

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Design and Evaluation of Tabu Search Method for Job Scheduling
in Distributed Environments

Fatos Xhafa and Javier Carretero
Dept. of Languages and Informatics Systems
Polytechnic University of Catalonia, Spain

fatos@lsi.upc.edu

Enrique Alba
Dept. of Languages and Computer Science

University of Málaga, Spain
eat@lcc.uma.es

Bernabé Dorronsoro
Faculty of Science, Technology and Communication

University of Luxembourg, Luxembourg
bernabe.dorronsoro@uni.lu

Abstract

The efficient allocation of jobs to grid resources is in-
dispensable for high performance grid-based applications.
The scheduling problem is computationally hard even when
there are no dependencies among jobs. Thus, we present in
this paper a new tabu search (TS) algorithm for the prob-
lem of batch job scheduling on computational grids. We
consider the job scheduling as a bi-objective optimization
problem consisting of the minimization of the makespan and
flowtime. The bi-objectivity is tackled through a hierarchic
approach in which makespan is considered a primary objec-
tive and flowtime a secondary one. An extensive experimen-
tal study has been first conducted in order to fine-tune the
parameters of our TS algorithm. Then, our tuned TS is com-
pared versus two well known TS algorithms in the literature
(one of them is hybridized with an ant colony optimization
algorithm) for the problem. The computational results show
that our TS implementation clearly outperforms the com-
pared algorithms. Finally, we evaluated the performance
of our TS algorithm on a new set of instances that better
fits with the concept of computational grid. These instances
are composed of a higher number of –heterogeneous– ma-
chines (up to 256) and emulate the dynamic behavior of
these systems.

1. Introduction

Computational Grid (CG) is a new distributed comput-
ing paradigm for the development of large-scale distributed
applications [11, 12, 13]. One of the main objectives of
CGs is to provide computational frameworks that support

applications, which could benefit from the large comput-
ing potential of such distributed infrastructures. In fact, al-
most immediately after the introduction of CGs, the grid
approach was validated in practice by several projects such
as NetSolve [8] and MetaNeos including applications for
stochastic programming [17] and optimization [15, 24].
CGs currently represent a very successful approach for

large-scale distributed real-world applications; numerous
examples of such applications are being reported in the liter-
ature [18, 22]. Nonetheless, the grid computing paradigm is
raising important issues regarding the development of large-
scale distributed applications. One such issue is the efficient
dynamic allocation of jobs to geographically distributed re-
sources. Although the family of scheduling problems is one
of the most studied ones by the optimization research com-
munity, application of the available approaches to the job
scheduling on CGs is not straightforward, as it differs sig-
nificantly from conventional scheduling in distributed sys-
tems. This can be explained by the fact that scheduling in
grid systems adds new features not present in conventional
scheduling problems. The following features could be dis-
tinguished:

• Heterogeneity of jobs: jobs submitted to the grid sys-
tem could be originated by different users and appli-
cations. In general, the grid system is not aware of
the type of jobs being submitted. Moreover, jobs may
have different workloads, could require different re-
source capacity, have different amounts of associated
data, etc.

• Job restrictions: apart from the usual scheduling char-
acteristics such as release date, jobs can have other re-
strictions on the type of resources needed to solve them
and incompatibilities could exist.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/158801843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Multi-objectivity: several objectives, which could be
contradictory, are to be optimized. Examples of
these objectives include makespan, flowtime, match-
ing proximity, or resource utilization. Other objectives
could be considered if the resources were to be used
in pay-per-use mode, requiring, for instance, the max-
imization of user’s benefit.

• Large-scale: grids are expected to be large or very
large in size and a large number of jobs could be sub-
mitted by independent users and applications.

It should be noted that, unlike traditional schedulers, any
grid scheduler will be running as long as the grid itself ex-
ists, since jobs can be submitted at any time and the infor-
mation on the current state of resources and jobs should be
kept up to date. One important implication of this is that
any grid scheduler must achieve allocations1 of jobs to re-
sources in very short times and must be robust in order to
adapt itself to the changes of in the grid.

One simple yet very important version of the job
scheduling is that of scheduling independent jobs. Given
the large size as well as the decentralized nature of the grids,
this type of scheduling arises naturally when a number of
independent users/applications submit their jobs to the grid;
also, it appears in a family of applications known as pa-
rameter sweep applications [9, 10], which consist of many
independent jobs that could use files for input and output
(e.g. Monte-Carlo simulations).

Heuristic methods have turned out to be a standard ap-
proach in combinatorial optimization. Dealing in practice
with real-size problems makes the use of such methods the
de facto choice. One such method is the Tabu Search (TS),
which has shown its effectiveness in a broad range of com-
binatorial optimization problems. In this work we propose a
new TS algorithm for the job scheduling on computational
grids for the bi-objective case2, namely, the minimization of
makespan and flowtime.

The TS algorithm distinguishes for its flexibility in ex-
ploiting domain/problem knowledge in the selection of pa-
rameters and other inner ingredients (sub-algorithms). The
TS implementation presented here explores this flexibility
and, thus by carefully designing and implementing the TS
sub-algorithms and tuning of TS parameters, our TS imple-
mentation is able to outperform other known heuristic ap-
proaches. The experimental study was carried out, on the
one hand, by using a static benchmark [6], and, on the other
hand, by using a prototype of a grid simulator. We study
the static benchmark for comparison purposes, and then, af-
ter demonstrating the validity of our method, we tackle a

1We do not consider the co-allocation feature, that is, the simultaneous
use of several resources to solve a single job is not considered.

2Resource utilization has also been considered, though it is not reported
here.

much more realistic benchmark we defined folowing the
directives in [7]. Our implementation achieves very fast
makespan reductions, thus making the resulting scheduler
adequate for grid applications. It is noted that some existing
TS-based approaches in the literature require long comput-
ing times to achieve significant makespan reductions, which
is usually prohibitive for a grid system. Moreover, the re-
ported results for the problem in the literature are limited to
rather “small” size instances, consisting of a dozen of ma-
chines and hundreds of jobs. Therefore, medium, large and
very large size instances are generated and TS implementa-
tion is tested, as this is more realistic for grid systems. Fi-
nally, we also address the issue of studying the performance
of the TS scheduler in a dynamic environment.
The paper is organized as follows. We give in Section 2

the description of job scheduling in CGs considered in this
work. TS and its particularization for the problem studied
are given in Section 3. The experimental study is presented
in Section 4. We summarize in Section 5 the most important
results of this work and indicate directions for future work.

2 Problem definition

We present in this section the problem of job scheduling
in computational grids. For making realistic simulations,
it is necessary that the problem captures the most impor-
tant features of CGs. We are using in this paper the model
of Braun et al. [6], that simulates heterogeneous distributed
environments and allows to introduce characteristics of both
jobs and resources of the grid system. Further, as we will
see shortly, several optimization criteria can be defined in
Braun’s model, capturing thus the multi-objectivity feature
of the problem. In this model a collection of jobs with no
inter-dependencies is considered for allocation of resources.
The problem is based on the definition of the Expected Time
to Compute (ETC) matrix in which ETC[j][m] indicates
an estimation of how long will it take to complete job j
using resource m. One possible way to compute the en-
tries ETC[j][m] is to divide the workload of job j by the
computing capacity of resource m. We are assuming here
that the workload is known, and in practice it can be ob-
tained from specifications provided by the user, from his-
torical data, or from predictions. Examples of computation
of the job workloads can be found for the Cornell Theory
Center [16] or the Parallel Workload Archive [1].
Using the ETC matrix model, an instance of the job

scheduling, at a given instant of time, can be defined as fol-
lows:

• A number of independent jobs to be allocated to grid
resources. Each job has to be processed entirely in a
single resource and is not preempted (once started, a
job runs until completion).

• A number of machines that are candidate to participate
in the allocation of jobs.

• The workload (in millions of instructions) of each job.
• The computing capacity of each machine (in mips).
• The ready times, denoted readym, indicating when
machine m will have finished the previously assigned
jobs. This parameter measures the previous workload
of a machine.

• The ETC matrix of size nb jobs × nb machines,
where ETC[j][m] is the value of the expected time
to compute of job j in machinem.

Solving this problem is in fact a multiobjective task,
since the fitness of a schedule can be measured using sev-
eral optimization criteria, such as minimizing the makespan
(that is, the finishing time of the latest job), the flowtime
(i.e., the sum of finalization times of all the jobs), the com-
pletion time of jobs in every machine (closely related to
makespan), or maximizing the resource utilization. We con-
sider that the most important criterion is that of minimizing
the makespan, and certainly, this is the most reported pa-
rameter in scheduling studies of distributed systems. Ad-
ditionally, we are also considering in this work the mini-
mization of the flowtime of the grid system as a secondary
criterion. These two criteria are formally defined as follows:

• makespan: minSi∈Sched{maxj∈Jobs Fj} and,

• flowtime: minSi∈Sched{
∑

j∈Jobs Fj} ,

where Fj denotes the time when job j finalizes and Sched
is the set of all possible schedules. Note that the makespan
is not affected by any particular job execution order in a
concrete resource, while in order to minimize the flowtime
of a resource, the assigned jobs should be executed in an
ascending order of their ETC value. In fact, makespan and
flowtime are contradictory objectives, in the sense that try-
ing to minimize one of them could be to in detriment of the
other, especially for near-optimal schedules. This is espe-
cially evidenced for schedules which are close to optimal.
For solving the problem we designed a hierarchical algo-

rithm, in which the two objectives are optimized in different
steps: the algorithm first optimizes the considered most im-
portant objective (makespan) and after that it optimizes the
secondary goal, namely, the flowtime. In this second step,
the value for makespan can not be worsened. All the details
on the proposed algorithms can be found in Section 3.

3 Tabu Search for Scheduling on Computa-
tional Grids

In this section, we present the TS algorithm proposed
for solving the job scheduling problem described in Sec-
tion 2. The TS method was introduced by Glover [14] as

a high-level algorithm that uses other specific heuristics to
guide the search; the objective is to perform an intelligent
exploration of the search space that would eventually allow
to avoid getting trapped into local optima. The template
we have used for designing our TS algorithm is provided
in Figure 1. This code has shown to be very effective for
several problems [2, 3, 4, 5].

begin
Compute an initial solution s; let ŝ← s;
Reset the tabu and aspiration conditions.
while not termination-condition do
Generate a subset N∗(s) ⊆ N(s) of solutions such
that (none of the tabu conditions is violated)
or (the aspiration criteria hold);

s← best s′ ∈ N∗(s) in terms of cost function;
if improvement(s′, ŝ)) then ŝ← s′; endif;
Update the recency and frequency;
if (intensification condition) then
Perform intensification procedure;

endif;
if (diversification condition) then
Perform diversification procedures;

endif;
endwhile;
return ŝ;

end;

As it can be seen from the template of Fig. 1, one of
the distinguishing features of TS versus other heuristics is
the use of an historical memory, which consists of a short
term memory (or recency), with information on recently vis-
ited solutions, and a long term memory (or frequency), stor-
ing information gathered during the whole complete explo-
ration process. Additionally, when designing a TS algo-
rithm for a specific problem we need to specify some in-
ner heuristics like the local search, used for exploring the
neighborhood of a solution, the tabu status and aspiration
criteria, for managing the list of recently visited solutions,
and the intensification and diversification procedures, for
appropriately managing the exploration/exploitation trade-
off on the search space. In the following sections we de-
scribe the TS algorithm used in this work.

We consider a schedule as a vector of job-machine allo-
cations of size nb jobs, in which schedule[i] indicates the
machine where job i is assigned to. Thus, the values of this
vector are natural numbers in [1, nb machines]. Note that
in this representation a machine number can appear more
than once.
Two types of movements [23] are considered for this rep-

resentation: transfer and swap. Transfer moves a job from
one machine to another one and swap interchanges two jobs

assigned to different machines. Note that these types of
movements take into account the specific need of load bal-
ancing. Swap leaves the number of jobs assigned to the
machines constant, while transfer changes it. Note also that
a swap can be achieved by two consecutive transfers.

We have used Min-Min method to generate the starting
solution. Min-Min starts by computing a matrix of val-
ues completion[i][j] for any job i and machine j based
on ETC[i][j] and ready[j] values (completion[i][j] =
ETC[i][j]+ready[j]). For any job i, the machinemi yield-
ing the earliest completion time is computed by traversing
the ith row of the completion matrix. Then, job ik with the
earliest completion time is chosen and assigned to the previ-
ously computed machinemk. Next, job ik is removed from
the set of jobs to do (Jobs) and the values completion[i][j]
for each i in Jobs and machine mk are updated. The pro-
cess is repeated until no job remain to be assigned.

Both short and long term memories have been used in
our TS algorithm. For the recency memory, a matrix TL
(nb jobs×nb machines) is used to maintain the tabu list3

in which TL[j][m] indicates the number of the last iteration
in which job j was assigned to machine m. Whenever the
value of TL[j][m] changes, this means that a new assign-
ment is made due to a movement (e.g., transfer or swap).
In this case, the original assignments before the application
of the movement are therefore made tabu. A transfer move-
ment effects just one entry of the TL matrix while a swap
movement effects two entries. In addition to this TL, a tabu
hash table (TH) is maintained in order to know which so-
lutions (hash Ids) have been already visited. Note that TH
is used as a complementary information to TL in the sense
that TL is able to detect only movements which have been
assigned tabu status recently, while TH can give such infor-
mation for longer time periods. Thus, using this information
together with information on tabu movements we are able to
filter even more movements that lead to previously visited
solutions.
Regarding the frequency memory, a matrix

frequency (nb jobs × nb machines) is used, in
which frequency[j][m] indicates how many times job j
has been assigned to machine m. This way, the frequency
table we keep indicates for any task how many times it has
been assigned to different machines. This memory is used
in the intensification phase (see Section 3.6). Finally, as is
standard practice, a user-specified number of elite solutions
is kept.

3This is adopted from Taillard [21].

Aspiration criteria are used to remove the tabu status of
movements. Initially we used two well-known criteria to
determine the aspiration level of movements:

• Fitness based criterion: it consists of accepting a tabu
movement if it yields to a better solution. Thus, for
a given solution s, the set Abetter(s) of its neigh-
bor solutions s′ that are better than s according to
the evaluation criterion are accepted for evaluation:
Abetter(s) = {s′ | improvement(s, s′)}.

• Using the TL matrix4: the set of aspiring solutions of
s at iteration k is computed as A(s) = Atransf (s) ∪
Aswap(s):

Atransf (s) = {s
′ | s

′
= s ⊕ mtransf (ti, mj), TL[i][j] +

asp value) ≤ k}
Aswap(s) = {s

′ | s
′
= s ⊕ mswap(ti, tj), max(TL[i][s(j)],

TL[j][s(i)]) + asp value) ≤ k},

where asp value is a user-specified value indicating the
minimum number of iterations after which a tabu move-
ment can aspire. Thus, for a given solution s and a tabu
movement m, if the solution s′ obtained by applying m to
s belongs to Abetter ∪ Atransfer(s) ∪ Aswap(s) then m is
accepted for evaluation.

Notice that the above aspiration criteria are somehow re-
strictive (the first criterion uses a global fitness value and the
second one takes into account the lifetime of a tabu move-
ment). Therefore, we have defined another aspiration cri-
terion based on the value of the local makespan, that is,
the makespan relative to a movement (remember that the
makespan is the primary objective in our hierarchical ap-
proach). This criterion is defined as follows:

A
′
transf (s) = {s

′ | s
′
= s ⊕ mtransf (ti, mj),

makespan(s
′
) < best makespan(s[i], [j])}

A
′
swap(s) = {s

′ | s
′
= s ⊕ mswap(ti, tj),

makespan(s
′
) < best makespan(s[i], s[j])},

where best makespan(·, ·) is a nb jobs × nb machines
matrix whose i, j position indicates the smallest makespan
value achieved by moving jobs from machines mi and mj .
This criterion actually turned out to give better results and,
actually, larger sets of aspiring solutions were obtained.

4Similar to Taillard’s criterion in his TS for QAP problem.

TS is a local search heuristic, therefore the quality of
encountered solutions largely depends on the effectiveness
and efficiency of the neighborhood exploration. The neigh-
borhood of a solution is determined by two types of move-
ments, namely transfer and swap, which are applied with
equal probability. Scheduling in grids is a large-scale prob-
lem, so one important issue here is to reduce the size of
the neighborhood since full exploration could penalize the
overall time of the TS. Thus, in order to make a reasonable
trade-off between the neighborhood size and the quality of
neighboring solutions, we use the load balancing as a cri-
terion: transfers and swaps are made among jobs assigned
to most-loaded machines and jobs assigned to less-loaded
machines, as defined next.

In fact, even after reducing the number of candidate
machines for transfers and swaps, the remaining neigh-
borhood can still be large, so we also put upper bounds
on the maximum number of transfers and swaps that can
be evaluated. Thus, we defined four parameters (of user-
specified values): (a) max load factor ∈ [0, 1] to com-
pute the set of most overloaded machines with respect to the
makespan of the current schedule (the overloaded machines
are those for which completion[m] > max load factor ·
local makespan); (b) min load factor used to com-
pute the set of less overloaded machines (machines are
sorted according to their completion time and the first
min load factor · nb machines machines are consid-
ered); (c)max transfs for the maximum number of trans-
fer movements; and (d) max swaps for the maximum
number of swap movements.

For a given solution s, candidate neighbor solutions s′

are evaluated according to a steepest-descent criterion (the
best movement w.r.t. improvement criterion) or mildest-
ascent (the least worst movement) in case no better so-
lutions are encountered among neighbor solutions. The
improvement criterion can be defined in different ways,
such as minimizing the makespan, minimizing the differ-
ence between the completion times of s and s′, or min-
imizing the completion time of the most overloaded ma-
chine. Here, we have chosen the minimization of comple-
tion time of the most overloaded machine when restricted to
the new machines involved in the neighbor solution. Thus,
again, we preferred a local optimality criterion rather than
a global one. Formally, beingMs the machines involved in
s, the criterion ismins′{maxm∈M ′ completion[m]} where
M ′ = {s−1(m) �= s′−1(m) | m ∈ Ms}, that is, the set of
machines involved in s effected by the movement that leads
to s′.

The intensification procedure is activated when there is
evidence that the region of the current solution could con-
tain good solutions. Thus, the main course of the search
is temporarily changed in order to carry out a thorough ex-
ploration of the region that contains the current solution.
Usually, this more deeper exploration is done by means of
rewarding (attributes of) the current solution, thus forcing
their presence in new solutions. Three different strategies
for intensifying the search are considered and a combina-
tion of them is finally applied.

• Using elite solutions. The frequency table obtained
from elite solutions is used for rewarding the most
promising attributes of solutions. For each job, its
most frequent assignment is chosen with probability
.75, while in other case (probability .25) it is assigned
using a roulette-wheel.

• Changing temporarily the values for the maximum and
minimum load factor parameters. Essentially, instead
of using the user-specified values for these parameters,
we compute them using the current state of the grid (in
terms of the workload of machines) with the only con-
dition that the number of resulting transfers and swaps
are bounded by their respective upper bounds (see Sec-
tion 3.5). Then, the neighborhood is defined by these
new values.

• Changing the structure of the neighborhood. Instead
of applying transfers and swaps with equal probability,
we apply first a sequence of swaps followed by just
one transfer. The method is as follows: two machines
m1 and m2 are randomly chosen, and next, we first
apply all possible swaps of jobs in m1 with those in
m2 and then we apply just one transfer fromm2 tom1.
A strictly steepest–descent criterion (w.r.t. completion
times) is used for the evaluation.

As we previously introduced, these three strategies are
combined following a hierarchical approach: we start by
applying the first strategy until no improvements are pos-
sible, and then we proceed by applying the second and the
third ones.

Diversification is conceptualized in two forms (see
also [2, 5]): soft diversification, which promotes the search
in a new region that is “not far” from the current one, and
strong diversification, which is a re-start search. The idea
is to avoid using only the abrupt interruption, which is a
typical application use of this procedure in the TS method.

To this end, we have implemented three different forms of
soft diversification in addition to the strong diversification,
as explained below.

Using the job distribution. This idea is taken from
Hübscher and Glover [?], and it is also known as influen-
tial diversification. Essentially, we try to redistribute the
jobs to machines in such a way that any machine is assigned
long and short jobs. In other words, it is considered poten-
tially problematic that some machines have an “excessive”
number of long5 jobs while it is assigned a large number of
many short jobs to others. Thus, by redistributing the jobs
among these machines would imply a slight perturbation of
the schedule with the aim of obtaining a better one. To this
end, a kind of job distribution factor is computed using the
expected time to compute values in order to identify two
machines: one with the largest number of short jobs and an-
other one with the longest jobs. Then, a subset of jobs from
the first is exchanged with a set of jobs from the second
using the minimum completion time strategy.

Using penalization of ETC values. Penalizing attributes
of a solution is one of the most commonly used forms of
diversification. More precisely, we use the long term mem-
ory (frequency) to penalize the corresponding ETC[j][m]
values of most frequent job-machine assignments.

Freezing jobs. This is also another penalization method.
In this case, the jobs that have most frequently changed their
assignments are frozen. This information is again obtained
from the long term memory. Freezing a job at an iteration
is simply done by assigning tabu status to all movements
that involve the job for the concrete iteration; after the di-
versification is carried out, the tabu status of these job(s) is
cancelled.

Strong diversification. In this work, we have discarded
the possibility of re-starting the search from a new initial
solution in order to avoid introducing too much diversity;
instead, we perform a large perturbation of the current so-
lution by randomly changing the assignments of a sufficient
number of jobs.

4 Experimental study

In this section we present the results of the experimen-
tal study for the proposed TS implementation. In order to
measure the quality of our algorithm, we compare it versus
some other algorithms in the literature on a classical bench-
mark on job scheduling on grid computing (Section 4.1).
After validating our algorithm, we use it for solving more
realistic instances we generated for this work (Section 4.2).

5Long and short refer to large and small ETC values.

The objective of this section is to show the quality of
the TS algorithm we propose in this work. For that, our
algorithm is compared versus both a TS and an ant colony
optimization algorithm hybridized with a TS (ACO+TS).
These two compared algorithms were proposed by Ritchie
and Levine [19]. Thus, we selected the same benchmark
used in that work and compare all the algorithms in terms of
makespan (no results for flowtime were presented in [19]).
The instances of this benchmark are classified according to
three parameters (job heterogeneity, machine heterogeneity,
and consistency) into 12 different types of ETC matrices,
each of them these consisting of 100 instances. For all in-
stances, the number of jobs is 512 and the number of ma-
chines is 16. Instances are labelled as u x yyzz.k where u
means uniform distribution (used in generating the matrix),
x is the type of consistency (c–consistent, i–inconsistent
and s means semi-consistent), yy and zz indicate the job
and machine heterogeneity (hi –high, and lo –low), respec-
tively, and k is used to number instances of the same type.
In this benchmark, an ETC matrix is considered consistent
when, if a machine mi executes job j faster than machine
mj , then mi executes all of the jobs faster thanmj . Incon-
sistency means that a machine is faster for some jobs and
slower for some others, while an ETC matrix is considered
semi-consistent if it contains a consistent sub-matrix.

The parametrization used in the proposed TS is shown in
Table 1. As it can be seen, we used the Min-Min method
for generating the initial solution. The size of the tabu hash
table (TH) is set to 918133, which is a high number and
non divisor of 20, as it is recommended by Srivastava [20].
The maximum number of iterations a solution remains tabu
(max tabu status) is chosen uniformly from the inter-
val [nb machines, 2 ·nb machines], and the maximum
number of successive iterations without improvements of
the current solution implying the activation of the intensifi-
cation (max repetitions) is fixed to 4 ln(nb jobs) ·
ln(nb machines). The number of iterations of a diversi-
fication (nb diversifications) and an intensification
(nb intensifications) are set to log2(nb jobs).
The max load factor and min load factor param-
eters are used to identify most and less overloaded ma-
chines, respectively, and their values are set to 1.0, and
there is no limit for the maximum number of movements
(max nb swaps , max nb transfs) allowed while ex-
ploring the neighborhood. Finally, we consider a number of
30 elite solution, and a value of (max tabu status/2)−
log2(max tabu status) for the minimum number of it-
erations after which a tabu movement can aspire. The algo-
rithm runs for 100 seconds.

We give in Table 2 the computation results for makespan
value of our TS implementation and the TS and TS+ACO

start choice Min-Min method
tabu size 918133
max tabu status 32
max repetitions 69
nb diversifications 8
nb intensifications 8
max load factor 1.0
min load factor 1.0
max nb swaps ∞
max nb transfs ∞
nb iterations 8192
elite size 30
aspiration value 20
max time to spend 100 seconds

algorithms by Ritchie and Levine in [19]. In the case of
our TS algorithm, each reported value is the best makespan
value out of 10 executions. In order to demonstrate the ro-
bustness of our proposal, we include in the last two columns
of Table 2 the average makespan obtained and its deviation
w.r.t. our best makespan value.
As can be seen in Table 2, our TS is more effective than

the Ritchie’s TS and ACO+TS algorithms. More precisely,
our implementation outperforms Ritchie’s ones for 9 out of
12 considered instances. For the remaining three instances
the improvement over our TS is very small. We believe
that this better performance of our TS implementation is
due to a better embedding of problem specific knowledge
into the problem-dependent procedures of the TS method.
Moreover, our reduced execution time of 100 seconds (fixed
by the stopping criterion of the algorithm) is far lower than
Ritchie’s execution times, which is probably due to the use
of more efficient data structures in our implementation. At
this point, it should be noted that the execution time of the
scheduler in a dynamic environment, such as grid systems,
is a critical factor. Thus, the short execution times achieved
by our TS implementation show that the TS method yields
to fast and significant reductions of makespan and is thus
very suitable for grid schedulers.

As an extension to the experiments carried out in the pre-
vious section, we proceed here to apply our TS to a more
realistic benchmark (ranging from 32 to 256 machines) in
order to evaluate the performance in more realistic scenar-
ios. A description of the benchmark used for this brief study
can be found in [7], and its main feature (in addition to the
larger instances size) is that several parameters are dynami-
cally changing, such as the number and the kind of available
resources and the jobs to be scheduled.
We give in Table 3 makespan and flowtime values for

instances generated using this dynamic benchmark. We ob-
serve that makespan value increases slowly as the instance
size is doubled while the flowtime increases considerably

(almost doubled). Additionally, we compare in Table 3 the
performance of our TS versus a steady-state genetic algo-
rithm (ssGA) proposed by Carretero and Xhafa in [7]. The
algorithms are compared only in terms of the makespan be-
cause no values for flowtime were reported in the referred
work. As it can be seen, our new TS implementation outper-
forms the compared algorithm for the studied instances, as
it already happened in Section 4.1 for the static benchmark.
Thus, our TS is a robust solution that outperformed some
of the state-of-the-art algorithms both in static and dynamic
environments.

Size
Makespan±%C.I (0.95) Flowtime± %C.I (0.95)

TS ssGA TS
32 3969016.8±0.4% 4063425.5±0.8% 1047867441.0±0.9%
64 3970894.0±0.4% 3994804.9±0.9% 2102952840.2±0.8%
128 3980381.4±0.4% 3995162.0±1.3% 4199261733.0±0.8%
256 3972429.0±0.4% 4009852.0±1.8% 833351728.9±0.9%

5 Conclusions and future work

In this work we have presented a Tabu Search (TS) im-
plementation for scheduling independent jobs in grid sys-
tems. This scheduling problem is currently receiving con-
siderable attention from researchers due to its importance in
obtaining high performance application for solving large-
scale optimization problems using grid systems. TS has
been considered here to cope with the complexity of the
problem and because it has shown to be very effective for
a variety of optimization problems, including scheduling
problems. As a matter of fact, TS has been previously con-
sidered for solving the scheduling problem by Ritchie and
Levine in 2004, but the reported execution times are pro-
hibitive for a grid system given its dynamic nature. There-
fore, our main objective was to obtain an efficient imple-
mentation that would yield to a scheduler for realistic grid
systems. Our computational results show that our TS sched-
uler outperforms Ritchie’s implementations for most of the
considered instances at far inferior executions times. Ad-
ditionally, the TS has also been tested in a more realis-
tic (dynamic) framework, outperforming also previous ap-
proaches.
In our further work we would like to complete the exper-

imental study of the TS scheduler in the dynamic setting.
Also, we would like to address parallelization of the TS im-
plementation using existing parallel models for the method
in the literature.

Acknowledgments

Research partially supported by ASCE TIN2005-09198-
C02-02, FP6-2004-IST-FETPI (AEOLUS) and MEC
TIN2005-25859-E Projects. E. Alba acknowledges partial

Instance Ritchie’s TS Ritchie’s ACO+TS Our TS Our TS (average) Our TS (dev.)

u c hihi.0 7568871.83 7497200.85 7448640.471 7458864.453 0.124%
u c hilo.0 154644.48 154234.63 153263.333 153438.078 0.063%
u c lohi.0 245981.55 244097.28 241672.657 242385.384 0.309%
u c lolo.0 5202.51 5178.44 5154.980 5155.783 0.014%
u i hihi.0 3021155.10 2947754.12 2957854.074 2959029.352 0.041%
u i hilo.0 74400.68 73776.24 73692.853 73734.844 0.047%
u i lohi.0 104309.12 102445.82 103865.666 103867.134 0.011%
u i lolo.0 2580.62 2553.54 2552.070 2559.961 0.126%
u s hihi.0 4248200.21 4162547.92 4168795.890 4181985.827 0.260%
u s hilo.0 97711.72 96762.00 96180.850 96432.137 0.203%
u s lohi.0 126115.39 123922.03 123407.442 123600.512 0.087%
u s lolo.0 3505.69 3455.22 3450.532 3454.022 0.064%

support from the Spanish MEC and FEDER under contract
TIN2005-08818-C04-01 (the OPLINK project).

References

[1] The hebrew university parallel sys-
tems lab., parallel workload archive,
http://www.cs.huji.ac.il/labs/parallel/workload/.

[2] E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Dı́az, I. Dorta,
J. Gabarró, C. León, G. Luque, J. Petit, C. Rodrı́guez, A. Ro-
jas, and F. Xhafa. Efficient parallel LAN/WAN algorithms
for optimization. the Mallba project. Parallel Computing,
32(5-6):415–440, 2006.

[3] M. Blesa, L. Hernandez, and F. Xhafa. Tabu search for
0-1 multidimensional knapsack revisited: choosing internal
heuristics and fine tuning of parameters. In 12th Young Op-
erational Research Conference, 2001.

[4] M. Blesa, L. Hernandez, and F. Xhafa. Parallel skeletons for
tabu search method based on search strategies and neighbor-
hood partition. In 4th International Conf. on Parallel Pro-
cessing and Applied Mathematics (PPAM’01), volume 2328
of LNCS, pages 185–193. Springer, 2002.

[5] M. Blesa, J. Petit, and F. Xhafa. Generic parallel implemen-
tations for tabu search. To appear, 2006.

[6] H. Braun, T. D. Siegel, N. Beck, L. Bölöni, M. Maheswaran,
A. Reuther, J. Robertson, M. Theys, and B. Yao. A compar-
ison of eleven static heuristics for mapping a class of in-
dependent tasks onto heterogeneous distributed computing
systems. Journal of Parallel and Distributed Computing,
61(6):810–837, 2001.

[7] J. Carretero and F. Xhafa. Using genetic algorithms for
scheduling jobs in large scale grid applications. Jour-
nal of Technological and Economic Development –A Re-
search Journal of Vilnius Gediminas Technical University,
12(1):11–17, 2006.

[8] H. Casanova and J. Dongarra. Netsolve: Network enabled
solvers. IEEE Computational Science and Engineering,
5(3):57–67, 1998.

[9] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for scheduling parameter sweep applications in
grid environments. In Heterogeneous Computing Workshop,
pages 349–363, 2000.

[10] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS parameter sweep template: user-level middleware

for the grid. In Proc. of the 2000 ACM/IEEE Conf. on Su-
percomputing (CDROM), pages 75–76. IEEE Press, 2000.

[11] I. Foster. What is the grid? A three point checklist. White
Paper, 2002.

[12] I. Foster and C. Kesselman. The Grid - Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers,
1998.

[13] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of
the grid: Enabling scalable virtual organizations. Interna-
tional Journal of Supercomputer Applications, 15(3):200–
222, 2001.

[14] F. Glover. Future paths for integer programming and links to
artificial intelligence. Computers and Operations Research,
5:533–549, 1986.

[15] J. Goux and S. Leyffer. Solving large MINLPs on compu-
tational grids. Optimization and Engineering, 3:327–346,
2002.

[16] S. Hotovy. Workload evolution on the Cornell theory center
IBM SP2. In Job Scheduling Strategies for Parallel Proc.
Workshop, IPPS’96, pages 27–40, 1996.

[17] L. Linderoth and S. Wright. Decomposition algorithms for
stochastic programming on a computational grid. Computa-
tional Optimization and Applications, 24:207–250, 2003.

[18] F. Luna, A. Nebro, and E. Alba. Observations in using grid-
enabled technologies for solving multi-objective optimiza-
tion problems. Parallel Computing, 32:377–393, 2006.

[19] G. Ritchie and J. Levine. A hybrid ant algorithm for schedul-
ing independent jobs in heterogeneous computing environ-
ments. In 23rd Workshop of the UK Planning and Schedul-
ing Special Interest Group (PLANSIG 2004), 2004.

[20] B. Srivastava. An affective heuristic for minimising
makespan on unrelated parallel machines. Journal of the
Op. Research Soc., 49(8):886–894, 1998.

[21] E. Taillard. Robust Tabu Search for the Quadratic Assign-
ment Problem. Parallel Computing, 17:443–455, 1991.

[22] E.-G. Talbi and A. Zomaya. Grids for Bioinformatics and
Computational Biology. John Wiley & Sons, USA, 2007.

[23] A. Thesen. Design and evaluation of tabu search algo-
rithms for multiprocessor scheduling. Journal Heuristics,
4(2):141–160, 1998.

[24] S. Wright. Solving optimization problems on computational
grids. Optima, 65, 2001.

