kWh/year) I3 41267 41267 20027 20397 19565 19741 19401 20027 20397 19565 19741 19401 
CO2 emissions  
(kgCO2e/year) I4 10399 14732 5047 5140 4930 4975 4889 7150 7282 6985 7048 6926 
Floor space 
used (m2) I5 1.04 0.90 22.94 19.94 52.94 47.94 42.94 22.80 19.80 52.80 47.80 42.80 
Visual impact 
(m2) I6 0 0 0 0 0 0 0 0 0 0 0 0 
Occupational 
risks (h/year) I7 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 12. Relative impacts and Impact Indexes for the twelve alternatives calculated 

using Equation (2), and their ranking. 

Subcriteria  
  

  
Global 

weights 
(%) 

Conventional 
Solar + natural gas-fired condensing 

boiler Solar + electric water heater 

Natural 
gas 

Electric 
water 
heater 

Flat plate Evacuated tube Flat plate Evacuated tube 

Harp Serpentine 
Heat 
pipe 

Direct 
flow 

Direct 
flow 
with 
CPC Harp Serpentine 

Heat 
pipe 

Direct 
flow 

Direct 
flow 
with 
CPC 

Annual cost 51.2 0.431 1.000 0.563 0.553 0.658 0.631 0.594 0.833 0.825 0.924 0.899 0.859 
Material 
consumption 10.7 0.203 0.175 0.948 0.937 1.000 1.000 0.881 0.919 0.908 0.971 0.971 0.852 
Energy 
consumption 16.7 1.000 1.000 0.485 0.494 0.474 0.478 0.470 0.485 0.494 0.474 0.478 0.470 
CO2 
emissions  11.9 0.706 1.000 0.343 0.349 0.335 0.338 0.332 0.485 0.494 0.474 0.478 0.470 
Floor space 
used 9.5 0.020 0.017 0.433 0.377 1.000 0.906 0.811 0.431 0.374 0.997 0.903 0.808 
Impact 
Index  - 0.495 0.818 0.553 0.543 0.658 0.636 0.593 0.704 0.697 0.808 0.787 0.742 

Ranking - 1 12 3 2 6 5 4 8 7 11 10 9 
 

According to Tables 11 and 12, conventional WHS consume the least material. Within 

the solar WHS, the direct flow with the CPC system consumes the least material, 

followed by the serpentine flat plate and harp flat plate and, finally, the direct flow and 

heat pipe for both the solar WHS with a natural gas-fired condensing boiler as a backup 

and the solar WHS with an electric water heater as a backup. Regarding energy 
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consumption, all solar WHS consume less than a half of the energy consumed by 

conventional WHS, as that is a requirement of the legislation. Regarding CO2 emissions, 

the solar WHS with natural gas as a backup produce less than half the emissions of the 

natural gas WHS, and the same applies to the solar WHS with electric water heater in 

comparison with the electric WHS. Within solar WHS with natural gas as a backup and 

solar WHS with an electric water heater as a backup, the emissions are very similar due 

to the initial requirement of a minimum of 50% solar contribution. Conventional WHS 

require much less floor space than solar ones.  

Considering all the impacts and their assigned relative importance, the best alternative 

is the natural gas WHS with an impact of 0.495. It is closely followed by the flat plate with 

serpentine design WHS and natural gas as a backup, with an impact of 0.543 (4.8% 

higher than the best system). Following this are the flat plate with harp design, the direct-

flow evacuated tube with CPC, the direct-flow evacuated tube and the heat-pipe 

evacuated tube, all of them with natural gas as a backup. The previous ranking is 

repeated within the solar WHS with an electric water heater as a backup. The electric 

WHS has the highest global impact. The best choices for a solar WHS are serpentine 

and harp flat plates, which agrees with the results of Hang et al. [7].  

 

4.3. Sensitivity analyses 

4.3.1. Sensitivity analysis of the weights 

The proximity in the ranking between the two best alternatives suggests that a variation 

in the weights could produce a variation in the ranking. A sensitivity analysis was carried 

out to determine the stability of the results when the weights were changed. As the solar 

WHS are environmentally better in terms of energy consumption and CO2 emissions, the 

analysis tried to answer the following question: How much importance should society 

assign to the environmental factors so that the solar WHS are better overall, despite 

being more expensive, using more space and materials? To answer this question, the 

structured analysis presented in Table 13 was performed. The sensitivity analysis (1) 

corresponds to a reduction of 10% in the weight of the annual cost and the redistribution 

of this 10% between the rest of the subcriteria, keeping the previous proportionality 

between them. This corresponds to set weight (1a). If, with set weight (1a), there is no 

change in the ranking between conventional WHS and solar WHS, as is the case, the 

analysis continues with set weight (1b) with an additional reduction of 10% in the weight 

of the annual cost. The sensitivity analysis (1') is the same as in (1), except for the weight 
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redistribution, which is only between the two subcriteria that are favourable to solar 

systems: energy consumption and CO2 emissions. Analogue explanations apply to the 

rest of the sensitivity analyses (2)-(7) and (2')-(6'). The sensitivity analysis (8) 

corresponds to an increment in the weights of energy consumption and CO2 emissions, 

and this increment is redistributed between the rest of the subcriteria. 

Table 14 presents the resulting weights of the sensitivity analysis for which there is a 

change in priorities, i.e. at least one solar WHS appears to be as good as or better than 

the conventional WHS. The exception is the sensitivity analysis (2b), in which the weight 

of the subcriterion space requirement is null and the impact of natural gas WHS is 0.015 

lower than serpentine WHS with natural gas. When the difference between impacts is 

lower than 0.010 impact units, both impacts are considered to be equal. Tables 15 and 

16 present, respectively, the Impact Index and the rank obtained for the twelve 

alternatives for the different weight sets.  

Table 13. Sensitivity analysis name (number between parentheses) according to the 

subcriteria with intentionally modified weights and their incremental modification 

(percentage between parentheses) and to the weight redistribution. 

Weight 
redistribution 

Subcriteria whose weights were intentionally modified in the sensitivity analysis and their 
incremental modification 

Annual 
cost 

(-10%) 

Floor 
space 
used  
(-5%) 

Material 
consumption 

(-5%) 

Annual 
cost (-

10%) and 
floor 

space 
used  
(-5%) 

Annual cost (-
10%) and 
material 

consumption 
(-5%) 

Floor space 
used (-5%) 

and material 
consumption  

(-5%) 

Annual cost (-
10%), floor 

space used (-
5%) and 
material 

consumption 
(-5%) 

Energy 
consumption 

(+5%) and 
CO2 

emissions 
(+5%) 

between the rest 
of the subcriteria (1) (2) (3) (4) (5) (6) 

(7) 

(8) 

between the 
subcriteria 
favourable to solar 
systems (energy 
consumption and 
CO2 emissions) 

(1') (2') (3') (4') (5') (6') - 

 

Table 14. Weight sets which lead to a priority change (except for weight set (2b)). 

Subcriteria Weight sets for the sensitivity analysis (%) 
original (1c) (1'a) (2b) (2'a) (3a) (3'a) (4a) (4'a) (5a) (5'a) (6a) (6'a) (7a) (8a) 

Annual cost 51.2 21.2 41.2 56.6 51.2 54.1 51.2 41.2 41.2 41.2 41.2 57.6 51.2 41.2 44 
Material 
consumption 10.7 17.3 10.7 11.8 10.7 5.7 5.7 14.8 10.7 5.7 5.7 5.7 5.7 5.7 9.2 

Energy 
consumption 16.7 27.0 22.5 18.5 19.6 17.6 19.6 23.1 25.5 23.3 25.5 18.8 22.5 28.4 21.7 

CO2 emissions  11.9 19.2 16.1 13.1 14.0 12.6 14.0 16.4 18.1 16.6 18.1 13.4 16.1 20.2 16.9 
Floor space used 9.5 15.3 9.5 0.0 4.5 10.0 9.5 4.5 4.5 13.2 9.5 4.5 4.5 4.5 8.2 
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Table 15. Impact Index of the twelve alternatives obtained for the different weight sets. 

Domestic WHS Weight sets for the sensitivity analysis 
original (1c) (1'a) (2b) (2'a) (3a) (3'a) (4a) (4'a) (5a) (5'a) (6a) (6'a) (7a) (8a) 

Co
nv

en
t. Natural gas 0.495 0.535 0.540 0.546 0.538 0.512 0.529 0.555 0.583 0.542 0.574 0.543 0.572 0.617 0.546 

Electric 
water heater 0.818 0.707 0.818 0.903 0.867 0.855 0.860 0.834 0.867 0.823 0.860 0.909 0.909 0.909 0.843 

So
lar

 +
 na

tur
al 

ga
s-f

ire
d 

co
nd

en
sin

g b
oil

er
 

Fla
t 

pla
te Harp 0.553 0.546 0.539 0.565 0.552 0.531 0.527 0.560 0.539 0.513 0.513 0.535 0.526 0.513 0.534 

Serpentine 0.543 0.537 0.531 0.560 0.546 0.521 0.518 0.555 0.534 0.504 0.506 0.528 0.521 0.509 0.526 

Ev
ac

ua
ted

 
tub

e 

Heat pipe 0.658 0.658 0.634 0.622 0.629 0.639 0.629 0.629 0.605 0.626 0.605 0.615 0.600 0.576 0.623 
Direct flow 0.636 0.639 0.615 0.608 0.612 0.616 0.607 0.615 0.591 0.604 0.586 0.597 0.583 0.562 0.605 
Direct flow 
with CPC 0.593 0.593 0.575 0.571 0.574 0.577 0.570 0.575 0.555 0.567 0.552 0.562 0.550 0.532 0.567 

So
lar

 +
 el

ec
tric

 
wa

ter
 he

ate
r Fla

t 
pla

te Harp 0.704 0.626 0.670 0.733 0.707 0.693 0.683 0.690 0.672 0.646 0.648 0.708 0.686 0.651 0.674 
Serpentine 0.697 0.618 0.663 0.730 0.703 0.685 0.676 0.686 0.669 0.638 0.643 0.703 0.682 0.649 0.668 

Ev
ac

ua
ted

 
tub

e 

Heat pipe 0.808 0.736 0.763 0.788 0.781 0.798 0.783 0.757 0.736 0.757 0.738 0.785 0.757 0.711 0.761 
Direct flow 0.787 0.718 0.745 0.774 0.765 0.776 0.762 0.744 0.723 0.736 0.720 0.768 0.741 0.699 0.743 
Direct flow 
with CPC 0.742 0.670 0.703 0.735 0.725 0.736 0.723 0.702 0.686 0.697 0.684 0.731 0.706 0.667 0.704 

 

Table 16. Ranking of the twelve alternatives according to the Impact Index obtained for 

the different weight sets. 

Domestic WHS Weight sets for the sensitivity analysis 
original (1c) (1'a) (2b) (2'a) (3a) (3'a) (4a) (4'a) (5a) (5'a) (6a) (6'a) (7a) (8a) 

Co
nv

en
t. Natural gas 1 1* 3* 1 1* 1* 3* 2* 4 3 4 3* 4 6 3 

Electric 
water heater 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12 

So
lar

 +
 na

tur
al 

ga
s-f

ire
d 

co
nd

en
sin

g b
oil

er
 

Fla
t 

pla
te Harp 3* 3* 2* 3* 3* 3* 2* 3* 2* 2* 2* 2* 2* 2* 2* 

Serpentine 2* 2* 1* 2* 2* 2* 1* 1* 1* 1* 1* 1* 1* 1* 1* 

Ev
ac

ua
ted

 
tub

e 

Heat pipe 6 8 6 6 6 6 6 6 6 6 6 6 6 5 6 
Direct flow 5 7 5 5 5 5 5 5 5 5 5 5 5 4 5 
Direct flow 
with CPC 4 4 4 4 4 4 4 4 3 4 3 4 3 3 4 

So
lar

 +
 el

ec
tric

 
wa

ter
 he

ate
r Fla

t 
pla

te Harp 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 
Serpentine 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 

Ev
ac

ua
ted

 
tub

e 

Heat pipe 11 12 11 11 11 11 11 11 11 11 11 11 11 11 11 
Direct flow 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 
Direct flow 
with CPC 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

* When the difference between the first and second position and second and third position is 
less than 0.01 impact units. 

As can be deduced from the tables, with slight changes in the importance of the criteria 

(weights assigned), solar WHS appear to be overall as good as or better than 

conventional WHS in 13 out of 14 cases due to their reduced energy consumption and 

GHG emissions, despite being more expensive, occupying more space and using more 

materials. This result was achieved with the weight sets presented in Table 14, with the 

exception of weight set (2b). For example, by reducing the importance assigned to the 

annual cost by 10%, or to the floor space used by 5%, or to the material consumption by 



26 
 

5% and redistributing it to the criteria energy consumption and GHG emissions (weight 

sets (1'a), (2'a) and (3'a) respectively), the serpentine WHS with gas as a backup 

becomes better than conventional WHS. By increasing by 5% the importance assigned 

to the minimisation of energy consumption and by another 5% the reduction of GHG 

emissions (weight set (8a)), serpentine and harp flat plate WHS with natural gas as a 

backup become better than conventional WHS. 

The sensitivity analysis of the weights demonstrates that, for Barcelona and cities with 

similar climate and solar radiation, and 50% of the DHW demand supplied by solar 

collectors, with slight changes in weights leading to an increase in the importance of the 

reduction of energy consumption and GHG emissions, some solar WHS become better 

than the conventional WHS overall. Another interesting finding is that flat plate collectors 

(harp and serpentine design) rank better than evacuated tube collectors (direct flow, heat 

pipe and direct flow with CPC) for the 15 weight sets considered in the sensitivity analysis 

for both  backup systems for the studied location and demand. 

 

4.3.2. Sensitivity analysis of the reference 

Another variable that may affect the results is the reference used to calculate the impact, 

i.e. whether Equation (2) or (3) is used, and, if Equation (3) is used, which alternative is 

chosen as a reference. This kind of sensitivity analysis in the present study advances 

knowledge, because it is very rarely performed. For the present case study, thirteen 

references are possible: the alternative with the greatest impact for each subcriterion 

when Equation (2) is used and one of the twelve alternatives when Equation (3) is used. 

Tables 17 and 18 present, respectively, the Impact Index and the rank obtained for the 

twelve alternatives using the different references. The weights presented in Table 12, 

assigned by the experts and normalised according to the criteria relevant to the case 

study, were used for this sensitivity analysis. 

Table 17. Impact Index of the twelve alternatives obtained using Equation (2) and 

Equation (3) with the alternatives as a reference. 

Domestic WHS Name of 
the 

alternative 

Reference used 
Equation (2) Equation (3) 

A B C D E F G H I J K L 

Co
nv

en
t. Natural gas A 0.495 1.000 0.706 1.009 1.006 0.971 0.962 1.007 0.810 0.804 0.795 0.793 0.819 

Electric water 
heater B 0.818 1.697 1.000 1.624 1.630 1.533 1.506 1.599 1.228 1.224 1.189 1.178 1.228 

So
lar

 +
 

na
tur

al 
ga

s-f
ire

d 

 
 

Fla
t 

pla
te Harp C 0.553 3.396 3.406 1.000 1.020 0.894 0.873 0.947 0.803 0.818 0.726 0.715 0.765 
Serpentine D 0.543 3.107 3.080 0.982 1.000 0.883 0.864 0.935 0.787 0.800 0.717 0.707 0.755 

Ev
a

cu
a   Heat pipe F 0.658 6.267 6.641 1.210 1.251 1.029 1.000 1.094 0.987 1.021 0.839 0.821 0.889 
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Direct flow E 0.636 5.781 6.102 1.167 1.204 1.000 0.973 1.063 0.952 0.983 0.816 0.799 0.864 
Direct flow 
with CPC G 0.593 5.216 5.482 1.094 1.128 0.942 0.917 1.000 0.890 0.917 0.768 0.752 0.811 

So
lar

 +
 el

ec
tric

 
wa

ter
 he

ate
r Fla

t 
pla

te Harp H 0.704 3.713 3.528 1.291 1.315 1.159 1.130 1.226 1.000 1.015 0.911 0.896 0.958 
Serpentine I 0.697 3.427 3.205 1.276 1.298 1.152 1.124 1.218 0.987 1.000 0.905 0.891 0.951 

Ev
ac

ua
ted

 
tub

e 

Heat pipe K 0.808 6.579 6.762 1.496 1.541 1.291 1.253 1.370 1.181 1.216 1.022 1.000 1.079 
Direct flow J 0.787 6.094 6.224 1.455 1.496 1.263 1.227 1.340 1.147 1.178 1.000 0.979 1.055 
Direct flow 
with CPC L 0.742 5.525 5.601 1.379 1.416 1.202 1.168 1.274 1.082 1.111 0.949 0.930 1.000 

 

Table 18. Ranking of the twelve alternatives obtained using Equation (2) and Equation 

(3) with the alternative as a reference. 

Domestic WHS Name of 
the 

alternative 

Reference used 

Equation (2) Equation (3) 
A B C D E F G H I J K L 

Co
nv

en
t. Natural gas A 1 1 1 3 2 4 4 4 3 2 4 4 4 

Electric water 
heater B 12 2 2 12 12 12 12 12 12 12 12 12 12 

So
lar

 +
 na

tur
al 

ga
s-f

ire
d 

co
nd

en
sin

g b
oil

er
 

Fla
t 

pla
te Harp C 3 4 5 2 3 2 2 2 2 3 2 2 2 

Serpentine D 2 3 3 1 1 1 1 1 1 1 1 1 1 

Ev
ac

ua
ted

 
tub

e 

Heat pipe F 6 11 11 6 6 6 6 6 7 8 6 6 6 
Direct flow E 5 9 9 5 5 5 5 5 5 5 5 5 5 
Direct flow 
with CPC G 4 7 7 4 4 3 3 3 4 4 3 3 3 

So
lar

 +
 el

ec
tric

 
wa

ter
 he

ate
r Fla

t 
pla

te Harp H 8 6 6 8 8 8 8 8 8 7 8 8 8 
Serpentine I 7 5 4 7 7 7 7 7 6 6 7 7 7 

Ev
ac

ua
ted

 
tub

e 

Heat pipe K 11 12 12 11 11 11 11 11 11 11 11 11 11 
Direct flow J 10 10 10 10 10 10 10 10 10 10 10 10 10 
Direct flow 
with CPC L 9 8 8 9 9 9 9 9 9 9 9 9 9 

 

As can be seen from Tables 17 and 18, the serpentine WHS with natural gas as a backup 

(D) is the best alternative in 10 out of 13 cases, while the natural gas WHS (A) was the 

best alternative in 3 out of 13 cases. These results are consistent with those of Hang et 

al. [7]. Surprisingly, the electric water heater (B) moved from last position to second 

position when the natural gas WHS (A) or itself (B) was used as a reference. One 

advantage of taking the alternative with the highest impact as a reference is that all the 

impacts calculated are between 0 and 1. When taking an alternative as a reference 

(Equation (2)), the impact of the other alternatives is not bounded, and if the alternative 

taken as a reference has a very low impact in any of the subcriteria in comparison to 

other alternatives, the calculated relative impact of the other alternatives can be very 

high according to Equation (3). By way of illustration, the impact of a heat pipe with 

natural gas as a backup (F) on floor space when taking electricity alone (B) as a 

reference is 58.655 and its overall impact, 6.641. 
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5. Conclusions 

Domestic solar WHS have recognised potential to significantly reduce domestic energy 

consumption and GHG emissions for water heating. However, there are few comparative 

studies of types of solar flat plates, evacuated tubes and conventional WHS from a 

sustainable multi-criteria perspective that integrates environmental, social and economic 

aspects. The two research objectives stated in Section 1 were established to fill this 

knowledge gap. Consequently, the key technical contributions of the research are: 

(1) It provides a multi-criteria decision-making tool that enables quantification of the 

sustainability of renewable and conventional domestic WHS by means of an Impact 

Index applicable to any location and demand. The MAUT, together with the Delphi 

method, proved effective in the creation of the tool. The application of the Delphi method 

to conduct surveys with which to identify impacts, define indicators and assign weights 

provides rigour and objectivity to the process of definition of the tool and to the tool itself. 

The tool considers the following aspects of economic, environmental and social 

sustainability: annual cost, material consumption, energy consumption, GHG emissions, 

space requirement, visual impact and occupational risks. The tool could help energy 

policy makers, installers and users of domestic WHS when they are deciding on the best 

WHS from a sustainability perspective. The proposed set of weights assigned by the 

experts can be used as an initial reference and adjusted. 

(2) The tool has been applied to evaluate the 12 solar and conventional WHS indicated 

in Fig. 3 in a sport centre located in Barcelona, considering current applicable legislation. 

The dynamic thermal simulation programme T*SOL was used to dimension the solar 

thermal systems. From the application of the proposed tool, the following conclusions 

can be drawn: 

a. While solar WHS perform better in terms of energy consumption and CO2 

emissions, they have a higher annual cost, material consumption and use more 

floor space than conventional WHS.  

b. According to the Impact Index, natural gas WHS is the overall best system, very 

closely followed by the serpentine and harp flat plates, with natural gas as a 

backup WHS, according to the current preferences assigned by the experts, 

which resulted in the economic impact accounting for half of the total importance 

in the case study. 

c. The sensitivity analyses of the weights provide deeper insight into the subject. In 

the first sensitivity analysis, with slight changes in the weights aimed at increasing 
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the importance of cutting energy consumption and CO2 emissions, the serpentine 

flat plate WHS with natural gas as a backup is the best option. 

d. The second sensitivity analysis focused on changes in the result when the 

reference used to calculate the impact was changed. The results provide more 

evidence that some types of solar WHS are preferable to conventional systems, 

since the serpentine flat plate WHS with natural gas as a backup ranked as the 

best alternative in 10 out of 13 cases. 

e. Another interesting finding is that flat plate collectors rank better than evacuated 

tube collectors for all the weight sets considered in the two sensitivity analyses 

when compared within the same backup system (either natural gas or electric 

water heater) for the studied location and demand. 

f. A natural gas-fired condensing boiler is preferred to an electric water heater as a 

backup system or as a conventional WHS. 

To sum up, the results of the sensitivity analyses suggest that flat plate WHS with natural 

gas as a backup are the most sustainable alternatives of the twelve studied for 

Barcelona-like climate conditions and sport centre demand. Flat plate collectors are 

preferred to evacuated tube collectors and a natural gas-fired condensing boiler is 

preferred to an electric water heater as a backup system or as a conventional WHS. 

The approach presented in the paper is interdisciplinary, covering several fields of 

knowledge: it connects engineering with economy, environment and society, that is, it 

looks at engineering from the perspective of sustainability. The approach uses an 

existing theory, the multi-attribute utility theory, and applies it to a new field: conventional 

and solar WHS. It has proved very useful at assessing these systems and can also be 

helpful in decision-making processes to select the most sustainable WHS for other 

locations and domestic hot water demands.  

According to the present study and under the climatic and hot water demand conditions 

that were studied, policies incentivising flat plate solar WHS are justified, and even more 

so in a society that increasingly values the environment and requires cuts in GHG 

emissions and conventional energy consumption. 

However, as the Impact Indexes are very similar between the alternatives, the results 

are highly dependent on society’s priorities. Consequently, more research is needed on 

the establishment of widely accepted priorities between the different pillars of 

sustainability (the weight assigned to the criteria). Further applications of the proposed 

tool need to be carried out in locations with other climatic conditions to geographically 

expand knowledge, and with other hot water demands. The research could also be 
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extended to other WHS such as a biomass condensing boiler or heat pump that could, 

presumably, be more sustainable than a natural gas-fired condensing boiler and an 

electric water heater. 
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