
Evaluation of Clustering techniques for Efficient
Searching in JXTA-based P2P systems

Fatos Xhafa
Polytechnic University of Catalonia

Department of Languages and Informatics Systems
C/Jordi Girona 1-3, 08034 Barcelona, Spain

Email: fatos@lsi.upc.edu

Enric Jaen Villoldo
Open University of Catalonia

Department of Information Sciences
Barcelona, Spain.

Email: ejaenv@uoc.edu

Thanasis Daradoumis
Open University of Catalonia

Department of Information Sciences
Barcelona, Spain.

Email: adaradoumis@uoc.edu

Leonard Barolli
Dept. of Information and Communication Engineering

Fukuoka Institute of Technology (FIT)
3-30-1 Wajiro-higashi Higashi-ku, Fukuoka 811-0295, Japan

Email: barolli@fit.ac.jp

Abstract—The efficient file searching is an essential feature
in P2P systems. While many current approaches use brute
force techniques to search files by meta information (file names,
extensions or user-provided tags), the interest is in implementing
techniques that allow content-based search in P2P systems.
Recently, clustering techniques have been used for searching
text documents to increase the efficiency of document discovery
and retrieval. Integrating such techniques into P2P systems is
important to enhance searching in P2P file sharing systems. While
some effort has been done for content-based searching for text
documents in P2P systems, there has been few research work for
applying these techniques for multimedia content in P2P systems.
In this paper we introduce two P2P content-based clustering
techniques for multimedia documents. These techniques are an
adaptation of the existing Class-based Semantic Search (CSS)
algorithm for text documents. The proposed algorithms have
been integrated into a JXTA-based Overlay P2P platform, and
some initial evaluation results are provided. The JXTA-Overlay
together with the considered clustering techniques is thus very
useful for developing P2P multimedia applications requiring
efficient searching of multimedia contents in peer nodes.

Keywords: P2P networks, P2P multimedia clustering, Class-
based Semantic Search, JXTA, content-based retrieval.

I. INTRODUCTION

Clustering in P2P systems is a key research area aimed to
produce two clear benefits: On one hand increases the effi-
ciency of the processes for document discovery and retrieval,
and on the other hand increases the quality of the documents
obtained. A lot of research has been conducted during the last
years for searching and document retrieval from the WEB. Due
to the fast development in P2P technologies [2] and their use
in file sharing systems, researchers are paying attention to the
implementation and evaluation of searching techniques [12],
[14] other than brute force search.

Clustering techniques are developed in Data Mining domain
to discover “structure” in the data, which yields to combining
data into groups (clusters) according to some criteria of
similarity; items in a cluster are similar to each other and
items in different clusters differ among them according to

the considered similarity criterion (the reader is referred to
the book by Tan, Steinbach and Kumar [10]). Clustering
techniques have attracted the attention of researchers from the
P2P community due to their usefulness in developing efficient
searching in P2P file sharing systems. Presently, three types
of clustering techniques have been studied for P2P networks;
locality-awareness clustering [4], clustering by file type [3] and
clustering by content of textual files [11], [13], [5]. However,
no studies has been carried out for clustering of multimedia
files by content in P2P networks. There is, however, a large
amount of work done in the area of content-based retrieval1

(CBR) systems [6]. The purpose of this paper is to show
how multimedia CBR systems and the existing P2P clustering
techniques can be integrated to produce quality P2P networks,
in terms of performance and quality of content-based retrieval.

To carry out this study, we have adapted the class-based
semantic search system (CSS) for textual documents, to be
able to search and retrieve any kind of multimedia files. More
precisely, in this paper, we are concerned with image retrieval
in P2P networks. We have adapted the CSS in two ways; a
centralized version of the CSS, which has been integrated
into our JXTA-Overlay platform2, a JXTA-based P2P semi-
structured platform, and a version of the centralized CSS
that builds meta-classes. The objective is to evaluate both
the centralized and meta-class versions and to evaluate their
performance in a P2P network.

The paper is structured as follows: Section II gives a classi-
fication of clustering techniques for P2P systems. Section III
introduces the main aspects of our JXTA-Overlay platform.
Section IV describes the proposed CSS adaptations and their
integration into JXTA-Overlay. The experimental study and
some preliminary results are shown in Section V. Finally,
Section VI concludes the paper and indicates directions for
future work.

1http://en.wikipedia.org/wiki/CBIR
2https://jxta-overlay.dev.java.net

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.22

466

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.22

466

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.22

466

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/158801857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. SELECTION OF CLUSTERING TECHNIQUES

There are two kind of clustering categories that can be
applied in P2P systems: Intra-node clustering, i.e. those tech-
niques aimed to classify files inside a node. This category
can be further divided into two sub-categories: tag-based
clustering and content-based clustering. The former classifies
files accordingly to some meta information such as file names,
extensions, or user-provided tags, and the second one is based
on the content of the files themselves. In this paper, we will
focus on this second kind of clustering. On the other hand,
inter-node clustering aims to perform clustering taking into
account the information provided by multiple nodes. The next
subsections explain these techniques in more detail.

A. Intra-node clustering

Content-Based Retrieval systems are queried with an ex-
ample multimedia file and they retrieve similar files. These
systems are classified accordingly the kind of multimedia file,
so there are CBIRs, (Content-Based Image Retrieval) systems
for images, MIRs (Music Information Retrieval) systems for
music, and CBVR systems for videos.

B. Inter-node clustering: CSS

Class-based semantic search (CSS) is a clustering technique
that creates classes of semantically similar documents in the
P2P nodes, and that inter-connect virtually pairs of these
classes accordingly to soft links (in case they are similar) or
long links (in case the are not similar). CSS uses well-known
vector-based algorithms for creating the intra-node classes,
and defines two inter-node algorithms; one for adapting the
topology, and another for doing the search of documents in
two phases: a first phase of directed walk through long links,
intended to locate the next node where to search for short-
linked classes, and a second phase of flooding through soft
links. In this phase all the short-linked classes are visited
and their relevant files are returned. CSS is decentralized
so that are the nodes themselves which maintain the links
with their neighbors. To keep the network topology updated,
clients periodically send prove queries that provide up-to-date
information about the neighbor classes.

A key concept in CSS is the class vector of a given class,
which is a centroid value representing the content of the
whole class. This class vector is used to calculate the overall
relevance score between two classes, which is a measure that
determines the similarity between the two classes, and is used
to determine the distance of the of virtual link.

III. OVERVIEW OF JXTA-OVERLAY PLATFORM

The JXTA-Overlay is a P2P platform for building mixed
peer-to-peer applications, built on top of JXTA [1], [7], [8]
The ultimate objective of the Overlay P2P network is to make
Clients interact with other Clients by using four types of
peers defined in JXTA: (a) minimal peer; (b) full peer; (c)
rendezvous peer; and, (d) relay peer. The Overlay deploys a
network of full peers (called Clients) and rendezvous peers
(called Brokers). Clients interact with other Clients and they

may or not provide a user interface. Brokers help Clients
to discover other Clients and to collect information (such as
files). JXTA-Overlay builds networks of peers and brokers.
Peers (known as Full-featured Edges in JXTA) are endpoint
applications virtually connected with other peers. Brokers
(Rendezvous peers in JXTA) help peers to locate other peers,
route their messages, and implement those parts of the middle-
ware that require a whole knowledge of the Overlay network.

We show in Fig. 1 the architecture of the overlay network.

Fig. 1. The overlay network.

The Overlay layer offers a middleware interface to the
client applications, consisting on a series of primitives and
events classified in five functional areas, namely: discovery,
messenger, file sharing, which can be used to develop dis-
tributed applications (remote execution of jobs to peer nodes),
groupware tools, etc. The Control layer stands between the
Overlay and the JXTA layer, and it’s responsible to maintain
JXTA peer groups, and offer high-level messaging function-
ality, separating therefore the Overlay from the JXTA details.
The Broker layer implements the part of the primitives that
require a whole knowledge of the network. Finally, there are
two kind of Overlay clients: GUIClients that offer a GUI to the
final user, and SimpleClients that perform application-specific
computation in the background (composing a kind of grid).

The internal architecture of JXTA-Overlay follows a layered
architecture, as shown in Fig. 2.

AUTOMA-
TIZATION

BROKER OVERLAY

VIEW

Broker SimpleClient GUIClient

JXTA

CONTROL

Fig. 2. Jxta-Overlay layers and peer types.

467467467

A. Control Layer

The control layer interacts with the JXTA layer, and is
divided into two parts: a lower part with functionality com-
mon to any kind of peer, and a higher part with func-
tionality specific to Brokers and Clients. The common part
provides functionality for doing JXTA messaging, discovery
and advertisement. On the other hand, the Broker specific
part provides functionality for managing groups of Brokers
and keeping broker statistics while the Client specific part
provides functionality for managing groups of Clients, keeping
client statistics, managing its shareable files, managing the
user configuration and creating the connection with a Broker.
Because this layer is the responsible to manage the JXTA
peerGroups, this layer has been packaged under the namespace
overlay.groups. Thus, as can be seen from Fig. 2, the lower
part enqueues the JXTA messages to be sent. On the other
hand, whenever a message arrives, the JXTA layer fires an
event to the lower layer, which in turn fires a notifications to
both the upper layer and the business layer. The starting point
to instantiate the Control layer is the GroupManager class.

B. Business Layer

This layer implements the basic functionality of the Overlay.
The layer is specific for Brokers and Clients, therefore it is
divided into two packages, namely overlay.broker and over-
lay.client. At the Client side, this layer defines the Overlay
API in the form of primitives and events (named fires), which
establishes the middleware for future applications. Currently
the API is divided into several areas for discovery (network
information area), messenger (instant messaging area), files
(file transfer area), execution (remote execution of task area)
and Groupware tools area. The relationship between functions,
primitives, tasks and fires are depicted in Fig. 3.

Fig. 3. Jxta-Overlay: (a) Receiving JXTA messages and (b) executing
primitives.

IV. INTEGRATION OF THE CSS WITH
JXTA-OVERLAY

A. Centralized CSS

Due to the mixed architecture nature of the Overlay plat-
form, the CSS has been adapted so that Brokers maintain the
CSS topology of the P2P network, instead of being distributed

as in CSS. Clustering in the client peers is achieved via a CBIR
system which is executed each time a user shares a file (an
image in this case). Users can tune the cluster of files by giving
a value to a relevance index, which is a threshold that will
consider as similar those files with the relevance score above
the cited index. For example, a relevance index of 80% will
classify together images with a relevance score above 80%.
Periodically, clients send to the Broker information about the
classes, in particular, they send the centroid value of each class,
which is not a class vector of text documents as in CSS, but
is an image representing the whole class. Currently this image
is just one of the images of the class, but in the future it could
be an aggregation of content information obtained from the
class files.

As in CSS, the centroid value is used to calculate the
relevance score between two classes. The Broker, each time
that receives an update-node message, recalculates the node
neighborhood and the virtual links as defined in CSS. During
this process the Broker calculates the overall relevance scores
between the neighbor classes as it is defined in CSS. This is a
costly process, as it requires to compare the centroid value with
each neighbor class, which as explained before is an image in
our case. The cost of this process will therefore depend on the
number of neighbor classes and the size of the images. During
a search operation, the client sends a query to its Broker, which
processes the directed walk mode, meanwhile the flooding
mode is carried out in the nodes containing the soft-linked
classes. At the end of this search, the Broker returns to the
client peer the list of relevant file paths and their node location.
The client can therefore access those nodes and download the
desired files.

B. Meta CSS

We have designed a new approach of the CSS that takes
advantage of the centralized information of the CSS topology
available in the Broker. This new approach avoids calculating
class links (which is a costly process) but instead creates meta
classes. Meta classes are classes containing similar classes.
The similitude between two classes is measured through their
relevance score. As with file clustering, the user can specify
a relevance index to cluster the classes. At the client side
there isn’t difference with respect the centralized CSS in the
sense of class creation and information sent to brokers. The
Broker, however, classifies the received classes accordingly
their relevance score with the other classes, just in the same
way as it is done with the files clustered on the clients. The
advantage of this approach is that the classes are automatically
classified so that there isn’t need to create topological links,
and therefore much less relevance calculations are needed.
Another advantage is that this approach returns a large number
of occurrences with respect CSS. Section V compares exper-
imentally the two approaches.

C. UML models

This section describes partly the UML models representing
both techniques. We show in Fig. 4 the UML diagram of the

468468468

centralized CSS model.

Fig. 4. UML model for the centralized CSS.

The Cluster class, which resides in the Broker, defines
methods invoked by the clients to either upgrade the topology
(addNode, updateNode, removeNode) or to perform searches.
Clients send a Node class serialized to the Broker, containing
a set of NodeClasses and the JXTA peerID. It has a clusterFile
method to allow the client classify a file, and a findOccurrences
callback method which is invoked by the Broker to find
Ocurrences in that class. Notice that this is an abstract class.
The ImageNode class implements the findOccurrences method
for images. A NodeClass contains a list of file paths, the Node
which belongs to, a classID and an abstract centroidValue,
which in the case of the ImageClass is a buffered image.
The ImageClass class implements the methods to calculate
the relevance score for images, a method to add an new
image to the class, and a method to update the centroidValue.
The search method receives the nodeID of the client, the
template file to search, the number of expected occurrences
and a time to live. Notice that the similarity method is
abstract, and it is implemented by the ImageClass class which
finds the similarity between two images. As a result, the
search operation returns a series of Occurrences, indicating
the location (nodeID), the file path inside the node, and score
of the occurrence.

Fig. 5 depicts the classes that define the Meta CSS. Notice
that the Cluster class shares the same interface as the central-
ized CSS, but adds a new set of MetaClasses.This abstract
class is specialized for images via the ImageCluster. The
MetaClass defines a set of NodeClasses, which are described
above. This abstract class is specialized for images via the
ImageMetaClass.

V. EXPERIMENTAL EVALUATION

We have compared experimentally the two centralized CSS
approaches described before. In this section we present a
preliminary evaluation.

Fig. 5. UML model for the Meta CSS.

A. Experimental setting

The tests have been carried out with 4 and 8 nodes. Each
node shares 9 JPG images of about 50 Kb and 300 Kb size.

We have reproduced a test scenario where a node joins the
network, then the Broker recalculates the topology and finally
the user does a search query. For this case the upgrade is
not done periodically as the upgrade happens just once. This
scenario has been repeated with different file sets in order to
produce different amounts of classes. Both the relevance index
that determine the file clusters and the index that determine
the class clusters have been set to 50%.

The evaluation measures the following parameters:

a) Upgrade time: During topology update it is measured
the upgrade time required and the total number of rele-
vance scores (i.e. similarities).
b) Broker’s time for search query: Another measure is
the search time employed by the Broker to perform the
user query. The query is submitted to its Broker, which
processes the query and returns to the client peer the
list of relevant file paths and their node location. The
following output is an example, where we can see five
occurrences found at four nodes:

Occurrence: nodeID=urn:jxta:uuid-...6A032 path=/.../img01.JPG score=0.9441511,
Occurrence: nodeID=urn:jxta:uuid-...6A032 path=/.../img02.JPG score=0.5895395,
Occurrence: nodeID=urn:jxta:uuid-...6A033 path=/.../img03.JPG score=0.54662615
Occurrence: nodeID=urn:jxta:uuid-...6A030 path=/.../img03.JPG score=0.54662615,
Occurrence: nodeID=urn:jxta:uuid-...6A031 path=/.../img03.JPG score=0.54662615

c) Number of relevant results: finally, it has also been
measured the quality of the results in terms of number of
relevant occurrences found.

To carry out the evaluation we have run a Java Overlay
Broker in a Linux 8-core server. Each core consists of a 3GHz
CPU, and the total amount of memory is 4GB. The client
nodes have been emulated by creating files containing the
serialized classes that would be sent by the client nodes to
the Broker in a real scenario.

To cluster the files and calculate the relevance score between

469469469

classes we have reused the Lire Java package3, which is a
free source CBIR system. This package keeps the clustered
files in a database index and provides a method to search
similar documents that returns a list of relevance files and
their relevance score.

Calculating a single relevance score is costly, as it needs
to create a new database index with the two images to
be compared and, then to do the comparison. It has been
measured this time and it takes about 3 seconds to compare
two 50Kb images, and about 4 seconds to compare 300Kb
images.

B. Computational results

a) Relevance scores and upgrade time.: We show in
Fig. 6 the graphical representation of the number of relevance
scores calculated during the topology upgrade for the four
different test cases.

relevance scores (n=8)

0

100

200

300

400

500

600

700

800

16 24 48 96num classes

n
u

m
 r

el
ev

an
ce

 s
co

re
s

Cent ralized CSS

Met a CSS

relevance scores (n=4)

0

20

40

60

80

100

120

140

160

180

200

8 12 24 48
num classes

n
u

m
 r

el
ev

an
ce

 s
co

re
s

Cent ralized CSS

Met aCSS

Fig. 6. Number of relevance scores for 4 and 8 nodes.

As can be seen from the figure, the number of score calcu-
lations increases exponentially with the number of classes, and
increases also exponentially with the number of nodes. This
may lead to scalability problems. The Meta CSS approach in
any case requires less calculation that the Centralized CSS.
Taken into account this, Fig. 7 shows the time taken by the
Broker to upgrade the topology when a node joins the network,
or when updates its classes.

upgrade time (n=4)

0

100

200

300

400

500

600

700

8 12 24 48

num classes

se
cs

Centralized CSS

MetaCSS

upgrade time (n=8)

0

500

1000

1500

2000

2500

16 24 48 96

num classes

se
cs

Centralized CSS

Meta CSS

Fig. 7. Upgrade time for a network with 4 and 8 nodes.

It is clearly seen that the Meta CSS scales much better than
Centralized CSS. For example, when the cluster topology has
48 classes and there are 4 nodes, the Centralized CSS takes

3Lucene Image REtrieval library at http://www.semanticmetadata.net/lire/

about 625 seconds (approximately 10 minutes) to upgrade
a node, meanwhile it takes 125 seconds (approximately 2
minutes) in Meta CSS, yielding thus an important performance
improvement. These times increase with the number of joined
nodes, so for example, with 8 nodes the upgrade time for
48 classes raises to 33 minutes and 3 minutes respectively.
Although considerable, this time is transparent to the users as
it takes place in the Broker (in the background).

b) Query search time.: The next measure analyzed is the
query search time. We show the graphical representation of the
results in Fig. 8. Surprisingly, the search times are almost the
same in both techniques. The search time increases with the
number of classes, and it must be reminded that it involves
access to the client nodes in order to find the relevant files of
those similar classes previously selected by the Broker. The
search time, however, is not related to the number of nodes,
as Fig. 8 shows. As an example, it takes about 37 seconds to
get a response when the network has 4 nodes and there are 48
classes, but it takes about 17 seconds when there are 8 nodes.

search time (n=4)

0

5

10

15
20

25

30

35

40

8 12 24 48

num classes

se
cs

Cent ralized CSS

MetaCSS

search time (n=8)

0

5

10

15

20

25

30

35

40

16 24 48 96

num classes

se
cs

Centralized CSS

Meta CSS

Fig. 8. Search time for a network with 4 and 8 nodes.

c) Number of image occurrences.: An interesting mea-
sure is the number of image occurrences that the user receives.
As can be seen from Fig. 10, Meta CSS returns always the
100% of the possible similar images, meanwhile in Centralized
CSS this percentage is slower.

Finally, we show in Fig. 9 the upgrade time, the search time
and number of relevance scores for different size images.

Upgrade and Search time

0

20

40

60

80

100

120

140

160

50Kb 300Kb 1.2MB

Image size

T
im

e
(i

n
 s

ec
)

Upgrade time (secs)

Search time (secs)

Num relevance scores

0

10

20

30

40

50

60

70

50Kb 300Kb 1.2MB

Image size

N
u

m
 r

el
ev

an
ce

 s
co

re
s

Num relevance scores

Fig. 9. Upgrade and search time (left) and number of relevance scores (right)
for different size images.

C. Evaluation

As can bee seen from the experimental results both ap-
proaches have a similar response time to the user. However,
Meta CSS returns more occurrences and scales better in the
Broker, meanwhile the centralized CSS behavior doesn’t scale.

470470470

% o foccurrences (n=4)

0

20

40

60

80

100

120

8 12 24 48
num classes

%

Centralized CSS
MetaCSS

% of occurrences (n=8)

0

20

40

60

80

100

120

16 24 48 96
num of classes

%

Centralized

CSS

Meta CSS

Fig. 10. Percentage of occurrences found for 4 and 8 nodes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented and analyzed two ap-
proaches for clustering by content multimedia files in P2P
networks. These techniques take advantage of the previous
work done in P2P clustering using classes and content-based
retrieval systems. To this end, we have integrated content-
based semantic search systems (CSS), namely centralized CSS
and Meta CSS, into our JXTA-Overlay P2P platform and have
evaluated the performance of the proposed techniques. The
obtained results suggest that it should be used Meta CSS rather
than the centralized CSS as the latter does not scales well in
a centralized environment due to the cost of creating virtual
links.

In our future work we will perform a thorough evaluation
of the proposed approach by deploying our JXTA-Overlay in
a large P2P network. Also, we plan to use the implemented
techniques integrated in our JXTA-Overlay to develop group-
ware tools that need efficient searching of multimedia files in
P2P networks.

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish
MCYT project TSI2005-08225-C07-05.

REFERENCES

[1] D. Brookshier, D. Govoni, N. Krishnan, and J. Soto. JXTA: Java P2P
Programming.

[2] J. Crowcroft, T. Moreton, I. Pratt, and A. Twigg. Peer-to-Peer Tech-
nologies. In Foster and Kesselman, eds, The Grid: Blueprint for a
New Computing Infrastructure, chapter 29, 593–622. Morgan Kaufmann,
2003.

[3] K.P. Gummadi, R.J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J.
Zahorjan. Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload. In SOSP’03.

[4] F.L. Fessant, S. Handurukande, A.M. Kermarrec, and L. Massoulie.
Clustering in peer-to-peer file sharing workloads. In proc. of IPTPS
2004.

[5] J. Huang, X. Li and J. Wu. A Class-Based Search System in Unstruc-
tured P2P Networks. In Proceedings of the 21st international Conference
on Advanced Networking and Applications (May 21 - 23, 2007). AINA.
IEEE Computer Society, Washington, DC, 76-83. 2007

[6] M.S. Lew, N. Sebe, C. Djeraba and R. Jain. Content-based multimedia
information retrieval: State of the art and challenges. ACM Trans.
Multimedia Comput. Commun. Appl. 2, 1 (Feb. 2006), 1-19.

[7] S. Li. Early Adopter JXTA. Wrox Press, 2003.
[8] S. Oaks, B. Traversat, and L. Gong. JXTA in a Nutshell. O’Reilly, 2003.
[9] H.T. Shen, Y. Shu, and B. Yu. Efficient semantic-based content search in

p2p network. IEEE Transactions on Knowledge and Data Engineering,
16(7):213-236, 2004.

[10] P.N. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining.
Addison-Wesley 2005

[11] H.F. Witschel. Content-oriented topology restructuring for search in P2P
networks. Technical report, University of Leipzig, Germany, 2005.

[12] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer
networks. In Proceedings of the 22nd IEEE International Conference
on Distributed Computing (IEEE ICDCS’02), 2002.

[13] Y. Zhou, W. B. Croft, and B. N. Levine. Content-based search in peerto-
peer networks. Technical report, University of Massachusetts, 2004.

[14] Y. Zhu, X. Yang, and Y. Hu. Making search efficient on gnutella-like
p2p systems. In Proceedings of the 19th IEEE International Parallel
& Distributed Processing Symposium (IPDPS’2005), Denver, Colorado,
Apr 2005.

471471471

