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COALITION FORMATION AND STABILITY

Abstract: This paper aims to develop, for any cooperative game, a solution
notion that enjoys stability and consists of a coalition structure and an associated
payo� vector derived from the Shapley value. To this end, two concepts are
combined: those of strong Nash equilibrium and Aumann�Drèze coalitional value.
In particular, we are interested in conditions ensuring that the grand coalition
is the best preference for all players. Monotonicity, convexity, cohesiveness and
other conditions are used to provide several theoretical results that we apply to
numerical examples including real�world economic situations.

Keywords: game theory, TU cooperative game, monotonicity, superadditivity,
convexity, cohesiveness, Shapley value, coalition structure, Aumann�Drèze value,
strong Nash equilibrium, stability.

AMS subject classi�cation: 91A12. JEL code: C71.

1. Introduction

Most of human groups are often faced to the need of making collective decisions. The agents
in such a group may be individuals, families, enterprises, political parties, trade unions, towns,
regions, countries, and other social organizations. A usual group decision�making procedure
consists in carrying out a negotiation addressed to reach full or partial agreements among the
involved agents. The situation can be studied from many di�erent points of view depending
on the decision at stake, the relationships among the agents, their particular interests, and the
procedure used to make the decision. There exist in the literature a lot of contributions on the
topic. Without trying to be exhaustive, we mention here [30], [15], [16], [33], [1], [48], [14] and
[27]. Many other references are discussed along the text.

Basic tools for any analysis are: (a) a description of the set of agents and the subsets able to arrive
at an agreement between their members; (b) an evaluation of the utility obtained by each agent
in any possible circumstance; (c) the consequent individual preferences on the set of outcomes;
and (d) the additional ingredients that one wishes to take into account when dealing with a given
problem. In this paper we propose to adopt the game theory perspective, because cooperative
games provide a useful (although not unique) model for discussing many aspects of the topic.
With this model, any value allows us to determine the possible payo�s and hence to de�ne all
individual preferences. E.g., simple games have been widely used to study political decision�
making mechanisms. In this case, the power distribution, rather than a payo� distribution in
economic terms, is the relevant issue. Ideological constraints for the agents, commonly present
in politics, may be introduced in the model adapting a given value conveniently. As an example,
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2 COALITION FORMATION AND STABILITY

we recall the generalizations of the Banzhaf value given by the symmetric coalitional binomial
semivalues [22] or the multinomial probabilistic values [23].

Our main objective is to present a new approach to the subject from the game theory viewpoint.
To this end, we consider: (a) the most basic model, which is that of TU cooperative game; (b)
the best known and accepted allocation method, the Shapley value, from which we obtain the
preferences based on maximizing its allocations; and (c) a stability criterion derived from the
Nash strong equilibrium notion. Our study is centered on coalition formation using agents' best
preferences and obtaining as solution(s) the coalition structure(s) where each agent lies in his
preferred coalition and receives therefore the allocation given to him by the Shapley value on the
game restricted to this coalition. This ensures the stability of the coalition structure and leads
to our solution concept. We obtain several theoretical results on existence and uniqueness and
illustrate the possibilities to apply these results to real�world simulated economic problems.

While writing this paper, we have revised many articles related with the topic. We have found
minor similarities with our work in some of them and essential di�erences in some others (details
are given along the text). Then, it seems interesting to summarize here the highlights of the
article in order to give clear insights into the novelty that it represents and the gap that it �lls.

• An applied game theory approach is used
• A new concept of solution for a cooperative game is established
• A noncooperative glance over any cooperative game is adopted
• The idea of stability is based on the Nash strong equilibrium notion
• Our procedure leads to using the Aumann�Drèze value, which is the result of applying
the Shapley value to subgames
• The procedure works for any cooperative game
• The grand coalition is not necessarily assumed to form
• All theoretical results are strictly original and useful in practice, and they concern the
process relevant to group decision and negotiation
• Our model is simple, but it admits possibilities of sophistication based on introducing
additional information not included in the characteristic function of the game and, e.g.,
modifying, if necessary, the value used for allocating payo�s

Game theory studies con�ictive situations that arise when a set of agents (called players), which
may have di�erent or even opposed interests, must take individual decisions to obtain some
kind of individual payo�s as the result of their interaction. Usually, there exists a certain level of
competition that, in some cases, is compatible with the possibility of total or partial cooperation.

Frequently, �cooperative game� and �noncooperative game� are considered in the literature an-
tagonistic notions. In a cooperative game, the players are allowed to communicate between
them in order to coordinate their actions, looking for a joint pro�t derived from their agreement.
Nothing of this is permitted in the noncooperative case, where each player has a set of strategies
and chooses one of them, trying to maximize his payo� and being aware that this payo� may
well depend on the choices simultaneously made by the other players.

At this point, it is convenient to specify the relative importance of two concepts: communication
possibilities and enforceability of the agreements.1 We quote from Harsanyi [34]:

1A suggestion for which we are grateful to a reviewer.



COALITION FORMATION AND STABILITY 3

This distinction was �rst proposed by Nash [44, 45], who de�ned cooperative
games as games permitting both communication and enforceable agreements be-
tween the players, and de�ned noncooperative games as games permitting neither
communication nor enforceable agreements.

[...] it is now commonly agreed that it is preferable to distinguish cooperative
games and noncooperative games on the basis of one single criterion. It turns out
that enforceability or unenforceability of agreements is a much more important
characteristic of a game than presence or absence of communication is.

Thus, we adopt in the sequel two basic assumptions for cooperative games: �rst, free commu-
nication is allowed between players in order to coordinate strategies; second, any agreement to
this end, arrived at by some or all players, is completely enforceable and, of course, each player
may sign only one agreement at most. So, if the players agree to cooperate then a negotiation
is carried out, one or more binding contracts can be established among all players or within
subsets of players (called coalitions) and, �nally, the bene�ts of the cooperation are to be shared
as speci�ed in the contract(s).

A cooperative game merely describes the utility of the coalitions, independently, a priori, of
whether they will really form or not. Therefore, we adopt two more additional assumptions:
�rst, all players agree that the Shapley value [52, 50] is the �universal sharing rule� to be used
in all circumstances;2 second, in consequence, each player perfectly knows the possibilities of the
others, that is, the coalitions they might choose and the payo�s they would receive according to
the coalition structure derived from their respective choices.

Often, it is implicitly assumed that, at the end, the grand coalition will form and its utility will
be divided among all players. However, one can raise objections to this assumption, since such
a full agreement may depend on many factors (for example, the sharing rule used) and it is not
unlikely that in certain cases the players prefer other options to organize themselves. We quote
Shenoy's basic ideas [54] to this respect:

The theory of n�person cooperative games is a mathematical theory of coalition
behavior. A fundamental problem posed in game theory is to determine what
outcomes are likely to occur if a game is played by �rational players.� I.e. given
an n�person cooperative game, it is natural to inquire (1) what will be the �nal
allocation of payo�s to each of the players and (2) which of the possible coalitions
can be expected to form. These two aspects of coalition behavior are closely
related. The �nal allocation of payo�s to each of the players depends on the
coalitions that �nally form, and the coalitions that �nally form depend on the
available payo�s to each player in each of these coalitions. Since the publication
in 1944 of the monumental work Theory of Games and Economic Behavior by
von Neumann and Morgestern [57], most of the research in n�person game theory
has been concerned explicitly with predicting players' payo� and only implicitly
(if at all) with predicting which coalitions shall form. In this paper, the primary
emphasis is on the second aspect of coalition behavior, namely the formation of
coalitions.

We subscribe Shenoy's opinion. What is important when analysing a game is to determine: (a)
which coalitions �not necessarily the grand coalition� will form, and (b) which are the payo�s

2A survey that shows the impact of the Shapley value in several scienti�c disciplines is due to Moretti and
Patrone [41].
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that players will subsequently receive. When using the Shapley value on subgames we are in fact
following the philosophy of the Aumann�Drèze value [11] (AD value, for short, in the sequel).

Grounds for our approach may be found, on one hand, in a strong criticism justi�ed in previous
works [9, 19, 20] against the use of the proportional rule as universal sharing rule; on the other,
in a renewed interest on the AD value, revealed in very recent articles [58, 26, 56, 3, 21].

The Shapley value of any player in any game is a weighted (convex) sum of the marginal con-
tributions of the player to all possible coalitions. Therefore, depending on the game, the payo�
assigned to a �xed player by the Shapley value might be even smaller than the utility that this
player can obtain alone. In this case, forming the grand coalition is harmful for this player and
hence it would be di�cult to persuade him to enter this coalition.

One could argue that this situation is avoided if the game is superadditive, because in this case
the Shapley value assigns to each player at least his individual utility. Nevertheless, there are
superadditive games where the formation of the grand coalition is not the best option for all
players, and even for none of them. We provide an example.

Example 1.1. (Aumann and Drèze [11]) Let us consider the symmetric, monotonic and super-
additive 3�person cooperative game u de�ned by

u(∅) = 0, u({i}) = 0, u({i, j}) = 8 for all distinct i, j and u({1, 2, 3}) = 9.

Superadditivity holds here because u({i}) + u({j}) ≤ u({i, j}) and u({i}) + u({j, k}) ≤ u(N)
for all distinct i, j, k ∈ N . The players might choose (a) to remain all alone, (b) to join a partner
and leave aside the other player, or (c) to form the grand coalition {1, 2, 3}. Then, from the
symmetric role of all players in this game, it is clear that the payo� to a player would be 0 if
he remains alone, 4 if he joins just a partner, and 3 if all form the grand coalition. Therefore,
players' preferences as to all these options are, schematically,

• {1, 2} ≡ {1, 3} > {1, 2, 3} > {1} for player 1,
• {1, 2} ≡ {2, 3} > {1, 2, 3} > {2} for player 2,
• {1, 3} ≡ {2, 3} > {1, 2, 3} > {3} for player 3.

We conclude that any organisation of the form B = {{i, j}, {k}}, with i, j, k distinct, would be
a �solution� of this game and would be �stable� in the sense that no player or group of players
has a strict incentive and the power to modify this structure.

The convenience to simultaneously deal with coalition formation and payo�s allocation inspired
the notions of coalition structure and coalitional value, introduced by Aumann and Drèze [11],
and gave a new impulsion to the development of value theory. These authors extended the
Shapley value to this new framework, using the approach of isolated unions, and obtained the
�rst coalitional value, the AD value. A second approach, that of bargaining unions, was used by
Owen [47], when introducing what is called now Owen value.

Two main di�erences between these values are: (1) the Owen value satis�es e�ciency, whereas
the AD value satis�es relative e�ciency (that is, in each union); and (2) the payo�s given by
the AD value within each union are independent of the organisation of the remaining players,
but this is not true for the Owen value. The reason is that the AD value is intended for being
applied when the players are assumed to stop the bargaining once they have formed the unions,
whereas the Owen value is based on the assumption that they form unions only as a previous step
addressed to attain a better bargaining position when forming, at the end, the grand coalition.
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The existence of di�erent coalitional values raised the convenience of testing the stability of any
coalition structure with regard to a given value. This is a great contribution of Hart and Kurz
[36]. These authors assume that both a game and a coalitional value are given, de�ne the notion
of stability for any coalition structure and try to determine which coalition structures (if any) are
stable in the given game with regard to the given coalitional value. They introduced two kinds of
stability that they called γ�stability and δ�stability, both based on the notion of (strong) Nash
equilibrium for noncooperative games [44, 10].3 They gave an axiomatic characterization of a �CS
value�, which coincides with the Owen value, and used only this value in their analysis of games
with a coalition structure. Hart and Kurz's experience with the Owen value raises concerns that
in general it is not easy to �nd valuable results on stability.

Many authors have worked on stability from di�erent approaches. E.g., Wiese [58] and Casajus
[26] de�ne variations of the AD value that take into account, in some way, the players' outside
options (a viewpoint that we will not share here). A Casajus' nice result shows that any game
admits some stable coalition structure for his value, while Tuti¢ [56] presents a 4�person game
that admits no stable coalition structure for either the AD value or the Wiese value.

In general, in any cooperative game, the players are still interested, individually, in obtaining the
best possible payo�. This introduces a �noncooperative �avor� in the cooperative game theory.
Thus, a cooperative game might be rather viewed just as a tool that de�nes the strategies
available to each player, as well as the payo�s obtained by applying a given general sharing rule
to any pro�le of strategies. And this is our approach.

The notion of strategy is usual in the context of noncooperative games but it is not so common
when dealing with cooperative games. A strategy for a player will consist in choosing a coalition
to which this player belongs.

Once each player has computed his payo� when he joins any possible coalition, each player chooses
one coalition among those that give him the maximum payo�. A coalition is called optimal
when each of its members has chosen it. The optimal coalitions, jointly with the singletons
corresponding to the players not appearing in any of them, constitute a coalition structure in the
player set. Such a coalition structure is stable, in the sense that there is no reason to change it,
so it can be considered, jointly with the payo�s allocated to the players according to the Shapley
value in each involved subgame, as a solution of the cooperative game.

This stability idea recalls the notion of strong Nash equilibrium for noncooperative games. Any
other (unstable) coalition structure, jointly with the attached payo�s to each player, can be
interpreted as an �outcome� for the game following Yang [60], but it represents an ine�cient
behavior of the players, since at least one of them will feel unsatis�ed and, moreover, will have
the opportunity to change his choice. Among other questions, we will pay special attention to
this: which conditions must satisfy a cooperative game to ensure that the grand coalition is
stable in the previously de�ned sense?

The organization of the paper is as follows. We �rst provide basic preliminaries in Section 2.
Next, we propose some numerical examples in Section 3 to illustrate the problem. In Section 4,
the notions of monotonicity, convexity, cohesiveness and others are used to establish �ve main
results. Section 5 includes more examples analysed with these results. In Section 6, applications
to economic problems are sketched. Section 7 concludes.

3In a previous work [35], they de�ned two more notions, α�stability and β�stability, for NTU cooperative
games, but we will restrict our study to TU games.



6 COALITION FORMATION AND STABILITY

2. Preliminaries and formal definitions

We will assume that the reader is familiar with the grounds of the cooperative and noncooper-
ative game theories. We �rst recall some basic ideas, establish the notation that will be used
throughout this work, and introduce the main notions formally. For more details we refer the
reader to e.g. [28, 32, 49].

Let N = {1, 2, . . . , n} be the set of players and 2N be the set of coalitions (subsets of N). A
cooperative game in N is de�ned by (and identi�ed with) its characteristic function u : 2N −→ R,
which assigns to each coalition S ⊆ N a real number u(S), interpreted as the utility that coalition
S can obtain if all its members agree, independently of the behavior of the remaining players,
i.e. the members of N\S. The only restriction is that u(∅) = 0 for any game u.

Player i ∈ N is a null player in game u if u(S ∪ {i}) = u(S) for all S ⊆ N\{i}. Players i, j ∈ N
are symmetric players in game u if u(S ∪ {i}) = u(S ∪ {j}) for all S ⊆ N\{i, j}. Endowed with
the usual linear operations u + u′ and λu for any λ ∈ R, the set of all cooperative games in N
becomes a real vector space GN of dimension 2n − 1.

If u ∈ GN and ∅ 6= T ⊆ N , the restriction of u to T is the game uT ∈ GT de�ned by uT (S) = u(S)
for all S ⊆ T .4 We also say that uT is a subgame of u. Obviously, uN = u.

The following conditions, that de�ne special classes of games, are hereditary, in the sense that if
one of them holds for a game then it holds for all its subgames.

A game u ∈ GN is monotonic if u(S) ≤ u(T ) whenever S ⊂ T .
A game u ∈ GN is symmetric if all i, j ∈ N are symmetric players in u. This is equivalent to
saying that u(S) depends only on the cardinality of coalition S, s = |S|, for all S ⊆ N .

A game u ∈ GN is superadditive if u(R) + u(S) ≤ u(R∪ S) when R∩ S = ∅. It is called additive
if u(R) + u(S) = u(R∪S) when R∩S = ∅, and strictly superadditive if u(R) + u(S) < u(R∪S)
when R ∩ S = ∅.
A coalition structure in N is a collection B = {B1, B2, . . . , Bm} of pairwise disjoint coalitions
(unions) such that B1 ∪B2 ∪ · · · ∪Bm = N . The trivial coalition structures are BN = {N} and
Bn = {{1}, {2}, . . . , {n}}. The second might be understood as a sort of �disagreement point�.

It follows at once that, if u is superadditive and B = {B1, B2, . . . , Bm} is a coalition structure
in N , then

u(B1) + u(B2) + · · ·+ u(Bm) ≤ u(N).

This fact is interesting: it means that any coalition structure is, in principle, feasible, given that
the total utility will be able to satisfy the demands of all unions. The inequality becomes strict
when the game is strictly superadditive and B 6= BN , and an equality under additivity.

The Shapley value [52, 50] is a map Φ : GN −→ Rn that assigns to each game u ∈ GN a vector
Φ[u] = (Φ1[u],Φ2[u], . . . ,Φn[u]). The allocation given by the Shapley value to each player i ∈ N
in any game u ∈ GN is

Φi[u] =
∑
S3i

γn(s)[u(S)− u(S\{i})], where s = |S| and γn(s) =
1

n
(
n−1
s−1

) .
We will use the Shapley value as universal sharing rule, so it will be applied to any game and
also to all its subgames.

4Here uT will not mean the unanimity game associated to coalition T .
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The weighting coe�cients γn(s) do not depend on game u. As is well known, for any i ∈ N ,∑
S3i

γn(s) = 1.

Hence Φi[u] ≥ u({i}) for any player i and any superadditive game u, and Φi[u] > u({i}) if,
moreover, u(S) > u({i}) + u(S\{i}) for at least one coalition S containing i. This means that
such a player would prefer joining the grand coalition instead of remaining alone.

However, given a coalition structure B, the same holds for any subgame uBk . That is, Φi[uBk ] ≥
u({i}) for all Bk and all i ∈ Bk, and Φi[uBk ] > u({i}) if, moreover, u(S) > u({i}) + u(S\{i})
for at least one coalition S ⊆ Bk containing i, so such players i ∈ Bk would also prefer joining
Bk instead of remaining alone.

Now we introduce the main notions formally.

Let u be a cooperative game in N . Following Hart and Kurz's γ�model [36], we �rst set up an
auxiliary noncooperative game ΓΦ(u).

For each i ∈ N the strategy set is Σi = {S ⊆ N : i ∈ S}, thus having cardinality 2n−1. The
strategy space of ΓΦ(u) is Σ1×Σ2× · · · ×Σn, so any pro�le of strategies σ ∈ Σ1×Σ2× · · · ×Σn

is of the form σ = (S1, S2, . . . , Sn), with i ∈ Si for each i ∈ N .

Given pro�le σ = (S1, S2, . . . , Sn), a nonempty coalition S is said to be σ�selected if and only if
Si = S for each i ∈ S. We set Ωσ = {S ⊆ N : S is σ�selected}. If S, T ∈ Ωσ are distinct then
S ∩ T = ∅. We then consider the coalition structure

Bσ = {S : S ∈ Ωσ} ∪ {{j} : j /∈ Uσ}, where Uσ =
⋃
S∈Ωσ

S.

The payo�s in ΓΦ(u) are given for each pro�le σ by

ki(σ) =

{
Φi[uSi ] if Si ∈ Ωσ,

u({i}) otherwise.

Thus, in practice, a strategy of any player in a cooperative game will imply to remain alone unless
all members of the coalition he chooses make the same choice. If all members of the coalition
agree to choose it, then each one of them obtains the payo� given to him by the application of
the Shapley value to the restricted game. Otherwise (and even if only one of these members
does not choose it), the payo� obtained by each player that chose the coalition will be just his
individual utility.5 For example, if player 1 chooses {1, 2} but 2 and 3 choose {2, 3}, then player
1 gets u({1}). Of course, if a player chooses to remain alone, he will also obtain his individual
utility, because Φi[u{i}] = u({i}) for each i ∈ N .

De�nition 2.1. ΓΦ(u), with strategy space Σ1×Σ2×· · ·×Σn and payo� functions k1, k2, . . . , kn,
is the noncooperative game associated to game u with respect to the Shapley value Φ.

Given a pro�le σ = (S1, S2, . . . , Sn), a defector group of σ is a nonempty coalition T ⊆ N with
strategies σ̃i ∈ Σi for each i ∈ T such that ki((σ̃i)i∈T , (σj)j∈N\T ) > ki(σ) for all i ∈ T .

5The di�erence between the γ�model and the δ�model lies here. In the δ�model, Hart and Kurz assume that,
if only some members of a coalition choose it, the subcoalition consisting of these members forms, while the others
become singletons. Of course, if a coalition forms in the γ�model it also forms in the δ�model, but the converse
is not true. Here we prefer using the γ�model solely because the subcoalition might have a utility no longer
interesting to its members.
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If pro�le σ is free from defector groups, then it is a strong Nash equilibrium in ΓΦ(u). We then
say that Bσ is a stable coalition structure in u (with regard to the Shapley value).

Now we translate these ideas to the cooperative language. We are assuming that all players try
to optimize their individual payo�s. Hence, once each player has computed his payo� when he
joins any possible coalition, he chooses one of the coalitions that maximize this payo�. This
gives rise to a pro�le σ∗.

De�nition 2.2. A coalition is called optimal if it gives to each of its members his best payo�.

When these decisions have been taken, any two di�erent optimal coalitions are disjoint, and the
collection of these chosen optimal coalitions, jointly with the singletons corresponding to the
players not appearing in any of them, constitutes a coalition structure Bσ∗ in the player set. The
optimal coalitions form Ωσ∗ , the family of σ∗�selected members of Bσ∗ .

De�nition 2.3. If pro�le σ∗ is a strong Nash equilibrium in ΓΦ(u), the coalition structure
Bσ∗ can be considered, jointly with the payo�s allocated to the players, as a solution of the
cooperative game, since it gives a behavioral pattern and a subsequent payo� vector.

Such a coalition structure is stable because it comes from a pro�le that is a strong Nash equilib-
rium. This means that there exists no strict incentive in payo� terms for any player (and, in fact,
neither for any set of players) to change his decision and move from one coalition to another.

Of course, this solution may not be unique (cf. Example 3.2 below) or not exist (cf. Example 3.3).
Any other (unstable) coalition structure may be considered as an outcome for the game, but it
represents an ine�cient behavior of the players because at least one of them will feel unsatis�ed
(cf. Example 3.2).

3. Examples

Some numerical examples will illustrate the above notions.

Examples 3.1. (a) Let n = 3 and u be the monotonic game de�ned by

u(∅) = 0, u({1}) = 1, u({2}) = 0, u({3}) = 0,
u({1, 2}) = 3, u({1, 3}) = 2, u({2, 3}) = 1, u(N) = 5.

The Shapley value is Φ[u] = (2.5, 1.5, 1). The �ve coalition structures are Bn = {{1}, {2}, {3}},
B{1,2} = {{1, 2}, {3}}, B{1,3} = {{1, 3}, {2}}, B{2,3} = {{1}, {2, 3}} and BN = {N}. The strategy
set of player 1 is, with a simpli�ed notation, Σ1 = {1, 12, 13, 123}, Σ2 and Σ3 being analogous.
This gives 43 = 64 pro�les in the noncooperative game. The payo�s derived from applying the
Shapley value Φ are as follows:

player Bn B{1,2} B{1,3} B{2,3} BN
1 1 2 1.5 1 2.5
2 0 1 0 0.5 1.5
3 0 0 0.5 0.5 1

There are 14 Nash equilibria in ΓΦ(u). However, only one of them is strong: the equilibrium
de�ned by σ = (123, 123, 123) that gives rise to the only stable coalition structure: BN .
(b) Let n = 3 and u be the monotonic game de�ned by

u(∅) = 0, u({i}) = 0, u({1, 2}) = 6, u({1, 3}) = 1, u({2, 3}) = 1, u(N) = 6.
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Here, Φ[u] = (17/6, 17/6, 1/3). Only pro�les of the form (12, 12, X), where X stands for any
coalition containing player 3, are strong Nash equilibria. All of them lead to the only stable
coalition structure B{1,2} = {{1, 2}, {3}} 6= BN , with payo� vector (3, 3, 0).

Example 3.2. Let us take n = 3 and consider the game u de�ned by

u(∅) = 0, u({1}) = 1, u({2}) = 3, u({3}) = 0,
u({1, 2}) = 6, u({1, 3}) = 1, u({2, 3}) = 3, u({1, 2, 3}) = 6.

The game is superadditive. Player 3 is a null player. The Shapley value of the non�trivial
involved games, u, u{1,2}, u{1,3} and u{2,3}, is as follows:

Φ1[u] = 2, Φ2[u] = 4, Φ3[u] = 0,
Φ1[u{1,2}] = 2, Φ2[u{1,2}] = 4, Φ3[u{1,3}] = 0,
Φ1[u{1,3}] = 1, Φ2[u{2,3}] = 3, Φ3[u{2,3}] = 0.

According to these payo�s, players' preferences are the following:

• Player 1 wishes to enter either coalition {1, 2, 3} or {1, 2} instead of forming a coalition
with player 3 or remaining alone. We will simply write

{1, 2, 3} ≡ {1, 2} > {1, 3} ≡ {1} for player 1.

• Player 2 has similar preferences:

{1, 2, 3} ≡ {1, 2} > {2, 3} ≡ {2} for player 2.

• Player 3 is indi�erent with respect to any possible coalition:

{1, 2, 3} ≡ {1, 3} ≡ {2, 3} ≡ {3} for player 3.

In view of these preferences, two solutions arise for this game. If all players choose coalition
{1, 2, 3}, this coalition is optimal and a solution of the game is given by the corresponding
coalition structure and the subsequent payo�s:

B = {{1, 2, 3}} = BN , Φ1[u] = 2, Φ2[u] = 4, Φ3[u] = 0.

If, instead, players 1 and 2 choose coalition {1, 2}, this coalition is optimal, and another solution
of the game is given by the corresponding coalition structure and the subsequent payo�s:

B = {{1, 2}, {3}} = B{1,2}, Φ1[u{1,2}] = 2, Φ2[u{1,2}] = 4, u({3}) = 0.

Finally, if e.g. player 1 chooses {1, 2, 3} but player 2 chooses {1, 2}, or conversely, then there is
no optimal coalition, and the outcome of the game, de�ned by

B = {{1}, {2}, {3}} = Bn, u({1}) = 1, u({2}) = 3, u({3}) = 0,

is not a solution. It lacks stability because players 1 and 2 would like to modify their choices and
give rise to one of the previous solutions. Note that, if e.g. two players obtain simultaneously
their respective best payo� in more than one coalition containing both, as it happens here, then
the contract they will sign should mention, not only the payo� allocated to each player, but also
which of these coalitions they must choose in order to coordinate strategies e�ectively. We also
remark that if a player can choose among two optimal coalitions, his payo� will be the same,
but this does not extend to non�optimal coalitions.
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Example 3.3. Let n = 3 and consider the superadditive game u de�ned by

u({1, 2}) = 1, u({2, 3}) = u({1, 2, 3}) = 2 and otherwise u(S) = 0.

The Shapley value of the non�trivial involved games, u, u{1,2}, u{1,3} and u{2,3}, is as follows:

Φ1[u] = 1/6, Φ2[u] = 7/6, Φ3[u] = 4/6,
Φ1[u{1,2}] = 1/2, Φ2[u{1,2}] = 1/2, Φ3[u{1,3}] = 0,
Φ1[u{1,3}] = 0, Φ2[u{2,3}] = 1, Φ3[u{2,3}] = 1.

Notice that, in spite of superadditivity, Φ1[u] is not the best payo� for player 1. In this case,
players' preferences do not de�ne any optimal coalition. They are as follows:

• {1, 2} > {1, 2, 3} > {1} ≡ {1, 3} for player 1,
• {1, 2, 3} > {2, 3} > {1, 2} > {2} for player 2,
• {2, 3} > {1, 2, 3} > {3} ≡ {1, 3} for player 3.

We conclude that there is no solution for this game. Maybe a second bargaining round could
be expected. Intuitively, it seems quite reasonable that player 2 would convince (or force) the
others to accept the grand coalition.6

Example 3.4. Let us take n = 3 and α > 0, and consider the game u de�ned by

u(∅) = 0, u({1}) = 5, u({2}) = 1, u({3}) = 0,
u({1, 2}) = 9, u({1, 3}) = 5, u({2, 3}) = 4, u({1, 2, 3}) = α.

It is clear that game u is supperadditive for α ≥ 9. The Shapley value of the non�trivial involved
games, u, u{1,2}, u{1,3} and u{2,3}, is as follows:

Φ1[u] = 2.5 + α/3, Φ2[u] = α/3, Φ3[u] = α/3− 2.5,
Φ1[u{1,2}] = 6.5, Φ2[u{1,2}] = 2.5, Φ3[u{1,3}] = 0,
Φ1[u{1,3}] = 5, Φ2[u{2,3}] = 2.5, Φ3[u{2,3}] = 1.5.

The allocations given by the Shapley value in game u are the best for players 1 and 3 only if
α ≥ 12, and for player 2 only if α ≥ 7.5. Thus, the relevant cases are the following.

(1) α < 7.5. The possible optimal coalitions are {1, 2} and {2, 3}, which would give rise to
two solutions.

(2) α = 7.5. The possible optimal coalitions are again {1, 2} and {2, 3}, which would give
rise to two solutions, but player 2 is indi�erent between any of them and {1, 2, 3}.

(3) 7.5 < α < 12. The preferences diverge: player 1 still prefers {1, 2}, player 2 prefers
{1, 2, 3} only, and player 3 still prefers {2, 3}. There is no solution.

(4) α = 12. Player 1 is indi�erent between {1, 2} and {1, 2, 3}, player 2 prefers {1, 2, 3} only,
and player 3 is indi�erent between {2, 3} and {1, 2, 3}. The only solution is given by the
grand coalition {1, 2, 3}.

(5) α > 12. All players prefer the grand coalition {1, 2, 3}, which yields the only solution.

We see that superadditivity does not ensure the existence of a solution but neither it is a necessary
condition for this existence.

6The lack of solution appears here and in other examples below. Following Segal [51], we could call collusion
proof to any game where this occurs. In such a game, players are reduced to form, in principle, the trivial
structure Bn, that we have called the �disagreement point.�
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4. Conditions for stability in coalition formation

This section contains the theoretical results. We begin by the trivial role of null players. A
general property when null players arise in a game is that the solution (if any) is never unique.
Let i ∈ N be a null player in game u. If B = {B1, B2, . . . , Bm} is a stable coalition structure
for game uN\{i}, then B′ = {B1, B2, . . . , Bm, {i}}, as well as any coalition structure of N of the

form Bk = {B1, B2, . . . , Bk ∪ {i}, . . . , Bm} for any k, is stable for game u. More generally, we
have:

Proposition 4.1. (Null players do not matter) Let u 6= 0 be a game and Z(u) ⊂ N be the
nonempty set of null players in u. Then the stable coalition structures in u are obtained from the
stable coalition structures in the restricted game uN\Z(u) by allowing all null players i ∈ Z(u) to
incorporate in any way.

Proof. It is straightforward. �

Examples 4.2. Let us illustrate the arrangement of null players in the stable coalition structures
of the restricted game.

(a) Let n = 3 and u be the superadditive monotonic game de�ned by

u(∅) = u({3}) = 0, u({1}) = u({1, 3}) = 1, u({2}) = u({2, 3}) = 2, u({1, 2}) = u(N) = 4.

Here Z(u) = {3} and the only stable coalition structure in uN\Z(u) is BN\Z(u) = {{1, 2}}. Hence,
the only stable coalition structures in u are B{1,2} = {{1, 2}, {3}} and BN , with payo� vector
(1.5, 2.5, 0) in both cases.

(b) Now let n = 3 and u be the monotonic game de�ned by

u(∅) = u({3}) = 0, u({1}) = u({2}) = u({1, 2}) = u({1, 3}) = u({2, 3}) = u(N) = 4.

Here Z(u) = {3} again and the only stable coalition structure in uN\Z(u) is Bn−1 = {{1}, {2}}.
Hence, the only stable coalition structures in u are Bn = {{1}, {2}, {3}}, B{1,3} = {{1, 3}, {2}}
and B{2,3} = {{1}, {2, 3}}, with payo� vector (4, 4, 0) in all cases.

We next present �ve main results, with a previous lemma for the �rst and another for the third.
In all results, it is implicitly assumed that the Shapley value is the universal sharing rule.

De�nition 4.3. (Shapley [53]) A game u is convex if, for all R,S ⊆ N ,

u(R ∪ S) + u(R ∩ S) ≥ u(R) + u(S).

It can be seen that this condition is equivalent to the following:

u(S ∪ {i})− u(S) ≤ u(T ∪ {i})− u(T )

for all S ⊆ T ⊆ N \ {i} and all i ∈ N . In words, the incentives for joining a coalition increase as
the coalition grows (the so�called �snowball e�ect�) [28].

If u is convex then it is clearly superadditive, and convexity is hereditary. There is a close
connection between the convexity of a game u and the core of u, introduced by Gillies [31] as

C(u) = {x = (x1, x2, . . . , xn) :
∑
i∈N

xi = u(N) and
∑
i∈S

xi ≥ u(S) if ∅ 6= S ⊂ N}.

Indeed, the Shapley value Φ[u] of any convex game u belongs to C(u) and is, in fact, the center
of gravity of this core, which in turn is the only stable set in Von Neumann and Morgestern's
sense [57].
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Lemma 4.4. Let u be a game and i, j ∈ N be distinct players. Then, setting t = |T |,

Φi[u]− Φi[uN\{j}] =
∑
T 63 i,j

γn(t+ 2)[u(T ∪ {i, j})− u(T ∪ {i})− u(T ∪ {j}) + u(T )].7

Proof. The proof is straightforward. �

Theorem 4.5. If u is a convex game then BN gives a solution for u.

Proof. Let i, j ∈ N be distinct players in u. For any T ⊆ N\{i, j} we apply convexity taking
R = T ∪ {i} and S = T ∪ {j} and obtain from Lemma 4.4 that Φi[u]− Φi[uN\{j}] ≥ 0.8

Inductively, it follows that, for any i ∈ N ,

Φi[u] ≥ Φi[uN\{j}] ≥ Φi[uN\{j,k}] ≥ · · · ≥ Φi[u{i}] = u({i}).

This means that, for all i ∈ S ⊂ N , Φi[u] ≥ Φi[uS ]. Thus, for any B = {B1, B2, . . . , Bm} 6= BN ,
any Bk and any i ∈ Bk, Φi[u] ≥ Φi[uBk ]. We then conclude that N is an optimal coalition for
all players and hence BN is a solution for u. �

Remarks 4.6. (a) In a convex game, other solutions di�erent from BN may appear, as in
Example 3.2. Instead, in Example 3.3 the game is not convex and does not possess any solution,
whereas in Example 3.4 the game is convex if and only if α ≥ 12, and BN is the only solution
for these values of α.

(b) Convexity is not a necessary condition. The game considered in Remark 4.9(a) below is not
convex, but BN is a solution.

(c) In the previous literature, di�erent authors have been interested in giving su�cient conditions
for games, weaker than convexity, to ensure that the Shapley value lies in the core. Sprumont [55]
adopted a more general viewpoint, that of population monotonic allocation schemes (cf. Remark
4.7). Using a recursive expression of the Shapley value, he proved that if u is a quasiconvex
game then Φ[u] ∈ C(u). Iñarra and Usategui [39] introduced average convex games and partially
average convex games as wider classes of games u such that Φ[u] ∈ C(u). Izawa and Takahashi
[40] found a necessary and su�cient condition for Φ[u] ∈ C(u) and called totally convex to the
games satisfying that condition: among them, there are all average convex games.

Sprumont [55] gave an example of 3�person game to show that the extended Shapley value of a
quasiconvex game may not be a population monotonic allocation scheme. It is the quasiconvex
game u de�ned by

u({1, 3}) = u({2, 3}) = 2/3, u(N) = 1, or else u(S) = 0.

The Shapley value is Φ[u] = (2/9, 2/9, 5/9) and clearly belongs to C(u). What is interesting for
us is that players' preferences in this game are

• {1, 3} > {1, 2, 3} > {1, 2} ≡ {1} for player 1,
• {2, 3} > {1, 2, 3} > {1, 2} ≡ {2} for player 2,
• {1, 2, 3} > {1, 3} ≡ {2, 3} > {3} for player 3,

7In Segal [51], the expression [u(T ∪ {i, j})− u(T ∪ {i})− u(T ∪ {j}) + u(T )] is denoted as ∆2
ij [u](T ), and ∆2

ij

is called the �second�order di�erence operator�.
8This inequality is, in fact, equivalent to the convexity of the game (Ichiishi [38], Theorem 2.1.3).
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so we conclude that BN is not a solution for u and hence Theorem 4.5 cannot be extended to
quasiconvex games.

Izawa and Takahashi [40] gave another example of 3�person game such that it is totally convex
but not average convex. It is de�ned by

u({1, 2}) = 5, u({1, 3}) = u({2, 3}) = 7, u(N) = 10, or else u(S) = 0.

The Shapley value is Φ[u] = (3, 3, 4) and clearly belongs to C(u). What is interesting for us is
again that players' preferences in this game are

• {1, 3} > {1, 2, 3} > {1, 2} > {1} for player 1,
• {2, 3} > {1, 2, 3} > {1, 2} > {2} for player 2,
• {1, 2, 3} > {1, 3} ≡ {2, 3} > {3} for player 3,

so we conclude that BN is not a solution for u and hence Theorem 4.5 cannot be extended to
totally convex games.

These two (counter)examples share a feature that prevents BN from being stable: u(N) is not
great enough. This highlights the interest of Theorem 4.14.

Remark 4.7. Sprumont [55] introduced and studied a re�nement of the core allocation notion,
the so�called population monotonic allocation schemes (PMAS, for short). Given an n�person
game u in a player set N , such an scheme is de�ned by an n2n−1�dimensional vector x =
(xiS)i∈S, ∅6=S⊆N satisfying

(1)
∑
i∈S

xiS = u(S) for all nonempty S ⊆ N , and

(2) if i ∈ S ⊂ T then xiS ≤ xiT .
From condition (1) it readily follows that xN = (xiN ) ∈ C(u) and xS = (xiS) ∈ C(uS) if
∅ 6= S ⊂ N . Condition (2) guarantees that, once a coalition S has decided upon an allocation
of u(S), no player will be tempted to induce the formation of a coalition smaller than S. This
general notion of PMAS seems close to our solution concept because in both approaches it is
assumed that if a coalition S forms then its members share the worth u(S), and moreover that
this sharing is not a�ected by the behavior of the external players (those of N\S).
In principle, any PMAS could also be used to discuss coalition formation in any game u, by
considering that, if B = {B1, B2, . . . , Bm} is a coalition structure in N , the payo�s obtained
by the players are given as follows: if i ∈ Bk, then this player receives xiBk . It is worthy
mentioning that, although Sprumont accepts that players may not achieve full e�ciency, with
this interpretation BN will always be a stable coalition structure, i.e. a solution (maybe not
unique), because of condition (2).

However, in this paper we are interested only in solutions derived from the application of the
Shapley value to games and subgames (thus, as universal sharing rule), that is, taking xiS =
Φi[uS ]. Then, our solution concept is not necessarily a PMAS, since the translation of condition
(2) to our framework implies that, if i ∈ S ⊂ T , then Φi[uS ] ≤ Φi[uT ]. Nevertheless, this is not

always satis�ed, as game u of Example 3.1(b) shows. The coalition structure B{1,2}, with payo�
vector (3, 3, 0), is a solution but x1

{1,2} = Φ1[u{1,2}] > Φ1[u] = x1
N . Summing up, condition (2)

establishes a main di�erence between PMAS and our solutions.

Anyway, Sprumont's [55] results are very interesting. In his Proposition 3, a proof is given for a
result communicated by Ichiishi [37]: any convex game admits a PMAS, given by any extended
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vector of marginal contributions. This proof uses permutations and hence is completely di�erent
from our existence proof for Theorem 4.5. Also Corollaries 1 and 2 to Proposition 3 deserve
being mentioned here. The �rst states that every core allocation of a convex game can be
reached through a PMAS. The second states that, in particular, the extended Shapley value of a
convex game, de�ned by xiS = Φi[uS ], is a PMAS (and hence BN is a solution for the game, as
is stated by our Theorem 4.5).

De�nition 4.8. Following Yang [60], a game u is (strictly) cohesive if

u(N) >

m∑
k=1

u(Bk) for all coalition structures B 6= BN .

In words, this means that BN is the only coalition structure that maximizes the sum of utilities
of all its unions.

Remarks 4.9. (a) Cohesiveness does not imply superadditivity. Let us take n = 3 and consider
the game u de�ned by

u(∅) = 0, u({1}) = 2, u({2}) = 1, u({3}) = 1,
u({1, 2}) = 3, u({1, 3}) = 3, u({2, 3}) = 1, u({1, 2, 3}) = 5.

The game is monotonic and cohesive, but it is not superadditive because

u({2}) + u({3}) 
 u({2, 3}).
(b) Cohesiveness neither ensures the existence of solution. Let us consider Example 3.4 with
9 < α < 12. Then it is easy to check that game u is cohesive, but the discussion carried out in
that example shows that it has no solution.

(c) It may be interesting to recall Bell's [12] recursive formula, which gives the number bn of
possible coalition structures in a �nite set of cardinality n:

bn =
n−1∑
k=0

(
n− 1

k

)
bk, with b0 = 1.

Thus, for n = 1, 2, 3, 4, 5, 6, 7, . . . , there exist bn = 1, 2, 5, 15, 52, 203, 877, . . . coalition structures,
respectively.

This formula tells us the amount of work necessary to check whether a game is cohesive or
not, although a previous checking of superadditivity already solves some cases for cohesiveness.
E.g., for n = 4 a total of 25 checks are needed for superadditivity, but 7 of them check also
cohesiveness, so only 7 cases remain to check.

Theorem 4.10. If u is a cohesive game then no coalition structure B 6= BN gives a solution for
u.

Proof. Let u be a cohesive game. Then, using e�ciency, for any coalition structure B 6= BN we
have∑
i∈B1

Φi[uB1 ]+
∑
i∈B2

Φi[uB2 ]+ · · ·+
∑
i∈Bm

Φi[uBm ] =

m∑
k=1

u(Bk) < u(N) = Φ1[u]+Φ2[u]+ · · ·+Φn[u].

This implies that, necessarily, for some player i in some Bk we must have Φi[uBk ] < Φi[u]. Hence,
i will not choose Bk as his �best� coalition, Bk will not be an optimal coalition, and B jointly
with its corresponding payo�s will not be a solution of the game. �
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Remarks 4.11. (a) Dropping cohesiveness, Theorem 4.10 does not hold. Indeed, in Example
3.2, the game is superadditive but not cohesive. And we �nd that BN = {1, 2, 3} is a stable

coalition structure but B{1,2} = {{1, 2}, {3}} is also so.

(b) The converse of Theorem 4.10 is not true. In Example 3.3, no coalition structure B 6= BN
gives a solution for u, but the game is not cohesive.

Corollary 4.12. If u is a convex and cohesive game, then the trivial coalition structure BN gives
the only solution for u.�

Lemma 4.13. Let u be a game and i ∈ S ⊂ N . Then, setting s = |S| and t = |T |,

Φi[u]− Φi[uS ] = ∆′(u, i, S) +
u(N)− u(N\{i})

n
+ ∆′′(u, i, S),

where ∆′(u, i, S) =
∑

T3i : T⊆S
[γn(t)− γs(t)][u(T )− u(T\{i})]

and ∆′′(u, i, S) =
∑

T3i : N 6=T 6⊆S
γn(t)[u(T )− u(T\{i})].

Proof. The proof is straightforward, starting with

Φi[u]− Φi[uS ] =
∑
T3i

γn(t)[u(T )− u(T\{i})]−
∑

T3i : T⊆S
γs(t)[u(T )− u(T\{i})]. �

Theorem 4.14. If u is any game, and u(N) is great enough, or �equivalently� the marginal
contributions u(N)−u(N\{i}) are great enough for all i ∈ N , then the trivial coalition structure
BN gives a solution for u, and it is likely to be the only solution.

Proof. Let u be any game and B = {B1, B2, . . . , Bm} be a coalition structure di�erent from BN .
Let i ∈ Bk for some k. Then, using Lemma 4.13, with S = Bk (and hence s = bk = |Bk|),

Φi[u]− Φi[uBk ] = ∆′(u, i, Bk) +
u(N)− u(N\{i})

n
+ ∆′′(u, i, Bk).

Clearly, u(N) does not intervene in either ∆′(u, i, Bk) or ∆′′(u, i, Bk). It follows that, if the total
utility u(N) is great enough, in the sense that, for all i ∈ N ,

u(N) ≥ u(N\{i})− n[∆′(u, i, Bk) + ∆′′(u, i, Bk)],

or, equivalently, if the marginal contributions u(N) − u(N\{i}) are great enough for all i ∈ N ,
that is,

u(N)− u(N\{i}) ≥ −n[∆′(u, i, Bk) + ∆′′(u, i, Bk)],

then we obtain
Φi[u]− Φi[uBk ] ≥ 0

for all i ∈ Bk and all Bk ∈ B, that is, for all i ∈ N and all B 6= BN . This implies that all players
i ∈ N will prefer (maybe not uniquely) the grand coalition to any other subcoalition. In other
words, the trivial coalition structure BN will be a solution of the game, and the only solution if
the above inequalities are strict. �

Remarks 4.15. (a) The expression �great enough� is suggested by the following fact. Let u be
any game. If u(N) is increased by an amount δ > 0 and the other utilities remain invariant, a
new game u′ is obtained, de�ned by

u′(S) = u(S) if S 6= N and u′(N) = u(N) + δ.
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The e�ect of δ on the Shapley value of any player i ∈ N is

Φi[u
′] = Φi[u] +

δ

n
,

whereas, for any B 6= BN , any Bk ∈ B and any i ∈ Bk, Φi[u
′
Bk

] = Φi[uBk ]. In fact, this is the
basis for an alternative proof of Theorem 4.14 of a qualitative nature �i.e. without specifying
�how much great� should u(N) be.

(b) Notice that if u is monotonic then ∆′(u, i, Bk) ≤ 0 whereas ∆′′(u, i, Bk) ≥ 0, and also that
both expressions vanish if i is a null player in u.

(c) The condition provided by Theorem 4.14 is not especially useful in practice, but it guarantees
that, by increasing the total utility u(N) su�ciently, we will always �nd that BN is a solution,
and it will be the only one if u(N) increases still a bit more.

Theorem 4.16. If u 6= 0 is monotonic then:

(a) If u(S) >
∑
i∈S

Φi[u] for some nonempty S ⊂ N , then BN is not stable in u.

(b) If, moreover, u is superadditive, then neither Bn is stable in u.

(c) Instead, if u(S) <
∑
i∈S

Φi[u] for all nonempty S ⊂ N , then BN is the only stable coalition

structure in u.

Proof. By Proposition 4.1, we assume Z(u) = ∅. It is easy to see that, for any S ⊂ N ,

Φi[uS ] R Φi[u] for all i ∈ S if and only if u(S) R
∑
i∈S

Φi[u].

Then:

(a) In case >, the members of S will prefer S to N , so BN will not be a solution for u.

(b) Superadditivity implies that Φi[u] ≥ u({i}) for all i ∈ N . So the members of S will neither
accept Bn.
(c) In case < it follows that, for any coalition structure B 6= BN ,

Φi[uBk ] < Φi[u]

for all i ∈ Bk and all k and all B 6= BN , that is, for all i ∈ N . This implies that BN is the only
stable coalition structure in u. �

Remarks 4.17. (a) The interest of this result lies in its easy application in practice. Once we
have computed the Shapley value Φ[u], it is not especially di�cult to compare, for each S ⊂ N ,

u(S) with
∑
i∈S

Φi[u].

(b) A reviewer suggested that one might get from Theorem 4.16(c) an appealing result: BN
is stable for game u if and only if the Shapley value Φ[u] lies in the core C(u). The �only if�
part is true. We will prove an equivalent statement: if Φ[u] /∈ C(u) then BN is not stable.

Indeed, if Φ[u] /∈ C(u) then there exists a nonempty S ⊂ N such that
∑
i∈S

Φi[u] < u(S). Since

u(S) =
∑
i∈S

Φi[uS ] we obtain
∑
i∈S

Φi[u] <
∑
i∈S

Φi[uS ], so Φi[u] < Φi[uS ] for some i ∈ S. Thus, all
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such i ∈ S are not satis�ed with BN and hence this coalition structure, with the payo�s given
by the Shapley value Φ[u], is not stable. Maybe there exists another stable coalition structure,
maybe there is no solution: among the examples provided in Sections 3, 5 and 6 that do not
admit BN as a solution, there are cases where other solution(s) exist(s), and cases where no
solution exists.

However, the �if� part does not hold. The counterexamples given by Sprumont [55] and Izawa
and Takashashi [40] and detailed in Remark 4.7 are games u with Φ[u] ∈ C(u) that do not admit
BN as a solution. Both games are monotonic but not convex.

Our next result refers to any game u such that
m∑
k=1

u(Bk) = u(N) for some B 6= BN . Such a game

may be called weakly additive game with respect to B, since this condition follows from additivity
but is not equivalent to it. Of course, if this happens for all B 6= BN then the game is additive
and all coalition structures are solutions of the game, with a common payo� given by u({i}) for
each i ∈ N .

We will use here a standard notation: if B is a coalition structure in N then, for each i ∈ N ,
B(i) will denote the union Bk that contains i. Moreover, given a coalition structure B, we will
distinguish between singletons and larger unions (unions of cardinality > 1).

Theorem 4.18. (Weakly additive games) Let u be a weakly additive game with respect to a
coalition structure B 6= BN . Then there are only two possibilities:

(a) If Φi[uB(i)
] = Φi[u] for all i ∈ N , then BN is a solution for u if and only if B is also a

solution.

(b) Otherwise, there exists some player i such that Φi[uB(i)
] < Φi[u] and hence also some player

j such that Φj [uB(j)
] > Φj [u]. Then four cases arise:

(b.1) If there exists some player of type i in some larger union, then B is not a solution for u.
(b.2) If there exists some player of type j in some union, then BN is not a solution for u.
(b.3) If all members of larger unions are of type j, then B is a solution for u.
(b.4) If all players are of type i, then BN is a solution for u.

Proof. Weak additivity immediately yields∑
i∈N

Φi[uB(i)] =
∑
i∈N

Φi[u].

Thus, a �rst possibility is that Φi[uB(i)
] = Φi[u] for all i ∈ N . In this case, if all players prefer

N then all of them equally prefer their respective union, and conversely. This proves part (a).

Otherwise, there will be some i ∈ N such that Φi[uB(i)
] < Φi[u] or some player j such that

Φj [uB(j)
] > Φj [u], but the existence of one of them implies the existence of the other in order to

keep the equality of sums of values. The rest of the proof of part (b) is straightforward, provided
that a distinction is made between singletons and larger unions. �

5. More examples

The following examples illustrate the above theorems.
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Example 5.1. Let us consider again the 3�player game of Example 3.2, given by

u(∅) = 0, u({1}) = 1, u({2}) = 3, u({3}) = 0,
u({1, 2}) = 6, u({1, 3}) = 1, u({2, 3}) = 3, u({1, 2, 3}) = 6.

Theorems 4.5, 4.10 (or, equivalently, Corollary 4.12), 4.14 and 4.16(c) apply and the conclusion
is that BN is the only solution of the game as we found in Example 3.2.

Example 5.2. Let us consider the 3�player game introduced in Remark 4.9(a) and de�ned by

u(∅) = 0, u({1}) = 2, u({2}) = 1, u({3}) = 1,
u({1, 2}) = 3, u({1, 3}) = 3, u({2, 3}) = 1, u({1, 2, 3}) = 5.

In this case, Theorems 4.10, 4.14 and 4.16(c) apply and, again, we conclude that BN is the only
solution of the game.

Example 5.3. Let us take n = 3 and consider the game u de�ned by

u(∅) = 0, u({1}) = 0, u({2}) = 0, u({3}) = 5,
u({1, 2}) = 20, u({1, 3}) = 7, u({2, 3}) = 7, u({1, 2, 3}) = 25.

Here, parts (a) and (b) of Theorem 4.16 apply and imply that neither BN nor Bn are solutions.

However, B{1,2} is a solution. And, indeed, the Shapley value of the non�trivial involved games,
u, u{1,2}, u{1,3} and u{2,3}, is as follows:

Φ1[u] = 9.67, Φ2[u] = 9.67, Φ3[u] = 5.67,
Φ1[u{1,2}] = 10, Φ2[u{1,2}] = 10, Φ3[u{1,3}] = 6,
Φ1[u{1,3}] = 1, Φ2[u{2,3}] = 1, Φ3[u{2,3}] = 6.

According to these payo�s, players' preferences are the following:

• {1, 2} > {1, 2, 3} > {1, 3} > {1} for player 1,
• {1, 2} > {1, 2, 3} > {2, 3} > {2} for player 2,
• {1, 3} ≡ {2, 3} > {1, 2, 3} > {3} for player 3.

The only optimal coalition would be {1, 2}, and the only solution of the game is given by the
corresponding coalition structure and the subsequent payo�s:

B{1,2} = {{1, 2}, {3}}, Φ1[u{1,2}] = 10, Φ2[u{1,2}] = 10, u({3}) = 5.

Example 5.4. Let us consider the 3�player game u introduced in Example 3.3 and given by

u({1, 2}) = 1, u({2, 3}) = u({1, 2, 3}) = 2 and otherwise u(S) = 0.

This game is weakly additive with respect to B{2,3}. Parts (b.1) and (b.2) of Theorem 4.18 apply

and say that BN and B{2,3} are not solutions. As we saw in Example 3.3, there is no solution
for this game.

Examples 5.5. (a) Any additive game illustrates Theorem 4.18(a). All coalition structures are
solutions of the game, with a common payo� given by u({i}) for each i ∈ N .

(b) As an illustration of Theorem 4.18(b.3), let n = 3 and consider the game u de�ned by

u(∅) = 0, u({i}) = 0 for all i, u({1, 2}) = u(N) = 4, u({1, 3}) = u({2, 3}) = 2,

and the coalition structure B{1,2} = {{1, 2}, {3}}, for which weak additivity, the hypothesis of

Theorem 4.18, is satis�ed. With respect to B{1,2}, players 1 and 2 are j players. According to
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Theorem 4.18(b.2) and (b.3), B{1,2} is a solution for u and BN is not. And, in e�ect, the Shapley
value of the non�trivial involved games, u, u{1,2}, u{1,3} and u{2,3}, is as follows:

Φ1[u] = 5/3, Φ2[u] = 5/3, Φ3[u] = 2/3,
Φ1[u{1,2}] = 2, Φ2[u{1,2}] = 2, Φ3[u{1,3}] = 1,
Φ1[u{1,3}] = 1, Φ2[u{2,3}] = 1, Φ3[u{2,3}] = 1,

and players' preferences are

• {1, 2} > {1, 2, 3} > {1, 3} > {1} for player 1,
• {1, 2} > {1, 2, 3} > {2, 3} > {2} for player 2,
• {1, 3} ≡ {2, 3} > {1, 2, 3} > {3} for player 3.

6. Applications to real�world economic problems

In this section we present a miscellaneous of simulated real life situations where our theory can
apply. An inspiring source has been the work by Fiestras�Janeiro, García�Jurado and Mosquera
[29]. Following Remark 6.1, in cost games we denote utilities by negative numbers.

Remark 6.1. (Cost games and savings) In a cooperative game, it is generally assumed that
u(S) > 0 represents a pro�t or saving for coalition S. Superadditivity and cohesiveness conditions
are therefore full of sense. However, when dealing with a cost game c, where c(S) represents the
amount that coalition S will have to pay, such cost is often given by a positive number, in which
case superadditivity is the worst condition in order to promote coalition formation, and recourse
has to be made to subadditivity conditions.

To avoid this duplicity, we only need to represent costs by negative numbers. If we do so,
superadditivity and cohesiveness are convenient conditions also for cost games. Then, using this
(natural) representation convention, given a cost game c the associated saving game u is de�ned
by

u(S) = c(S)−
∑
i∈S

c({i}) for each S ⊆ N,

and it is easy to check that players' preferences, and hence the optimal coalitions for each player
and the stable coalition structures (if any), are the same in u as in c.

Example 6.2. Let n = 3 and consider a cost game c de�ned by

c(∅) = 0, c({1}) = −4, c({2}) = −6, c({3}) = −5,
c({1, 2}) = −6, c({1, 3}) = −6, c({2, 3}) = −8, c({1, 2, 3}) = −8.

This cost game is cohesive and convex, and c(N) is great enough. The application of the Shapley
value yields

Φ1[c] = −1.5, Φ2[c] = −3.5, Φ3[c] = −3,
Φ1[c{1,2}] = −2, Φ2[c{1,2}] = −4, Φ3[c{1,3}] = −3.5,
Φ1[c{1,3}] = −2.5, Φ2[c{2,3}] = −4.5, Φ3[c{2,3}] = −3.5.

Players' preferences are as follows:

• {1, 2, 3} > {1, 2} > {1, 3} > {1} for player 1,
• {1, 2, 3} > {1, 2} > {2, 3} > {2} for player 2,
• {1, 2, 3} > {1, 3} ≡ {2, 3} > {3} for player 3.

The trivial coalition structure is the only solution of the game.
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Example 6.3. (A collective supply) Three towns located at points A(2, 2), B(−2, 2) and
C(−2,−2) (distances given in km) are interested in being supplied with a �uid (say, gas) from
a production or distribution center located at D(2, 0) (see Fig. 1). We are interested only in the
connection costs. The cost in monetary units of establishing any channel is of 1000/km, so the
cost of a link to each town de�ned by a straight line (DA, DB and DC, respectively) is given
by

c({A}) = −2000, c({B}) = −4480, c({C}) = −4480.

AB

C

D
O 1

1

x

y

1

Fig. 1: A collective supply

Taking pro�t of the good orographic conditions, the supplier o�ers common links to any two
towns simultaneously (DA+AB, DA+DC and DO+OB +OC, respectively) and even a full
link to the three towns (DA+DO +OB +OC) with costs

c({A,B}) = −6000, c({A,C}) = −6480, c({B,C}) = −7660, c({A,B,C}) = −9660.

Let us discuss coalition formation. Notice that the game is not convex, is not cohesive and neither
c(N) is great enough because c({A}) + c({B,C}) = c(N). We will assume that all towns accept
the Shapley value as the sharing rule in all possible cases. The cost game c played by the towns
has been described above. If each town signs an individual contract, then the corresponding
costs will be

c({A}) = −2000, c({B}) = −4480 and c({C}) = −4480.

If all agree to sign a full joint contract, the sharing is

ΦA[c] = −1920, ΦB[c] = −3750 and ΦC [c] = −3990.

Finally, if {X,Y } is any two�player coalition that signs a joint contract, and c{X,Y } denotes the
restriction of game c to this coalition, then we have

ΦA[c{A,B}] = −1760, ΦB[c{A,B}] = −4240, ΦC [c{A,C}] = −4480,
ΦA[c{A,C}] = −2000, ΦB[c{B,C}] = −3830, ΦC [c{B,C}] = −3830.

So the preferences of each town on coalitions containing it are

• {A,B} > {A,B,C} > {A} ≡ {A,C} for town A,
• {A,B,C} > {B,C} > {A,B} > {B} for town B,
• {B,C} > {A,B,C} > {C} ≡ {A,C} for town C.
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We conclude that, strictly speaking, there is no solution for the problem. However, intuitively,
it seems that, in a further negotiation, town B might convince (or force) the others to form the
grand coalition, as its position in the bargaining seems to be the strongest.

Example 6.4. (The four cottages) A dirt track connects four cottages with a main road, as is
shown in Fig. 2. Asphalting the track costs 60,000 euros/km.

D

C
B

A
1 km

1 km
2 km

1 km

1 km

road

1

Fig. 2: The four cottages

If S is any subset of cottages, c(S) will represent the cost (in thousands of euros) of asphalting
the fraction of the track that connects the cottages of S with the road. This gives a cost game
c in the player set N = {1, 2, 3, 4} of the respective owners of A, B, C and D, de�ned by

c(∅) = 0, c({1}) = −240, c({2}) = −240, c({3}) = −120,
c({4}) = −60, c({1, 2}) = −300, c({1, 3}) = −300, c({1, 4}) = −240,
c({2, 3}) = −300, c({2, 4}) = −240, c({3, 4}) = −120, c({1, 2, 3}) = −360,
c({1, 2, 4}) = −300, c({1, 3, 4}) = −300, c({2, 3, 4}) = −300, c({1, 2, 3, 4}) = −360.

The game is cohesive and c(N) is great enough. We omit the details about the Shapley value on
subgames. By applying the standard technique proposed in previous sections, we �nd that the
preferences of cottage owners are as follows:

• {1, 2, 3, 4} > {1, 2, 3} ≡ {1, 2, 4} > {1, 2} > {1, 3, 4} > {1, 3} ≡ {1, 4} > {1} for owner 1,
• {1, 2, 3, 4} > {1, 2, 3} ≡ {1, 2, 4} > {1, 2} > {2, 3, 4} > {2, 3} ≡ {2, 4} > {2} for owner 2,
• {1, 2, 3, 4} > {1, 2, 3} ≡ {1, 3, 4} ≡ {2, 3, 4} > {1, 3} ≡ {2, 3} ≡ {3, 4} > {3} for owner 3,
• {1, 2, 3, 4} > {1, 2, 4} ≡ {1, 3, 4} ≡ {2, 3, 4} > {1, 4} ≡ {2, 4} ≡ {3, 4} > {4} for owner 4.

Thus, in this problem all players strictly prefer forming the grand coalition and share the total
cost (in thousand euros) in this way:

Φ1[c] = 135, Φ2[c] = 135, Φ3[c] = 75 and Φ4[c] = 15.

This �ts well the common sense standard rule applied by most councils in problems of this kind.

Examples 6.5. (A taxi trip and a logistics problem) (a) A relatively similar problem is the
following. Three friends, Alice, Betty and Cate, respectively denoted as A, B and C, leave a
party, call a taxi, and ask the driver to carry them home together. The trip is represented in
Fig. 3 and the fee is one euro/km.

party Alice’s
home

Betty’s
home

Cate’s
home

12 km 8 km 5 km

1

Fig. 3: A taxi trip

The cost game c played by the friends is given by

c(∅) = 0, c({A}) = −12, c({B}) = −20, c({C}) = −25,
c({A,B}) = −20, c({A,C}) = −25, c({B,C}) = −25, c({A,B,C}) = −25.

This game is convex and cohesive, so the only solution is BN with the payo�s given by the
Shapley value of the game Φ[c] = (−4,−8,−13). Again, this solution �ts well common sense,
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according to which friends travelling in the taxi in a given interval should share equitably the
cost of that interval.

(b) We generalize this example to a transportation problem. To �x ideas, let N = {1, 2, . . . , n}
be a set of consumers that want to be supplied with diverse goods from a logistic centre located
at the origin 0. The single itinerary followed by the carrier (using, e.g., truck, train, ship or
plane) can be described as in Fig. 4.

0 1 2 3 . . . n−1 n

d1 d2 d3 . . . dn

1

Fig. 4: Logistics itinerary

The transportation costs in each stretch of the route are given by negative numbers d1, d2, . . . , dn,
e.g. proportional to the respective lengths. Of course, if only a subset S of consumers decided
to make use of this service, the trip would �nish at point max{S} (the consumer of S furthest
from 0), with the subsequent cost reduction. If costs are assumed to be allocated in all cases by
the Shapley value, the problem is whether the consumers prefer to form the grand coalition or
splitting into cheaper unions.

The cost game c that describes this problem is de�ned by

c(S) =

max{S}∑
k=1

dk for each S ⊆ N.

It is not di�cult to check that this is a convex and cohesive game, so the only solution is the
coalition structure BN with associated payo�s given by the Shapley value of the game:

Φi[c] =
i∑

k=1

dk
n+ 1− k for each i ∈ N.

Once more, this �ts common sense, which would recommend sharing equitably the cost of each
stretch among the consumers whose service requires the carrier to go through this stretch.

Example 6.6. (The bankruptcy problem) The Talmud is an ancient Jewish document where
comments on Moses' law and teachings of the rabbinical school are collected. Towards 1140 AD,
Rabbi Ibn Ezra proposed in the Talmud the following problem. Jacob is dead, and each of his
sons, Reuben, Simeon, Levi and Judah, presents a brief document in which Jacob recognizes
him as heir and bequeaths, respectively, 1/4, 1/3, 1/2, and all of its assets, valued at 120
m.u. (monetary units of that time). All documents bear the same date and, therefore, none has
priority over others. The problem is how to divide Jacob's inheritance.

Let N = {1, 2, 3, 4} be the set of Jacob's sons in the order mentioned above, E = 120 be the
estate and d1 = 30, d2 = 40, d3 = 60, d4 = 120 be the creditors' demands. In this example,
the estate is the total of Jacob's assets and the creditors are Jacob's sons. O'Neill [46] de�ned a
cooperative game to deal with this kind of problems, now known as �bankruptcy problems�:

u(S) = max{0, E −
∑
j /∈S

dj} for each S ⊆ N.

This game is given by

u(∅) = 0, u({1}) = 0, u({2}) = 0, u({3}) = 0,
u({4}) = 0, u({1, 2}) = 0, u({1, 3}) = 0, u({1, 4}) = 20,
u({2, 3}) = 0, u({2, 4}) = 30, u({3, 4}) = 50, u({1, 2, 3}) = 0,
u({1, 2, 4}) = 60, u({1, 3, 4}) = 80, u({2, 3, 4}) = 90, u({1, 2, 3, 4}) = 120.



COALITION FORMATION AND STABILITY 23

The game is convex and cohesive and u(N) is great enough. We omit the details about the
Shapley value on subgames. The preferences of Jacob's sons are as follows:

• {1, 2, 3, 4} > {1, 2, 4} ≡ {1, 3, 4} > {1, 4} > {1, 2, 3} ≡ {1, 2} ≡ {1, 3} ≡ {1} for Reuben,
• {1, 2, 3, 4} > {1, 2, 4} ≡ {2, 3, 4} > {2, 4} > {1, 2, 3} ≡ {1, 2} ≡ {2, 3} ≡ {2} for Simeon,
• {1, 2, 3, 4} > {1, 3, 4} ≡ {2, 3, 4} > {3, 4} > {1, 2, 3} ≡ {1, 3} ≡ {2, 3} ≡ {3} for Levi,
• {1, 2, 3, 4} > {2, 3, 4} > {1, 2, 4} ≡ {1, 3, 4} > {3, 4} > {2, 4} > {1, 4} > {1} for Judah.

Again, we �nd that, in accordance with Corollary 4.12, the only solution of the problem is given
by the grand coalition, with the payo�s allocated by the Shapley value:

Φ1[u] = 14.17, Φ2[u] = 19.17, Φ3[u] = 29.17 and Φ4[u] = 57.50.

This solution coincides with the sharing proposed in the Talmud.

More generally, it is not di�cult to see that any n�person bankruptcy game is convex and

cohesive, provided that d1, d2, . . . , dn > 0 and 0 < E <
∑
i∈N

di. Thus, Corollary 4.12 ensures that

forming the grand coalition is the only solution for any such game.

Example 6.7. (An oligopoly market) Three friends, Alan, Burt and Cynthia, have one company
each. They dominate the market of a certain product and obtain annual bene�ts of 100, 200 and
300 monetary units (say, thousands of euros), respectively. A market prospection predicts that,
by merging companies, the increase of the joint bene�t would be 10% for Alan and Burt, 20%
for Alan and Cynthia, and 30% for all together. Finally, Burt and Cynthia might try to achieve
a risk operation that would give them an increase of 50% on their joint bene�t, but only with a
success probability p (of course, 0 ≤ p ≤ 1). Otherwise, with probability 1 − p, they would fail
and get an increase of 5% only.

We �rst determine the cooperative game u played by the friends. Taking Alan = 1, Burt = 2
and Cynthia = 3, we �nd as utility of coalition {2, 3} the expected joint bene�t in terms of p,
i.e. u({2, 3}) = 750p+ 525(1− p), and therefore the game is given (in thousands of euros) by

u(∅) = 0, u({1}) = 100, u({2}) = 200, u({3}) = 300,
u({1, 2}) = 330, u({1, 3}) = 480, u({2, 3}) = 525 + 225p, u({1, 2, 3}) = 780.

A complete analysis of coalition formation is as follows. By applying the Shapley value to the
involved games u, u{1,2}, u{1,3} and u{2,3}, we have all the necessary information. First,

Φ1[u] = 170− 75p, Φ2[u] = 242.50 + 37.50p and Φ3[u] = 367.50 + 37.50p,

and, moreover,

Φ1[u{1,2}] = 115, Φ2[u{1,2}] = 215, Φ3[u{1,3}] = 340,
Φ1[u{1,3}] = 140, Φ2[u{2,3}] = 212.50 + 112.50p, Φ3[u{2,3}] = 312.50 + 112.50p.

Then, the preferred options for each player in terms of p are given by the following table:

If Alan prefers Burt prefers Cynthia prefers
0 ≤ p < 0.40 {1, 2, 3} {1, 2, 3} {1, 2, 3}
p = 0.40 {1, 2, 3} ≡ {1, 3} {1, 2, 3} ≡ {2, 3} {1, 2, 3}
0.40 < p < 0.7333 {1, 3} {2, 3} {1, 2, 3}
p = 0.7333 {1, 3} {2, 3} {1, 2, 3} ≡ {2, 3}
0.7333 < p ≤ 1 {1, 3} {2, 3} {2, 3}
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Players' behavior is clear when 0 ≤ p ≤ 0.40 (forming the grand coalition) and when 0.7333 ≤
p ≤ 1 (forming {1} and {2, 3}), but not when 0.40 < p < 0.7333. In this case, it might be
conceivable that Cynthia (player 3) convince or force the others to form the grand coalition. Or
either that she accepts to form {2, 3}, with a loss, with respect to {1, 2, 3}, going from 0 (for
p = 0.7333) to 25 (for p = 0.40), that is, with a maximum loss of 6.5%.

Decomposable games were introduced by Shapley [53]. Assume that several companies have their
headquarters in di�erent countries or work in di�erent industrial sectors. In both cases, there
exists a coalition structure that re�ects the di�erent locations. All companies may, in principle,
joint to others. However, let us asume that, due to strict regulations of the involved countries
in the �rst case, or to the lack of relation between goods produced in di�erent sectors in the
second, synergies (if any) may appear only between companies lying in the same union (country
or sector, resp.). Then, the game that describes the utility of any coalition of companies is a
decomposable game.

Example 6.8. (Decomposable games) Let N be a player set (n ≥ 2) and D = {D1, D2, . . . , Dm}
be a coalition structure in N , with m ≥ 2. The unions of D will be called here districts. If for
any S ⊆ N we set Sk = S ∩Dk for k = 1, 2, . . . ,m, it follows that S can be uniquely written as
S = S1 ∪ S2 ∪ · · · ∪ Sm (see Fig. 5 for m = 4). Of course, Nk = Dk for all k.

✬

✫

✩
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S
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1

Fig. 5: Decomposition of a coalition

Let u be a game in N . According to Shapley [53], game u is said to be decomposable (with
respect to D) if

u(S) = u(S1) + u(S2) + · · ·+ u(Sm) for every S ⊆ N.
(If D = Bn and hence m = n, the condition merely means that u is an additive game.)

For each k, let uk denote the restriction of u to Dk, and u
k denote the null extension of uk to

N , de�ned by uk(S) = uk(Sk) for all S ⊆ N . All i /∈ Dk are null players in uk. Games uk, and
even games uk, are called the components of u with respect to D. Clearly,

u = u1 + u2 + · · ·+ um,

and hence, if i ∈ Dk,

Φi[u] = Φi[u
k] = Φi[u

k].

Game u is what we called in Section 4 a weakly additive game (here with regard to D). Then it
follows from Theorem 4.18(a) that BN is a solution for u if and only if so is D. For example, it
is easy to check that if all components are convex games then so is u, and the converse is true
because the condition is hereditary (this equivalence as to convexity was already stated in [53]);
in this case these two coalition structures are solution. However, the components of u are in
general arbitrary games, and other solutions may exist: if e.g. all uk are additive, then so is u,
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whence Φi[u] = u({i}) for all i ∈ N , and any coalition structure B (included Bn) is a solution of
u with these trivial payo�s.

A special property of any decomposable game u is that, if S = S1∪S2∪· · ·∪Sm is any nonempty
coalition, then the restriction of u to S is

uS = u1
S1

+ u2
S2

+ · · ·+ umSm = u1
S1

+ u2
S2

+ · · ·+ umSm .

As a consequence, if i ∈ S ∩Dk = Sk then

Φi[uS ] = Φi[u
k
Sk

] = Φi[u
k
Sk

].

This is a key point for the analysis of coalition formation. It means that the payo� received
by i in uS does not depend on the members of S belonging to other districts, but solely on his
partners in Sk. Its implications are crucial in the study of the relation between solutions of u
and solutions of all uk. We complete our analysis with the four following statements.

1. If B1,B2, . . . ,Bm are solutions for the component games u1, u2, . . . , um, respectively, with their
corresponding payo�s, then B = B1 ∪ B2 ∪ · · · ∪ Bm is a solution for u with the same payo�s.

For each k = 1, 2, . . . ,m, let Bk = {Bk1, Bk2, . . . , Bkpk} be a stable coalition structure in district

Dk for game uk. Then B = {B11, . . . , B21, . . . , Bmpm} is a coalition structure in N (see Fig. 6(a)
for m = 4).

N

D1 D2 D3 D4

B1 B2 B3 B4

B11

B12

B21

B22

B3

B41

B42

B43

N

D1 D2 D3 D4

B11
B12

B21 B22

B23

B32

B33 B34

B43 B44

1

Fig. 6: (a) construction of B; (b) construction of B1,B2, . . . ,Bm
We shall prove that B is stable for u in N . Let us consider e.g. player 1 ∈ D1 and assume, without
loss of generality, that 1 ∈ B11, the �rst union of B1. There are two possibilities. If B11 = {{1}}
is a (forced or not) singleton, the payo� for player 1 is u1({1}). Otherwise, |B11| ≥ 2 and B11 is
an optimal coalition for player 1 in u1, so Φ1[u1

B11
] is the best payo� for player 1 in u1.

In the �rst case (singleton), there is no optimal coalition S ⊆ D1, with 1 ∈ S and |S| ≥ 2, better
than B11 for 1 in u1. Since u = u1 in D1, neither there exists an analogous coalition S ⊆ D1

for u. Thus, B11 = {{1}} is a (forced or not) singleton also for u. In the second case (optimal
coalition), and again because u = u1 in D1, B11 is an optimal coalition for player 1 also in u.
And, in both cases, joining any coalition S 6⊆ D1 cannot increase the payo� of player 1 in u
because his payo� is independent of the members of S\D1.

As this argument holds for all players of all districts, the proof is complete.

2. If some uk lacks solution in Dk then u lacks solution in N .

The proof is based on an analogous reasoning.
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3. If u has a solution in N then each uk has a solution in Dk.

This statement is logically equivalent to point 2, but we wish to detail here the way by which
a stable coalition structure B for u in N gives rise to stable coalition structures Bk for uk in
Dk for k = 1, 2, . . . ,m. The procedure is illustrated by Fig. 6(b) for m = 4. The unions of
B need not be compatible with the districts (unions of D), but the intersections of all of them
with each district de�ne a coalition structure in this district. Thus, for example, in Fig. 6(b) B1

gives B11 and B12, B2 gives B21, B22 and B23, and similar intersections are given by B3 and B4.
Collecting these intersections, we obtain B1 = {B11, B21} in D1, B2 = {B12, B22, B32} in D2,
B3 = {B23, B33, B43} in D3 and B4 = {B34, B44} in D4. These coalition structures are stable by
the argument exposed in point 1 and they keep the payo�s allocated by B.
4. When compounding solutions of the components uk to obtain a solution for u, optimal coalitions
and forced singletons of any district can join optimal coalitions and forced singletons of any other
district without modifying the payo�s to the involved players.

For example, let N = {1, 2, 3, 4, 5}, D1 = {1, 2} and D2 = {3, 4, 5}. If B1 = {{1}, {2}} is the
only solution for u1 and B′2 = {{3, 4}, {5}} and B′′2 = {{3, 4, 5}} are the solutions for u2, then
eight solutions appear for game u, namely:

{{1}, {2}, {3, 4}, {5}}, {{1}, {2}, {3, 4, 5}}, {{1, 3, 4}, {2}, {5}}, {{1, 3, 4, 5}, {2}},
{{1}, {2, 3, 4}, {5}}, {{1}, {2, 3, 4, 5}}, {{1, 5}, {2}, {3, 4}}, {{1}, {2, 5}, {3, 4}}.

As a preface for our �nal example, we recall an important class of cooperative games. A mono-
tonic game u in N is simple if u(S) = 0 or 1 for each S ⊆ N .9 The family of winning coalitions,
which determines the game, is

W (u) = {S ⊆ N : u(S) = 1}.
The family of minimal winning coalitions, which also determines the game and is, in general,
quite smaller, is

Wm(u) = {S ∈W (u) : R ⊂ S ⇒ R /∈W (u)}.
A simple game u is a weighted majority game if there exist weights w1, w2, . . . , wn ≥ 0 attached
to the players and a quota q > 0 such that

S ∈W (u) if and only if
∑
i∈S

wi ≥ q.

In this case we say that [q;w1, w2, . . . , wn] is a representation of u. Such a representation, if it
exists, is never unique, so we write u ≡ [q;w1, w2, . . . , wn].

If T ⊂ N then the restricted game of a simple game u is uT = 0 if T /∈W (u), the unanimity game
in T if T ∈Wm(u), or a more complicated game if T ∈W (u)\Wm(u). If u ≡ [q;w1, w2, . . . , wn]
and, say, T = {1, 2, . . . , t}, then the restricted game is uT ≡ [q;w1, w2, . . . , wt].

Simple games, and in particular weighted majority games, are often used in Political Science to
describe binary decision�making mechanisms when proposals are submitted to the approval of
a set of agents. They are also useful to represent access structures in Cryptography (cf. [24]) or
semi�coherent structures in Reliability (cf. [25]). In all these cases, the Shapley value becomes
an interesting individual measure of �power� (in a generic sense).

9As we do not impose u(N) = 1, we accept as simple the null game u = 0, because the restriction of a simple
game may well be a null subgame.
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However, these alternative uses of simple games do not prevent to study them as cooperative
games. We present below an interesting case where there exists a main player (without veto
power) and the others are symmetric. Utilities are taken, quite conventionally, equal to 0 or 1.

Example 6.9. (Apex games) An apex game u in N is a weighted majority game of the form

u ≡ [n− 1;n− 2, 1, 1, . . . , 1] with n ≥ 4.

These games were introduced by Von Neumann and Morgenstern [57]. The quota q is the least

integer greater than half the total of weights,
∑
i∈N

wi = 2n− 3, so the family of minimal winning

coalitions is
Wm(u) = {{1, 2}, {1, 3}, . . . , {1, n}, {2, 3, . . . , n}}.

1

2

3

45

6

7

1

Fig. 7: Apex con�guration for n = 7

All apex games are clearly superadditive. However, none of them is convex and neither it is
cohesive. There exist an apex player (player 1) and n − 1 peripheral players (players 2 to n).
Correspondingly, there are n − 1 radial minimal winning coalitions and a peripheral one which
prevents player 1 to enjoy veto power (see Fig. 7). The application of the Shapley value yields

Φ1[u] = 1− 2

n
and Φi[u] =

2

n(n− 1)
for each i 6= 1.

Thus, if S = N\{1} then u(S) = 1 and
∑
i∈S

Φi[u] = 2/n, so, as n ≥ 4, we �nd u(S) >
∑
i∈S

Φi[u].

Hence, Theorem 4.16(a) applies and we conclude that BN is never a solution for an apex game.

As to subgames, there are di�erent possibilities. Let T ⊂ N . If T ⊂ N\{1} then uT = 0 and
Φi[uT ] = 0 for all i ∈ T . If T = N\{1} then t = |T | = n−1, uT is the unanimity game in T , and
Φi[uT ] = 1/(n − 1) for all i ∈ T . Otherwise, that is, if 1 ∈ T , we �nd two cases. If t = |T | = 1

then uT = 0 and Φ1[uT ] = 0. If 2 ≤ t ≤ n − 1 then u ≡ [n − 1;n − 2, 1, 1,
t−1
.̂ . ., 1], and hence

Wm(uT ) = {{1, 2}, {1, 3}, . . . , {1, t}}; thus,

Φ1[uT ] = 1− 1

t
and Φi[uT ] =

1

t(t− 1)
for each i ∈ T\{1}.

Now the analysis of coalition formation can be completed. Omitting the details and having in
mind that all minor players are symmetric and hence interchangeable, player 1's preferences are
as follows:

• If n = 4 then {1, 2, 3} > {1, 2} ≡ N > {1}.
• If n ≥ 5 then {1, 2, . . . , n− 1} > · · · > N > · · · > {1, 2} > {1}.
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Instead, for any other player (player 2, say, to ease the description) the preferences are:

• If n = 4 then {1, 2} > N\{1} > {1, 2, 3} ≡ N > {2}.
• If n = 5 then {1, 2} > N\{1} > {1, 2, 3} > N > {1, 2, 3, 4} > {2}.
• If n = 6 then {1, 2} > N\{1} > {1, 2, 3} > · · · > N > · · · > {2}.
• If n = 7 then {1, 2} > N\{1} ≡ {1, 2, 3} > · · · > N > · · · > {2}.
• If n ≥ 8 then {1, 2} > {1, 2, 3} > N\{1} > · · · > N > · · · > {2}.

Then, player 1 strictly prefers a payo� of 1− 1

n− 1
forming {1, 2, . . . , n−1} or, in words, joining

any n − 2 minor players. Instead, each minor player i strictly prefers a payo� of 1/2 joining
player 1 and forming {1, i}. The �nal conclusion is clear: Any apex game lacks solution. This is
a general statement. It di�ers from the results found by Hart and Kurz [36] because these authors
studied these games from Owen's [47] approach, whereas ours is Aumann�Drèze's approach [11].

7. Conclusions and future work

In this work we have discussed coalition formation in any cooperative game, assuming that the
Shapley value is the universal sharing rule in the sense that it applies to the game and also to
all its subgames. A solution notion has been proposed, consisting of a stable coalition structure,
which determines a strategy for each one of the players, and the corresponding payo�s they will
receive. Essentially, what we have in mind is the analogue of the stability of the AD value. We
have been especially interested in the grand coalition as a solution.

Five main results have been provided. The �rst (Theorem 4.5) establishes convexity as a su�-
cient condition for the grand coalition to be a solution (existence). The second (Theorem 4.10)
establishes cohesiveness as a su�cient condition for the grand coalition to be the only solution
if any (uniqueness). The third (Theorem 4.14) establishes a rather qualitative su�cient condi-
tion for the grand coalition to be a solution (existence) or even the only solution (existence and
uniqueness). The fourth (Theorem 4.16) essentially establishes, under monotonicity, a practical
su�cient condition for the grand coalition to be the only solution (existence and uniqueness).
The �fth (Theorem 4.18) discusses weakly additive games. Di�erent examples and counterex-
amples have been included, and examples related to economic problems have been also studied
and generalized when possible.

As to future work in this research line, we suggest, among others, the following points:

• The search of necessary conditions for existence and/or uniqueness of the grand coalition
as a solution.
• The possibility of disregarding the use of the Shapley value for subgames and to allow
every coalition to use its own sharing rule (cf. Example 4.2 in [18]).
• The enlargement of the scope of the analysis by considering special relationships among
players, due to ideological or strategic a�nities and/or incompatibilities, which can in-
�uence coalition formation strongly. The introduction in the evaluation of games of
additional information not stored in the characteristic function goes back to Myerson
[42, 43] (a�nities) and others [17, 13] (incompatibilities) and was widely generalised by
using cooperation indices [4, 5, 6, 7, 8].
• The enlargement of the scope of the analysis by considering games with level coalition
structures, a natural extension of the domain of coalitional values already mentioned by
Owen [47] and developed by other authors [59, 2, 3].
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