
Hybrid Performance Modeling and Prediction of
Large-Scale Computing Systems

Sabri Pllana and Siegfried Benkner
Institute of Scientific Computing

Faculty of Computer Science
University of Vienna

Nordbergstrasse 15/C/3
1090 Vienna, Austria

Email: {pllana,sigi}@par.univie.ac.at

Fatos Xhafa
Department of Languages
and Informatics Systems

Polytechnic University of Catalonia
C/Jordi Girona 1-3

08034 Barcelona, Spain
Email: fatos@lsi.upc.edu

Leonard Barolli
Department of Information

and Communication Engineering
Fukuoka Institute of Technology

3-30-1 Wajiro-Higashi, Higashi-ku
Fukuoka 811-0295, Japan

Email: barolli@fit.ac.jp

Abstract—Performance is a key feature of large-scale com-
puting systems. However, the achieved performance when a
certain program is executed is significantly lower than the
maximal theoretical performance of the large-scale computing
system. The model-based performance evaluation may be used
to support the performance-oriented program development for
large-scale computing systems. In this paper we present a
hybrid approach for performance modeling and prediction of
parallel and distributed computing systems, which combines
mathematical modeling and discrete-event simulation. We use
mathematical modeling to develop parameterized performance
models for components of the system. Thereafter, we use discrete-
event simulation to describe the structure of system and the
interaction among its components. As a result, we obtain a high-
level performance model, which combines the evaluation speed
of mathematical models with the structure awareness and fidelity
of the simulation model. We evaluate empirically our approach
with a real-world material science program that comprises more
than 15,000 lines of code.

I. INTRODUCTION

The solution of resource-demanding scientific and engi-
neering computational problems involves the execution of
programs on large-scale computing systems, which commonly
consist of multiple computational nodes, in order to solve large
problems or to reduce the time to solution for a single problem.
However, there is a widening gap between the maximal
theoretical performance and the achieved performance when a
certain program is executed on a large-scale parallel and dis-
tributed computing system. This gap may be reduced by tuning
the performance of a program for a specific computing sys-
tem. Commonly, the programmer develops multiple versions
of the program following various parallelization strategies.
Thereafter, the programmer assesses the performance of each
program version, and selects the program version that achieves
the highest performance. The code-based performance tuning
of a program is a time-consuming and error-prone process that
involves many cycles of code editing, compilation, execution,
and performance analysis. This problem may be alleviated by
using the model-based performance evaluation.

In this paper we present a methodology and the correspond-
ing tool-support for performance modeling and prediction of
parallel and distributed computing systems, which may be used

in the process of performance-oriented program development
for providing performance prediction results starting from the
early program development stages. Based on the performance
model, the performance can be predicted and design decisions
can be influenced without time-consuming modifications of
large parts of an implemented program.

We propose a hybrid approach for performance modeling
and prediction of parallel and distributed computing systems,
which combines mathematical modeling and discrete-event
simulation. Our aim is to combine the evaluation speed of
mathematical models with the structure awareness and fidelity
of the simulation model. For the purpose of evaluation of our
approach we have developed a performance modeling and
prediction system called Performance Prophet. We demon-
strate the usefulness of Performance Prophet by modeling
and simulating a real-world material science program that
comprises more than 15, 000 lines of code. In our case study,
the model evaluation with Performance Prophet on a single
processor workstation is several thousand times faster than the
execution time of the real program on our cluster.

The rest of this paper is organized as follows. Our approach
for hybrid performance modeling and prediction of parallel
and distributed computing systems is described in Section II.
We evaluate empirically our approach in Section III. The
related work is discussed in Section IV. Finally, Section V
concludes the paper and briefly describes the future work.

II. HYBRID PERFORMANCE MODELING AND PREDICTION

Commonly for performance modeling of computing systems
is used mathematical modeling (MathMod) or discrete event
simulation (DES). When applied separately, each of these
approaches has severe limitations.

Mathematical models commonly represent the whole com-
puting system as a symbolic expression that lacks the structural
information [1]. An example of a mathematical performance
model that models the program execution time is expressed as
follows,

TProgExec = COpTAv,

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.20

132

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.20

132

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.20

132

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/158801855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where COp is the number of operations and TAv is the
average execution time of an operation. We may observe that
there is no identifiable structural information in this model.
The information such as the execution order of operations, or
the control flow is not contained in the model.

Detailed simulation models commonly are so slow that the
assessment of real-world programs is impractical, or for the
model evaluation are needed very large resources (processors
and memory) that may not be available. For instance RSIM is a
simulator of CC-NUMA shared-memory machines [2]. RSIM
comprises a detailed (that is a cycle-level) machine model that
allows the analysis of the performance effects of architectural
parameters. Therefore, it is suitable to evaluate various designs
of CC-NUMA shared-memory machines. However, because
the simulation of the program execution with RSIM is very
slow (several thousands times slower than the program execu-
tion on the real machine), it is not suitable for evaluation of
various designs of real-world programs.

Our aim is to combine the good features of both approaches.
For instance, we would like to have the model evaluation effi-
ciency of mathematical performance models and the structure
awareness of simulation models. A model that combines math-
ematical modeling with discrete-event simulation is referred to
as hybrid model [3].

TSYS = FSYS()

MathMod Hybrid model DES

Instruction-level
simulator

MathMod & DES

Low level
of abstraction

High level
of abstraction

Fig. 1. Hybrid models combine the features of MathMod models and DES
models. MathMod stands for Mathematical Modeling; DES stands for Discrete
Event Simulation.

Figure 1 shows that, considering the level of abstraction,
the hybrid performance models of computing systems reside
somewhere between MathMod models and DES models. An
important feature of hybrid models is that they permit the sys-
tem modeling at various levels of abstraction. The MathMod
dominated hybrid models are at a higher level of abstraction
and more efficient than the DES dominated hybrid models. On
the other hand, the structure of system under study is modeled
in more detail with the DES dominated hybrid models.

A1

A4

A2 A3

TA1 = FA1()

TA3 = FA3()

TA4 = FA4()

TA2 = FA2()

Fig. 2. Hybrid performance model of a hypothetical program. The perfor-
mance of activities is modeled with MathMod. The control flow is modeled
with DES.

Figure 2 depicts the activity diagram of a hypothetical
program. Activities {Ai|1 ≤ i ≤ 4} correspond to the
code blocks of program. To each activity Ai is associated a
parameterized cost function FAi(), which models the execution
time of activity Ai. Functions {FAi()|1 ≤ i ≤ 4} are obtained
using the MathMod techniques. The structure of program,
which includes activities and their order of execution, is
modeled with DES.

Computation1 Computation2
«action+» «action+»

(a)

:T0 :T1

Computation1
(MathMod) Computation2

(MathMod)

Synchronization
(DES)

(b)

Fig. 3. Hybrid performance modeling of a parallel region.

Figure 3 depicts our hybrid approach for performance
modeling of a parallel region. The parallel region executes
activities Computation1 and Computation2 in parallel (see
Figure 3(a)). Thread T0 executes activity Computation1,
whereas activity Computation2 is executed by thread T1 (see
Figure 3(b)). The execution of activities Computation1 and
Computation2 is modeled with MathMod. The synchronization
of threads is modeled with DES.

«action+»
Computation

«nbsend»
Message

(a) P0

«brecv»
Message

(b) P1

:P0 :P1

Nonblocking send

Computation
(MathMod)

Message transfer
(MathMod)

Blocking receive
(DES)

(c) Interprocess communication

Fig. 4. Hybrid performance modeling of point-to-point interprocess commu-
nication.

Figure 4 depicts our hybrid approach for performance
modeling of point-to-point communication. Process P0, after
performing some computation, sends a message to process P1.
Process P1 receives the message. Computation is modeled with
an activity (see Figure 4(a)). The sending process P0 uses
a nonblocking send to send the message (see Figure 4(a)),
whereas the receiving P1 process uses a blocking receive to
receive the message (see Figure 4(b)). Computation and the
message transfer are modeled with MathMod, whereas waiting
to receive the message is simulated with DES (see Figure 4(c)).

The model of parallel and distributed program (that is the
workload model) is one of components of the computing
system model. We apply the same methodology for building
of the whole computing system model, which includes the
machine model (that is the computer architecture) and the
workload model. The behavior of the whole computing system

133133133

is split-up into action states and wait states. Examples of
action states include the execution of a code block such as
a sequence of computational operations, or service time of a
machine resource such as network subsystem. Wait states are
used to model code blocks that involve multiple processing
units such as parallel regions, or waiting for the availability of
a machine resource such as a processor. While the duration of
an action state is possible to determine in advance, in general
it is not possible to determine in advance the duration of a wait
state [4]. Therefore, we model the performance behavior of
action states with MathMod techniques, whereas we simulate
the behavior of wait states.

III. EVALUATION

For the purpose of evaluation of our approach we have
developed a performance modeling and prediction system
called Performance Prophet [10].

A. Performance Prophet

Teuta

Animator Charts TF

PMP

(C++)

Models

(XML)

Performance Visualization

Model

Traverser

Model

Checker

Menu

Drawing

Space

Toolbars

Model
Tree

Code
Editor

Element

Properties

Graphical User Interface

SP
MCF

(XML)

CF

(XML)

Constructs

(XML)

Performance Estimator

Simulation

Manager

Workload

Elements

Machine

Elements

System Elements

CSIM

Simulation Engine

Fig. 5. The architecture of Performance Prophet. Abbreviations: Model
Checking File (MCF), Configuration File (CF), Performance Model of Pro-
gram (PMP), System Parameters (SP), Trace File (TF).

Figure 5 depicts the architecture of Performance Prophet.
The main components of Performance Prophet are Teuta and
Performance Estimator. Teuta is a platform independent tool
for graphical modeling of parallel and distributed programs.
The role of Performance Estimator, in the context of Perfor-
mance Prophet, is to estimate the performance of a program
on a computing machine.

Teuta comprises the following parts: Model Checker, Model
Traverser, Graphical User Interface (GUI), and the components
for Performance Visualization (see Figure 5). The GUI of
Teuta is used for the development of performance model based
on the Unified Modeling Language (UML) [5]. The Model
Checker is used to verify whether the model conforms to the
UML specification. The Model Traverser is used for generation
of different model representations (XML and C++). The Per-
formance Visualization components are used for visualization
of the performance results.

Element MCF indicates the XML file, which is used for
the model checking. The XML files that are used for the
configuration of Teuta are indicated with the element CF.

The communication between Teuta and the Performance
Estimator is done via elements PMP, SP and TF. Element
PMP indicates the C++ representation of the program’s per-
formance model. PMP is generated by Teuta and serves as
input information for the Performance Estimator. Element SP
indicates a set of system parameters. The parameters of system
include the number of computational nodes, the number of
processors per node, the number of processes, and the number
of threads. The Performance Estimator uses SP for building the
model of system, whose performance is estimated. Element TF
represents the trace file, which is generated by the Performance
Estimator as a result of the performance evaluation. Teuta uses
TF for the visualization of performance results.

The Performance Estimator comprises the following com-
ponents: Simulation Manager, CSIM, Workload elements, and
Machine elements (see Figure 5). The Simulation Manager
builds the system model based on the user specification,
starts and ends the simulation run, and stores the performance
results. A set of Workload and Machine elements are provided
for building of the system model. In what follows in this
section we describe components of the Performance Estimator
in more detail.

CSIM (Mesquite Software [6], [7]) is a process-oriented
general-purpose simulation library. CSIM supports the de-
velopment of discrete-event simulation models, by using the
standard programming languages C and C++. Because of the
nature of compiled C and C++ programs and CSIM’s dynamic
memory allocation, the developed simulation models are com-
pact and efficient. CSIM supports the process-oriented world
view. The system is represented by a set of static components
(that is CSIM facilities) and a set of dynamic components
(that is CSIM processes) that use the static components. CSIM
provides a set of abstractions (such as processes and facilities)
for the model development, and many useful features (such
as statistics collection or random variate generation) that are
needed in a simulation study. CSIM processes operate in par-
allel in simulated time. Therefore, CSIM provides mechanisms
for the synchronization of processes and for the interprocess
communication. For the synchronization of CSIM processes
are commonly used CSIM events. The communication among
CSIM processes is accomplished via CSIM mailboxes.

Based on CSIM we have developed a set of C++ classes that
model basic program and machine components. Examples of
these components include Process, Send, Receive, ParallelDo,
and Node.

Figure 6 depicts the class Process, which we have developed
to model processing units (that is processes or threads) of a
computing system. The design of class Process permits the
modeling of a large group of parallel and distributed scientific
programs.

The structure of Process class is depicted in Figure 6(a).
The unit ID (uid), process ID (pid) and thread ID (tid)
are used to uniquely identify the processing unit during the
simulation. The node ID (nid) indicates the computational
node on which the processing unit is mapped. The attribute
processingUnitName is mainly used to identify the processing

134134134

Process

#uid : long
#pid : long
#tid : long
#nid : long
#processingUnitName : char
#tfName : char
#parallelRegionStatus : bool
#bufferComm : long
#bufferSync : long
#mbComm : mailbox
#mbSync : mailbox

+Process() // constructor
+~Process() // destructor
. . .
// get and set methods
. . .
+init(long uid, long pid, long tid)
+program()
+execute()
+end()

(a) Structure

1: void Process::execute()
2: { // CSIM process
3: create(processingUnitName);
4: set_priority(2);
5: node[nid].getCPUs()->reserve();
6: program();
7: node[nid].getCPUs()->release();
8: end();
9: };

(b) Method execute()

Fig. 6. Class Process.

unit in simulation reports. The performance evaluation results
of processing unit are stored in the file that is specified in the
attribute tfName. The attribute parallelRegionStatus indicates
whether the processing unit is executing a parallel region
(for instance, a code region enclosed within OpenMP direc-
tives PARALLEL and END PARALLEL [8]). The attributes
bufferSync and mbSync serve for the synchronization among
processing units. The communication among processing units
is performed via attributes bufferComm and mbComm. We may
observe that the CSIM type mailbox is used to define mbComm
and mbSync. The methods of class Process for getting or
setting values of attributes are straightforward, and therefore,
they are not depicted in Figure 6(a). The methods init() and
end() are invoked when the operation of process is initialized
and completed respectively. The method program() models
the performance behavior of the program under study. Teuta
generates automatically the code for the method program()
based on the UML model that is specified by the user.

Figure 6(b) depicts the implementation of method execute()
of class Process. In the line 3 is used the CSIM statement
create() to define the method execute() as a CSIM process.
The CSIM statement set_priority() sets the priority of
the process (see line 4). Higher values of the priority mean
higher priority of process execution. For instance, the process
with priority 2 will execute before the process with priority 1
if the priority determines the order of execution. In the line 5
the process obtains the processor from the node. The statement
in the line 6 invokes the method program(), which models the
performance behavior of the program under study. In the line
7 the process releases the processor. Line 8 is used to notify
the end of process execution.

Basically, the method program() of class Process specifies
the execution flow of a collection of performance modeling
elements. Each performance modeling element corresponds to
a code block of the program, whose performance is modeled
(see Figure 7). The execution of a performance modeling
element models the performance behavior of a code block
during the program execution.

ModelElement

ActionPlus NBSend BRecv Broadcast Barrier ParallelDo . . .

Fig. 7. Performance modeling elements of program.

Figure 7 depicts the hierarchy of classes of Performance
Estimator that are used for construction of the method pro-
gram(). On the top of hierarchy is the class ModelElement.
The subclasses of class ModelElement correspond to various
code blocks of parallel and distributed programs. A group
of one or more program statements is referred to as a code
block. Examples of subclasses of class ModelElement include:
ActionPlus, NBSend, BRecv, Broadcast, Barrier, and Paral-
lelDo. Instances of these subclasses are used to represent the
performance modeling elements in the method program() of
class Process (see Figure 6).

Node

#nid : long
#numCPUs : long
#nodeName : char
#cpus : facility_ms

+Node() // constructor
+~Node() // destructor
. . .
// get and set methods
. . .
+init(long uid, long pid, long tid)

(a)

Queue . . .

CPU 0

CPU 1

CPU N-1

Processing
units

Node

(b)

Fig. 8. Class Node.

Figure 8 depicts the class Node, whose instances we use for
modeling the computational nodes of computer architectures.
The structure of class Node is depicted in Figure 8(a). Attribute
nid is used to uniquely identify instances of the class Node.
The number of processors per node is specified with attribute
numCPUs. Attribute nodeName is used to specify the name
of the node. The CSIM type facility ms is used to define
processors of the node (that is cpus). The method init() of class
Node is invoked when operation of the node is initialized.

Figure 8(b) depicts the structure of a node. A node com-
prises a set of processors {CPU0, CPU1, .., CPUN−1} and
a queue. Processing units (processes or threads) may use any
of the available processors. If there is no processor available,
then processing units wait in the queue. The default queue
discipline is first come first served. Other queue disciplines,
such as round robin, may be specified. If the round robin
queue discipline is specified, then a processing unit uses a
processor for the specified amount of time. Thereafter, the
processing unit is preempted and the next processing unit that
is waiting in the queue obtains the processor. Commonly, high
performance programs are mapped on machines with sufficient
hardware resources in the manner that processing units do not
have to compete for processors. Nevertheless, the capability
of simulation of situations when multiple processing units
share one processor may be useful to reveal the performance
drawbacks of such mappings.

135135135

B. Case study

In this section we demonstrate the usefulness of Perfor-
mance Prophet by modeling and simulating a real-world
material science program. For our case study we use LAPW0,
which is a part of WIEN2k package [9]. WIEN2k is a program
package for calculation of the electronic structure of solids
based on the density-functional theory. It is worth to mention
that the 1998 Nobel Prize in Chemistry was awarded to
Walter Kohn for his development of the density-functional
theory [10]. LAPW0 calculates the effective potential within a
unit cell of a crystal. The code of LAPW0 program is written
in Fortran 90 and MPI [11]. LAPW0 comprises about 15,000
lines of code.

A1

A2

A4

A5

A7

A8

A10

A11

A0 A3 A6 A9

Process 0 Process 1 Process 2 Process 3

Fig. 9. An instance of LAPW0 domain decomposition. Number of atoms
(NAT) is 12; number of atoms per process (PNAT) is 3.

LAPW0 is executed in SPMD fashion (all processors exe-
cute the same program) on a multiprocessor computing system.
A domain decomposition approach is used for parallelization
of LAPW0 (see Figure 9). The unit of material, for which
LAPW0 calculates the effective potential, comprises a certain
number of atoms (NAT). Atoms are evenly distributed to
the available processes. This means that each process is re-
sponsible for calculation of the effective potential for a subset
of atoms. For NP available processes, each process obtains
PNAT = NAT/NP atoms. LAPW0 uses an algorithm that
aims to distribute a similar (if not the same) number of atoms
to each process for any given positive integer values of the
number of atoms and the number of processes.

. . .
Node 1

(SGI 1450)

4 x Pentium III
Xeon 700MHz,
2GB ECC RAM

Node 2
(SGI 1450)

4 x Pentium III
Xeon 700MHz,
2GB ECC RAM

Node 16
(SGI 1450)

4 x Pentium III
Xeon 700MHz,
2GB ECC RAM

Myrinet

Fast Ethernet

Fig. 10. Experimentation platform. Gescher cluster has 16 SMP nodes. Each
node has four processors.

Figure 10 depicts the architecture of Gescher cluster, which
is located at Institute of Scientific Computing, University of
Vienna [12]. Gescher is a 16 node SMP cluster. All nodes
of Gescher are of type SGI 1450. Each node of the cluster
has four Pentium III Xeon 700MHz processors , and 2GB

ECC RAM. The nodes of Gescher are interconnected via
a 100Mbit/s Fast Ethernet network and a Myrinet network.
For our experiments we have used the Fast Ethernet network.
Gescher serves as our platform for performance measurement
experiments of LAPW0.

In what follows in this section we develop and evaluate
the model of LAPW0 with Performance Prophet. We validate
the model of LAPW0 by comparing simulation results with
measurement results.

Fig. 11. Performance modeling of LAPW0.

Figure 11 illustrates the procedure for the development of
performance model of LAPW0 with Performance Prophet.
Due to space limitations, in Figure 11 it is depicted just a
fragment of the UML model of LAPW0. We developed the
model of LAPW0 by using the modeling elements that are
available in the toolbar of Performance Prophet. Basically,
Performance Prophet permits to associate to each modeling
element a cost function. A cost function models the execution
time of the code block that is represented by the performance
modeling element. Figure 11 depicts the association of cost
function CalcMPM to action Calculate Multipolmoments. This
cost function was generated based on measurement data by
using regression. Regression is a technique for fitting a curve
through a set of data values using some goodness-of-fit crite-
rion.

Figure 12 depicts the visualization of performance predic-
tion results of LAPW0 with Performance Prophet. The bar
chart shows execution times for all 32 processes. The pie chart
shows details for the process, which is selected by the user in
the drop down list (in this case process 0). The table shows
simulation results for each performance modeling element of
the selected process. Results, that are shown in the table, can
be sorted in ascending or descending order by any column.
For instance, if we want to identify elements that significantly
contribute to the overall program execution time, we sort the
table by execution time.

136136136

Fig. 12. Visualization of performance prediction results for LAPW0. Results
are obtained from the simulation of execution of LAPW0 on eight four-
processor nodes for problem size 32 atoms. On each processor is mapped
one process (total 32 processes).

TABLE I
SIMULATION AND MEASUREMENT RESULTS FOR LAPW0. IN NxPy, x

DENOTES THE NUMBER OF NODES N , AND y DENOTES THE TOTAL

NUMBER OF PROCESSES P . Ts IS SIMULATED TIME, Tm IS MEASURED

TIME, AND Te EVALUATION TIME. ALL TIMES ARE EXPRESSED IN
SECONDS [S].

NAT = 32
System Ts [s] Tm [s] Te [s] Tm/Te Error [%]
N1P4 280 264 0.01 26,400 6
N2P8 170 166 0.02 8,300 2

N4P16 126 131 0.04 3,275 3
N8P32 98 113 0.08 1,413 13

NAT = 64
System Ts [s] Tm [s] Te [s] Tm/Te Error [%]
N1P4 543 501 0.01 50,100 8
N2P8 314 264 0.02 14,700 7

N4P16 211 197 0.04 4,925 7
N8P32 184 164 0.09 1,822 12

We validated the performance model of LAPW0 by com-
paring simulation results with measurement results for two
problem sizes and four system configurations. The problem
size is determined by the parameter NAT , which indicates
the number of atoms in a unit of the material. We have
validated the performance model of LAPW0 for NAT = 32
and NAT = 64. The system configuration is determined by
the number of nodes and the number of processing units.
We have validated the performance model of LAPW0 for the
following system configurations: one node and four processes
(N1P4), two nodes and eight processes (N2P8), four nodes and
16 processes (N4P16), eight nodes and 32 processes (N8P32).
Each node comprises four processors. On each processor is
mapped one process.

Table I depicts simulation and measurement results for
LAPW0. The second column of table, which is indicated

with Ts, shows the performance prediction results for LAPW0
that we have obtained by simulation. Measurement results of
LAPW0 are presented in the third column, which is indicated
with Tm. The column that is indicated with Te presents the
CPU time needed for evaluation of the performance model of
LAPW0 by simulation. All simulations were executed on a
Sun Blade 150 (UltraSPARC-IIe 650MHz) workstation. We
compare the time needed to execute the real LAPW0 program
on our SMP cluster with the time needed to evaluate the
performance model on a Sun Blade 150 workstation in the
column that is indicated with Tm/Ts. We may observe that
model-based performance evaluation of LAPW0 with Perfor-
mance Prophet was several thousand times faster than the
corresponding measurement-based evaluation. The rightmost
column of the table shows the percentage error, which serves
to quantify the prediction accuracy of Performance Prophet.
We have calculated the percentage error using the following
expression,

Error[%] =
|Ts − Tm|

Tm

100,

where Ts is the simulated time and Tm is the measured time.
We may observe that the prediction accuracy of Performance
Prophet for LAPW0 was between 2% and 13%. The average
percentage error was 7%. Simulation and measurement results
for LAPW0 are graphically presented in Figure 13.

0

100

200

300

400

500

600

N1P4 N2P8 N4P16 N8P32
System

E
xe

cu
ti

o
n

 T
im

e
[s

ec
.]

Simulation(64)

Measurement(64)

Simulation(32)

Measurement(32)
NAT=64

NAT=32

Fig. 13. Simulation and measurement results for LAPW0.

C. A Caveat to our Approach

Performance Prophet uses high-level models of machine
(that is computer architecture) in order to decrease the effort
for model evaluation. Since the target user of Performance
Prophet is the program developer, implementation details of
machine model are hidden from the user. The user may simply
modify parameters of the machine model via the GUI of
Performance Prophet, but some C++ programming is required
for the structural modification of machine model. Since the
machine model is at a high-level of abstraction and its structure

137137137

may be changed only programmatically, we consider that Per-
formance Prophet is not well suited for computer architecture
developers.

IV. RELATED WORK

Most of approaches for performance evaluation of comput-
ing systems [13] are able to cope only with small programs
such as matrix-vector multiplication. There are several reasons
for the lack of scalability: (1) a very complex code analysis
is used during the workload modeling that does not scale up
to the size and complexity of the real-world programs [1], (2)
a detailed machine model is used that is so slow that makes
impractical the simulation of real-world programs [2], [14], or
(3) for the model evaluation are required very large resources
(processors and memory) that may not be available [15],
[16], [17]. Our approach has addressed this issue by using
model simplification techniques, combination of mathematical
modeling with discrete event simulation, and by using a simple
machine simulation model.

Performance models that represent the whole program and
machine as a symbolic expression lack the structural infor-
mation [1]. Consequently, it is difficult to identify the part of
system that is responsible for the suboptimal performance. Our
approach supports the development of performance models at
various levels of abstraction. For instance, for workload mod-
eling are used UML activity diagrams [18]. An activity may
represent a single instruction, or larger blocks of the program
(for instance a loop), or the whole program. Furthermore, our
approach uses the discrete-event simulation to describe the
structure of system and the interaction among its components.

V. CONCLUSIONS AND FUTURE WORK

The performance-oriented program development for large-
scale computing systems is a time-consuming, error-prone,
and expensive process that involves many cycles of code
editing, compiling, executing, and performance analysis. This
problem is aggravated when the program developer has access
to only a part of the computing system resources and for only
a limited time. The limited access to large-scale computing
systems is a common practice, because the resources of this
kind of systems are shared among many users. The model-
based performance analysis may be used to overcome these
obstacles.

In this paper we have presented a hybrid approach for
the development of high-level performance models of large-
scale computing systems, which combines mathematical mod-
eling and discrete-event simulation. Our aim was to combine
the model evaluation efficiency of mathematical performance
models with the structure awareness of simulation models.

For the purpose of evaluation of our approach we have
developed Performance Prophet, which is a performance mod-
eling and prediction system. Performance Prophet provides a
UML-based GUI, which alleviates the problem of specification
and modification of the performance model. Based on the
user-specified UML model of a program, Performance Prophet
automatically generates the corresponding performance model

and evaluates it by simulation. We have demonstrated the use-
fulness of Performance Prophet by modeling and simulating
LAPW0, which is a real-world material science program that
comprises about 15, 000 lines of code. In our case study,
the model evaluation with Performance Prophet on a single
processor workstation was several thousand times faster than
the execution time of the real program on our SMP cluster. We
validated the model of LAPW0 by comparing the simulation
results with measurement results for two problem sizes and
four system configurations. The average prediction accuracy
was 7%.

In future we plan to investigate the applicability of our
approach for performance prediction of Grid workflows.

REFERENCES

[1] D. Kerbyson, A. Hoisie, and H. Wasserman, “Use of Predictive Per-
formance Modeling During Large-Scale System Installation,” Parallel
Processing Letters, vol. 15, no. 4, December 2005.

[2] “Rice Simulator for ILP Multiprocessors (RSIM),”
http://rsim.cs.uiuc.edu/rsim/.

[3] H. Schwetman, “Hybrid Simulation Models of Computer Systems,”
Communications of the ACM, vol. 21, no. 9, pp. 718–723, 1978.

[4] R. Paul, “Activity Cycle Diagrams and the Three Phase Approach,” in
Proceedings of the 1993 Winter Simulation Conference. Los Angeles,
California, United States: IEEE, 1993, pp. 123–131.

[5] Object Management Group (OMG), “UML 2.0 Superstructure Specifi-
cation,” http://www.omg.org, August 2005.

[6] “Mesquite Software,” http://www.mesquite.com/.
[7] H. Schwetman, “CSIM19: A Powerful Tool for Building System Mod-

els,” in Winter Simulation Conference (WSC 2001). Arlington, VA,
USA: ACM, December 2001, pp. 250–255.

[8] “Open specifications for Multi Processing (OpenMP),”
http://www.openmp.org/.

[9] K. Schwarz, P. Blaha, and G. Madsen, “Electronic structure calculations
of solids using the WIEN2k package for material sciences,” Computer
Physics Communications, vol. 147, pp. 71–76, 2002.

[10] “The 1998 Nobel Prize in Chemistry,”
http://nobelprize.org/nobel prizes/chemistry/laureates/1998/.

[11] W. Gropp, E. Lusk, and A. Skjellum, Using MPI - 2nd Edition: Portable
Parallel Programming with the Message Passing Interface (Scientific and
Engineering Computation). MIT Press, 1999.

[12] “Gescher Cluster. University of Vienna, Institute of Scientific Comput-
ing,” http://gescher.vcpc.univie.ac.at/.

[13] S. Pllana, I. Brandic, and S. Benkner, “Performance Modeling and
Prediction of Parallel and Distributed Computing Systems: A Survey of
the State of the Art,” in The Fifth International Conference on Complex,
Intelligent and Software Intensive Systems - 3PGIC Workshop. Vienna,
Austria: IEEE Computer Society, April 2007.

[14] C. Hughes, V. Pai, P. Ranganathan, and S. Adve, “RSIM: Simulating
Shared-Memory Multiprocessors with ILP Processors,” IEEE Computer,
vol. 35, no. 2, pp. 40–49, February 2002.

[15] T. Wilmarth, G. Zheng, E. Bohm, Y. Mehta, N. Choudhury, P. Ja-
gadishprasad, and L. Kale, “Performance Prediction using Simulation of
Large-scale Interconnection Networks in POSE,” in 2005 Workshop on
Principles of Advanced and Disctributed Simulation (PADS). Monterey,
California: IEEE Computer Society, June 2005.

[16] G. Zheng, G. Kakulapati, and L. Kale, “BigSim: A Parallel Simulator for
Performance Prediction of Extremely Large Parallel Machines,” in 18th
International Parallel and Distributed Processing Symposium (IPDPS
2004). Santa Fe, New Mexico, USA: IEEE Computer Society, April
2004.

[17] D. Kvasnicka, H. Hlavacs, and C. Ueberhuber, “Simulating Parallel
Program Performance with CLUE,” in International Symposium on
Performance Evaluation of Computer and Telecommunication Systems
(SPECTS). Orlando, Florida, USA: The Society for Modeling and
Simulation International, July 2001, pp. 140–149.

[18] S. Pllana and T. Fahringer, “UML Based Modeling of Performance
Oriented Parallel and Distributed Applications,” in Proceedings of the
2002 Winter Simulation Conference. San Diego, California, USA:
IEEE, December 2002.

138138138

