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Abstract

We address the issue of the development of performance
models for programs that may be executed on large-scale
computing systems. The commonly used approaches apply
non-standard notations for model specification and often re-
quire that the software engineer has a thorough understand-
ing of the underlying performance modeling technique. We
propose to bridge the gap between the performance mod-
eling and software engineering by incorporating UML. In
our approach we aim to permit the graphical specification
of performance model in a human-intuitive fashion on one
hand, but on the other hand we aim for a machine-efficient
model evaluation. The user specifies graphically the perfor-
mance model using UML. Thereafter, the transformation of
the performance model from the human-usable UML rep-
resentation to the machine-efficient C++ representation is
done automatically. We describe our methodology and il-
lustrate it with the automatic transformation of a sample
performance model.

1 Introduction

It is impractical and costly to use a large-scale comput-
ing system for performance tuning during the program de-
velopment. Furthermore, in the case of large-scale comput-
ing systems the program developer commonly has access to
only a part of the computing system resources and for only a
limited time. The model-based performance analyzes may

be used to overcome these obstacles [16]. Based on the
model, the performance can be predicted and design deci-
sions can be influenced without time-consuming modifica-
tions of large portions of an implemented program. In the
past the performance evaluation of computing systems was
a preoccupation of many computer scientists [7, 16]. How-
ever, most of approaches [1, 8, 5, 12, 19, 9, 6] for the per-
formance modeling of parallel and distributed programs are
of limited use to support performance-oriented software en-
gineering because of the following reasons: (1) the use of a
notation that is not based on widely accepted standards, and
(2) the requirement that the software engineer has a thor-
ough understanding of the underlying performance model-
ing technique.

In our approach we aim to bridge the gap between the
performance modeling and the software engineering by
using the Unified Modeling Language (UML) [2]. We
have developed an extension of UML for the domain of
performance-oriented parallel and distributed programs [17,
18]. Our UML extension provides a set of UML build-
ing blocks that model some of the most important con-
cepts of message passing and shared memory programming
paradigms, which can be used to develop models for large
and complex parallel and distributed programs. To provide
tool support for our approach we have developed the Perfor-
mance Prophet [15], which is a performance modeling and
prediction system. Performance Prophet provides a UML
based graphical user interface, which alleviates the problem
of specification and modification of the performance model.
In the context of Performance Prophet we aim to permit the
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graphical specification of performance model in a human-
intuitive fashion on one hand, but on the other hand we aim
for a machine-efficient model evaluation. The user speci-
fies graphically the performance model using UML. After-
wards, Performance Prophet automatically transforms the
performance model from UML to C++ and evaluates it by
simulation.

In this paper we describe our methodology for automatic
transformation of performance models from UML to C++.
We show how we may develop a UML-based performance
model for a given program code, and thereafter we explain
how the UML representation of the performance model is
transformed to the corresponding C++ representation. Fur-
thermore, we present and explain our algorithm for the per-
formance model transformation from UML to C++, which
is implemented in the Performance Prophet. We demon-
strate our methodology with the transformation of a sample
performance model using the Performance Prophet.

The rest of this paper is organized as follows. Section 2
describes how we customized the UML for performance
modeling and outlines the architecture of the Performance
Prophet. Our performance model transformation method-
ology is presented in Section 3. Section 4 exemplifies the
model transformation using the Performance Prophet. Fi-
nally, Section 5 concludes the paper and briefly describes
the future work.

2 Preliminaries

In this section we describe our approach for customiza-
tion of the UML for performance modeling of parallel and
distributed programs and give an overview of the architec-
ture of Performance Prophet.

2.1 UML-Based Performance Modeling

UML [2, 13] is a graphical language that is primar-
ily used for visualizing, specifying, and documenting the
software-intensive systems. In order to make possible the
modeling of different types of systems, UML modeling ele-
ments are defined in UML specification in an abstract man-
ner without conceptual connection with a particular domain.
For instance, the UML specification defines the modeling
element Action as follows: “an action is the fundamental
unit of behavior specification” [13]. Such an abstract def-
inition allows us to use an action to model various kinds
of behavior such as addition of two numbers in a computer
system, or acceleration of a vehicular system. However, too
generic semantics of UML modeling elements may present
an obstacle for using UML in a specific domain. For this
reason, UML specification defines the mechanisms for spe-
cializing semantics of modeling elements for a particular

domain. UML extension mechanisms include stereotypes,
tagged values, and constraints.

The UML may be extended by defining new model-
ing elements, stereotypes, based on existing elements, base
classes (i.e. metaclasses). A stereotype is defined as a
subclass of an existing UML metaclass, with the associ-
ated tagged values (i.e. metaattributes) and constraints.
Stereotypes are notated by the stereotype name enclosed
in guillemets <<StereotypeName>>, or by a specific
graphic icon. Stereotypes may improve the readability of
models by distinguishing modeling elements of the same
shape with different stereotype names.

id : Integer
type : String
time : Double

«stereotype»
action+

«metaclass»
Action

(a) Definition

SampleAction
«action+» {id = 1,

type = SAMPLE,
time = 10}

(b) Usage

Figure 1. Definition and usage of the stereo-
type <<action+>>.

Figure 1(a) depicts the definition of stereotype
<<action+>> based on the UML metaclass Action.
The list of tag definitions includes id, type, and time.
Tag id can be used to uniquely identify the modeling
element <<action+>>; tag type specifies the type of
<<action+>>, and tag time the time spent to complete
<<action+>>. We are using <<action+>> (see
example in Figure 1(b)) to model various types of single-
entry single-exit code regions. Commonly we use tags to
describe performance relevant information, such as the
estimated or the measured execution time (see the tag time
in Figure 1(b)). The set of tag definitions is not limited
to those shown in Figure 1(a), but it can be arbitrarily
extended to meet the modeling objective. In this manner
we have extended the UML for performance modeling of
parallel and distributed programs [17, 18].

2.2 Performance Prophet

Performance Prophet [15] is a performance modeling
and prediction system for parallel and distributed comput-
ing systems. The architecture of Performance Prophet is
depicted in Figure 2. The main components of Performance
Prophet are Teuta and Performance Estimator. Teuta is a
platform independent tool for graphical modeling of paral-
lel and distributed programs. The role of Performance Esti-
mator, in the context of Performance Prophet, is to estimate
the performance of a program on a computing machine.
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Figure 2. The architecture of Performance
Prophet. Abbreviations: Model Checking File
(MCF), Configuration File (CF), Performance
Model of Program (PMP), System Parameters
(SP), Trace File (TF).

Teuta comprises the following parts: Model Checker,
Model Traverser, Graphical User Interface (GUI), and the
components for Performance Visualization (see Figure 2).
The GUI of Teuta is used for the development of perfor-
mance model based on the UML [13]. The Model Checker
is used to verify whether the model conforms to the UML
specification. The Model Traverser is used for generation
of different model representations (XML and C++). The
Performance Visualization components are used for visual-
ization of the performance results.

Element MCF indicates the XML file, which is used for
the model checking. The XML files that are used for the
configuration of Teuta are indicated with the element CF.

The Performance Estimator estimates the performance
of a parallel and distributed program on a target computer
architecture. As input for the Performance Estimator serve
the program model and architectural parameters that are
specified in Teuta. The Performance Estimator generates
automatically the machine model based on the specified ar-
chitectural parameters. The program model is integrated
with the machine model to create the model of the whole
computer system. The Performance Estimator evaluates the
integrated model of computing system and generates the
corresponding performance results.

The communication between Teuta and the Performance
Estimator is done via elements PMP, SP and TF. Element
PMP indicates the C++ representation of the program’s per-
formance model. PMP is generated by Teuta and serves as
input information for the Performance Estimator. Element
SP indicates a set of system parameters. The parameters
of system include the number of computational nodes, the
number of processors per node, the number of processes,
and the number of threads. The Performance Estimator uses

SP for building the model of system, whose performance is
estimated. Element TF represents the trace file, which is
generated by the Performance Estimator as a result of the
performance evaluation. Teuta uses TF for the visualization
of performance results.

3 Methodology

In this section we describe conceptually the transition:
(1) from the program code to the UML based perfor-
mance model, and (2) from the UML representation to the
C++ representation of performance model. Thereafter, we
present our algorithm that takes as input the UML represen-
tation, and automatically generates the C++ representation
of the performance model.

Commonly, scientific programs are written in impera-
tive languages such as Fortran or C. This type of programs
is executed on parallel and distributed computing systems,
which may consist of multiple nodes (each node may have
multiple processors), in order to solve large problems or to
reduce the time to solution for a single problem [4]. The
MPI [20, 11] is usually used to express the inter-node par-
allelism, whereas OpenMP [3, 14] is used to express the
intra-node parallelism. We have identified that UML ac-
tivity diagrams are suitable for modeling scientific impera-
tive programs [18]. Therefore, we usually model a scien-
tific program with one or more activity diagrams. Activity
diagrams may be annotated with performance-relevant in-
formation. For instance, cost functions that model the exe-
cution time of program actions may be associated with Ac-
tionNodes of the activity diagram.

During the process of performance modeling are consid-
ered only the code blocks that strongly influence the overall
performance of program. We may identify, for an existing
program, code blocks that determine the overall program
performance by using a profiling tool.

Figure 3(a) shows a code block of a Fortran program.
This code block is known as kernel 6 of the Livermore For-
tran kernels [10]. Since the performance of a scientific pro-
gram is strongly influenced by loops, it is important to con-
sider loops during the development of performance model.
Figure 3(b) shows the UML model of kernel 6, which is a
fragment of an activity diagram. But, this detailed UML
representation of the kernel 6 is not necessary, since we are
interested on the rough performance estimation. Therefore,
we model the performance of the kernel 6, that is depicted
in Figure 3(a), with the action Kernel6, which is an instance
of the stereotype action+ (see Figure 3(c)). The associ-
ated cost function FK6(...) models the execution time TK6

of kernel 6.
The UML based representation of performance model

of the kernel 6, that is depicted in Figure 3(c), is simple
and intuitive. We have developed this graphical representa-
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DO  L = 1, M
 DO  i = 2, N
  DO  k = 1, i-1
   W(i) = W(i) + B(i,k) * W(i-k)
  END DO
 END DO
END DO

Kernel 6

(a)

W

[L = 1,M]

[i = 2,N]

[k = 1,i-1]

(b)

Kernel6
«action+»

TK6 = FK6(...)

(c)

Figure 3. From the program code to the UML
based performance model.

tion to streamline the specification process of performance
models. However, while the UML representation is suitable
as human-usable notation for performance model specifi-
cation, it is not adequate for an efficient model evaluation.
Therefore, we need to transform the UML representation to
a form that is suitable for evaluation.

Figure 4 depicts an example of transition from the UML
representation to the C++ representation of performance
model. For the illustration of this transformation process
serves the model of kernel 6 that we introduced in Figure 3.
We use the stereotype action+ to represent a code block
of a program. In Figure 4(a) the action Kernel6, which is
an instance of stereotype action+, represents the kernel
6. For the modeling element action+ we have defined
the corresponding class ActionPlus (see Figure 4(b)). In
the context of Performance Prophet, the class ActionPlus is
implemented as a C++ class. The properties of modeling
element action+ are mapped to properties of the class
ActionPlus. The performance behavior of the modeling el-
ement action+ is defined in the method execute() of the

Kernel6
«action+»

(a)

ActionPlus

properties

execute()

(b)

ActionPlus kernel6(...);
kernel6.execute(...,FK6(...));

(c)

Figure 4. From the UML representation to the
C++ representation of performance model.

class ActionPlus. Figure 4(c) depicts the textual represen-
tation of the model of kernel 6. We may observe that the
name of the instance of modeling element (in our example
Kernel6) is mapped to the name of the instance of class Ac-
tionPlus (in our example kernel6).

Figure 5 depicts our algorithm for the automatic model
transformation from UML to C++ representation. As input
serves the UML model of a program. The algorithm gen-
erates C++ representation of the model. The UML model,
with its diagrams and modeling elements, forms a tree data
structure. During the model transformation process the
tree is programmatically traversed, which makes possible
to visit each modeling element and read its properties (see
Figure 6). Lines 1–8 of the algorithm determine the perfor-
mance relevant modeling elements of the UML model based
on the element’s property stereotype name. For instance,
modeling elements with the stereotype name action+ are
used to model the performance of sequential code blocks. In
the C++ model representation are included the global vari-
ables, cost functions, and the model structure (that is per-
formance modeling elements and their flow). Lines 9–12 of
the algorithm are responsible for generation of C++ repre-
sentation of the global variables. Lines 13–18 generate C++
representation of the cost functions (for instance, double
FA1(){ ... };). The model structure is defined in the
lines 19–35. If there are local variables defined in the UML
model, then their C++ representation is generated in the
lines 20–23. Lines 24–28 declare the performance mod-
eling elements (for instance, ActionPlus A1(...);).
In the lines 25–35 it is defined the execution flow of model-
ing elements. The algorithm generates the C++ code that for
each performance modeling element invokes its execute()
method (for instance, A1.execute(uid, pid, tid,
FA1());). The execution order of performance model-
ing elements is in accordance with the specified flow in the
UML model.

Figure 6 shows the UML communication diagram of the
model traversing procedure, which provides the possibility
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Input :  uml_mod_rep, UML based model representation

Output :  c++_mod_rep, C++ based model representation

Method :  A tree structure, which contains the model
with its diagrams and modeling elements, is
traversed during the model transformation process.
Performance relevant modeling elements of the UML
model are identified based on the stereotype name
for instance, <<action+>>).

 1: // Identify and select performance modeling
       elements
 2: FORALL(is diagram of uml_mod_rep) DO
 3:  FORALL(is element of diagram) DO
 4:    IF(element is performance modeling element)
 5:      add element to perf_elements;
 6:    ENDIF
 7:  ENDFOR
 8: ENDFOR
 9: // Globals
10: FORALL(variable of uml_mod_rep is global) DO
11:  add variable to c++_mod_rep;
12: ENDFOR
13: // Cost functions
14: FORALL(is element of perf_elements) DO
15:  IF(element has function)
16:    add function to c++_mod_rep;
17:  ENDIF
18: ENDFOR
19: // Program
20: // Locals
21: FORALL(variable of uml_mod_rep is local) DO
22:  add variable to c++_mod_rep;
23: ENDFOR
24: // Declare performance modeling elements
25: FORALL(is element of perf_elements) DO
26:  identify the type of element;
27:  add element declaration to c++_mod_rep;
28: ENDFOR
29: // Define performance modeling elements and
       their control flow
30: FORALL(is diagram of uml_mod_rep) DO
31:  FORALL(is element of diagram) DO
32:    identify the type of element;
33:    add the corresponding c++ representation to
       c++_mod_rep;
34:  ENDFOR
35: ENDFOR

Figure 5. The algorithm for model transforma-
tion from UML to C++.

to walk programmatically through the model, to visit each
modeling element, and to access its properties. We use the
model traversing for the generation of various model rep-
resentations. Model traversing involves three entities: the
Traverser, the Navigator and the ContentHandler. During
the model traversing procedure, first, the Traverser sends the
navigation command to the Navigator. Then, the Traverser
obtains the current element ce from the Navigator. Finally,
the Traverser asks the ContentHandler to visit the element
ce and generate the corresponding code.

:Navigator:Traverser

:ContentHandler

1: navigationCommand()

3: visitElement(ce)

2: ce := getCurrentElement()

Figure 6. The UML communication diagram of
the Performance Prophet model traverser.

The Navigator, the Traverser, and the ContentHandler
are independent of each other in the sense that they only
communicate via well-defined interfaces (see Figure 6).
Therefore, each implementation of one of these components
can be combined with any implementation of the other two
components. Performance Prophet provides the necessary
interfaces and base classes and default implementations of
the Navigator, Traverser and ContentHandler. Commonly,
the extension of Performance Prophet for the generation of
a specific model representation involves only a specific im-
plementation of the ContentHandler interface.

In the following section we illustrate our methodology
with an example using the Performance Prophet.

4 Example

Figure 7 depicts the process of UML based specifica-
tion of a sample performance model for a hypothetical pro-
gram. The user specifies the type of performance modeling
elements and their flow. Furthermore, the user may asso-
ciate a code fragment and a cost function to each perfor-
mance modeling element. Each performance modeling el-
ement corresponds to a code block of a hypothetical pro-
gram, whose performance is modeled. The example in Fig-
ure 7(a) illustrates the hierarchical modeling capabilities of
Performance Prophet. On the left hand side of Figure 7(a)
is depicted the main activity diagram, which comprises a
set of instances of stereotypes action+ and activity+.
After the execution of action A1 is completed, based on the
value of variable GV, it is decided whether to execute the
activity SA or the action A2. While an action is not further
decomposed into other elements, an activity contains a set
of elements. The content of an activity is described with an
activity diagram. The content of activity SA, which is an
instance of stereotype activity+, is depicted in the un-
docked diagram SA in Figure 7(a). Activity SA comprises
performance modeling elements SA1 and SA2.

It is possible to associate global and local variables to
the model. The name and the type of global and local vari-
ables may be specified as properties of the model. On the
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(a) The performance modeling elements and their flow

(b) Code fragment association (c) Cost function association

Figure 7. The UML based specification of a sample model.
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right-down corner of Figure 7(a), in the list of properties of
sample model, we may observe that variables GV and P are
specified as global variables of the model. We are aware
that this sample model could be expressed without the use
of global variables, but nevertheless we opted for this solu-
tion for illustration purposes.

Figure 7(b) depicts an example of the code association
to a performance modeling element. This feature can be
used to complement C++ representation of the performance
model. In this example we have associated a code frag-
ment to the performance modeling element A1, which as-
signs values to global variables GV and P.

Figure 7(c) depicts an example of the association of a
cost function to a performance modeling element. A cost
function models the execution time of the code block that
is represented by the performance modeling element. A
cost function may use local or global variables as param-
eters. Moreover, a cost function may be composed using
other functions that are defined in the performance model.
In this example we have associated a simple parameterized
cost function to the performance modeling element A1.

Figure 8 depicts the C++ representation of the sam-
ple model, which is automatically generated by the Per-
formance Prophet based on the UML representation. The
model transformation from UML to C++ representation is
based on the algorithm that we presented in Figure 5.

Figure 8(a) depicts an excerpt of the C++ model repre-
sentation that includes two code sections: (1) global vari-
ables, and (2) cost functions. Lines 24–25 declare the
global variables GV and P. In our sample model the vari-
able GV is used to make the decision whether to execute
activity SA or action A2 (see Figure 7(a)). The variable P
is used as a parameter of cost functions. We may observe
that, in this example, for each performance modeling ele-
ment {A1, A2, A4, SA1, SA2} it is defined a cost function
{FA1, FA2, FA4, FSA1, FSA2} (code lines 31–54). As
parameters of cost functions may be used the properties of
system components (such as number of processors, or the
ID of process). For instance, the cost function FSA2 takes
pid as a parameter, which is the process ID. Please note that
the cost functions presented here serve the purpose of illus-
tration of various forms of expressing cost functions, and
that these cost functions are not derived from a real-world
program.

Figure 8(b) depicts the declaration of performance
modeling elements and their execution flow. Lines
64–68 declare the performance modeling elements
{A1, A2, A4, SA1, SA2}. We may observe that the C++
code that represents activity SA (lines 79–82) is nested
within the C++ code of the main activity (lines 71–89).
Lines 72–75 represent the code that is associated with the
element A1 (the code association is depicted in Figure 7(b)).
A performance modeling element is executed by invoking

(a) Global variables and cost functions

(b) Execution flow of performance modeling elements

Figure 8. The C++ representation of the sam-
ple model.

its execute() method. The execution of a performance mod-
eling element models the performance behavior of a code
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block during the program execution. Each performance
modeling element corresponds to a code block of the
program, whose performance is modeled. For instance, the
line 76 in Figure 8(b) executes the performance modeling
element A1. We may observe that one of the parameters
of method execute() is the name of the cost function FA1
that is associated with the element A1. The branch control
flow of the UML model representation (see Figure 7(a))
is mapped to the if-else-if statement in C++ model
representation (lines 77–87).

The C++ representation that is presented in Figure 8 is
used as input for the Performance Estimator.

5 Conclusions

In this paper we have described our methodology for the
development of performance models of programs. Our ap-
proach supports the graphical specification of performance
models in a human-intuitive fashion on one hand, and on
the other hand is amenable to the machine-efficient model
evaluation. The model transformation, from the graphical
human-intuitive form (that is, UML representation), to the
form that can be efficiently evaluated by machine (that is,
C++ representation), is performed automatically. We have
demonstrated our methodology with the transformation of a
sample performance model using the Performance Prophet
modeling system.

In future we plan to extend our approach to enable the au-
tomatic generation of the program code based on the UML
model.
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