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Abstract: The paper investigates a robust optimisation for detail design of active
shock control bump on a transonic Natural Laminar Flow (NLF) aerofoil using a
Multi-Objective Evolutionary Algorithm (MOEA) coupled to Computational Fluid
Dynamics (CFD) software. For MOEA, Robust Multi-objective Optimisation Plat-
form (RMOP) developed in CIMNE is used. For the active shock control bump de-
sign, two different optimisation methods are considered; the first method is a Pareto-
Game based Genetic Algorithm in RMOP (denoted as RMOGA). The second method
uses a Hybridised RMOGA with Game-Strategies and a parallel computation for
high performance computation. The paper not only shows how a shock control bump
approach coupled to CFD improves aerodynamic performance of original transonic
aerofoil but also it shows how high performance computation with applying Hybrid-
Game and parallel computation increase the efficiency of optimisation in terms of
computational cost and result accuracy.
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1 Introduction

Computational Fluid Dynamics (CFD) has become an important tool in optimisation and has seen suc-
cess in many real world applications. Most important among these is in the optimisation of aerodynamic
surfaces. Most of these have been carried out for a given set of input parameters such as free stream
Mach number and angle of attack. One cannot ignore the fact that Multi-Objective (MO) and Multidis-
ciplinary Design Optimisations (MDO) in aerospace engineering frequently often deal with situations
where the design input parameters and flight/flow conditions have some amount of uncertainty attached
to them. This challenge can be solved by using a robust/uncertainty design approach which can produce
high quality solutions in terms of magnitude of performance and its sensitivity at a variable uncertainty
design parameters [1, 2, 3]. However, one major drawback of using robust design method is extensive
computational cost. Therefore it is inevitable to conduct the optimisation in high performance (parallel)
computation while innovating the optimisation techniques.

This paper develops a methodology for robust multi-objective design optimisation. The methodol-
ogy couples CFD software, robust/uncertainty design strategy, and a parallelised hybrid evolutionary
optimiser, to produce a set of reliable optimal designs which have higher performance and lower sensi-
tivity. In this paper, an Active Flow Control (AFC) device design is considered as a robust optimisation
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application.
One of important challenges in aeronautical engineering is to control flow over a transonic aero-

foil/wing to reduce drag while increasing aerodynamic performance (L/D). The drag reduction can save
mission operating cost, condense critical aircraft emissions and increase the performance envelope of
the aircraft. Such drag reduction can be achieved by implementing a type of AFC called Shock Control
Bump (SCB) [4, 5] without the need to design a new aerofoil or wing planform shape.

The approach is demonstrated on its application; robust design optimisation of SCB on the suction
side of Natural Laminar Flow (NLF) aerofoil; RAE 5243 to minimise the total transonic drag at the
variable Boundary Layer Transition (BLT) positions and lift coefficients (250 samples obtained by Latin
Hypercube Sampling [9]). This design problem is solved by using two different Multi-Objective Evolu-
tionary Algorithms (MOEAs); the first is the Genetic Algorithm (GA) [6, 7] in Robust Multi-objective
Optimisation Platform (RMOP) (denoted as RMOGA). The second method uses a hybridised GA with
Nash-Game [8] and parallel computation [10] (denoted as HPRMOGA). The paper will show;

• how to control the design quality under considering uncertain design parameters,

• how to control the transonic flow on a current aerofoil using a SCB,

• how to improve the optimisation efficiency using Hybrid-Game coupled to parallel computation.

The rest of paper is organised as follows; Section 2 considers robust design optimisation of detailed
design of Active Shock Control Bump using RMOGA and HPRMOGA.

2 Robust optimisation for detailed design of Shock Control Bump

Problem De f inition
The problem considers a detailed robust design optimisation of shock control bump under considering
uncertainty parameters including Boundary Layer Transition (BLT) positions and lift coefficients (250
samples in total) using RMOGA and HPRMOGA. The number of CPUs usage for RMOGA (Pareto-
Game) and HPRMOGA (Pareto and Nash games) are one and ten CPUs respectively in Dell PowerEdge
6850 (Intel(R) Xeon(TM) CPU 16 × 3.20GHz and 32GB RAM) machine. The objectives are to min-
imise the total drag and to minimise its sensitivity as shown Equations (1) and (2); HPRMOGA employs
three players; Pareto-Player (considering fitness functions 1 and 2 at 250 samples for uncertainty), Nash-
Player1 (considering fitness function 1 at 25 samples for uncertainty) and Nash-Player 2 (considering
fitness function 2: 25 samples for uncertainty). The stopping criterion is based on the predefined elapsed
time; RMOGA and HPRMOGA are stopped after 50 and 25 hours respectively.
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Stopping Criterion;

ElapsedTimeRMOGA ≤ 50Hours, ElapsedTimeHPRMOGA ≤ 25Hours

at uncertainty conditions; Boundary Layer Transition positions (BLT) and lift coefficients (Cl)



µBLT = 0.3782 and σBLT = 0.0802 at a range of BLT = [0.25 : 0.50]

µCl = 0.7462 and σCl = 0.0398 at a range of BLT = [0.67 : 0.82]

where N and M are number of samples for Boundary Layer Transition positions and lift coefficients (Cl)
respectively i.e. N = 10 and M = 25.

Numerical Results
Resulting Pareto front obtained by RMOGA and HPRMOGA are compared to the baseline design as
shown in Figure 1. Both RMOGA and HPRMOGA produce a set of solutions which have lower mean
total drag and sensitivity at variable BLT and Cl conditions when compared to the baseline design. Even
though the computational cost of HPRMOGA is only half of RMOGA, Pareto member 1 (the best solu-
tion for objective 1) obtained by HPRMOGA produces lower mean total drag when compared to Pareto
member 1 obtained by RMOGA. The convergence history obtained by RMOGA and HPRMOGA are
plotted to compare the computational efficiency as shown in Figure 2 where x-axis is normalised by each
total function evaluation. It can be seen that HPMOGA saves upto 75% of RMOGA computational cost
while producing lower converged value for fitness function 1.

Figure 1: Pareto optimal front. Figure 2: Computational cost comparison.

Pareto member 1 obtained by RMOGA (denoted as RMOGA PM1), and Pareto members 1 and
2 obtained by HPRMOGA (denoted as HPRMOGA PM1 and PM2) are selected as a compromised
solution to proceed more detailed statistical analysis. The mean and standard deviations of total drag
obtained by compromised solutions are compared using Cumulative Distribution Function (CDF) and
Probability Density Function (PDF) as shown in Figures 3 and 4. It can be seen that all solutions
obtained by RMOGA and HPRMOGA have lower mean total drag when compared to the baseline
design. In addition, all optimal solutions obtained by RMOGA and HPRMOGA produce lower drag
sensitivity when compared to the baseline design as shown in Figure 4.

Figure 5 compares the pressure contour obtained by Pareto member 1 from both RMOGA and
HPRMOGA at the mean BLT and Cl i.e. µBLT = 0.3782, µCl = 0.7462. It can be seen that the optimal
solution obtained by HPRMOGA reduces the total drag by 26% while improving L/D by 34.2%.
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