

CLOUD COMPUTING ENHANCEMENTS AND

PRIVATE CLOUD MANAGEMENT

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Antonio Alonso Gil

In partial fulfilment

of the requirements for the degree in

AUDIOVISUAL SYSTEMS ENGINEERING

Advisors: Paulo da Fonseca Pinto

Pedro Amaral

Jordi Domingo-Pascual

Barcelona, May 2018

1

Abstract

This is a project developed in the Departamento de Engenharia Electrotécnica

(DEE) in the Faculdade de Ciências e Tecnologia (FCT) from Universidade

NOVA de Lisboa (UNL).

The objective of this project is to implement a private cloud in a small datacenter

network using the MAAS server provisioning tool and the Openstack software

platform for cloud computing, leaving it ready to be interconnected it with an

experimental SDN Network.

The private cloud and Network will serve the telecommunications group

undergraduate and post-graduate labs and it will be used both as a production

Network and as a test bed for new research with the cloud being used to

integrate several available computing resources in order to maximize the

available computation power for research tasks.

2

Resum

Aquest és un projecte desenvolupat al Departament d'Enginyeria Electrotècnica

(DEE) a la Facultat de Ciències i Tecnologia (FCT) de la Universitat NOVA de

Lisboa (UNL).

L'objectiu d'aquest projecte és implementar un núvol privat en una petita xarxa

de centre de dades fent servir la eina d’aprovisionament de servidors MAAS eI

projecte de computació en el núvol Openstack per a que posteriorment aquesta

sigui interconectada amb una xarxa SDN experimental.

El núvol privat i la xarxa serviràn als laboratoris de pregrau i postgrau del grup

de telecomunicacions de la Universitat i s'utilitzarà tant com una xarxa de

producció com un banc de proves per a noves investigacions, fent servir el núvol

per integrar diversos recursos informàtics disponibles per maximitzar la

computació disponible per a tasques d'investigació.

3

Resumen

Este es un proyecto desarrollado en el Departamento de Ingeniería

Electrotécnica (DEE) en la Facultad de Ciencias y Tecnología (FCT) de la

Universidad NOVA de Lisboa (UNL).

El objetivo de este proyecto es implementar una nube privada en una pequeña

red de centro de datos usando la herramienta provisionadora de servidores

MAAS y el proyecto de computación en la nuve Openstack para que

posteriormente esta sea interconectada con una red SDN experimental.

La nube privada y la red servirán a los laboratorios de pregrado y posgrado del

grupo de telecomunicaciones de la Universidad y se utilizará tanto como una red

de producción como un banco de pruebas para nuevas investigaciones, usando

la nuve para integrar vários recursos informáticos disponibles para maximizar la

computación disponible para las tareas de investigación.

4

Dedication

To my family and friends,

for supporting me in the toughest moments.

5

Acknowledgements

I wish to express my sincere thanks to Paulo da Fonseca Pinto and Pedro Amaral,

Professors of the Department of Electronic Engineering at the Faculty of Science and

Technology in Universidade NOVA de Lisboa, for giving me the opportunity to work with

them and for the facilities of adaptation they have offered me as a foreigner, making my

work at the laboratory much more easy.

Also I would like to thank Professor Jordi Pascual-Domingo, who agreed to be my

supervisor in Barcelona. I really appreciate his help and his kind attention throughout my

thesis.

Finally for my friends, who give me their strength in the toughest moments and of course

for Antonio Alonso, my father, and Concepción Gil, my mother because without their

bravery and his effort in my education this project would not have been possible.

6

Revision history and approval record

Revision Date Purpose

0 23/04/2018 Document creation

1 10/05/2018 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

Toni Alonso tony.ag@hotmail.com

Paulo da Fonseca Pinto pfp@fct.unl.pt

Pedro Amaral pfa@fct.unl.pt

Jordi Domingo-Pascual jordi.domingo@ac.upc.edu

Written by: Reviewed and approved by:

Date 23/04/2018 Date 10/05/2018

Name Toni Alonso Gil Name Paulo da Fonseca Pinto

Pedro Amaral

Position Project author Position Project director

Manager/Advisor

mailto:tony.ag@hotmail.com
mailto:pfp@fct.unl.pt
mailto:pfa@fct.unl.pt
mailto:jordi.domingo@ac.upc.edu

7

Table of contents

Abstract .. 1

Resum .. 2

Resumen .. 3

Dedication .. 4

Acknowledgements... 5

Revision history and approval record .. 6

Table of contents .. 7

List of Figures ... 9

List of Tables .. 11

1. Introduction .. 12

1.1. Statement of purpose (objectives) .. 12

1.2. Requirements and specifications .. 12

1.3. Methods and procedures .. 13

1.4. Work plan ... 13

1.5. Deviations from the initial plan .. 18

2. State of the art of the technology used or applied in this thesis: 19

2.1. Cloud computing... 19

2.2. MAAS ... 26

2.2.1. Nodes .. 28

2.2.2. Zones .. 29

2.2.3. Images .. 30

2.2.4. Subnets ... 30

2.2.4.1. IP ranges ... 31

2.2.4.2. VLANs ... 32

2.3. Juju... 33

2.3.1. Cloud ... 36

2.3.2. Controller ... 36

2.3.3. Model .. 36

2.3.4. Charm ... 37

2.3.5. Bundle ... 38

2.3.6. Machine ... 38

8

2.3.7. Unit and application ... 39

2.3.8. Endpoint .. 40

2.3.9. lnterface .. 41

2.3.10. Relation ... 41

2.3.11. Client ... 41

2.3.12. Agent ... 43

2.4. Openstack .. 43

2.4.1. Compute (Nova) .. 46

2.4.2. Networking (Neutron) .. 46

2.4.3. Block storage (Cinder) ... 46

2.4.4. Identity (Keystone)... 47

2.4.5. Image (Glance) .. 47

2.4.6. Object storage (Swift) .. 48

2.4.7. Dashboard (Horizon) ... 48

2.4.8. Orchestration (Heat) .. 48

3. Methodology / project development: .. 52

3.1. Environment ... 52

3.2. Development .. 54

3.2.1. Ubuntu Linux bootable usb creation .. 54

3.2.2. Ubuntu Linux server installation ... 55

3.2.3. Ubuntu server MAAS install ... 56

3.2.4. MAAS install network and etherwake... 60

3.2.5. MAAS network hardware ... 69

3.2.6. MAAS node configuration .. 74

3.2.7. MAAS commission nodes .. 75

3.2.8. Deploying nodes .. 77

3.2.8.1. Deploying nodes from MAAS .. 77

3.2.8.2. Deploying nodes from Openstack .. 79

3.2.9. Ubuntu Linux MAAS decommission nodes & Juju and Openstack install ... 85

3.2.10. Openstack cloud install .. 90

4. Budget ... 92

5. Conclusions and future development: .. 93

Bibliography .. 94

Glossary ... 95

9

List of Figures

Figure 1: Traditional and virtual architecture comparison ... 20

Figure 2: Full virtualization scheme ... 20

Figure 3: Paravirtualization scheme .. 21

Figure 4: OS level virtualization scheme ... 21

Figure 5: Cloud computing scheme .. 22

Figure 6: Public cloud and private cloud 24

Figure 7: Cloud services 25

Figure 8: MAAS architecture scheme 31

Figure 9: Architectural overview33

Figure 10: Juju models in a cloud 37

Figure 11: Juju charm deployment scenario 37

Figure 12: Juju machine scheme 38

Figure 13: Juju machines comparison39

Figure 14: Juju Unit scenario 39

Figure 15: Juju relations diagram41

Figure 16: Juju client scenario 42

Figure 17: Juju client host 42

Figure 18: Openstack architecture 50

Figure 19: SDN network and existing infrastructure 52

Figure 20: Network topology 54

Figure 21: Rufus installation process 55

Figure 22: MAAS gui Images tab 59

Figure 23: MAAS gui Subnets tab61

Figure 24: MAAS gui Public network configuration63

Figure 25: MAAS gui Private network configuration65

Figure 26: MAAS & SSH keys... ..67

Figure 27: Node 1 MAAS gui tab73

Figure 28: MAAs region controller configuration 75

Figure 29: Node commissioning76

Figure 30: Scripts adding 76

10

Figure 31: MAAS gui before deploying78

Figure 32: Conjure-up main screen 79

Figure 33: Cloud selector 80

Figure 34: Credential creation 81

Figure 35: MAAS API key location 81

Figure 36: Openstack conjure-up applications82

Figure 37: Ceph-mon architect 85

Figure 38: Openstack cloud landscape gui A 88

Figure 39: Openstack cloud landscape gui B 89

Figure 40: Openstack cloud landscape installing process 91

Figure 41: Openstack computers available list 91

11

List of Tables

Table 1: OpenStack components ... 49

Table 2: Budget ... 92

12

1. Introduction

The purpose of this section is to provide an executive summary of the project. A detailed

documentation of the technologies studied and implemented are found in this report.

1.1. Statement of purpose (objectives)

During the course of the project I have discovered the high complexity of the platform in

which I have been working, since it has a modular architecture that supports the most

advanced technologies in its field.

The deployment of MAAS and OpenStack in the personal computer was a process quite

extensive in time, since new technologies were learned from the scratch and multiple

configuration problems were solved in the meantime.

Based on this experience, the following objectives were defined:

 Formation of a broad theoretical and practical knowledge of MAAS and

OpenStack.

 Through OpenStack, an open source tool, make the network and computing

resources of the data center scalable, low cost, flexible, easy to manage and with

the option of enabling multiple client services.

 Make a theoretical and practical documentation for the support of new subjects or

projects related to Cloud Computing, as well as for the future investigation lines

for the readers of the project.

1.2. Requirements and specifications

Project requirements:

- Private Cloud based VM provisioning for both end users and network

management software.

- Separation between the Network Control VMs – Openflow Controllers – Network

Sitches traffic and the User VMs – End Hosts traffic.

Project specifications:

- Use of MAAS for building the private cloud to provide virtual machines.

- Use of Openstack for setting up the private cloud and leave it ready to

interconnect it with the existing SDN network.

13

1.3. Methods and procedures

This work is not a continuation of any another project and don’t use any applications, or

algorithms previously developed by other authors.

The only thing that has been previously developed is the existing network infrastructure

where this project has been gone through.

1.4. Work plan

Work Breakdown:

SDN Network
enhancements and

Private Cloud

Project Launching
and Planning

Previous
knowledge

readings

Specifications for
the private cloud

Project Planning

Data Center
creation

MAAS
Installation

OpenStack
installation

Private cloud
development

OpenStack
Networking

scenario definition

Physical Network
connections and

testing

Finishing tasks

Final Tests and
Documentation

Produce
Documentation

Debrief

14

Work Packages:

Project: SDN Network enhancements and Private Cloud WP ref: (WP1)

Major constituent: Project Launching and Planning Sheet 1 of 4

Short description:

Initial requirements specification and technology brief.

Planned start date: 06/10/2017

Planned end date: 04/12/2017

Start event:

End event:

Internal task T1: Previous knowledge readings

Internal task T2: Specifications for the private cloud and

SDN Network enhancements

Internal task T3: Project Planning

Deliverables:

Requirement

Specification

Project Plan

Links:

Requirement

Specification

Project Plan

Project: SDN Network enhancements and Private

Cloud

WP ref: 2

Major constituent: Data Center creation Sheet 2 of 4

Short description:

Placement of the required mechanisms to create the

data center

Planned start date:

07/12/2017

Planned end date:

21/02/2018

Start event:

End event:

Internal task T1: MAAS Installation.

Internal task T2: Openstack Installation

Deliverables: Links:

15

Project: SDN Network enhancements and Private Cloud WP ref: 3

Major constituent: Private cloud development Sheet 3 of 4

Short description:

Designing of the private cloud implementation and Data

Center network.

Planned start date:

23/02/2018

Planned end date:

09/04/2018

Start event:

End event:

Internal task T1:

Openstack Networking scenario definition

Internal task T2:

Physical Network connections and testing

Internal task T3:

Finishing tasks

Deliverables: Links:

Project: Results presentation WP ref: (WP4)

Major constituent: Final Tests and Documentation Sheet 4 of 4

Short description:

Procurement of the documentation on the

implementation.

Planned start date:

11/04/2018

Planned end date: 11/05/2018

Start event:

End event:

Internal task T1: Produce Documentation

Internal task T2: Debrief

Deliverables:

System

Documentation

Links:

16

Milestones:

WP# Task# Short title Milestone / deliverable Date (week)

1 1 Previous knowledge

readings

--- 06/10/2017

1 2 Specifications for the

private cloud and SDN

enhancements

Requirement

Specification

08/11/2017

1 3 Project Planning Project Plan 23/11/2017

2 1 MAAS Installation --- 06/12/2017

2 2 OpenStack Installation --- 10/01/2018

3 1 OpenStack Networking

scenario definition

--- 15/02/2018

3 2 Physical network

connection and testing

--- 10/03/2018

3 3 Finishing tasks --- 01/04/2018

4 1 Produce

Documentation

System Documentation 11/04/2018

4 2 Debrief 02/05/2018

17

Time plan:

18

1.5. Deviations from the initial plan

This project was initially planned to include the implementation of the controller of the

SDN network of the university in the private cloud, but due to some delays this goal

couldn’t have been achieved.

Actually this project had to dedicate more time than expected on the documentation of

Cloud Computing and SDN network (in spite of it was useless at the end) and on MAAS

installation and OpenStack Networking scenario definition, due to my absolute previous

lack of knowledge about these concepts and to some personal extern mobility problems

as well.

19

2. State of the art of the technology used or applied in this

thesis:

The main objective in this point is to provide the relevant background information to this

thesis. It introduces the reader into a number of various fundamental concepts including,

Cloud Computing, Metal as a Service, Juju and Openstack.

2.1. Cloud computing

Before starting with the definition of Cloud Computing, a short explanation of the concept

of virtualization is necessary.

Virtualization is a fundamental element of Cloud Computing since it guarantees the

delivery of shared computer resources to the same server, thus reducing infrastructure

costs and increasing the flexibility and reliability of existing hardware.

Virtualization is a technique consisted on creating a virtual versions of a device or a

resource such as a server, a storage device, a network or even an operating system

where the resource is divided into one or more execution environments.

In general terms, virtualization represents a physical server partitioned into multiple virtual

servers. Each virtual machine (VM) can interact independently with other devices,

applications, data and users, as if it was a separate physical resource. Different virtual

machines can run different operating systems and multiple applications simultaneously

using a single physical computer. The software that enables virtualization is called

Hypervisor. This software, also known as ’virtualization administrator’, is located between

the hardware and operating system, separating the operating system and hardware

applications.

20

Figure 1: Traditional and virtual architecture comparison

Currently there are three major types of virtualization:

 Full virtualization: It is composed of three main layers: hardware, hypervisor and

operating system instances. The hypervisor interacts with the hardware and

keeps each virtual server isolated from the rest of the services. The hypervisor

consumes a lot of resources like RAM, CPU, etc. Each instance can run its own

operating system and these do not need to be modified. KVM and XEN provide

support for this type of virtualization.

Figure 2: Full virtualization scheme

 Paravirtualization: Paravirtualization is similar to complete virtualization, but now

virtual servers "know" that they are being virtualized and work together with other

virtual servers. For this reason, paravirtualization requires changes in the

operating system of virtual machines but it needs fewer resources for the same

workload. In other words, paravirtualization allows greater scalability at the

21

expense of some changes in the Guest operating system. In this case the

hypervisor is in the "Virtualization Software Layer" layer. XEN supports this type of

virtualization.

Figure 3: Paravirtualization scheme

 OS level virtualization: This type of virtualization does not require any type of

hypervisor since the virtualization mechanisms are part of the operating system. It

is the most scalable type of virtualization, since it does not need a hypervisor and

the instances are much lighter than the previous cases. On the other hand, it

presents the limitation that the operating system of the instance must be equal to

that of the Host. LXC Containers fall within this classification.

Figure 4: OS level virtualization scheme

Why using virtualization?

As we have said, virtualization in Cloud Computing offers several benefits, such as

saving time and energy, reducing costs and minimizing risks:

- Provides ability to manage resources effectively.

- Increase productivity, as it provides secure remote access.

- Provides prevention against possible loss of data.

22

To make virtualization possible, software known as hypervisor, virtual machine monitor or

virtualization administrator is used. This software is placed between the hardware and the

operating system and allocates the amount of access that the applications and operating

systems have with the processor and other hardware resources.

Cloud Computing

Cloud Computing term refers to a new technological conception and business model in

which services of storage, access and use of computer resources located in the network

are provided. All hardware management is carried out by the Cloud Computing provider,

ensuring certain availability and power under certain service levels (SLAs).

Thus, the client or user can ignore physical resources and focus on the central activity of

their business (web development, private business network, etc.). On the other hand, an

end user does not need a high-performance device since higher-performance tasks can

be transferred to cloud computing.

An example of cloud computing would be Google Docs / Google Apps, a system of

electronic documents and applications. For its use software needs to be installed or have

a server. The only requirement needed to use any of their services is an Internet

connection.

Figure 5: Cloud computing scheme

23

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction. This cloud model is composed

of five essential characteristics:

- On-demand self-service: A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service provider.

- Broad network access: Capabilities are available over the network and accessed

through standard mechanisms that promote use by heterogeneous thin or thick

client platforms (e.g., mobile phones, tablets, laptops, and workstations).

- Resource pooling: The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and virtual

resources dynamically assigned and reassigned according to consumer demand.

There is a sense of location independence in that the customer generally has no

control or knowledge over the exact location of the provided resources but may be

able to specify location at a higher level of abstraction (e.g., country, state, or

datacenter). Examples of resources include storage, processing, memory, and

network bandwidth.

- Rapid elasticity: Capabilities can be elastically provisioned and released, in some

cases automatically, to scale rapidly outward and inward commensurate with

demand. To the consumer, the capabilities available for provisioning often appear

to be unlimited and can be appropriated in any quantity at any time.

- Measured service: Cloud systems automatically control and optimize resource

use by leveraging a metering capability1 at some level of abstraction appropriate

to the type of service (e.g., storage, processing, bandwidth, and active user

accounts). Resource usage can be monitored, controlled, and reported, providing

transparency for both the provider and consumer of the utilized service.

Cloud computing is usually described in one of two ways. Either based on the cloud

location, or on the service that the cloud is offering.

Based on a cloud location, we can classify cloud as:

 Private cloud: The cloud infrastructure is provisioned for exclusive use by a

single organization comprising multiple consumers (e.g., business units). It may

be owned, managed, and operated by the organization, a third party, or some

combination of them, and it may exist on or off premises.

24

 Public cloud: The cloud infrastructure is provisioned for open use by the general

public. It may be owned, managed, and operated by a business, academic, or

government organization, or some combination of them. It exists on the premises

of the cloud provider.

 Community cloud: The cloud infrastructure is provisioned for exclusive use by a

specific community of consumers from organizations that have shared concerns

(e.g., mission, security requirements, policy, and compliance considerations). It

may be owned, managed, and operated by one or more of the organizations in

the community, a third party, or some combination of them, and it may exist on or

off premises.

 Hybrid cloud: The cloud infrastructure is a composition of two or more distinct

cloud infrastructures (private, community, or public) that remain unique entities,

but are bound together by standardized or proprietary technology that enables

data and application portability (e.g., cloud bursting for load balancing between

clouds).

Figure 6: Public cloud and private cloud

Based on a service that the cloud is offering, we are speaking of either:

 Software as a Service (SaaS): The capability provided to the consumer is to use

the provider’s applications running on a cloud infrastructure. The applications are

accessible from various client devices through either a thin client interface, such

25

as a web browser (e.g., web-based email), or a program interface. The consumer

does not manage or control the underlying cloud infrastructure including network,

servers, operating systems, storage, or even individual application capabilities,

with the possible exception of limited userspecific application configuration

settings.

 Platform as a Service (PaaS): The capability provided to the consumer is to

deploy onto the cloud infrastructure consumer-created or acquired applications

created using programming languages, libraries, services, and tools supported by

the provider.3 The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, or storage, but has

control over the deployed applications and possibly configuration settings for the

application-hosting environment.

 Infrastructure as a Service (IaaS): The capability provided to the consumer is to

provision processing, storage, networks, and other fundamental computing

resources where the consumer is able to deploy and run arbitrary software, which

can include operating systems and applications. The consumer does not manage

or control the underlying cloud infrastructure but has control over operating

systems, storage, and deployed applications; and possibly limited control of select

networking components (e.g., host firewalls).

Figure 7: Cloud services

A new classification of Cloud Computing is currently available: Metal as a Service

(MAAS).

26

MaaS allows the user to have a full control of the physical servers including the BIOS and

its network connection, paying for the exact time of use. Thus, the operator can build a

network from the lowest level controlling the security of all software levels.

The concept of MAAS is going to be explained in the next section.

2.2. MAAS

- What is MAAS?

Metal As A Service is a server provisioning tool that lets you treat physical servers like

virtual machines (instances) in the cloud. It delivers real servers on demand just like a

cloud delivers virtual machines. So rather than having to manage each server individually,

MAAS turns the bare metal into an elastic cloud-like resource. Machines can be quickly

provisioned and then destroyed again easily with instances in a public cloud like Amazon

AWS, Google GCE, and Microsoft Azure, among others.

It also can act as a standalone PXE/preseed (Preboot Execution Environment) service or

it can be integrated with other technologies. In particular, it is designed to work especially

well with Juju, the service and model management service. We’ll talk about Juju later in

this paper.

MAAS delivers the fastest OS installation times on bare metal in the industry thanks to its

optimised image-based installer. This Metal as a Service tool is a provisioning construct

created by Canonical, developers of the Ubuntu Linux-based operating system and

serves as a layer underneath Infrastructure-as-a-Service (IaaS) to coordinate applications

and workloads, deploying hardware and services that can dynamically scale up and down.

This tool is designed to help facilitate and automate the deployment and dynamic

provisioning of hyperscale computing environments such as big data workloads

and cloud services.

- Hardware configuration:

With MAAS, the user only touchs the power button once. During the initial startup of a

new server, MAAS indexes it, provisions it, and makes it cloud ready. A catalogue is

maintained of not only the servers, but also the inventory of devices available in them.

This is a key aspect of future provision automation.

- Ongoing infrastructure operations:

Beyond initial configuration, MAAS also handles ongoing physical IP and DNS

management. A “lights out” datacentre, with a near-zero need for hands-on operations, is

realized with MAAS.

https://jujucharms.com/docs/stable/about-juju
https://www.webopedia.com/TERM/U/Ubuntu.html
https://www.webopedia.com/TERM/L/Linux.html
https://www.webopedia.com/TERM/O/operating_system.html
https://www.webopedia.com/TERM/I/IaaS.html
https://www.webopedia.com/TERM/H/hyperscale.html
https://www.webopedia.com/TERM/B/big_data.html
https://www.webopedia.com/TERM/C/cloud.html

27

- Accessible:

MAAS provides a REST API, Web-based interface and command line interface. It is

designed with automation and hardware-at-scale in mind. Developers can even leverage

it for bare metal workload management.

- Integration:

Since there’s an API, as well as a CLI, automation tools like Juju, Chef, Puppet, SALT,

Ansible, and more, are all easily integrated with MAAS.

That means legacy, scripted automation, like Puppet and Chef, are easily integrated,

whilst modern modelling tools, like Juju, can naturally rely on MAAS for hardware

information.

- How MAAS works?

MAAS manages a pool of nodes. After registering ("Enlisting" state) a new system and

preparing it for service ("Commissioning" state), the system joins the pool and is available

for use ("Ready" state). MAAS controls machines through IPMI (or another BMC) or

converged chassis controller such as Cisco UCS.

Its worth to mention that a machine destined for MAAS will have its disk space

overwritten. A node in the pool is under MAAS's exclusive control and should not be

provisioned using other methods.

Once the node is ready, users of the MAAS then allocate them for their own use

("Acquire") when they go into use. Any subsequently installed operating system will

contain the user's SSH public key for remote access (the user's MAAS account first

needs to import the key). The web UI also allows for manual allocation in the sense of

reserving hardware to specific users for later use.

When allocating from the API/CLI, the user can specify requirements ("constraints") for a

machine. Common constraints are: memory, CPU cores, connected networks, and what

physical zone they should be in.

An allocated MAAS node is not like a virtual instance in a cloud: you get complete control,

including hardware drivers and root access. To upgrade a BIOS, for example, an

administrator could allocate a node to themselves, and run a vendor-supplied upgrade

utility.

Once the user is done with a node that has been allocated, it can be sent back to the pool

for re-use.

As we have previously mentioned, Juju is designed to work with MAAS. In this case,

MAAS becomes a sort of backend (resource pool) for Juju, or a "cloud provider" in Juju

terminology. However, everything that was stated earlier still applies. For instance, if Juju

removes a machine then MAAS will, in turn, release that machine to the pool.

28

CONCEPTS AND TERMS

At this point it is important to learn about some common terms that are essential to grasp

in order to fully enjoy MAAS.

2.2.1. Nodes

A node is a general term that refers to multiple, more specific objects. Nodes are

managed by MAAS through a life cycle, from adding and enlistment into MAAS, through

commissioning, allocation and deployment. Nodes are then either released back into the

pool of nodes or retired.

Nodes include Controllers, Machines and Devices.

- Controllers

There are two types of controllers: a region controller and a rack controller. The

region controller deals with operator requests while one or more rack controllers

provide the high-bandwidth services to multiple server racks, as typically found in a

data centre.

A region controller consists of:

 REST API server (TCP port 5240)

 PostgreSQL database

 DNS

 caching HTTP proxy

 web UI

A region controller can be thought of as being responsible for a data centre, or a

single region. Multiple fabrics are used by MAAS to accommodate subdivisions within

a single region, such as multiple floors in a data centre.

A rack controller provides:

 DHCP

 TFTP

 HTTP (for images)

 iSCSI

 Power management

A rack controller is attached to each "fabric" (VLAN namespace mechanism). As the

name implies, a common setup is to have a rack controller in each data centre server

rack. The rack controller will cache large items for performance, such as operating

29

system install images, but maintains no exclusive state other than the credentials

required to talk to the region controller.

Both the region controller and the rack controller can be scaled-out as well as made

highly available. A tag (not to be confused with VLAN tags) that are user-created and

associated with nodes based on their physical properties. These can then be used to

identify nodes with particular abilities which can be useful during the deployment of

services.

- Machines

A machine is a node that can be deployed by MAAS.

- Devices

A device is a non-deployable node. This entity can be used to track routers, for

example.

Devices can be assigned IP addresses (static or dynamic) and DNS names. They can

also be assigned a parent node and will be automatically deleted (along with all the IP

address reservations associated with it) when the parent node is deleted or released.

This is designed to model and manage the virtual machines or containers running

inside a MAAS-deployed node.

2.2.2. Zones

A physical zone, or just zone, is an organizational unit that contains nodes where each

node is in one, and only one, zone. Later, while in production, a node can be taken

(allocated) from a specific zone (or not from a specific zone). Since zones, by nature, are

custom-designed (with the exception of the 'default' zone), they provide more flexibility

than a similar feature offered by a public cloud service (ex: availability zones).

Some prime examples of how zones can be put to use include fault-tolerance, service

performance, and power management:

- Fault tolerance: Fault tolerance is "the property that enables a system to continue

operating properly in the event of the failure of (or one or more faults within) some

of its components". To assist with this, multiple MAAS zones can be employed.

For this, a zone can be defined in different ways. It can be based on power supply

for instance, or it can represent a portion of your network or an entire data centre

location. Machines that work in tandem in order to provide an instance of a

service should be allocated in the same zone. The entire service should be

replicated in another zone.

30

- Service performance: Service performance is the ability of your service to operate

in the most efficient manner possible where the typical criteria used is speed.

Multiple MAAS zones can be used to help. Nodes should be allocated in the zone

closest to the performance-critical resources they need. For example, for

applications that are highly sensitive to network latency, it may make sense to

design a network topology consisting of several smaller networks, and have each

of those represented as a zone. The zones can then be used to allocate nodes

that have the best performance depending on the service offered.

- Power management: Power management is concerned with power usage density

and cooling. This topic can be addressed with the use of several MAAS zones.

Nodes can be distributed in such a way that power-hungry and/or "hot" systems

are located in different zones. This can help mitigate power consumption and heat

problems.

A newly installed MAAS comes with a default zone, and unless a new zone is created all

nodes get placed within it. The user can therefore safely ignore the entire concept if its

not interested in leveraging zones. The 'default' zone cannot be removed and its name

cannot be edited.

2.2.3. Images

An image is used to provision an OS to a MAAS machine. MAAS images are imported

based on what series have been selected. This is typically done once the install of MAAS

is complete. MAAS only becomes functional once images have been imported from the

boot source.

2.2.4. Subnets

A subnet is a "layer 3" network. It is defined by a network address and a network mask

length (in bits) and is usually written in "CIDR" format. MAAS supports IPv4 and IPv6

subnets. In MAAS, a subnet is always associated with a single space.

Subnets can be grouped by fabrics or spaces:

Fabrics: A fabric could be described as a VLAN namespace mechanism. It's a

switch or a combination of switches that use trunking to provide the same VLANs,

in other words is a set of consistent interconnected VLANs that are capable of

mutual communication. A default fabric ('fabric-0') is created for each detected

subnet when MAAS is installed. The following conceptual diagram shows two

fabrics in the same data centre or region, each using distinct VLAN ranges and

their associated subnets:

31

- Spaces: A space is a logical grouping of subnets that are able to communicate

with each other. Subnets within each space need not belong to the same fabric. In

other words is a grouping of networks (VLANs and their subnets) that are able to

mutually communicate with each other (subnets within a space do not need to

belong to the same fabric).

A default space ('space-0') is created when MAAS is installed and includes all

detected subnets.

Figure 8: MAAS architecture scheme

2.2.4.1. IP ranges

IP addresses can be reserved by adding one or more reserved ranges to the subnet

configuration. There are two types of ranges that can be defined:

 Reserved range: An IP range that MAAS will never use. It can be used for

infrastructure systems, network hardware, external DHCP or the namespace for

an OpenStack cloud being built.

32

Mode operates differently depending on whether the subnet is managed or

unmanaged:

o Managed (subnet): MAAS will never assign IP addresses inside this range.

They can be used for anything (e.g. infrastructure systems, network

hardware, external DHCP, or the namespace for an OpenStack cloud

being built).

o Unmanaged (subnet): MAAS will only assign IP addresses inside this

range.

 Reserved dynamic range: An IP range that MAAS will use for enlisting,

commissioning and (if MAAS-managed DHCP is enabled on the node's VLAN

during commissioning) deploying. An initial range is created as part of the DHCP

enablement process if done with the web UI.

2.2.4.2. VLANs

VLANs (Virtual LANs) are a common way to create logically separate networks using the

same physical infrastructure.

Managed switches can assign VLANs to each port in either a "tagged" or an "untagged"

manner. A VLAN is said to be "untagged" on a particular port when it is the default VLAN

for that port, and requires no special configuration in order to access it.

"Tagged" VLANs can also be used with nodes in MAAS. That is, if a switch port is

configured such that "tagged" VLAN frames can be sent and received by a MAAS node,

that MAAS node can be configured to automatically bring up VLAN interfaces, so that the

deployed node can make use of them.

A "Default VLAN" is created for every fabric, to which every new VLAN-aware object in

the fabric will be associated with by default (unless specified otherwise).

33

Figure 9: Architectural overview

2.3. Juju

Juju is an open source application modelling tool developed by Canonical Ltd. Juju

focuses on reducing the operation overhead of today's software by facilitating quickly

deploying, configuring, scaling, integrating, and performing operational tasks on a wide

choice of public and private cloud services along with bare metal servers and local

container based deployments.

- Modeling complex software topologies

Juju's mission is to provide a modeling language for users that abstracts the specifics of

operating complex big software topologies. Doing so reduces the cost of operations and

provides flexibility. A Juju Model is an environment to manage and operate a set of

software applications. Models can be operated on many clouds: Amazon Web Services,

34

Microsoft Azure, Google Compute Engine, OpenStack, etc. A Juju Controller is the

service that tracks the events, state, and user activity across multiple models. You can

think of it a bit like a database servers where the controller is the server and models are

different databases available on that server. Each model can have different configuration,

sets of operating software, and different users with access at various levels. Some

examples of models could be a web application, load balancer, and database in a "web-

app" model. By using models deployments can be isolated into logical solutions and

managed separately.

Juju can also be used to operate software on bare-metal servers by using

Canonical's Metal as a Service, in containers using LXD, and more. Juju models provide

an abstraction with allows the operations know-how to be cloud agnostic. This means that

Charms and Bundles can help operate the same software with the same tooling on a

public cloud, private cloud, or a local laptop.

- Charms

Juju has two components: a client and a bootstrap node. Currently clients exist for

Ubuntu, CentOS, Mac and Windows. After installing the client, one or more environments

can be bootstrapped. Juju environments can be bootstrapped on many clouds: Amazon

Web Services, HP Cloud Services, Microsoft Azure, OpenStack, etc. By creating a Juju

Provider, additional cloud environments can be supported. Juju can also be bootstrapped

on bare-metal servers. Large deployments can use Canonical's Metal as a Service. Small

deployments can use the manual provider, which allows any SSH Ubuntu machine to be

converted into a Juju-managed machine. Juju can also be installed on a local Ubuntu

machine via LXC operating system–level virtualization and the local provider.

- Command line and GUI

Juju has both a command line and a GUI. The GUI allows users to visually see what

software is currently running in which models in a very clear fashion. It also gives the user

the power to search the Charmstore and browse results with detailed Charm information

presented. It also allows the deployment of complex software stacks via drag-and-drop.

The Juju GUI is automatically available on every controller.

- Bundles

Juju also has a concept of Bundles. A Bundle is a portable specification for a model with

charms, configuration, and relations all specified in a declarative YAML format. A Bundle

YAML file can later be imported into another Juju model and shared with others. Bundles

can also be uploaded to the charm store, allowing anybody to deploy a bundle via drag-

and-drop or one command. In this example bundle, two applications are modeled;

mediawiki, and mysql. Users can modify attributes declared in the bundle to customize

their deployment:

https://en.wikipedia.org/w/index.php?title=Metal_as_a_Service&action=edit&redlink=1
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://en.wikipedia.org/wiki/HP_Cloud_Services
https://en.wikipedia.org/wiki/Microsoft_Azure
https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/Bare-metal_server
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/Operating_system%E2%80%93level_virtualization

35

Juju also has a concept of Bundles. A Bundle is a portable specification for a model with

charms, configuration, and relations all specified in a declarative YAML format. A Bundle

YAML file can later be imported into another Juju model and shared with others. Bundles

can also be uploaded to the charm store, allowing anybody to deploy a bundle via drag-

and-drop or one command. In this example bundle, two applications are modeled;

mediawiki, and mysql. Users can modify attributes declared in the bundle to customize

their deployment:

- Strenghts and weaknesses

Juju is often compared to configuration management tools like Puppet, Chef,

Ansible, etc.due to its software provisioning capabilities. This comparison however is not

taking into account Juju's main strengths: instant integration and scaling. Juju allows

services to be instantly integrated via relationships. By creating a relationship between,

for instance, MySQL and WordPress, MySQL will share with WordPress any IPs, user,

password and other configuration items. This will enable WordPress to create tables and

import data automatically. Relations allow the complexity of integrating services to be

abstracted from the user.

Also all complexities regarding service scaling can be abstracted. Users just need to

specify the number of units they want and scaling will happen automatically. The charm

will be responsible for choosing the best strategy.

Juju is also often compared to Platform as a Service. Although in definition Juju is not a

platform-as-a-Service, it can be used to run multiple PaaS on top of it. Juju can be seen

as a DIY PaaS that allows PaaS platforms to run next to "legacy" software stacks in order

to create a customized PaaS.

services:

 mediawiki:

 charm: cs:trusty/mediawiki-3

 num_units: 1

 options:

 debug: false

 name: Please set name of wiki

 skin: vector

 mysql:

 charm: cs:trusty/mysql-29

 num_units: 1

 options:

 binlog-format: MIXED

 dataset-size: 80%

 tuning-level: safest

series: trusty

relations:

- - mediawiki:db

 - mysql:db

36

Juju lacks several of the more advanced features server provisioning systems like Chef,

Puppet, Ansible, etc. have. However, Juju allows Charms to be written in any language.

As such, Chef, Puppet, Ansible, etc. can be used inside a charm to do the server

provisioning.

CONCEPTS AND TERMS

2.3.1. Cloud

To Juju, a cloud (or backing cloud) is a resource which provides machines (instances),

and possibly storage, in order for application units to be deployed upon them. This

includes public clouds such as Amazon Web Services, Google Compute Engine, and

Microsoft Azure as well as private OpenStack-based clouds. Juju can also make use of

environments which are not clouds per se, but which Juju can nonetheless treat as a

cloud. MAAS and LXD fit into this last category.

2.3.2. Controller

The Juju controller is the initial cloud instance which is created in order for Juju to gain

access to a cloud. It is created by having the Juju client contact the cloud's API. The

controller is a central management node for the chosen cloud, taking care of all

operations requested by the Juju client. Multiple clouds (and thus controllers) are possible

and each one may contain multiple models and users.

2.3.3. Model

A model is associated with a single controller and is the space within which application

units are deployed. A controller can have an indefinite number of models and each model

can have an indefinite number of machines (and thus applications). Models themselves

can be shared amongst Juju users.

The controller model is the management model and is intended to contain a single

machine, the actual controller. All other models are considered regular and are used to

run workloads.

37

Figure 10: Juju models in a cloud

2.3.4. Charm

A Juju charm contains all the instructions necessary for deploying and configuring

application units. Charms are publicly available in the online Charm Store and represent

the distilled knowledge of experts. Charms make it easy to reliably and repeatedly deploy

applications, then scale up (and down) as desired with minimal effort.

The simplest scenario is when a charm is deployed (by the Juju client) with the juju

deploy command without any options to qualify the request. By default, a new instance

will be created in the backing cloud and the application will be installed within it:

Figure 11: Juju charm deployment scenario

38

2.3.5. Bundle

A Juju bundle is a collection of charms which have been carefully combined and

configured in order to automate a multi-charm solution. For example, a WordPress

bundle may include the 'wordpress' charm, the 'mysql' charm, and the relation between

them. The operations are transparent to Juju and so the deployment can continue to be

managed by Juju as if everything was performed manually.

2.3.6. Machine

A Juju machine is the term used to describe a cloud instance that was requested by Juju.

Machines will usually house a single unit of a deployed application, but this is not always

the case. If directed by the user a machine may house several units (e.g. to conserve

resources) or possibly no units at all: a machine can be created independently of

applications (juju add-machine), though usually this is with the intention of eventually

running an application on it.

Represented below is a very standard Juju machine. It has a single deployed charm:

Figure 12: Juju machine scheme

Here we have a machine with a deployed charm in addition to a charm deployed on a

LXD container within that machine:

39

Figure 13: Juju machines comparison

2.3.7. Unit and application

A Juju unit (or application unit) is deployed software. Simple applications may be

deployed with a single application unit, but it is possible for an individual application to

have multiple units running in different machines. All units for a given application will

share the same charm, the same relations, and the same user-provided configuration.

For example, one may deploy a single MongoDB application, and specify that it should

run three units (with one machine per unit), so that the replica set is resilient to failures.

Internally, even though the replica set shares the same user-provided configuration, each

unit may be performing different roles within the replica set, as defined by the charm.

The following diagram represents the scenario described above. For simplicity, the

agents have been omitted:

Figure 14: Juju Unit scenario

40

2.3.8. Endpoint

An endpoint (or application endpoint) is used to connect to another application's endpoint

in order to form a relation. An endpoint is defined in a charm's metadata.yaml by the

collection of three properties: a role, a name, and an interface.

There are three types of roles:

 Requires: The endpoint can optionally make use of services represented by another

charm's endpoint over the given interface.

 Provides: The endpoint represents a service that another charm's endpoint can make

use of over the given interface.

 Peers: The endpoint can coexist with another charm's endpoint in a peer-to-peer

manner (i.e. only between units of the same application). This role is often used in a

cluster or high availability context.

For example, the pertinent excerpt of the metadata.yaml file for the 'wordpress' charm is

as follows:

Here, there are three 'requires' endpoints ('db', 'nfs', and 'cache'), one 'provides' endpoint

('website'), and one 'peers' endpoint ('loadbalancer'). For instance, we can say that "the

'db' endpoint can make use of services offered by another charm over the 'mysql'

interface".

Despite the term 'requires', the three cited endpoints are not hard requirements for the

'wordpress' charm. You will need to read the charm's entry in the Charm Store (e.g.

wordpress) to discover actual requirements as well as how the charm works. For

instance, it is not obvious that the 'wordpress' charm comes bundled with an HTTP server

(nginx), making a separate HTTP-based charm not strictly necessary.

requires:

 db:

 interface: mysql

 nfs:

 interface: mount

 cache:

 interface: memcache

provides:

 website:

 interface: http

peers:

 loadbalancer:

 interface: reversenginx

41

2.3.9. lnterface

An interface is the communication protocol used over a relation between applications. In

the example shown in the Endpoint section, the interfaces for the corresponding

endpoints are clearly discerned.

2.3.10. Relation

Charms contain the intelligence necessary for connecting different applications together.

These inter-application connections are called relations, and they are formed by

connecting the applications' endpoints. Endpoints can only be connected if they support

the same interface and are of a compatible role (requires to provides, provides to

requires, peers to peers).

For example, the 'wordpress' charm supports, among others, an 'http' interface

("provides" the website) and a 'mysql' interface ("requires" a database). Any other

application which also has such interfaces can connect to this charm in a meaningful

way.

Below we see WordPress with relations set up between both MySQL and Apache (a

potential relation is shown with HAProxy):

Figure 15: Juju relations diagram

2.3.11. Client

The Juju client is command line interface (CLI) software that is used to manage Juju,

whether as an administrator or as a regular user. It is installed onto one's personal

workstation. This software connects to Juju controllers and is used to issue commands

that deploy and manage application units running on cloud instances.

42

Figure 16: Juju client scenario

In the case of the localhost cloud (LXD), the cloud is housed within the same system as

the Juju client:

Figure 17: Juju client host

Although LXD itself can operate over the network, Juju does not support this. The

client must be local to the LXD containers.

43

2.3.12. Agent

A Juju agent is software that runs on every Juju machine. There is a machine agent that

operates at the machine level and a unit agent that works at the application unit level.

Thus there are typically at least two agents running on each regular (non-controller)

machine: one for the machine and one for a deployed application/charm. The controller

normally has a single machine agent running.

A machine agent manages its respective unit agents as well as any containers that may

be requested on that machine. In particular, it is the machine agent that creates the unit

agent. The unit agents are responsible for all charm related tasks.

In general, all agents track state changes, respond to those changes, and pass updated

information back to the controller. A model's status (juju status command) is built up from

the communication between a controller and all the agents running in that model. Agents

are also responsible for all logging that goes on in Juju.

The agent's software version is generally consistent across a controller (and its models)

and is thus determined at controller-creation time. By default the agent uses the same

version as that of the local Juju client but this can be tweaked if desired.

2.4. Openstack

The use of OpenStack is a key fact to achieve what is called orchestration of

heterogeneous resources of a data center. Up to now, the provisioning of traditional data

centers consisted of optimizing computational resources, without putting special attention

to the network. Thus, the orchestration aims to solve this problem, in addition to making

more efficient use of physical resources. The orchestrator must make the appropriate

decisions taking into account the technological resources such as the location within the

data center to coordinate the allocation of resources requested by the client. Thus, the

use of orchestration allows having a dynamic data center, allowing to scale the desired

infrastructure according to the requirements of an application. In addition, savings in time

and energy are achieved due to its automation and centralized management.

In this way, an infrastructure such as OpenStack is required to achieve orchestrate the

resources offered by a data center and thus achieve a cloud environment. The motivation

to use a platform for management of cloud environments such as OpenStack is given to

what is called open source and, in addition, the fact that it is one of the references in

terms of the management of cloud environments in the market.

44

- General overview:

OpenStack is a collection of open source software projects designed to work together to

form the basis of a cloud. Primarily, it is used for private cloud implementations, but it can

be just as applicable for cloud service providers to build public cloud resources. It’s

important to understand that OpenStack is not a single product, but rather a group of

projects.

- Modular:

From its inception, OpenStack was designed to be modular and to be integrated with

additional tools and plugins via APIs. Any single project from OpenStack could be

choosen to use to accomplish a particular task, or several of them, to build out a more

complete cloud. Canonical integrates the projects, along with additional components, into

a fully fledged enterprise Cloud Platform known as Ubuntu OpenStack.

- Core projects and more:

The core projects of OpenStack consist of Nova (compute), Neutron (networking),

Horizon (dashboard), Swift (object storage), Glance (image storage), and Keystone

(identity). Beyond the core projects, there are additional solutions and tools in the industry

to enhance the deployment, integration and daily operation of an OpenStack cloud. This

core projects are going to be explained in more detail in the next pages.

CHALLENGES

- Hardware configuration:

Most organisations still manage some hardware that after racking and connecting it, an

initial configuration must be done. Some use vendor tools, some write proprietary scripts,

others leverage ever-growing teams of people and also there are ones that use a

combination of all of these approaches and more.

The issue with these approaches is economic scalability. If you change hardware

configuration in any way, you need to pay to add/modify an ever-growing collection of

scripts. If you change hardware vendor, you need to add, configure and maintain a new

tool, while maintaining all previous hardware management tools. If you add more servers,

you have to hire more people. None of this scales with cloud economics.

- Hardware integration:

Beyond the initial configuration, integration must happen. Network services must be set

up and maintained, including DHCP or static IP address pools for the host NICs, DNS

entries, VLANs, etc. Again, these integration tasks can be accomplished with scripts,

vendor tools or personnel, but the same potential issues arise as with configuration.

45

- Openstack installation:

Another major obstacle to OpenStack success is the initial installation. The

aforementioned scripting approach is common, as are growing teams of expensive

personnel.

There are also OpenStack projects to perform installation, but they are often vendor-

driven, not neutral and lack feature completeness.

Organisations that try to use them often find themselves doing significant, ongoing

development work to make the project useful.

- Additional challenges:

On-going challenges all lend to increasing cost and decreasing economic scalability.

Additional considerations include:

 Upgrades

 Rebuilding

 New clouds

 Repeatable best practices

 Scaling out

 Reducing cost of consultants

- A scalable, practical approach:

A better and easier approach are vendor hardware and platform neutral tools.

Tools that include APIs for automation of not just software, but your datacenter, as well.

Tools with graphical interfaces, designed with scalable cloud economics in mind.

Putting the intelligence of installation and integration complexity directly into the tools

themselves is how you make OpenStack easy and achieve economic scalability.

OpenStack installation and integration challenges are best solved by a thoughtful

approach, using technologies designed for modern clouds. Legacy scripting technologies

might work now, but likely won’t scale as your cloud’s needs change and grow. The same

goes for personnel.

COMPONENTS

From the point of view of software, OpenStack is a free software collection projects

maintained by the community which include several components. Through these services,

OpenStack pro- vides a complete operating platform for administration and management

of clouds. The most important components of OpenStack are explained in more detail:

46

2.4.1. Compute (Nova)

OpenStack Compute (Nova) is a cloud computing fabric controller, which is the main part

of an IaaS system. It is designed to manage and automate pools of computer resources

and can work with widely available virtualization technologies, as well as bare

metal and high-performance computing (HPC) configurations. KVM, VMware,

and Xen are available choices for hypervisor technology (virtual machine monitor),

together with Hyper-V and Linux container technology such as LXC.

It is written in Python and uses many external libraries such as Eventlet (for concurrent

programming), Kombu (for AMQP communication), and SQLAlchemy (for database

access). Compute's architecture is designed to scale horizontally on standard hardware

with no proprietary hardware or software requirements and provide the ability to integrate

with legacy systems and third-party technologies.

Due to its widespread integration into enterprise-level infrastructures, monitoring

OpenStack performance in general, and Nova performance in particular, at scale has

become an increasingly important issue. Monitoring end-to-end performance requires

tracking metrics from Nova, Keystone, Neutron, Cinder, Swift and other services, in

addition to monitoring RabbitMQ which is used by OpenStack services for message

passing. All these services generate their own log files, which, especially in enterprise-

level infrastructures, also should be monitored.

2.4.2. Networking (Neutron)

OpenStack Networking (Neutron) is a system for managing networks and IP addresses.

OpenStack Networking ensures the network is not a bottleneck or limiting factor in a

cloud deploymen and gives users self-service ability, even over network configurations.

OpenStack Networking provides networking models for different applications or user

groups. Standard models include flat networks or VLANs that separate servers and

traffic. OpenStack Networking manages IP addresses, allowing for dedicated static IP

addresses or DHCP. Floating IP addresses let traffic be dynamically rerouted to any

resources in the IT infrastructure, so users can redirect traffic during maintenance or in

case of a failure.

Users can create their own networks, control traffic, and connect servers and devices to

one or more networks. Administrators can use software-defined networking (SDN)

technologies like OpenFlow to support high levels of multi-tenancy and massive scale.

OpenStack networking provides an extension framework that can deploy and manage

additional network services such as intrusion detection systems(IDS), load balancing,

firewalls, and virtual private networks (VPN).

2.4.3. Block storage (Cinder)

OpenStack Block Storage (Cinder) provides persistent block-level storage devices for use

with OpenStack compute instances. The block storage system manages the creation,

attaching and detaching of the block devices to servers. Block storage volumes are fully

integrated into OpenStack Compute and the Dashboard allowing for cloud users to

https://en.wikipedia.org/wiki/IaaS
https://en.wikipedia.org/wiki/Bare_metal
https://en.wikipedia.org/wiki/Bare_metal
https://en.wikipedia.org/wiki/High-performance_computing
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/Xen
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Hyper-V
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/SQLAlchemy
https://en.wikipedia.org/wiki/Horizontal_scaling
https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Virtual_LAN
https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://en.wikipedia.org/wiki/Virtual_IP_address
https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/OpenFlow
https://en.wikipedia.org/wiki/Multi-tenancy
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://en.wikipedia.org/wiki/Block_(data_storage)

47

manage their own storage needs. In addition to local Linux server storage, it can use

storage platforms including Ceph, CloudByte, Coraid, EMC (ScaleIO, VMAX, VNX and

XtremIO), GlusterFS, Hitachi Data Systems, IBM Storage (IBM DS8000, Storwize

family, SAN Volume Controller, XIV Storage System, and GPFS), Linux

LIO, NetApp, Nexenta, Nimble Storage, Scality, SolidFire, HP (StoreVirtual and 3PAR

StoreServ families) and Pure Storage. Block storage is appropriate for performance

sensitive scenarios such as database storage, expandable file systems, or providing a

server with access to raw block level storage. Snapshot management provides powerful

functionality for backing up data stored on block storage volumes. Snapshots can be

restored or used to create a new block storage volume.

2.4.4. Identity (Keystone)

OpenStack Identity (Keystone) provides a central directory of users mapped to the

OpenStack services they can access. It acts as a common authentication system across

the cloud operating system and can integrate with existing backend directory services

like LDAP. It supports multiple forms of authentication including standard username and

password credentials, token-based systems and AWS-style (i.e. Amazon Web Services)

logins. Additionally, the catalog provides a queryable list of all of the services deployed in

an OpenStack cloud in a single registry. Users and third-party tools can programmatically

determine which resources they can access.

2.4.5. Image (Glance)

OpenStack Image (Glance) provides discovery, registration, and delivery services

for disk and server images. Stored images can be used as a template. It can also be

used to store and catalog an unlimited number of backups. The Image Service can store

disk and server images in a variety of back-ends, including Swift. The Image Service API

provides a standard REST interface for querying information about disk images and lets

clients stream the images to new servers.

Glance adds many enhancements to existing legacy infrastructures. For example, if

integrated with VMware, Glance introduces advanced features to the vSphere family such

as vMotion, high availability and dynamic resource scheduling (DRS). vMotion is the live

migration of a running VM, from one physical server to another, without service

interruption. Thus, it enables a dynamic and automated self-optimizing datacenter,

allowing hardware maintenance for the underperforming servers without downtimes.

Other OpenStack modules that need to interact with Images, for example Heat, must

communicate with the images metadata through Glance. Also, Nova can present

information about the images, and configure a variation on an image to produce an

instance. However, Glance is the only module that can add, delete, share, or duplicate

images

https://en.wikipedia.org/wiki/Ceph_(software)
https://en.wikipedia.org/wiki/CloudByte
https://en.wikipedia.org/wiki/Coraid
https://en.wikipedia.org/wiki/EMC_Corporation
https://en.wikipedia.org/wiki/EMC_Corporation
https://en.wikipedia.org/wiki/GlusterFS
https://en.wikipedia.org/wiki/Hitachi_Data_Systems
https://en.wikipedia.org/wiki/IBM_Storage
https://en.wikipedia.org/wiki/IBM_Storage
https://en.wikipedia.org/wiki/IBM_Storage
https://en.wikipedia.org/wiki/IBM_SAN_Volume_Controller
https://en.wikipedia.org/wiki/IBM_XIV_Storage_System
https://en.wikipedia.org/wiki/GPFS
https://en.wikipedia.org/wiki/LIO_Target
https://en.wikipedia.org/wiki/LIO_Target
https://en.wikipedia.org/wiki/NetApp
https://en.wikipedia.org/wiki/Nexenta
https://en.wikipedia.org/wiki/Nimble_Storage
https://en.wikipedia.org/wiki/SolidFire
https://en.wikipedia.org/wiki/Hewlett-Packard
https://en.wikipedia.org/wiki/HP_3PAR
https://en.wikipedia.org/wiki/HP_3PAR
https://en.wikipedia.org/wiki/Pure_Storage
https://en.wikipedia.org/wiki/LDAP
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://en.wikipedia.org/wiki/Disk_imaging
https://en.wikipedia.org/w/index.php?title=Server_imaging&action=edit&redlink=1
https://en.wikipedia.org/wiki/OpenStack#Swift
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/OpenStack#Heat
https://en.wikipedia.org/wiki/Nova_(software)

48

2.4.6. Object storage (Swift)

OpenStack Object Storage (Swift) is a scalable redundant storage system. Objects and

files are written to multiple disk drives spread throughout servers in the data center, with

the OpenStack software responsible for ensuring data replication and integrity across the

cluster. Storage clusters scale horizontally simply by adding new servers. Should a server

or hard drive fail, OpenStack replicates its content from other active nodes to new

locations in the cluster. Because OpenStack uses software logic to ensure data

replication and distribution across different devices, inexpensive commodity hard drives

and servers can be used.

In August 2009, Rackspace started the development of the precursor to OpenStack

Object Storage, as a complete replacement for the Cloud Files product. The initial

development team consisted of nine developers.SwiftStack, an object storage software

company, is currently the leading developer for Swift with significant contributions from

HP, Red Hat, NTT, NEC, IBM and more.

2.4.7. Dashboard (Horizon)

OpenStack Dashboard (Horizon) provides administrators and users with a graphical

interface to access, provision, and automate deployment of cloud-based resources. The

design accommodates third party products and services, such as billing, monitoring, and

additional management tools. The dashboard is also brand-able for service providers and

other commercial vendors who want to make use of it. The dashboard is one of several

ways users can interact with OpenStack resources. Developers can automate access or

build tools to manage resources using the native OpenStack API or the EC2 compatibility

API.

2.4.8. Orchestration (Heat)

Heat is a service to orchestrate multiple composite cloud applications using templates,

through both an OpenStack-native REST API and a CloudFormation-compatible Query

API.

The table below shows the components and their description:

https://en.wikipedia.org/wiki/Rackspace
https://en.wikipedia.org/w/index.php?title=SwiftStack&action=edit&redlink=1

49

Service Project
Name

Description

Dashboard Horizon Computational resources on demand
management

Compute Nova Computational resources on demand
management

Networking Neutron Networking automation

Storage

Object Storage Swift Storing objects in distributed environment

Block Storage Cinder Management volumes to storage blocks

(IBM, EMC, HP, Red Hat / Gluster, Ceph /

RBD, NetApp, SolidFire and Mexenta)

Shared Services

Identity Service Keystone Control images of O.S

Image Service Glance Authentication and authorization control

Telemetry Ceilometer Measurement and monitoring features

Higher-level
services

Orchestration Heat Service orchestration

Database
Service

Trove Database as a service

Table 1: Openstack Components

50

Figure 18: Openstack architecture

- How it Works?

Depending on the installed components and their distribution, the process of initiating an

instance will be more or less complex, but we can summarize it in the following steps:

1) The user authenticates to Keystone, either directly or through the Horizon web

interface, obtains a session token that will allow it to perform actions with the rest

of the OpenStack components without having to authenticate again. These

actions will be limited by the role permissions that the user has in Keystone.

51

2) The user requests to Glance the list of available images. These images can be

hosted by the Swift module or directly on the user's computer.

3) After selecting an image and specifying the characteristics of the instance

(flavors), the user asks New to instantiate it. New automatically chooses the best

cloud node (server) to execute the instance if the user does not specify it.

4) Finally, Neutron is in charge of configuring the virtual network for the instance.

52

3. Methodology / project development:

The Methodology is included in this chapter and embrace all relevant methods that were

utilized as well as research methods and measurements, software and hardware

development

3.1. Environment

The aim of this section is to describe the existing network infrastructure on top of the

which the project was built: an OpenFlow based campus network that serves as a test

bed for a series of research algorithms.

The network communicates with the Internet via a legacy Layer 2 VLAN in order to avoid

a direct connection to the gateway router that is not physically available.

The SDN network is implemented in a building of the University campus in parallel with

the existing infrastructure. There is a layer 2 network in the building that connects to the

Internet via a L3 gateway. The L2 network is divided in two different VLANs, one that we

will call the DEE VLAN that has the subnet 172.16.4.0/22 and another VLAN, that we call

Staff VLAN with the IP subnet 10.164.24.0/22. The gateway of the DEE VLAN routes

traffic to the Internet trough the Staff VLAN (that has the physical connection to the L3

Gateway of the building). The figure below illustrates the existing L2 networks, how they

interconnect at the DEE VLAN gateway and where the SDN network its placed.

Figure 19: The SDN network and existing infrastructure

53

The SDN network serves an entire floor of the building providing network access to

students in the classrooms and labs of that floor in parallel with the rest of the

infrastructure. It also connects to the Internet via the Staff VLAN since no direct physical

connection to the L3 gateway of the building is available.

The control network that connects the SDN controller to the OpenFlow switches is the

mentioned DEE VLAN. That DEE VLAN has a few ports in two rooms used by students

preparing their MSc and Ph.D. thesis and serves as the legacy network providing Internet

access via the Staff VLAN.

In terms of security it exist a risk higher than using a dedicated and isolated control

network, but it provides a ready control infrastructure with easy access to the students

that conduct experiments in the network. It also opens possibilities to expose the control

network to the outside world for security studies and experiments since the DEE VLAN is

connected to the Internet via a NAT router/firewall that routes Internet traffic to the staff

VLAN.

The access from the Internet to hosts inside of the DEE VLAN is possible if that NAT

router /firewall is configured to provide public access to a specific DEE VLAN host.

Allowing this for the controller server poses a severe security risk, but since the network

is used for research and experimentation it was interest of the designers to expose the

controller to outside attack vectors.

Wireless access hosts have their IP provided by DHCP servers running in the APs.

There are two D-Link DAP 2690 dual band PoE Access Points that provide WiFi access

to undergraduate students and are connected to one HP E3800-24G-POE+-2ESFP

access switch (HP-2). This switch also connects to three HPE ProLiant DL 160 Gen9

servers where the controller and radius server are installed. This access switch is then

connected to another switch (HP-1) that provides access ports for two research

workrooms and serves as the gateway of the SDN VLAN and connects to the Staff VLAN

for Internet connectivity.

The network has the topology depicted in the figure in the next page.

54

Figure 20: Network topology

3.2. Development

In this section I am going to present all the documentation that has been made for the

OpenStack install on actual hardware using MAAS in the Laboratório de Apoio a

Dissertação of the Departamento de Engenharia Electrotécnica da Faculdade de

Ciências e Tecnologia (FCT). I’ll be using the Ubuntu server relase and the landscape

OpenStack installer.

Here I will be going through all the steps I took to create the cloud, giving everything from

hardware details to configuration file changes and also ilustrationg with screenshots

taken as well.

3.2.1. Ubuntu Linux bootable usb creation

First step is to create a Ubuntu server bootable flash drive for the server install.

Afterwards with a bootable Ubuntu USB stick a user can:

- Install or upgrade Ubuntu

- Test out the Ubuntu desktop experience without touching your PC configuration

- Boot into Ubuntu on a borrowed machine or from an internet cafe

- Use tools installed by default on the USB stick to repair or fix a broken

configuration

55

At www.ubuntu.com the Ubuntu Server 16.10 can be found, I took it and installed Ubuntu

in a PC from the lab through an USB flash drive. To insert the mentioned OS there, I

used Rufus 2.18 as a universal USB installer going to their webside.

Figure 21: Rufus installation process

Rufus is a small application that will allow to convert a normal and current pendrive, into a

USB boot from which to start directly in DOS. Setting up the application is as simple as

entering the device you want to format, marking the options you want and clicking on

'start'. In a few seconds the new 'DOS boot disk' ready.

3.2.2. Ubuntu Linux server installation

Here is where the standard install of Ubuntu server is done. This server will be used for

MAAS (Metal as a service) afterwards. The hardware we are using for the MAAS server

is a HPE ProLiant DL 160 Gen9 and it has 2 Ethernet cards to create a "bridge" to allow

us access to both public and private networks. Open SSH was also installed so we can

get to this box via our SSH client. After the login its done, typing the command

line ifconfig -a it shows all the Ethernet interfaces.

56

In the screen above we can see that our system has multiple network interfaces in it:

eno1 and eno2. The first one its connected to a router that is connected to the internet,

and it will be our primary source where we will download all required packages. On the

other hand eno2 will be connected to the MAAS region and used as our private network.

As eno1 is connected to the internet we are going to use that as our primary soure so we

can get out and download the packages it needs. Later on the next fields are required:

- Hostname: ubu

- Full name for the new user: toni

3.2.3. Ubuntu server MAAS install

In this section we are going to go through the initial install of the MAAS (Metal as a

Service) software. We will update our Ubuntu install and install MAAS, then superuser will

be added as well as kicked on the import of the boot images.

Updating repositories:

toni@ubu:~$ ifconfig -a

eno1 Link encap:Ethernet HWaddr 50:65:f3:61:bb:72

inet addr:172.16.4.50 Bcast:172.16.7.255

Mask:255.255.252.0

 inet6 addr: fe80::5265:f3ff:fe61:bb72/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:341146 errors:0 dropped:0 overruns:0 frame:0

 TX packets:184773 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:497059977 (497.0 MB) TX bytes:14429815 (14.4 MB)

eno2 Link encap:Ethernet HWaddr 50:65:f3:61:bb:73

 BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 KB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:1257065 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1257065 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1

 RX bytes:2247092770 (2.2 GB) TX bytes:2247092770 (2.2 GB)

toni@ubu:~$ sudo apt update

57

Upgrading any packages available to get the most current versions of the software we
have:

Upgrading the distribution:

Installing these packages we enable add-apt-repository:

To continue the install at least 7 machines are required for JuJu to allow him to spread
things out how he sees fit: 1 MAAS server and 6 nodes.

We also need to setup a private network with all machines plugged in, with the network
divided into three logical ranges:

- Dynamic range: That has as many IPs as there are total NIC’s connected to the

network.

- Static range: That has as many IPs as there are machines connected to the

network.

- Floating IP range: That has as many IPs as instances that we’ll have in our cloud.

Then we add the newest version of the software that we are going to use, the stable juju
repository:

To get the cloud going the first thing we need is Metal as a Service, that is the reason
why we build this server. Doing that MAAS will be able to control all cloud nodes, starting
and stopping them while keeping track of the software checking what its installed on
what.

toni@ubu:~$ sudo apt upgrade

toni@ubu:~$ sudo apt dist-upgrade

toni@ubu:~$ sudo apt-get install python-software-properties

toni@ubu:~$ sudo apt-get install software-properties-common

toni@ubu:~$ sudo add-apt-repository ppa:juju/stable

58

Adding stable MAAS repository:

Adding the Openstack cloud stable repository:

Now we are ready to do the software install for MAAS. First of all we run our update again
updating the repositories as we did before. Then we install MAAS package:

Here we are able to access our MAAS install at this address, using the server IP address:

http://172.16.4.50/MAAS

The GUI will let the user set the superuser entering this command:

At this point, MAAS tell us that we have to create a superuser, to make things easier, the
same username as toni is entered.

To have a view tool we instaled screen. This is a program that allows you to have multiple

screens on your server:

It can be started just typing screen. Pressing CTRL+A then C we add a screen and with
CTRL+A then P we can go to the next screen.

Installing network load monitor was also considered. This program lets you know if your
interfaces have any activity:

toni@ubu:~$ sudo add-apt-repository ppa:maas-maintainers/stable

toni@ubu:~$ sudo add-apt-repository ppa:cloud-installer/stable

toni@ubu:~$ sudo apt install maas

toni@ubu:~$ sudo maas-region-admin createadmin

toni@ubu:~$ sudo apt install screen

toni@ubu:~$ sudo apt install nload

59

Installing ATOP was done because it is a really handy tool for performance monitoring:

At this point MAAS reflects there is no boot image available. Those images are boots of
Ubuntu software that MAAS is going to store out in its repository and use them to boot up
the MAAS nodes.

Now we have to kick the boot image downloaded off manually the first time.

Figure 22: MAAS gui Images tab

toni@ubu:~$ sudo apt install atop

60

3.2.4. MAAS install network and etherwake

In this section we are going to talk about the network setup for MAAS and how etherwake

plays a role in our setup.

We have to edit our interfaces file to config these interfaces as DHCP eno1 is out internet
facing NIC and eno2 is our private network NIC.

Command to edit network config:

After this changes its better to reboot the machine to pick them up.

Now typing the proper ifconfig –a command linr we can see the following available

interfaces:

toni@ubu:~$ sudo nano /etc/network/interfaces

This file describes the network interfaces available on your

system and how to activate them.

For more information, see interfaces.

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto eno1

iface eno1 inet dhcp

auto eno2

iface eno2 inet static

address 10.1.1.100

netmask 255.255.255.0

toni@ubu:~$ sudo reboot now

61

Our private and public networks have an IP now.

Now it is time to go to Subnets in the MAAS gui to setup both of our network interfaces.

Figure 23: MAAS gui Subnets tab

toni@ubu:~$ ifconfig -a

eno1 Link encap:Ethernet HWaddr 50:65:f3:61:bb:72

inet addr:172.16.4.50 Bcast:172.16.7.255

Mask:255.255.252.0

 inet6 addr: fe80::5265:f3ff:fe61:bb72/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:341146 errors:0 dropped:0 overruns:0 frame:0

 TX packets:184773 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:497059977 (497.0 MB) TX bytes:14429815 (14.4 MB)

 Memory:92c00000-92cfffff

eno2 Link encap:Ethernet HWaddr 50:65:f3:61:bb:73

 inet addr:10.1.1.100 Bcast:10.1.1.255 Mask:255.255.255.0

 inet6 addr: fe80::5265:f3ff:fe61:bb73/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:3052 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:701955 (701.9 KB)

 Memory:92b00000-92bfffff

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:1257065 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1257065 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1

 RX bytes:2247092770 (2.2 GB) TX bytes:2247092770 (2.2 GB)

62

Public network setup

First of all we setup the Gateway IP and the DNS IP, which will be the same:

o Gateway IP: 172.16.4.2
o DNS: 172.16.4.2

We are going to reserve another dynamic range of IPs apart from the default one in order
to serve as posible future utilities:

o Start IP Address A: 172.16.4.220
o End IP Address A: 172.16.4.224

o Start IP Address B: 172.16.4.255
o End IP Address B: 172.16.7.254

Right below we are showing how the MAAS gui looks like after having realized the
previous configurations in the public network.

63

Figure 24: MAAS gui Public network configuration

64

Private network setup

First of all, as we did in the public network, we setup the Gateway IP and the DNS IP.
This gateway is going to be the Gateway of this box despite eventually it’s going to route
out this box.

The DNS is also this box because it will be a DNS server for the private network.

o Gateway IP: 10.1.1.1
o DNS: 10.1.1.1

As this box is going to serve DHCP we need to give them a range of addresses he can
use. We take the Dynamic range its set but default:

o Start IP Address: 10.1.1.191
o End IP Address: 10.1.1.254

An important configuration here its to fix a Static Route to make this network able to

have connectivity to the outside world, and it will be done through the public network:

o Gateway IP: 10.1.1.1
o Destination: 172.16.4.0/22

Right below we are showing how the MAAS gui looks like after having realized the
previous configurations in the private network.

65

Figure 25: MAAS gui Private network configuration

66

To be sure everything is properly configured let’s confirm that we can do DNS lookups to
the outside world:

Also it is good to confirm it can also communicate with the other network:

toni@ubu:~$ ping google.com

PING google.com (172.217.17.14) 56(84) bytes of data.

64 bytes from mad07s09-in-f14.1e100.net (172.217.17.14): icmp_seq=1

ttl=51 time=14.5 ms

64 bytes from mad07s09-in-f14.1e100.net (172.217.17.14): icmp_seq=2

ttl=51 time=13.7 ms

64 bytes from mad07s09-in-f14.1e100.net (172.217.17.14): icmp_seq=3

ttl=51 time=9.85 ms

64 bytes from mad07s09-in-f14.1e100.net (172.217.17.14): icmp_seq=4

ttl=51 time=9.85 ms

64 bytes from mad07s09-in-f14.1e100.net (172.217.17.14): icmp_seq=5

ttl=51 time=14.8 ms

^C

--- google.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4006ms

rtt min/avg/max/mdev = 9.854/12.591/14.858/2.261 ms

toni@ubu:~$ nslookup google.com

Server: 172.16.4.2

Address: 172.16.4.2#53

Non-authoritative answer:

Name: google.com

Address: 172.217.17.14

toni@ubu:~$ ping 10.1.1.100

PING 10.1.1.100 (10.1.1.100) 56(84) bytes of data.

64 bytes from 10.1.1.100: icmp_seq=1 ttl=64 time=0.030 ms

64 bytes from 10.1.1.100: icmp_seq=2 ttl=64 time=0.024 ms

64 bytes from 10.1.1.100: icmp_seq=3 ttl=64 time=0.026 ms

64 bytes from 10.1.1.100: icmp_seq=4 ttl=64 time=0.040 ms

^C

--- 10.1.1.100 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 2997ms

rtt min/avg/max/mdev = 0.024/0.030/0.040/0.006 ms

67

The next step is to generate an SSH key on the MAAS server.

We need a private key set on this server and a public one that will set on any server we
want to allow this server to be able to SSH to without a password. Thus, when we spin up
nodes on MAAS the software they will automatically hand him without a login handshake.

Having said that now we setup an SSH key for MAAS to login to the node machines with
the following command line:

Now we just copy the key to the gui and display the key with the cat command:

When its generated we copy and paste the key into the gui:

Figure 26: MAAS & SSH keys

toni@ubu:~$ ssh-keygen -t rsa

toni@ubu:~$ cat /home/toni/.ssh/id_rsa.pub

68

At this point we have to install a tool called Etherwake. Etherwake is a shell script
wrapper around netcat. It sends a Magic Pke-On-LAN packet, optionally containing a
password for those few cards that require it, and will cause the receiving machine to
wake up.

MAAS spins up nodes and shuts them down until he needs to use them. To wake them
up we have to use wake-on-lan, so the hardware needs to be compatible with wake-o-lan
and we must have etherwake installed to be able to send them that Magic packet to wake
up whenever we need them to.

Since our nodes exist on the private network we always need the magic packet to be
send to eno2, because the other network isn’t routable and it will not route that packet

back to the node that we need to go to.

Now its needed to edit the etherwake template to remove wakeonlan and add sudo
access and use the eno2 interface:

Now the template file should look like this:

toni@ubu:~$ sudo apt install etherwake

toni@ubu:~$ sudo nano /etc/maas/templates/power/ether_wake.template

-*- mode: shell-script -*-

Control node power through WOL, via `wakeonlan` or `etherwake`.

mac_address={{mac_address}}

power_change={{power_change}}

if ["${power_change}" != 'on']

then

 echo "There is no way to power down a node through etherwake."

>&2

 exit 1

#elif [-x /usr/bin/wakeonlan]

#then

sudo /usr/bin/wakeonlan $mac_address

elif [-x /usr/sbin/etherwake]

then

 sudo /usr/sbin/etherwake -i eno2 $mac_address

else

 echo "No wakeonlan or etherwake program found." >&2

fi

exit 0

69

It is also needed to add etherwake to our sudoers list so the system can run it as sudo. It
will be done editing the file with this command:

Adding this line to the bottom of the text:

Now is a good time to reboot the MAAS server to allow all these changes to take affect.

3.2.5. MAAS network hardware

Adding a node to MAAS is typically done via a combination of DHCP (and TFTP), which

should, by now be enabled in our MAAS environment and PXE, in which you tell the

system in question to use when it boots. This unattended manner of adding a node is

called enlistment.

Regardless of how a node is added, there are no special requirements for the underlying

machine. In particular, there is no need to install an operating system on it.

Once MAAS is working to the point of adding nodes it is important to understand node

statuses and node actions.

toni@ubu:~$ sudo nano /etc/sudoers.d/99-maas-sudoers

aas ALL= NOPASSWD: /bin/systemctl status maas-dhcpd

maas ALL= NOPASSWD: /bin/systemctl start maas-dhcpd

maas ALL= NOPASSWD: /bin/systemctl restart maas-dhcpd

maas ALL= NOPASSWD: /bin/systemctl stop maas-dhcpd

maas ALL= NOPASSWD: /bin/systemctl status maas-dhcpd6

maas ALL= NOPASSWD: /bin/systemctl start maas-dhcpd6

maas ALL= NOPASSWD: /bin/systemctl restart maas-dhcpd6

maas ALL= NOPASSWD: /bin/systemctl stop maas-dhcpd6

maas ALL= NOPASSWD: /bin/systemctl status tgt

maas ALL= NOPASSWD: /bin/systemctl start tgt

maas ALL= NOPASSWD: /bin/systemctl disable maas-rackd

maas ALL= NOPASSWD: /bin/systemctl stop maas-rackd

maas ALL= NOPASSWD: SETENV: /usr/sbin/tgt-admin,

/usr/bin/uec2roottar

maas ALL= NOPASSWD: /usr/sbin/etherwake

toni@ubu:~$ sudo reboot now

70

At this point we are going to spin up nodes to enlist them to MAAS. To enlist, the

underlying machine needs to be configured to netboot. Such a machine will undergo the

following process:

1) DHCP server is contacted

2) kernel and initrd are received over TFTP

3) machine boots

4) initrd mounts a Squashfs image ephemerally over HTTP

5) cloud-init runs enlistment scripts

6) machine shuts down

The enlistment scripts will send the region API server information about the machine,

including the architecture, MAC address and other details which will be stored in the

database. This information-gathering process is known as automatic discovery.

Since any system booting off the network can enlist, the enlistment and commission

steps are separate. This allows an administrator to "accept" an enlisted machine into

MAAS.

In this section we are going to show how the BIOS is configured to allow wake-on-

lan/etherwake and how to enable it in PXE boot. Also, it is important to notice that a

virtual technology capable hardware is needed and also to have it enabled in the BIOS.

First, its important to make sure boot from the NIC card is enabled, it was necessary to
disable all other boot devices to get this to work every time.

Secondly, we had to make sure wake-on-lan is enabled in the BIOS to allow the machine
to be woke up from the network.

Then, when setting up the power options for the nodes from the GUI we had to make
sure to enter the MAC address of the card the eno2 MAAS NIC talked to during the PXE

boot.

- @MAC: d0:17:c2:d1:cd:12

This step is mandatory, otherwise he will not be able to wake him up.

Last but not least, its nedded to name the nodes something you can easily tell which box
it is, making sure the internal domain its used on the node name. The domain will be
whatever the MAAS node name is by default and it can be changed it in the GUI.

It is necessary to boot each one of the nodes and they will appear in the Node tab on the
MAAS gui. As they boot we are going to edit them and enter our wake-on-lan.

71

Another thing to point out is that these nodes are going to be running virtual machines, so
they have to have Intel virtualized technology to be able to do 64-bit virtual machines.

In my case I just did this progress once, so I had to take a pc which has this hardware
specifications:

node1

Samsung syncmaster 701n

Intel® Core™ i7-6700K CPU @4.00Ghz

4GB DDR4 RAM

1 250GB SATA hard drive

1 80GB SATA hard drive

1 internal on board NIC

1 PCI NIC card

I’m going to show a MAAS nodes hardware specification case were 6 PC’s its nodes on
the power type screen has to be the same.

node1780

Dell optiplex 780 Q45 Chipset motherboard VTx capable

Intel duo2core 2.6Ghz Q45 processor VTx capable

8GB DDR3 RAM

1 250GB SATA hard drive

1 80GB SATA hard drive

1 internal on board NIC

1 PCI NIC card

node2780

Dell optiplex 780 Q845 Chipset motherboard VTx capable

Intel duo2core 2.6Ghz Q45 processor VTx capable

7GB DDR3 RAM

1 250GB SATA hard drive

1 80GB SATA hard drive

1 internal on board NIC

72

node3780

Dell optiplex 780 Q45 Chipset motherboard VTx capable

Intel duo2core 2.6Ghz Q45 processor VTx capable

8GB DDR3 RAM

1 250GB SATA hard drive

1 80GB SATA hard drive

1 internal on board NIC

node4780

Dell optiplex 780 Q45 Chipset motherboard VTx capable

Intel duo2core 3.0Ghz Q45 processor VTx capable

8GB DDR3 RAM

1 120GB SSD SATA hard drive

1 160GB SATA hard drive

1 internal on board NIC

1 PCI NIC card

node5780

Dell optiplex 780 Q45 Chipset motherboard VTx capable

Intel duo2core 2.93Ghz Q45 processor VTx capable

8GB DDR3 RAM

1 250GB SATA hard drive

1 80GB SATA hard drive

1 internal on board NIC

node1dc7900

HPDC7900 Q45 Chipset motherboard VTx capable

Intel duo2core 3.0Ghz Q45 processor VTx capable

6GB DDR2 RAM

2 80GB SATA hard drive

1 internal on board NIC

node1dc7900

HPDC7900 Q45 Chipset motherboard VTx capable

Intel duo2core 3.0Ghz Q45 processor VTx capable

6GB DDR2 RAM

2 80GB SATA hard drive

1 internal on board NIC

73

Once we did the proper PXE boot configuration we exit the boot menu, the machine will

spin up and its going to boot from our MAAS server via PXE. It will grab a boot image and

it’s going to register with the MAAS server.

Figure 27: Node 1 MAAS gui tab

The menu inside the node includes links to the following:

 Machine summary: Overview of CPU, memory, storage, tag and general settings.

 Interfaces: Network and interface configuration for a node.

 Storage: File system, partitioning and storage overview.

 Commissioning: Timestamped completion and status log from the commissioning

process.

 Logs: Raw log output, switchable between YAML and XML output.

 Events: Timestamped status updates for events and actions performed on the

node.

 Configuration: Machine and power configuration options.

74

3.2.6. MAAS node configuration

In this section we are going to commission all the nodes to MAAS, deploying one node to

a standard Ubuntu image.

Firstly, we have to add the MAAS server to the DNS-nameservers list in the

/etc/network/interfaces file to avoid future network properties issues.

With the previous unfixed configuration our name server was 172.16.4.2 as well as the

Gateway. When trying to find another node with nslookup we’d get an arbitrary IP

address, it tried to go find it on the internet and just stucked, doesn’t knowing anything

about it. That’s because we are doing NAT routing out to a DNS server somewhere on

the internet with a completely unknowledge about our node on the private network.

Thus, for the MAAS node to be able to look up another node doing a nslookup by its

name it is necessary to have the MAAS server in our name server list

Next step will be running this command to enter our region controller IP, I changed mine
to the private network interface:

Then we change that @IP to 10.1.1.100

This file describes the network interfaces available on your

system and how to activate them.

For more information, see interfaces.

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto eno1

iface eno1 inet dhcp

dns-nameserver 10.1.1.100

auto eno2

iface eno2 inet static

address 10.1.1.100

netmask 255.255.255.0

toni@ubu:~$ sudo dpkg-reconfigure maas-region-controller

75

Figure 28: Maas region controller configuration

3.2.7. MAAS commission nodes

Once a node is added to MAAS, the next logical step is to commission it.

To commission, the underlying machine needs to be configured to netboot (this should

already have been done during the enlistment stage).

The commissioning scripts will talk to the region API server to ensure that everything is in

order and that eventual deployment will succeed.

The image used is, by default, the latest Ubuntu LTS release and should not require

changing. However, it can be configured in the web UI in the 'Settings' page.

To commission, on the 'Nodes' page, select a node and choose 'Commission' under the

'Take action' dropdown menu.

76

Figure 29: Node commissioning

We have the option of selecting some extra parameters (checkboxes) and performing

hardware tests.

Figure 30: Scripts adding

Then we finalize the directive by hitting 'Commission machine'.

While a node is commissioning its status will change to Commissioning. During this time

the node's network topology will be discovered. This will prompt one of the node's

network interfaces to be connected to the fabric, VLAN, and subnet combination that will

allow it to be configured. By default, a static IP address will be assigned out of the

reserved IP range for the subnet. That is, an IP assignment mode of 'Auto assign' will be

used. See the next section for details on assignment modes.

77

Once a node is commissioned its status will change to Ready and an extra tab for the

node called 'Commissioning' will become available. This tab contains the results of the

scripts executed during the commissioning process.

Now it’s time to verify the networking by going to the details page for the node(s) that

have multiple NICs and check that the second NIC (the non-PXE one) and check if it:

- Is connected to the subnet

- Has the “IP address” field set to “unconfigured”

- The first NIC should be the same except the IP address field will be set to “Auto

assign”

The next step will be to deploy the node.

3.2.8. Deploying nodes

Deploying a node means to install an operating system on it, in our case Ubuntu Server

16.04 LTS. In this section we are going to explain how this can be done using MAAS and

Openstack respectively.

3.2.8.1. Deploying nodes from MAAS

The agent that triggers deployment may vary. For instance, if the nodes are destined to

be running complex, inter-related services that may involve scaling up or down, that is, if

they will be regarded as a "cloud" resource, then Juju is the recommended deploy agent

(it will also install & configure services on the deployed nodes). But in our case, as we

want to install a base operating system and work on the machines manually then we will

deploy a node directly with MAAS.

The node, only if deployed with MAAS, will also be ready to accept connections via SSH

to the 'ubuntu' user account providing an SSH key has been imported to the user's MAAS

account.

Before deploying it is advisable to:

 Review and possibly set the Ubuntu kernels and the Kernel boot options that will

get used by deployed nodes.

 Ensure any pertinent SSH keys are imported (see SSH keys) to MAAS so

connections can be made to deployed nodes.

To deploy directly from MAAS we have to select the chosen node and press the 'Deploy'

option from the ‘Take action’ selector we have previously seen.

https://jujucharms.com/docs/stable/about-juju
https://docs.maas.io/2.1/en/installconfig-nodes-ubuntu-kernels
https://docs.maas.io/2.1/en/installconfig-nodes-kernel-boot-options
https://docs.maas.io/2.1/en/manage-account#ssh-keys

78

Then have the option of deviating from the default OS appears, release, and kernel.

When its ready we just have to press the 'Go' button.

Figure 31: MAAS gui before deploying

While a node is deploying its status will change to Deploying 'OS', where 'OS' is the name

of the operative system being deployed, in our case 'Deploying Ubuntu 16.04 LTS'. Once

a node has finished deploying its status changed to ‘Deployed Ubuntu 16.04 LTS'.

To access to the deployed node we have to do an SSH to it. Since we have the key set

up we don’t need to have a login and typing its @IP is enough:

To finish this section, let’s realice some testings:

toni@ubu:~$ ssh ubuntu@10.1.1.151

ubuntu@node1:~$ nslookup node1.maas

Server: 10.1.1.100

Address: 10.1.1.100#53

Name: node1.maas

Address: 10.1.1.151

ubuntu@node1:~$ ping google.com

PING google.com (216.58.218.174) 56(84) bytes of data.

64 bytes from dfw06s46-in-f14.1e100.net (216.58.218.174):

icmp_seq=1 ttl=52 time=27.2 ms

64 bytes from dfw06s46-in-f14.1e100.net (216.58.218.174):

icmp_seq=2 ttl=52 time=37.9 ms

64 bytes from dfw06s46-in-f14.1e100.net (216.58.218.174):

icmp_seq=3 ttl=52 time=27.3 ms

^C

--- google.com ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 3026ms

79

The previous command lines reflects that the node can ping Google going out to the

internet and also can install packages, so we can asume its working fine.

3.2.8.2. Deploying nodes from Openstack

First of all we are going to install the conjure-up snap on the MAAS server, in a terminal

window:

Typing the command conjure-up the following screen appears:

Figure 32: Conjure-up main screen

ubuntu@node1:~$ sudo apt install nload

toni@ubu:~$ sudo snap install conjure-up –classic

80

Next step is to select one of the two install types OpenStack offers:

1) OpenStack with Nova-lxd

This installs OpenStack with nova configured to use the lxd hypervisor ready to launch

machine containers.

2) OpenStack with KVM

This installs OpenStack with nova configured to use the KVM (Kernel-based Virtual

Machine) hypervisor ready to launch full virtual machine. It provides Dashboard,

Compute, Network, Block Storage, Object Storage, Identity and Image services.

As we are building a production cloud we are going to use the last option.

Once we have selected OpenStack with NovaKVM, we are prompted to create a new

cloud with a single option provided: MAAS.

Figure 33: Cloud selector

81

To create a MAAS based cloud we need to enter the MAAS API endpoint

(http://172.16.4.50/MAAS/) and the API key:

Figure 34: Credential creation

Figure 35: MAAS API key location

Then we have to import SSH keypairs into OpenStack. This will allows us to access the

newly deployed instances via SSH with our current user.

- SSH public key path: ~/.ssh/id_rsa.pub

Once entered, the user have the opportunity to configure the individual services.

http://172.16.4.50/MAAS/

82

Those are the OpenStack services offered:

 Configure: this will give you the opportunity to change the config of the various

OpenStack services.

 Architect: Choose where to place a service. You do not need to place services as

conjure-up will do so automatically.

 Deploy: Deploy the service as configured according to the architecture.

Figure 36: Openstack conjure-up applications

Those are the 16 applications available in our OpenStack-base:

- Ceph-mon: Ceph is a distributed storage and network file system designed to

provide excellent performance, reliability and scalability. This charm deploys a

Ceph monitor cluster. One or more instances of ceph-mon form a Paxos part-time

parliament cluster that provides extremely reliable and durable storage of cluster

membership, configuration, and state.

83

- Ceph-osd: This charm deploys additional Ceph OSD (Object Storage Daemon)

service units and should be used in conjunction with the “ceph” charm to scale out

the amount of storage avaliable in a Ceph cluster. It is responsible for storing

objects on a local file system and providing access to them over the network.

- Ceph-radosgw: This charm deploys the RADOS Gateway, a s3 and Swift

compatible HTTP gateway for online object storage on-top of a ceph cluster.

- Cinder: This charm provides the Cinder volume service for OpenStack. It is

intended to be used alongside the other OpenStack components, starting with the

Folsom release. Cinder is made up of 3 separate services: an API service, a

scheduler and a volume service. This charm allows them to be deployed in

different combination, depending on user preference and requirements.

- Cinder-ceph: This charm provides a Ceph storage backend for use with the

Cinder charm; this allows multiple Ceph storage clusters to be associated with a

single Cinder deployment, potentially alongside other storage backends from

other vendors.

- Glance: This charm provides the Glance image service for OpenStack. It is

intended to be used alongside the other OpenStack components, starting with the

Essex release in Ubuntu 12.04.

- Keystone: This charm provides Keystone, the Openstack identity service. It's

target platform is (ideally) Ubuntu LTS + Openstack.

- Mysql: Percona XtraDB Cluster is a high availability and high scalability solution

for MySQL clustering. Percona XtraDB Cluster integrates Percona Server with the

Galera library of MySQL high availability solutions in a single product package

which enables you to create a cost-effective MySQL cluster. This charm deploys

Percona XtraDB Cluster onto Ubuntu.

- Neutron-api: This principle charm provides the OpenStack Neutron API service

which was previously provided by the nova-cloud-controller charm. When this

charm is related to the nova-cloud-controller charm the nova-cloud controller

charm will shutdown its api service, de-register it from keystone and inform the

compute nodes of the new neutron url.

- Neutron-gateway: Neutron provides flexible software defined networking (SDN)

for OpenStack. This charm is designed to be used in conjunction with the rest of

the OpenStack related charms in the charm store to virtualize the network that

Nova Compute instances plug into.

84

- Neutron-openvswitch: This subordinate charm provides the Neutron

OpenvSwitch configuration for a compute node. Once deployed it takes over the

management of the Neutron base and plugin configuration on the compute node.

- Nova-cloud-controller: Cloud controller node for OpenStack nova. Contains

nova-schedule, nova-api, nova-network and nova-objectstore. If console access is

required then console-proxy-ip should be set to a client accessible IP that

resolves to the nova-cloud-controller. If running in HA mode then the public vip is

used if console-proxy-ip is set to local.

Note: The console access protocol is baked into a guest when it is created, if you

change it then console access for existing guests will stop working.

- Nova-compute: This charm provides Nova Compute, the OpenStack compute

service. Its target platform is Ubuntu (preferably LTS) + OpenStack.

- Ntp: NTP (Network Time Protocol) provides network based time services to

ensure synchronization of time across computers.

- Openstack-dashboard: The OpenStack Dashboard provides a Django based

web interface for use by both administrators and users of an OpenStack Cloud. It

allows you to manage Nova, Glance, Cinder and Neutron resources within the

cloud.

- Rabbitmq-server: RabbitMQ is an implementation of AMQP, the emerging

standard for high performance enterprise messaging. The RabbitMQ server is a

robust and scalable implementation of an AMQP broker.

85

We took Ceph-mon as an example to show the available configurations we can manage:

Figure 37: Ceph-mon architect

As we can see, the desired Cores, Memory and Storage can be configure on each unit

before pinning it to a specific MAAS node.

Once satisfied with the config and architecture, the remain applications can be deployed.

3.2.9. Ubuntu Linux MAAS decommission nodes & Juju and Openstack install

In the last step we did some testing on one of the nodes that we deployed. Now it’s time

to return that node to the pool so that he can spin it up while he is doing his OpenStack

install.

First we have to shut down the node:

ubuntu@node1:~$ sudo shutdown –h now

1

86

Now it’s we are going to install OpenStack:

And now it’s time for Juju:

Juju requires an initial configuration to be able to work. We need the MAAS API key for

Juju to know what MAAS server he’s allowed to use.

We are going to make a Juju directory in the home directory without sudoing, because we
want these directories and Juju to be as our user ID, in view of that is the SSH he’s going
to use:

Create the environments.yaml file:

Our environments file will look like this use your own server IP and API key:

Now we can close this edited file saving it before and check Juju's status:

toni@ubu:~$ sudo apt install openstack

1 toni@ubu:~$ sudo apt install juju

1

toni@ubu:~$ mkdir ~/.juju

cd ~/.juju

1

toni@ubu:~/.juju$ nano environments.yaml

1 environments:
 maas:

 type: maas

 maas-server: 'http://10.1.1.100:80/MAAS'

 maas-oauth:

'N6m6ngU6HDmaUaXSxu:VZ3JKyZBmQKL9z9XAf:uDnJfWxtwaGu5Ze3AwktdzrCXCYp

8hRW’

 admin-secret: 'toni4d12'

 default-series: xenial

1
toni@ubu:~/.juju$ juju status

ERROR Unable to connect to environment “maas”.

Please check your credentials or use ‘juju bootstrap’ to créate a

new environment.

Error details:

Environment is not bootstrapped

1

87

Having the environment not bootstrapped is a good thing, because OpenStack will handle
that

Now that Juju is installed, let’s start the OpenStack install:

The OpenStack GUI appears and we have to go throught the next steps:

1) Put an easy remembering password.

2) Select the full landscape OpenStak autopilot

3) Fill the following fields in the Landscape OpenStack Autopilot Setup:

o Admin Email: tony.ag@hotmail.com

o Admin Name: toni

o MAAS Server IP: 10.1.1.100

o MAAS API KEY:

'N6m6ngU6HDmaUaXSxu:VZ3JKyZBmQKL9z9XAf:uDnJfWxtwaGu5Ze3A

wktdzrCXCYp8hRW’

Having done that, it’s going to come out and talk to MAAS and it will show many nodes to
we have deployed.

To get the OpenStack install going we have to save one node for Juju to spin up. In the
MAAS gui we can see how it grabbed a node and its allocating and deploying it, installing
what its necessary to get Juju on that node.

While juju and landscape are installing, the bootstrap goes to about 400 seconds and the
landscape download runs to about 1600 seconds. When its finished it is going to appear
a message as the one below:

toni@ubu:~/.juju$ sudo openstack-install

1

------------------------------ Info -----------------------------

To continue with OpenStack instalation visit:

http:// 10.1.1.111/account/standalone/openstack

Landscape Login Credentials:

 Email: tony.ag@hotmail.com

 Passwork: toni4d12

1

mailto:tony.ag@hotmail.com
mailto:tony.ag@hotmail.com

88

OpenStack has now been installed: it went throught, deployed Juju, deployed OpenStack,

download landscape and spun him up.

Figure 38: Openstack cloud landscape gui A

The Checklist requirements must be all completed before continuing, those are:

- Registered a MAAS region controller

- Connection to the MAAS region controller available

- At least three machines with more tan one disk have been commissioned

- At least one of three machines with multiple disks, must also have multiple

network connections

89

As we can see on the previous image all requirements are achieved so we can move

forward. Clicking on ‘Configure’ we are being redirected to a page where we can select

which machines we want to use in our cloud environment as well as the software we want

to use:

Figure 39: Openstack cloud landscape gui B

90

3.2.10. Openstack cloud install

In this section we are going to configure the landscape tool for OpenStack and install the
cloud, deploying all the nodes with the software that it needs to get our VMs up and
running and get our storage. It consists on selecting everything it takes to get the cloud
going. To do that we are going to select the folowwing components:

- KVM (Kernel-based Virtual Machines) for Compute. KVM is

a virtualization infrastructure for the Linux kernel that turns it into

a hypervisor. KVM requires a processor with hardware virtualization extensions

and allows you to run virtual machines using disk images that contain unmodified

operating systems where each virtual machine has its own virtualized hardware: a

network card, hard drives, graphics card and so on.

- Open vSwitch for Network. OpenvSwitch, sometimes abbreviated as OVS, is an

open-source implementation of a distributed virtual multilayer switch. The main

purpose of Open vSwitch is to provide a switching stack for hardware

virtualization environments, while supporting multiple protocols and standards

used in computer networks. It is going to use the default configuration from

MAAS.

- Ceph for Objet Storage. Ceph provides seamless Access to objects using native

bindings or a REST interface. It is written to be compatible with applications

written for S3 and Swift

- Ceph for Block Storage. Ceph’s RADOS Block Device provides device images

that are striped and replicated. RADOS Block Devices (RBDs) integrate with

Kerner Virtual Machines, bringing storage to VMs running on Ceph’s clients. Ceph

automatically stripes and replicates the data across the cluster.

At this point we are going to let OpenStack have all the boxes unless the first node one,

which has plugged into the public network as we have said before. So the first one goes

to “In progress” status and it took at least 20 mintues.

https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Hardware-assisted_virtualization

91

Figure 40: Openstack cloud landscape installing process

In the screenshot above there is a list of all virtual machines (the ones with ‘lxc’ are

containers), so it is running on that first virtual node that landscape installed originally.
When this process is finished the OpenStack cloud install has been completed and the
cloud is now available.

Figure 41: Openstack computers available list

92

4. Budget

In this section the costs of the project have been calculated.

The direct costs calculation includes the costs of hardware, software and human
resources. For the calculation of hardware and software resources it has been taken into
account their useful life and the number of hours that will be used during the project. Its
important to mention that we worked with free and open-sources software platforms, so
there will not be any cost reflected from them.

The human resources of which the project is composed corresponds to the amount of
hours carried out by a junior engineer from the Polytechnic University of Catalonia (UPC),
with a cost per hour of 8 euros.

Regarding the indirect costs, the cost of electricity and the ADSL fee have been taken
into account during the process of developing the project with an approximate duration of
6 months and they represent a 40% percentage of the total cost of the project. To make
this calculation it has been considered the work zone of the Laboratório de Apoio a
Dissertação of the Departamento de Engenharia Electrotécnica da Faculdade de
Ciências e Tecnologia (FCT) and the developer's private work zone.

 Price (€) Years Amortization/hour (€) Used (h)

Cost (€)

Direct costs

ASUS PC 1.200 5 0.0148 540 17.76

7 x Dell optiplex 780 Q45
Chipset motherboard VTx

capable

1.925 5 0.01924 200 37.03

2 x D-Link DAP 2690 1.434 5 0.00493 500 7.07

2 x HP E3800-24G-
POE+-2ESFP

4.100 10 0.00147 500 6.02

3 x HPE ProLiant DL 160
Gen9

5.100 10 0.00918 500 46.82

Microsoft Office 122 3 0.00132 540 0.161

Atenea UPC 1 0 - 0 0

PDF viewer 1 0 - 0 0

OpenStack 1 0 - 0 0

MAAS 1 0 - 0 0

Gantt Project 1 0 - 0 0

Human resources
(Telecom engineer)

8 - - 540 4.320

TOTAL DC
 4.435

Indirect costs (40%) 1.774

TOTAL
 6.209

Table 2: Budget

93

5. Conclusions and future development:

In this thesis, the vision of future networks as well as its challenges has been displayed.

Also it has been showed how the future of data centers passes necessarily through Cloud

Computing information technology paradigm.

In order to understand properly the different tools handled during this project, important

concepts such as Cloud Computing, Software Defined Networking, Metal As A Service

and OpenStack have been defined and studied, acquiring in that process a valuable

knowledge about management of data centers.

The necessary information regarding MAAS and OpenStack is presented to guide the

reader throught the entire learning process of creating and implementing a private cloud

in a data center.

The solution implemented in this thesis allows to group some virtual machines into virtual

nodes and provide the connectivity between them with a user-specified bandwidth.

As a future development, the interconnection between the SDN data transporting

Network and the Data center network can be designed and implemented to allow the

separation of the network control functions running in the cloud from user workloads. This

process can be realized using SDN OpenDaylight as the controller to be introduced into

the deployment of OpenStack.

94

Bibliography

[1] Livewire: for live carreers. Secure a sparkling career in cloud
https://www.livewireindia.com/cloud_computing_training.php

[2] Cosign | Advanced Optical Hardware and SDN for Next-Generation Data Centres

http://www.fp7-cosign.eu/

[3] The NIST Definition of Cloud Computing
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

[4] GlobalDots: Cloud computing Types of Clouds

https://www.globaldots.com/cloud-computing-types-of-cloud/

[5] Cloud computing types

https://aws.amazon.com/es/types-of-cloud-computing/

[6] Crucial broadcast: Types of Cloud Computing
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

[7] Openstack community. Official webside:

https://www.openstack.org/

[8] Cloud service management and cloud monitoring for providers

http://searchcloudprovider.techtarget.com/feature/Cloud-service-management-and- cloud-monitoring-for-
providers-A-primer

[9] OpenStack Foundation, Chapter 1. Architecture OpenStack:

http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html

[10] OpenStack Foundation, 2014. All-In-One Single VM
http://docs.openstack.org/developer/devstack/guides/single- vm.html

[11] OpenStack documentation:

http://docs.openstack.org/queens/

[12] https://maas.io/how-it-works

[13] Manually deploying openstack with a virtual maas on ubuntu trusty:

http://chrisarges.net/2014/06/13/manually-deploying-openstack-with.html

[14] http://172.16.4.50/MAAS

[15] Transforming your physical infrastructure into a cloud:

https://www.ubuntu.com/server/maas

[16] https://jujucharms.com/

[17] Juju software:

https://es.wikipedia.org/wiki/Juju_(software)

https://www.livewireindia.com/cloud_computing_training.php
http://www.fp7-cosign.eu/
http://www.fp7-cosign.eu/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://www.openstack.org/
http://docs.openstack.org/juno/install-guide/install/apt/content/ch_overview.html
http://docs.openstack.org/developer/devstack/guides/single-
http://docs.openstack.org/queens/
https://maas.io/how-it-works
http://chrisarges.net/2014/06/13/manually-deploying-openstack-with.html
http://172.16.4.50/MAAS
https://jujucharms.com/

95

Glossary

 MAAS: Metal As A Service

 VM: Virtual Machine

 SDN: Software Defined Network

 RAM: Random Access Memory

 CPU: Central Processing Unit

 KVM: Kernel-based Virtual Machine

 LXC: Linux Container

 SLA: Service Level Agreement

 PXE: Preboot Execution Environment

 OS: Operative System

 IP: Internet Protocol

 DNS: Domain Name System

 REST: Representational State Transfer

 API: Application Programming Interface

 CLI: Command Line Interface

 IPMI: Intelligent Platform Management Interface

 BIOS: Basic Input/Output System

 UI: User Interface

 VLAN: Virtual Local Area Network

 CIDR: Classless Inter-Domain Routing

 IPv: Internet Protocol Version

 DHCP: Dynamic Host Configuration Protocol

 GUI: Graphic User Interface

 YAML: YAML Ain’t Markup Language

 HTTP: Hypertext Transfer Protocol

 DEE: Departamento de Engenharia Electrotécnica

 FCT: Faculdade de Ciências e Tecnologia

 UNL: Universidade NOVA de Lisboa

 USB: Universal Serial Bus

 DOS: Disc Operative System

 NIC: Network Interface Card

 TFTP: Trivial File Transfer Protocol

 XML: Extensible Markup Language

 RADOS: Reliable Autonomic Distributed Object Storage

 OSD: Object Storage Daemon

 AMQP: Advanced Message Queuing Protocol

	Abstract
	Resum
	Resumen
	Dedication
	Acknowledgements
	Revision history and approval record
	Table of contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Statement of purpose (objectives)
	1.2. Requirements and specifications
	1.3. Methods and procedures
	1.4. Work plan
	1.5. Deviations from the initial plan

	2. State of the art of the technology used or applied in this thesis:
	2.1. Cloud computing
	2.2. MAAS
	2.2.1. Nodes
	2.2.2. Zones
	2.2.3. Images
	2.2.4. Subnets
	2.2.4.1. IP ranges
	2.2.4.2. VLANs

	2.3. Juju
	2.3.1. Cloud
	2.3.2. Controller
	2.3.3. Model
	2.3.4. Charm
	2.3.5. Bundle
	2.3.6. Machine
	2.3.7. Unit and application
	2.3.8. Endpoint
	2.3.9. lnterface
	2.3.10. Relation
	2.3.11. Client
	2.3.12. Agent

	2.4. Openstack
	2.4.1. Compute (Nova)
	2.4.2. Networking (Neutron)
	2.4.3. Block storage (Cinder)
	2.4.4. Identity (Keystone)
	2.4.5. Image (Glance)
	2.4.6. Object storage (Swift)
	2.4.7. Dashboard (Horizon)
	2.4.8. Orchestration (Heat)

	3. Methodology / project development:
	3.1. Environment
	3.2. Development
	3.2.1. Ubuntu Linux bootable usb creation
	3.2.2. Ubuntu Linux server installation
	3.2.3. Ubuntu server MAAS install
	3.2.4. MAAS install network and etherwake
	3.2.5. MAAS network hardware
	3.2.6. MAAS node configuration
	3.2.7. MAAS commission nodes
	3.2.8. Deploying nodes
	3.2.8.1. Deploying nodes from MAAS
	3.2.8.2. Deploying nodes from Openstack

	3.2.9. Ubuntu Linux MAAS decommission nodes & Juju and Openstack install
	3.2.10. Openstack cloud install

	4. Budget
	5. Conclusions and future development:
	Bibliography
	Glossary

