
Characterizing Approximate-Matching Dependencies in
Formal Concept Analysis with Pattern Structures

Jaume Baixeriesa , Victor Codocedoc, Mehdi Kaytouec,d and Amedeo Napolib

aDepartament de Ciències de la Computació. Universitat Politècnica de
Catalunya. 08032 Barcelona. Catalonia;

bLORIA (CNRS – Inria Nancy Grand-Est – Université de Lorraine) B.P. 239,
54506 Vandœuvre-lès-Nancy, France;

cUniversité de Lyon. CNRS, INSA-Lyon, LIRIS. UMR5205, F-69621, France
dInfologic, 99 Avenue de Lyon, F-26500, Bourg-lès-Valence, France

Abstract

Functional dependencies (FDs) provide valuable knowledge on the relations be-
tween attributes of a data table. A functional dependency holds when the
values of an attribute can be determined by another. It has been shown that
FDs can be expressed in terms of partitions of tuples that are in agreement
w.r.t. the values taken by some subsets of attributes. To extend the use of FDs,
several generalizations have been proposed. In this work, we study approximate-
matching dependencies that generalize FDs by relaxing the constraints on the
attributes, i.e. agreement is based on a similarity relation rather than on equal-
ity. Such dependencies are attracting attention in the database field since they
allow uncrisping the basic notion of FDs extending its application to many dif-
ferent fields, such as data quality, data mining, behavior analysis, data cleaning
or data partition, among others. We show that these dependencies can be for-
malized in the framework of Formal Concept Analysis (FCA) using a previous
formalization introduced for standard FDs. Our new results state that, start-
ing from the conceptual structure of a pattern structure, and generalizing the
notion of relation between tuples, approximate-matching dependencies can be
characterized as implications in a pattern concept lattice. We finally show how
to use basic FCA algorithms to construct a pattern concept lattice that entails
these dependencies after a slight and tractable binarization of the original data.

Keywords: functional dependencies, similarity, tolerance relation, formal
concept analysis, pattern structures, attribute implications.

1. Introduction

In the relational database model, functional dependencies (FDs) are among
the most popular types of dependencies since they indicate a functional relation

Preprint submitted to Discrete Applied Mathematics March 15, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/158801671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

between sets of attributes [1, 2, 3]: the values of a set of attributes are deter-
mined by the values of another set of attributes. Such FDs can be used to check5

the consistency and the quality of a database [4], but also to guide the database
design [5].

However, the definition of FDs is too strict for several useful tasks, for in-
stance when dealing with data imprecision i.e. errors and uncertainty in real-
world data. To overcome this problem, different generalizations of FDs have10

been defined. These generalizations can be classified according to the criteria
by which they relax the equality condition of FDs [6]. According to this classi-
fication, two main strategies are presented: “extent relaxation” and “attribute
relaxation” (in agreement with the terminology introduced in [6]).

Characterizing and computing FDs are two tasks strongly related to lattice15

theory. For example, lattice characterizations of a set of FDs are studied in
[7, 8, 9, 10]. Following the same line, a characterization of FDs within Formal
Concept Analysis (FCA) is proposed in [11]. In the latter case, FDs are shown to
be in one-to-one correspondence with the set of implications of a formal context
(binary table) generated from a database. However, such a formal context has20

a quadratic number of objects w.r.t. the tuples of the original database. To
avoid this, [12] and [13] show how to use pattern structures, introduced by [14]
as an extension of FCA. Moreover, in [15] it is shown how this framework can
be extended to Similarity Dependencies, another generalization of FDs.

Besides FCA and implications, there are many similarities between associ-25

ation rules in data mining and FDs. This is discussed further in the present
paper and as well in [16]. In the latter, a unifying framework in which any
“well-formed” semantics for rules may be integrated is introduced. Similarly,
this is also what we try to define in this paper for generalizations of FDs in the
framework of FCA and Pattern Structures.30

This paper presents an extended and updated version of [15] and its main
objective is to give a characterization of FDs relaxing the attribute comparison
within FCA thanks to the formalism of Pattern Structures. While our previ-
ous work considered similarity dependencies, we extend the characterization to
the family of approximate-matching dependencies using pattern structures and35

tolerance relations [17, 18]. Furthermore, we show that the classical FCA al-
gorithms can be –almost directly– applied to compute approximate-matching
dependencies.

This paper is organized as follows. In Section 2 we introduce our notations
and the definition of FDs. We present other kinds of generalization of FDs40

in Section 3. In Section 4, we introduce tolerance relations and we show how
the dependencies that are enumerated in Section 3 are based on tolerance re-
lations. In Section 5 we propose a generic characterization and computation
of approximate-matching dependencies in terms of Pattern Structures. In Sec-
tion 6 we present a set of experiments to test the feasibility and scalability of45

extracting approximate-matching dependencies with pattern structures.

2

2. Notation and Functional Dependencies

We deal with datasets which are sets of tuples. Let U be a set of attributes
and Dom be a set of values (a domain). For the sake of simplicity, we assume
that Dom is a numerical set. A tuple t is a function t : U 7→ Dom and a table50

T is a set of tuples T ⊆ Dom|U|. Sometimes the set notation is omitted and we
write ab instead of {a, b}.

Given a tuple t ∈ T and X = {x1, x2, . . . , xn} ⊆ U , we have:

t[X] = 〈t(x1), t(x2), . . . , t(xn)〉

t[X] is called the projection of X onto t. In Example 1, we have t2[{a, c}] =
〈t2(a), t2(c)〉 = 〈6, 6〉. The definition can also be extended to a set of tuples.
Given a set of tuples S ⊆ T and X ⊆ U , we have:

S[X] = {t[X] | t ∈ S}

Example 1. Table with tuples T = {t1, t2, t3, t4} and attributes U = {a, b, c, d}.

id a b c d

t1 3 5 6 3
t2 6 5 6 5
t3 3 10 6 3
t4 6 5 9 5

We now formally introduce functional dependencies [3].55

Definition 1. Let T be a set of tuples (or a data table), and X,Y ⊆ U . A
functional dependency (FD) X → Y holds in T if:

∀t, t′ ∈ T : t[X] = t′[X]⇒ t[Y] = t′[Y]

For example, the functional dependencies a→ d and d→ a hold in the table
of Example 1, whereas the functional dependency a → c does not hold since
t2(a) = t4(a) but t2(c) 6= t4(c).

3. Generalizations of Functional Dependencies

Functional dependencies tell us which attributes are determined by other60

attributes. As such, FDs are mainly used in databases to determine which
attributes are the keys of a dataset, i.e. the minimal sets of attributes (if any)
determining all other attributes. This information is necessary for maintaining
the consistency of the whole database. Moreover, this information can also be
useful in data analysis or in data classification, because of the the semantics65

attached to the “determined by” relationship.
However, in practical applications we usually have datasets that contain im-

precise or uncertain information. Here, we do not mean false information, but

3

information that may contain errors. For example, let us consider a dataset
containing information about the name and social security number (SSN) of70

citizens. Although SSN is supposed to be unique for each individual, it appears
that sometimes SSN is shared by more than one individual. In such a case,
the FD ‘‘social security number → name, surname’’ would not hold, al-
though we know that SSN does determine an individual. This is a case where
FDs reveal inconsistencies or errors in a database. Actually, here we rely on75

prior domain knowledge on the dataset, i.e. SSN is attached to a unique indi-
vidual. Without this previous assumption, the fact that a FD such as ‘‘social
security number → name, surname’’ does not hold, would not give us any
relevant information.

In some other cases, FDs may fail to capture interesting relations among80

attributes. For example, let us consider a dataset containing information about
which brand of beer and TV sitcom are preferred by customers, involving at-
tributes such as customer id, beer brand, tv sitcom. Now, assume that
people preferring a specific brand of beer, say beer X, also prefer sitcom Y in
an overwhelming 95% of cases. This means that there are 5% of the cases in85

which a customer preferring beer X will prefer sitcom Z for example. These
few cases prevent the FD beer brand → sitcom from holding, even if this
dependency holds in a very large majority of the cases in the dataset.

To overcome the limitations of FDs, several generalizations have been intro-
duced. These generalizations can be divided into two main groups, depending90

on the strategy to relax the semantics of FDs [6]. These two categories are
(1) “extent-relaxing dependencies” and (2) “attribute-relaxing dependencies”.
Extent-relaxing dependencies relax the conditions on their extents and can be
likened to association rules in data mining [19]. Attribute-relaxing dependen-
cies relax the conditions on the equality condition of attributes. Here we are95

more interested in attribute-relaxing dependencies.
More precisely, relaxation is applied to the equality condition t[X] = t′[X]

and t[Y] = t′[Y] in the definition of FDs, which is replaced with a less con-
strained condition. For example, we may replace the condition t[X] = t′[X]
with a condition where both t[X] and t′[X] need to be sufficiently close accord-100

ing to a set of attributes X. Such a condition still induces a relation among the
set of tuples as for FDs.

Then two categories of attribute-relaxing dependencies can be distinguished.
Firstly “approximate-matching dependencies” are such that the attribute com-
parison is computed by an approximation function, e.g. a distance function105

among the values appearing in the dataset. Secondly, “order-like dependencies”
are such that two values must be ordered instead of being somehow similar or
close.

Hereafter we propose an extensive study of approximate-matching depen-
dencies.110

4

4. Characterization of Approximate-Matching Dependencies

Below we propose a minimal characterization of approximate-matching de-
pendencies. This characterization will be sufficient for representing attribute-
relaxing dependencies within the formalism of Pattern Structures.

4.1. Tolerance Relations115

Firstly, we define a tolerance relation in a set T and then the associated
blocks of tolerance. Tolerance relations are often used in the formalization of
similarity [17, 18].

Definition 2. A tolerance relation θ ⊆ T × T on a set T is a reflexive (i.e.
∀t ∈ T : tθt) and symmetric (i.e. ∀ti, tj ∈ T : tiθtj ⇐⇒ tjθti) relation.120

Example 2. An often used tolerance relation is the similarity that can be defined
within a set of integer values. Given two integer values v1, v2 and a user-defined
threshold ε: v1θv2 ⇐⇒ |v1 − v2| ≤ ε.

Practically, let t(Month) denotes the value of attribute Month for tuple t.
The function ∆Month(m1,m2) defines the tolerance relation θMonth such as:

∆Month(m1,m2) = min(|m1 −m2|,min(m1,m2) + 12−max(m1,m2))

tiθMonthtj ⇐⇒ ∆Month(ti(Month), tj(Month)) ≤ 4

Then θMonth is the tolerance relation that considers two tuples similar if they
have values within 4 months of distance.125

In [15] we used tolerance relations to compare attribute values. In the fol-
lowing, we continue in the same way and we introduce blocks of tolerance and
operations on these blocks that will allow us to make precise the notion of
“approximate-matching dependency”.

4.2. Blocks of Tolerance130

A tolerance relation induces blocks of tolerance as follows.

Definition 3. Given a set T , a subset K ⊆ T and a tolerance relation θ ⊆ T×T .
K is a block of tolerance of θ if:

1. ∀ti, tj ∈ K : tiθtj (pairwise correspondence)

2. ∀ti 6∈ K,∃tj ∈ K : ¬(tiθtj) (maximality)135

Given a set of tuples T and a set of attributes U , for each attribute x ∈ U ,
we define a tolerance relation θx on the values of x. The set of tolerance blocks
induced by θx is denoted by T/θx.

Example 3. For example, when T = {1, 2, 3, 4, 5}, θ is defined as above, i.e.
v1θv2 ⇐⇒ |v1 − v2| ≤ ε, and ε = 2, then T/θ = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}.140

T/θ is not a partition, as θ is not transitive.

5

All of the tuples in a tolerance blockK ∈ T/θx are pairwise similar according
to their values w.r.t. x. Thus we have:

Property 1. ∀Ki,Kj ∈ T/θ : Ki * Kj and Kj * Ki for all i 6= j

We can define a partial ordering on the set of all possible tolerance relations145

in a set T as follows:

Definition 4. Let θ1 and θ2 two tolerance relations in the set T . We say that
θ1 ≤ θ2 if and only if ∀Ki ∈ T/θ1 : ∃Kj ∈ T/θ2 : Ki ⊆ Kj

This relation is a partial ordering and induces a lattice classifying tolerance
relations, or, equivalently, blocks of tolerance. Given two tolerance relations, θ1150

and θ2, the meet and the join operations in this lattice are:

Definition 5. Let θ1 and θ2 two tolerance relations in the set T .
θ1 ∧ θ2 = θ1 ∩ θ2 = maxT ({Ki ∩Kj | Ki ∈ T/θ1,Kj ∈ T/θ2})
θ1 ∨ θ2 = θ1 ∪ θ2 = maxT (T/θ1 ∪ T/θ2)
where maxT (.) returns the set of maximal subsets w.r.t. inclusion.155

Example 4. Based on Example 1, let us define the tolerance relation θm w.r.t.
an attribute m ∈ {a, b, c, d} as follows: tiθmtj ⇐⇒ |ti(m)− tj(m)| ≤ ε. Then,
assuming that ε = 1, we have:

T/θa = {{t1, t3}, {t2, t4}} T/θb = {{t1, t2, t4}, {t3}}
T/θc = {{t1, t2, t3}, {t4}} T/θd = {{t1, t3}, {t2, t4}}

We can check the following meet and join operations:

θa ∧ θb = {{t1}, {t2, t4}, {t3}} θa ∨ θb = {{t1, t2, t3, t4}}
θa ∧ θc = {{t1, t3}, {t2}, {t4}} θa ∨ θc = {{t1, t2, t3, t4}}
θb ∧ θc = {{t1, t2}, {t3}, {t4}} θb ∨ θc = {{t1, t2, t3, t4}}

We can also extend the definition of a similarity relation on a single attribute
to a similarity relation on sets of attributes. GivenX ⊆ U , the similarity relation
θX is defined as follows:

(ti, tj) ∈ θX ⇐⇒ ∀x ∈ X : (ti, tj) ∈ θx

Two tuples are similar w.r.t. a set of attributes X if and only if they are
similar w.r.t. each attribute in X.

4.3. The definition of Approximate-Matching Dependencies

Definition 6. Let X,Y ⊆ U : X → Y be an approximate-matching dependency
if and only if: ∀ti, tj ∈ T : tiθXtj → tiθY tj160

While an FD X → Y is based on equality of values, an approximate-
matching dependency X → Y holds if and only if, each pair of tuples having
related values w.r.t. attributes in X has related values w.r.t. attributes in Y .

6

Example 5. Recalling again Example 1, we define the tolerance relation:

tiθmtj ⇐⇒ |ti(m)− tj(m)| ≤ 2

Then the following approximate-matching dependencies hold:

• a→ d, ab→ d, abc→ d, ac→ d, b→ d, bc→ d, c→ d.165

• It is interesting to notice that b → d is an approximate-matching depen-
dency but not a functional dependency, as t1(b) = t2(b) and t1(d) 6= t2(d).

• Because of the same pair of tuples, the approximate-matching dependency
bcd → a does not hold, as we have t1θbcdt2 but we do not have t1θat2,
since |t1(a)− t2(a)| � 2.170

• By contrast, the functional dependency bcd → a holds because there is no
pair of tuples ti, tj such that ti(bcd) = tj(bcd).

5. Approximate-Matching Dependencies in FCA

5.1. A Brief Introduction to Pattern Structures in FCA

A “Pattern Structure” allows a direct application of FCA over non-binary175

and complex data [14]. Formally, let G be a set of objects, let (D,u) be a meet-
semi-lattice of potential object descriptions and let δ : G → D be a mapping
associating each object with its description. Then (G, (D,u), δ) is a pattern
structure. Elements of D are patterns and are ordered thanks to a subsumption
relation v, i.e. ∀c, d ∈ D, c v d⇐⇒ c u d = c.180

A pattern structure (G, (D,u), δ) is based on two derivation operators de-
noted as (·)�. For A ⊆ G and d ∈ D:

A� =
l

g∈A
δ(g) d� = {g ∈ G|d v δ(g)}.

These operators form a Galois connection between (℘(G),∩) and (D,u),
where ℘(G) is the powerset of G. Pattern concepts of (G, (D,u), δ) are pairs of
the form (A, d), A ⊆ G, d ∈ D, such that A� = d and A = d�. For a pattern185

concept (A, d), d is a pattern intent and is the common description of all objects
in A, the pattern extent.

When partially ordered by (A1, d1) ≤ (A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 v d1),
the set of all concepts forms a complete lattice called pattern concept lattice.

5.2. Characterization of Dependencies within Pattern Structures190

Thanks to the formalism of pattern structures, approximate-matching de-
pendencies can be characterized and computed in an elegant manner. A dataset
can be represented as a pattern structure (U , (D,u), δ) where U is the set of
original attributes, and (D,u) is the set of sets of tolerance blocks over the set
of tuples T provided with the meet operation introduced in Definition 5. The195

description of an attribute x ∈ U is given by δ(x) = T/θx which is given by the
set of tolerance blocks.

7

Example 6. An example of concept formation in the pattern structure is given
as follows. Consider the table in Example 1. Starting from the set {a, c} ⊆ U
and assuming that tiθxtj ⇐⇒ |ti(x)− tj(x)| ≤ 2 for all attributes:200

{a, c}� = δ(a) u δ(c) = {{t1, t3}, {t2, t4}} u {{t1, t2, t3}, {t4}}
= {{t1, t3}, {t2}, {t4}}

{{t1, t3}, {t2}, {t4}}� = {x ∈ U|{{t1, t3}, {t2}, {t4}} v δ(x)} = {a, c}

Hence, ({a, c}, {{t1, t3}, {t2}, {t4}}) is a pattern concept.

Then the pattern concept lattice allows us to characterize all approximate-
matching dependencies holding in U :

Proposition 1. An approximate-matching dependency X → Y holds in a table
T if and only if: {X}� = {X,Y }� in the pattern structure (U , (D,u), δ).205

Proof. First of all, it should be noticed that (t, t′) ∈ {X}� if and only if
t(X)θXt

′(X), or, equivalently, ∀x ∈ X : t(x)θxt
′(x).

Moreover, we also have that {X,Y }� ⊆ {X}� and that {X,Y }� ⊆ {Y }�
because of the anti-monotonicity of (.�).

We first prove that if X → Y holds in T , then, {X}� = {X,Y }�, and in210

particular that {X}� ⊆ {X,Y }�. We take an arbitrary pair (t, t′) ∈ {X}�,
i.e. t(X)θXt

′(X). Since X → Y holds, then t(X)θXt
′(X) −→ t(Y)θY t

′(Y), and
thus (t, t′) ∈ {Y }�. This finally implies that (t, t′) ∈ {X,Y }�.

Conversely, suppose now that {X}� = {X,Y }�. Then, when t, t′ ∈ T is
such that (t, t′) ∈ {X}� (i.e. t(X)θXt

′(X)), it comes that (t, t′) ∈ {X,Y }�.215

As {X,Y }� ⊆ {Y }�, we can infer that (t, t′) ∈ {Y }� and thus, t(Y)θY t
′(Y).

Then we can conclude that X → Y holds in T .

This proposition is structurally the same as the one used in [13] to prove the
characterization of functional dependencies with pattern structures. In this case,
we have changed and relaxed the equality condition by the tolerance relation θ.220

5.3. Characterization of Dependencies with Binarization in FCA

In [12] it is shown how the binarization of a tabular dataset can be per-
formed. Binarization is also defined in [2] and [5] as agree sets, which are pairs
of tuples that agree in all the values of a given set of attributes. The binarization
procedure can be formalized as follows.225

For a given table with tuples T and a set of attributes U , we define a bi-
nary context K = (Pair(T),U , I), where Pair(T) = {ti, tj | i < j} and
((ti, tj), x) ∈ I (for all x ∈ U) if and only if ti(x) = tj(x). We general-
ize this notion of binarization to include a tolerance relation θ. To accom-
plish this it suffices to define the formal context Kθ = (Pair(T),U , Iθ) where230

((ti, tj), x) ∈ Iθ ⇐⇒ tiθxtj .
Figure 1 shows an example of a dataset T (left) and its associate clas-

sical binarization K = (Pair(T),U , I) (middle). The formal context Kθ =

8

id a b c d

t1 1 2 3 1
t2 1 2 1 4
t3 1 1 3 4
t4 2 2 3 4

id a b c d

(t1, t2) x x
(t1, t3) x x
(t1, t4) x x
(t2, t3) x x
(t2, t4) x x
(t3, t4) x x

id a b c d

(t1, t2) x x
(t1, t3) x x x
(t1, t4) x x x
(t2, t3) x x x
(t2, t4) x x x
(t3, t4) x x x x

Figure 1: A data table T (left) with associated binarized formal context (Pair(T),U , I)
(middle), and the generalization of the binarized formal context (Pair(T),U , Iθ) taking
tiθxtj ⇐⇒ | ti(x)− tj(x) |≤ 1.

(Pair(T),U , Iθ) in Figure 1 (right) is obtained when defining tiθxtj ⇐⇒
|ti(x)− tj(x)| ≤ 1.235

It turns out that the same relationship existing between implications and
functional dependencies, also exists between approximate-matching dependen-
cies and implications in this new generalization of a binarized formal context as
shown in the following main result:

Proposition 2. Let T be a set of tuples, and U a set of attributes. The240

approximate-matching dependency X → Y (X,Y ⊆ U) holds in T if and only if
the implication X → Y holds in the formal context Kθ = (Pair(T),U , Iθ).

Proof. The approximate-matching dependencies X → Y holds in T if and only
if for all pairs of tuples ti, tj , we have that ∀x ∈ X : tiθxtj implies that ∀y ∈
Y : tiθytj . The former occurs if and only if ∀x ∈ X : ((ti, tj), x) ∈ Iθ, while the245

latter occurs if and only if ∀y ∈ Y : ((ti, tj), y) ∈ Iθ. It follows that X → Y
holds in Kθ.

6. Experiments

Characterizations of approximate-matching dependencies through partition
pattern structures [12] (Section 5.2), and through standard FCA by the bina-250

rization of a dataset (Section 5.3) are said to be “equivalent” as they yield
isomorphic concept lattices.

In this section, we experiment with both methods to highlight their strengths
and weaknesses. Experiments were performed over an Intel Xeon machine with
6 cores running at 2.27GHz and 32GB of RAM machines. All algorithms were255

implemented in C++ and compiled with the −O3 optimization.

6.1. Dataset Description and Experimental Settings

Experiments were performed over 3 datasets from the UCI machine learning
repository and 3 datasets from the JASA data archive, namely the diagnosis1,

1http://archive.ics.uci.edu/ml/datasets/Acute+Inflammations

9

http://archive.ics.uci.edu/ml/datasets/Acute+Inflammations

contraceptive2, servo3, caulkins4, hughes-r5, and pglw00 6 datasets, described in260

Table 2.
For the caulkins dataset we did not considered the columns with redundant

information about the weight of the entry –there were two columns indicating
this weight, one with the original information and another with its correspon-
dent gram representation; we used the gram representation– and the column265

containing the value “gram” for every object. For the hughes-r dataset we
added four binary values encoding metadata for the first three columns. Addi-
tionally, we modeled negative values as “missing data” which in our case means
that two tuples are considered dissimilar if they both have “missing data” for a
given attribute. Changes to other datasets are just related to the conversion of270

categorical entries represented with a string to a number.
Datasets are binarized by generating a formal context with |T |2 objects and

|U| attributes. An object in the formal context represents two tuples and its
attributes are those for which both tuples have similar values. Formal contexts
are also clarified by fusing objects with the same attributes [11]. Clarification275

has no effect on the calculation of dependencies but can significantly reduce the
size of the formal context. We report results for both non-clarified and clarified
formal contexts. Formal concepts were calculated using an implementation of
the AddIntent7 algorithm [20] from which approximate-matching dependencies
can be characterized.280

Pattern structures are generated from each dataset by considering a set
of similarity parameters θx for each attribute x ∈ U . Binary and categorical
attributes were considered as numerical attributes provided with a θ value of 0.
Table 1 shows the different values taken by θ for all datasets. These values were
selected arbitrarily.285

In order to be fair with the comparison of both approaches, we have modified
the same AddIntent implementation to process pattern structures. This modifi-
cation consisted in overriding the computation of description intersections and
the subsumption test for any two descriptions. Both operations require |T |2
operations in the worst case scenario. For the sake of efficiency, we used striped290

descriptions, i.e. we do not keep in memory tolerance blocks that are singletons
as in [9] and [12].

6.2. Experimental Results

Table 2 reports on the execution times for building the concept lattices
for both, the binarization approach (non-clarified and clarified), and pattern295

structures. For non-clarified and clarified formal contexts, execution times are
reported as a sum of a preprocessing time (binarization/clarification) and the

2http://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
3http://archive.ics.uci.edu/ml/datasets/Servo
4http://lib.stat.cmu.edu/jasadata/caulkins-p
5http://lib.stat.cmu.edu/jasadata/hughes-r
6http://lib.stat.cmu.edu/jasadata/pglw00.zip
7https://github.com/codocedo/sephirot/

10

http://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
http://archive.ics.uci.edu/ml/datasets/Servo
http://lib.stat.cmu.edu/jasadata/caulkins-p
http://lib.stat.cmu.edu/jasadata/hughes-r
http://lib.stat.cmu.edu/jasadata/pglw00.zip
https://github.com/codocedo/sephirot/

Dataset θ-values

Diagnosis θ1 = 0.3
Contraceptive θ1 = 5
Servo θ3 = 5
Caulkins θ1 = 5, θ5, θ12 = 300, θ6, θ7, θ10 = 2000, θ8, θ9, θ11 = 10
Hughes-r θ1, θ2, θ3 = 3
Pglw00 θ1 = 5

Table 1: Similarity parameters (theta values) for each dataset. Parameters not reported are
set to zero.

Pattern structures (M, (D,u), δ)
Dataset |M | |T |=|G| #Con. Num. Cat. Exec. Time [s]
Diagnosis 8 120 98 1 7 0.81
Contraceptive 10 1473 1024 1 9 734.2
Servo 5 167 28 1 4 1.30
Caulkins 12 1685 2704 9 3 19783.3
Hughes-r 12 401 754 3 9 24.35
Pglw00 6 17995 64 1 5 55.84

Formal context (B2(G),M, I)
Dataset |G| |M | #Con. Num. Cat. Exec. Time [s]
Diagnosis 7082 8 98 1 7 0.32 + 0.09
Contraceptive 1082307 10 1024 1 9 120.46 + 47.6
Servo 13688 5 28 1 4 0.54 + 0.1
Caulkins 1412827 12 2704 9 3 168.19 + 102.249
Hughes-r 80200 12 754 3 9 5.11 + 3.85
Pglw00 161892017 6 64 1 5 -

Formal context (B2(G),M, I) clarified
Dataset |G| |M | #Con. Num. Cat. Exec. Time [s]
Diagnosis 50 8 98 1 7 0.32 + 0.02
Contraceptive 1017 10 1024 1 9 120.46 + 0.089
Servo 25 5 28 1 4 0.54 + 0.006
Caulkins 1146 12 2704 9 3 168.19 + 0.169
Hughes-r 1054 12 754 3 9 5.11 + 0.063
Pglw00 - 6 64 1 5 -

Table 2: Datasets and execution times (Con. : Concepts. Num. : # Numerical attributes.
Cat. : # Categorical attributes. The symbol ”-” indicates that the value could not be obtained
by computational limitations.

execution time of the AddIntent algorithm, respectively. Clarification is per-
formed using a linear hashing approach during the binarization process, thus
the pre-processing time for both cases is the same. For pattern structures, ex-300

ecution times consider the time needed for the transformation of the numerical
dataset into a pattern structure as well as the calculation of the concept lattice.

For all datasets, with the exception of pglw00 using binarization showed
more efficient than processing the equivalent pattern structure.

An interesting exception occurs with the dataset pglw00. Since the dataset305

contains around 104 tuples, its binarization should yield a formal context with
more than 108 objects (roughly 161 millions). This sheer size of elements makes
prohibitive the calculation of the concept lattice derived from both the formal

11

context and the clarified formal context. To illustrate this fact consider that
if each object could be represented by only a single integer variable with size310

8 bytes, then the whole formal context would have a size of around 1 GB of
memory (this would be the best case scenario). This is particularly interesting
considering that the formal context contains only 6 attributes, meaning that
the concept lattice can contain up to 64 formal concepts.

6.3. Synthesis315

Under the evidence shown by the experimental results, we can conclude that
the use of pattern structures is of critical importance for mining approximate-
matching dependencies in medium-large datasets, where binarization and clar-
ification are not possible due to computational limitations. Nevertheless, for
sufficiently small datasets, the evidence shows that using standard FCA is a320

better option. The scripts and binaries necessary to replicate the experiments
are freely available on-line8.

7. Related Work and Discussion

Dependency theory has been an important subject of database theory for
more than thirty years. Several types of dependencies have been proposed,325

capturing different semantics useful for different applications such as query op-
timization, normalization, data cleaning, error detection, among others.

FDs are first class citizens for checking the consistency and the quality of a
database [21, 4, 22], and as well for guiding the database design [5]. In partic-
ular, when considering the web of data and RDF triples, FDs can be used for330

checking completeness and quality of the data. In [23, 24], authors are studying
information integration in the web of data with varying degrees of quality. FDs
are used for detecting triples which are erroneous w.r.t. domain knowledge. In
the same way, in [25], authors are interested in using implications derived from
RDF data, i.e. a special kind of FDs, for checking data completeness in DBpe-335

dia. The transformation of RDF data into a pattern structure and the following
extraction of implications and their inverse are the basis of this research work.
Actually, approximate-matching dependencies could be used for extending this
research as they would be very well adapted for dealing with imperfect RDF
data. This line of research work in RDF data points out the growing importance340

of FDs for complex data such as RDF triples and graphs [26].
As already discussed above, standard functional dependencies are not al-

ways suitable for managing several tasks and data settings. Accordingly, many
generalizations have been proposed over the last decades, which were recently
and exhaustively reviewed and classified in [6]. This classification separates (i)345

extent relaxations from (ii) attribute-comparison relaxations. In the former, FDs
are relaxed on their coverage, e.g. a functional dependency only holds in a sub-
set of the data. In the latter, the notion of agreement between two tuples for a

8https://github.com/codocedo/sephirot/tree/DAM16

12

https://github.com/codocedo/sephirot/tree/DAM16

Example 7. An example based on “Average Daily Temperature Archive” show-
ing the monthly average temperatures for different cities [31].

id Month Year Av. Temp. City
t1 1 1995 36.4 Milan
t2 1 1996 33.8 Milan
t3 5 1996 63.1 Rome
t4 5 1997 59.6 Rome
t5 1 1998 41.4 Dallas
t6 1 1999 46.8 Dallas
t7 5 1996 84.5 Houston
t8 5 1998 80.2 Houston

given attribute is revisited leading to two main subtypes of dependencies. The
equality between two values is relaxed for approximate-matching dependencies350

while an ordering between values must be respected for ordered dependencies.
The general assumption for extent relaxations is that a FD does not neces-

sarily hold in the whole dataset. A FD X → Y holds in a table T if and only if it
holds “for all” pairs of tuples in T . This is precisely this “for all” condition that
should be relaxed, i.e. the extent of the table in which this condition must hold.355

There are several ways to relax the universal condition. A threshold can be
given as a percentage such as “Approximate Dependencies” [27], as an impurity
function such as “Purity Dependencies” [28], as a minimal number of tuples for
each attribute such as “Numerical Dependencies” [29], or as a probability such
as “Probabilistic functional dependencies” [30].360

For example, considering the dependency Month→ Av.Temp in Example 7,
we can check that 6 tuples should be removed before verifying the dependency:
we keep only one tuple for Month 1 and one tuple for Month 5 (actually just
as if we remove “duplicates”). Then, if the threshold is equal to or larger than
75%, Month→ Av.Temp is a valid approximate dependency.365

Attribute-comparison relaxations include “Attribute-Relaxing Dependencies”
and form the second main group of generalizations of FDs. Here, the relaxation
holds on the equality condition, which is replaced with a less constrained con-
dition, e.g. “sufficiently close” according to a set of attributes. Then it is pos-
sible to distinguish “approximate-matching dependencies” where the attribute370

comparison is computed thanks to an approximation function, e.g. a distance
function, and “order-like dependencies” where values must be ordered instead
of being similar.

In this way, “Neighborhood Dependencies” are defined to express regularities
in datasets [32]. Given a FD X → Y and a tuple t, the value of t[X] determines375

the value of t[Y]. Then the value of t[Y] is determined not only by the value of
t[X] but also by the neighbor values of t[X].

We can illustrate such dependencies thanks to Example 7. Let us define

13

functions θMonth and θAv.Temp. as follows:

θMonth(m1,m2) = 1− min(|m1 −m2|,min(m1,m2) + 12−max(m1,m2))

12

θAv.Temp.(t1, t2) = 1− |t1 − t2|
max(Av.Temp.)−min(Av.Temp)

These functions can be extended into a predicate such as: θMonth(m1,m2) ≥
0.5 and θAv.Temp.(t1, t2) ≥ 0.5. Then we can define a neighborhood dependency
as follows: θMonth → θAv.Temp. If the values of the attribute Month in a pair380

of tuples are close enough, then, the values of the attribute Av.Temp are also
close.

Furthermore, “Differential Dependencies” are defined to extend the notion
of equality in FDs [33] They are used to detect violations or inconsistencies
in datasets, to optimize queries, to partition data in parts that are somehow385

similar or detect duplicates in datasets. They are based on a metric distance
where each attribute is associated with a different metric distance depending on
the nature of the attribute values. Specific constraints can also be attached to
some particular attributes w.r.t. domain knowledge.

For example, a differential function over an attribute x ∈ X and a pair of390

tuples t, t′ can be defined as a Boolean function that evaluates true when a
constraint on the values θ(t[X], t′[X]) holds. Such a constraint can be specified
thanks to comparison operators, i.e. {=, <,>,≤,≥}, and a threshold δ, e.g.
θ(t[x], t′[x]) ≤ δ. Then each attribute has a metric distance θ and an associated
constraint, as for neighborhood dependencies. The differential function θ also395

induces a relation among the set of tuples according to a set of attributes X ⊆ U
as θMonth(m1,m2) and θAv.Temp.(t1, t2) were defined above for neighborhood
dependencies.

Going back to FCA, we have used tolerance relations for computing FDs
in [18, 13]. Tolerance relations provide an elegant support for characterizing400

FDs and approximate-matching dependencies as well. Actually, implications in
a formal context exactly correspond to the set of FDs as discussed in [11, 34].
In addition, the relations with conditional FDs, association rules and FCA are
also studied in [35, 36].

Moreover, order-like dependencies are studied in the framework of FCA in405

[37]. They cannot be directly handled in the present framework, as not only
blocks of tolerances should be considered, but also the ordering of the objects in
each block should coincide as well [38, 6]. Actually, searching for these ordered
dependencies is related to the mining of closed gradual itemsets [39]. A first FCA
characterization of such a mining problem is provided in a “kind of” pattern410

structure of sequential patterns [40].

8. Conclusion

In this paper, we have presented a generalization of functional dependen-
cies, namely approximate-matching dependencies, which accounts for “uncrisp

14

dependencies” in the sense that two attribute values are considered as “equal” as415

soon as they belong to a given interval, i.e. small variations over attribute values
are allowed. We discussed how this family of functional dependencies is relevant
and share a main basic feature, i.e. a similarity measure depending on the se-
mantics of each attribute. In addition, we have presented a characterization of
this family of dependencies using the formalism of pattern structures extending420

from previous results that frames functional dependencies in the framework of
formal concept analysis. This provides an efficient computational framework
acknowledged by a series of experimental studies.

Our major result shows that the underlying model for all approximate-
matching dependencies can be formalized using tolerance relations for compar-425

ing values between tuple attributes, just as equivalence relations –or equivalently
partitions– gives the underlying model for standard functional dependencies.

In our future research work, we will be mainly interested in ordered depen-
dencies and in the use of approximate-matching dependencies in classifying the
RDF triples in the web of data.430

Acknowledgments. This research work has been supported by the SGR2014-890

(MACDA) project of the Generalitat de Catalunya, and MINECO project APCOM

(TIN2014-57226-P) and partially funded by the French National Project FUI AAP 14

Tracaverre 2012-2016.

References435

[1] D. Maier, The Theory of Relational Databases, Computer Science Press,
1983.

[2] C. Beeri, M. Dowd, R. Fagin, R. Statman, On the Structure of Armstrong
Relations for Functional Dependencies, Journal of the ACM 31 (1) (1984)
30–46.440

[3] J. Ullman, Principles of Database Systems and Knowledge-Based Systems,
volumes 1–2, Computer Science Press, Rockville (MD), USA, 1989.

[4] W. Fan, F. Geerts, Foundations of Data Quality Management, Synthesis
Lectures on Data Management, Morgan & Claypool Publishers, 2012.

[5] H. Mannila, K.-J. Räihä, The Design of Relational Databases, Addison--445

Wesley, Reading (MA), USA, 1992.

[6] L. Caruccio, V. Deufemia, G. Polese, Relaxed Functional Dependencies
– A Survey of Approaches, IEEE Transactions on Knowledge and Data
Engineering 28 (1) (2016) 147–165.

[7] A. Day, The lattice theory of fonctionnal dependencies and normal decom-450

positions, International Journal of Algebra and Computation 02 (04) (1992)
409–431.

15

[8] J. Demetrovics, G. Hencsey, L. Libkin, I. B. Muchnik, Normal Form Re-
lation Schemes: A New Characterization, Acta Cybernetica 10 (3) (1992)
141–153.455

[9] S. Lopes, J.-M. Petit, L. Lakhal, Functional and Approximate Dependency
Mining: Database and FCA Points of View, Journal of Experimental and
Theoretical Artificial Intelligence 14 (2-3) (2002) 93–114.

[10] N. Caspard, B. Monjardet, The Lattices of Closure Systems, Closure Op-
erators, and Implicational Systems on a Finite Set: A Survey, Discrete460

Applied Mathematics 127 (2) (2003) 241–269.

[11] B. Ganter, R. Wille, Formal Concept Analysis, Springer, Berlin, 1999.

[12] J. Baixeries, M. Kaytoue, A. Napoli, Computing Functional Dependencies
with Pattern Structures, in: L. Szathmary, U. Priss (Eds.), Concept Lat-
tices and Applications, CLA, Vol. 972 of CEUR Workshop Proceedings,465

CEUR-WS.org, 2012, pp. 175–186.

[13] J. Baixeries, M. Kaytoue, A. Napoli, Characterizing Functional Depen-
dencies in Formal Concept Analysis with Pattern Structures, Annals of
Mathematics and Artificial Intelligence 72 (1–2) (2014) 129–149.

[14] B. Ganter, S. O. Kuznetsov, Pattern Structures and Their Projections, in:470

H. S. Delugach, G. Stumme (Eds.), Conceptual Structures: Broadening
the Base, Proceedings of the 9th International Conference on Conceptual
Structures (ICCS 2001), LNCS 2120, Springer, 2001, pp. 129–142.

[15] J. Baixeries, M. Kaytoue, A. Napoli, Computing Similarity Dependencies
with Pattern Structures, in: M. Ojeda-Aciego, J. Outrata (Eds.), Concept475

Lattices and Applications, CLA, Vol. 1062 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2013, pp. 33–44.

[16] M. Agier, J. Petit, E. Suzuki, Unifying Framework for Rule Semantics:
Application to Gene Expression Data, Fundamenta Informaticae 78 (4)
(2007) 543–559.480

[17] S. O. Kuznetsov, Galois Connections in Data Analysis: Contributions from
the Soviet Era and Modern Russian Research, in: B. Ganter, G. Stumme,
R. Wille (Eds.), Formal Concept Analysis, Foundations and Applications,
Lecture Notes in Computer Science 3626, Springer, 2005, pp. 196–225.

[18] M. Kaytoue, Z. Assaghir, A. Napoli, S. O. Kuznetsov, Embedding tolerance485

relations in formal concept analysis: an application in information fusion,
in: CIKM, ACM, 2010, pp. 1689–1692.

[19] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. I. Verkamo, Fast
Discovery of Association Rules, in: Advances in Knowledge Discovery and
Data Mining, AAAI/MIT Press, 1996, pp. 307–328.490

16

[20] S. O. Kuznetsov, S. A. Obiedkov, Comparing performance of algorithms
for generating concept lattices, Journal of Experimental and Theoretical
Artificial Intelligence 14 (2–3) (2002) 189–216.

[21] W. Fan, Dependencies revisited for improving data quality, in: M. Lenz-
erini, D. Lembo (Eds.), Proceedings of the Twenty-Seventh ACM495

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS 2008, June 9-11, 2008, Vancouver, BC, Canada, ACM, 2008,
pp. 159–170.

[22] W. Fan, Data quality: From theory to practice, SIGMOD Rec. 44 (3)
(2015) 7–18.500

[23] Y. Yu, J. Heflin, Extending functional dependency to detect abnormal data
in RDF graphs, in: L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein,
L. Kagal, N. F. Noy, E. Blomqvist (Eds.), The Semantic Web - ISWC 2011
- 10th International Semantic Web Conference, Bonn, Germany, October
23-27, 2011, Proceedings, Part I, Vol. 7031 of Lecture Notes in Computer505

Science, Springer, 2011, pp. 794–809.

[24] Y. Yu, Y. Li, J. Heflin, Detecting abnormal semantic web data using seman-
tic dependency, in: Proceedings of the 5th IEEE International Conference
on Semantic Computing (ICSC 2011), Palo Alto, CA, USA, September
18-21, 2011, 2011, pp. 154–157.510

[25] M. Alam, A. Buzmakov, V. Codocedo, A. Napoli, Mining definitions
from RDF annotations using formal concept analysis, in: Q. Yang,
M. Wooldridge (Eds.), Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Ar-
gentina, July 25-31, 2015, AAAI Press, 2015, pp. 823–829.515

[26] W. Fan, Y. Wu, J. Xu, Functional dependencies for graphs, in: F. Özcan,
G. Koutrika, S. Madden (Eds.), Proceedings of the 2016 International Con-
ference on Management of Data, SIGMOD Conference 2016, San Francisco,
CA, USA, June 26 - July 01, 2016, ACM, 2016, pp. 1843–1857.

[27] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, TANE: An Efficient Al-520

gorithm for Discovering Functional and Approximate Dependencies, Com-
puter Journal 42 (2) (1999) 100–111.

[28] D. A. Simovici, D. Cristofor, L. Cristofor, Impurity measures in databases,
Acta Informatica 38 (5) (2002) 307–324.

[29] J. Grant, J. Minker, Normalization and axiomatization for numerical de-525

pendencies, Information and Control 65 (1) (1985) 1 – 17.

[30] 12th International Workshop on the Web and Databases, WebDB 2009,
Providence, Rhode Island, USA, June 28, 2009.

17

[31] U. of Dayton, Environmental Protection Agency Average Daily Tempera-
ture Archive.530

[32] R. Basse, J. Wijsen, Neighborhood Dependencies for Prediction, in:
D. Cheung, G. Williams, Q. Li (Eds.), Advances in Knowledge Discov-
ery and Data Mining, Vol. 2035 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2001, pp. 562–567.

[33] S. Song, L. Chen, Differential Dependencies: Reasoning and Discovery,535

ACM Transactions on Database Systems 36 (3) (2011) 16:1–16:41.

[34] J. Baixeries, Lattice Characterization of Armstrong and Symmetric Depen-
dencies (PhD Thesis), Universitat Politècnica de Catalunya, 2007.

[35] R. Medina, L. Nourine, A Unified Hierarchy for Functional Dependencies,
Conditional Functional Dependencies and Association Rules, in: S. Ferré,540

S. Rudolph (Eds.), International Conference on Formal Concept Analysis,
ICFCA, Vol. 5548 of Lecture Notes in Computer Science, Springer, 2009,
pp. 98–113.

[36] R. Medina, L. Nourine, Conditional Functional Dependencies: An FCA
Point of View, in: L. Kwuida, B. Sertkaya (Eds.), International Confer-545

ence on Formal Concept Analysis, ICFCA, Vol. 5986 of Lecture Notes in
Computer Science, Springer, 2010, pp. 161–176.

[37] V. Codocedo, J. Baixeries, M. Kaytoue, A. Napoli, Characterization of
Order-like Dependencies with Formal Concept Analysis, in: M. Huchard,
S. Kuznetsov (Eds.), Proceedings of the Thirteenth International Confer-550

ence on Concept Lattices and Their Applications, CLA 2016, Moscow,
Russia, July 18-22., Vol. 1624 of CEUR Workshop Proceedings, CEUR-
WS.org, 2016, pp. 123–134.

[38] W. Ng, Ordered functional dependencies in relational databases, Informa-
tion Systems 24 (7) (1999) 535 – 554.555

[39] T. D. T. Do, A. Termier, A. Laurent, B. Négrevergne, B. O. Tehrani,
S. Amer-Yahia, PGLCM: efficient parallel mining of closed frequent gradual
itemsets, Knowledge and Information Systems 43 (3) (2015) 497–527.

[40] S. Ayouni, A. Laurent, S. B. Yahia, P. Poncelet, Mining Closed Gradual
Patterns, in: L. Rutkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh,560

J. M. Zurada (Eds.), Artificial Intelligence and Soft Computing, 10th In-
ternational Conference, ICAISC 2010, Zakopane, Poland, June 13-17, 2010,
Part I, Vol. 6113 of Lecture Notes in Computer Science, Springer, 2010, pp.
267–274.

18

	Introduction
	Notation and Functional Dependencies
	Generalizations of Functional Dependencies
	Characterization of Approximate-Matching Dependencies
	Tolerance Relations
	Blocks of Tolerance
	The definition of Approximate-Matching Dependencies

	Approximate-Matching Dependencies in FCA
	A Brief Introduction to Pattern Structures in FCA
	Characterization of Dependencies within Pattern Structures
	Characterization of Dependencies with Binarization in FCA

	Experiments
	Dataset Description and Experimental Settings
	Experimental Results
	Synthesis

	Related Work and Discussion
	Conclusion

