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Abstract

Underactuated grippers aim to simplify the control strategies for performing stable grasps due

to their inherent shape adaptability. While at the beginning, the main research area was focused

on developing human-like robotic hands for disabled people, in the last years, a new field of

application appeared with the constant evolution of the industry: the implementation of a single

underactuated gripper as a replacement of diverse dedicated fully-actuated grippers. However,

two main issues are restraining its use: the stability of the grasp and the speed of performance.

The first is an active topic as all underactuated grippers need to ensure the stability of the

grasped object through an adequate kinematic design, while, the latter is not widely treated

as there weren’t many application fields where high-speed was required and, at the end, the

quasi-static analysis must be also ensured.

For this reason, the present research work has been focused on the speed of the grasping.

In the first place, an introduction to underactuated hands is made, and is followed by two

main stability criteria. Then, the development of a model for an underactuated finger that

allows analyzing the complete grasping sequence at high-speed along with a collision model are

presented. Following, a design-based analysis to simplify the model is performed, and the grasp-

state volume tool is introduced in order to inspect the impact of the design variables on the

proposed criteria. In the last chapter, an optimization over the design space is performed and

a design is chosen, crosschecked with ADAMS software and prototyped. Finally, an overview

remarking the strengths and gaps in the research is presented in the form of conclusions, and

closing them, future works that could be interesting to develop.
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Introduction

Context

This research thesis is developed in the framework of Master 2 ARIA-ROBA in École Centrale

de Nantes and in collaboration with LS2N. Specifically, the following research work is the

culmination of the Master degree. The main topic of this thesis is the design of underactuated

grippers implemented on high-speed pick-and-place operations.

Underactuated grippers began to be studied around 60 years ago. At that time, the main

field of application was to develop robotic hands for disabled people. A human hand has many

degrees of freedom and actuators, hence, it was not possible (and nowadays is still a research

topic), to fit all the actuators and control in a wearable hand. For this reason, underactuated

systems started to impose over the fully-actuated ones. The main reason is that disposing of

self-adaptable end-effectors can result attractive because they require few (if any) dedicated

sensors than the current grippers, which translates to less control strategies, hence, simpler

systems.

Over the years, new application fields for underactuated grippers appeared, and these mech-

anisms started to gain the interest of the researchers. One of the big topics in the late years

are the collaborative robots. Robots that can interact with humans and perform tasks along

with them either in public places or in the industry (main focus). However, many of these

tasks require the grasping and the manipulation of different objects. Hence, here is where the

interest in underactuated grippers resides in the industry: use a single end-effector to perform

different tasks.

As, in general, this type of gripper lacks of sensors, the main objective is to ensure the

stability of the grasped object, i.e., ensure that the grasped object does not get loose and slips

out of the gripper. In order to achieve the stability, the literature shows that only an adequate

kinematic design is required. However, it still is an open research topic.
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The second issue that limits the evolution of the underactuated grippers in the industry is

the grasping cycle time. As the stability must be guaranteed in static (final phase of a grasping

cycle), the previous phases, the dynamic phases that contemplate the approximation of the

fingers and the interaction of the phalanges with the object, have not been widely researched.

Hence, the performance of underactuated grippers is not competitive with the current solutions:

suction cups and parallel jaws that can perform grasping cycles of less than 10 ms.

Summarizing, this research work proposes to study the whole grasping cycle of an industrial

pick-and-place operation, and it has as a main objective, the design of an underactuated gripper

able to perform stable pick-and-place operations being robust to position uncertainty and with

a desired open/close cycle of less than 10 ms.

Problem formulation

A pick-and-place is a generic operation widely performed in industries and based in 3 single

steps (see Fig.1): (a) pick the goods at one location, (b) transport them to a destination and

(c) release the goods.

(a)

(b)

(c)

Figure 1: Pick-and-place diagram

Main issues with this operation appear when it is performed at high-speed. The reason is

that, when the performance is at a high velocity, inertial forces are introduced into the system

creating vibrations into the moving platform, which decrease repeatability and precision of the

placement. Those parameters are critical when a grasping must be performed, mainly because

of the gripper limitations.

Having the task defined and knowing its most important problems, the principal challenges

can be defined:
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• Compensate for positioning error and vibration during the grasping phase.

• Reduce closure and opening cycle time.

• Reduce weight.

• Model the dynamic behavior during the grasping phase and translational phase.

• Guarantee the stability of the object along with all the process.

Current grasping systems (mostly suction cups and parallel jaws) present some important

drawbacks for the proposed challenges. Suction cups, even though they are designed for specific

objects, have a built-in compliance that makes them really interesting, but are unable to apply

tangential forces or torques, thus the objects would be lost in the translation phase. Referring

to parallel jaws, they are not adaptable to the object’s shape, even though it could happen in

some specific configuration. A higher level of adaptability could be implemented on the parallel

jaws, however, the weight would also increase.

Between all the existing kinds of grippers, underactuated grippers have been chosen because of

their suitable qualities, given the previous requirements. With a proper design, underactuated

grippers can:

• Adapt to different object’s shapes.

• Be robust to vibrations of the moving platform.

• Be robust to positioning errors.

• Have low weight.

However, it must be proven that underactuated gripper are able of:

• Guarantee the stability of the object along all the process.

• Have low open/close cycle time.

Contributions

In order to position the current research work with respect to the state of the art, a short review

of some of the most recent and relevant works on robotic hands are presented along with the

main contributions of this thesis.

All the research related to underactuated design is based on ensuring stability at different

phases of a required task when the gripper is in contact with the object. Inside this field,

almost all the studied hands have been developed considering quasi-static conditions, i.e., they
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analyze the stability of the hand/gripper when the fingers are closed and considering the null

movement of the object and contact points. Here is where the general contribution of this

research is placed, as the main hypothesis is the consideration of a whole closing sequence of

an underactuated gripper performed at high-speed, meaning that inertial effects due to great

accelerations, and derived events, are taking part on the stability of the grasp.

In 2007, Birglen et al. presented Underactuated Robotic Hands [7], a book gathering their

previous works, including a new proposition to unify and facilitate the quasi-static analysis of

robotic hands and the stability determination. In Wu et al. 2009 [25] is presented an interesting

approach to simulate the closing sequence of a finger in relation to the object. Unfortunately,

only the kinematic model is proposed. First works related to the phases previous to the grasp

were introduced by Massa et al. 2002 [21] and Kaneko et al. 2003 [12]. Massa introduces a

dynamic model of the approaching phase using Lagrange equations and considering the finger as

a serial robot; the presented results are interesting because they show the effects of the inertial

forces, but the model overlooked the contact phase. In Kaneko’s work, a dynamic preshaping

of the fingers, modifying the distribution of the torques on them, was studied in order to reduce

the closing cycle time, however, it does not allow a positioning error. Finally, one of the most

recent works in the topic presents a quasi-dynamic approach (Saliba et al. 2016 [24]). This

work differs from the quasi-static analysis in some hypotheses: the object is not fixed to the

environment and considers the approaching and closing sequence of the finger. Yet, the basic

hypotheses are not enough as fingers inertia are not considered and the collision is supposed

ideal and without rebound.

Positioned with respect to the works presented above, this thesis has contributed to the

development of a complete dynamic model for a two-phalanxed linkage-driven underactuated

finger. The model not only takes into account the inertial effects, but the interactions with the

target object too. In order to model the interactions, a Collision model has been proposed,

allowing to include rebound events in the high-speed closing. In order to analyze the workspace

given the task, the concept of the grasp-state space proposed by Birglen [7] is modified to obtain

a grasp-state volume that can analyze up to five dimensions, helping to understand the influence

of the variables on to some parameters/criteria. Finally, along with some static stability criteria,

two dynamic stability criteria are proposed to analyze the performance.
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Chapter 1

Underactuated grippers

1.1 Introduction to underactuated hands

Underactuated systems are widely known in control and robotics fields. These systems show

the special characteristic of having more degrees of freedom (DOF) than degrees of actuation

(DOA). These systems are interesting in robotics because control is simplified as fewer actuators

need to act in coordination. However, as specified in Birglen et al. 2007 [7], underactuation

must not be mistaken with coupling. A system is coupled if the kinematics of more than one

body can be expressed with a single actuator.

Nowadays, robots can perform many tasks, such as pick-and-place operations, drive, assembly

other robots, work together with humans or in hazardous environments. But, due to the end-

effector, precision tasks that require some sensor feedback have been more limited because of

the complexity of the system. One of the goals in end-effectors research field is then, try to

match the dexterity of a hand.

dexterity: “the capability of changing the position and orientation of the manipulated

object from a given reference configuration to a different one, arbitrarily chosen within

the hand workspace”. (Bicchi 2000 [4])

Many research has been done in the understanding of how a human hand works, but, since a

human hand has up to 27 DOF and is highly redundant, it is not an easy task. Some attempts

to create a copy of human hands (anthropomorphic robotic hands) have been done divided into

two main research areas: grasping and manipulating.

The motivation to introduce the underactuated systems in the grippers’ framework is sim-

ple: if a proper mechanical design is performed, the gripper/hand will adapt automatically to

the shape of an unknown object (see Fig.1.1) with a simple control law and usually without

sensors. This built-in adaptability in the mechanical system is based on the force distribution,
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Figure 1.1: Underactuated mechanism with 2 DOF and 1 DOA [5].

i.e., systems that are able to divide up the input forces in several outputs depending on the

interaction with the environment.

As the main basis of the research started in the morphological study of the hand, the parts

of the grippers (see Fig.1.2) have been named in consequence as:

palm: the inside part of the hand, from the wrist to the base of the fingers.

finger: any of the long, thin, separate parts of the hand, especially those that are not

thumbs.

thumb: the short, thick finger on the side of the hand that makes it possible to hold and

pick things up easily by opposition placement.

phalange: any one of the small bones of the fingers and toes.

proximal: near to the center of the body or to the point of attachment of a bone or

muscle.

intermediate: being between two other related things.

distal: away from a particular point of the body.

Online Cambridge Dictionary, December 2016

In the way to mimic the human hand, many different designs with different properties have

been developed. In order to help the design decisions, some classifications are presented (is not

an extensive summary). The first ones are related to underactuated hands mechanisms and the

lasts are associated with the hand outlines.
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Proximal phalanges

Distal phalanges

Fingers

Thumb

Palm

Figure 1.2: Definition of parts of a Robotic hand [9].

• Underactuated hands mechanisms:

– Relation between actuator torque and output forces.

– Driving mechanisms.

• Hands outlines:

– Number of fingers.

– Fingers DOF.

Relation between actuator torque and output forces

The first introduction to this classification can be found in Krut 2005 [18]. This work tried

to classify the mechanism used to perform underactuation. To classify the mechanism, it uses

the formulation based on the contact force expression in relation with the applied torques into

the mechanism. After, in Bégoc et al. 2010 [19], a third class is added. Finally, mechanisms

can be defined as:

• Differential: when supposing a kinetostatic state, the output wrench can be expressed

by the input wrench and a transmission relation:

Fa = F a
1 r

a
1 = · · · = F a

n r
a
n

θ̇a +
n∑
i=1

θ̇ai
rai

= 0
(1.1)

where, n are the number of DOF of the system, θa and θai are the configuration of the

system (the actuator and the driven bodies respectively), θ̇a and θ̇ai are the joint velocities,
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Fa is the actuator wrench (force or torque), F a
i is the wrench transmitted to the output

i and rai are the transmission ratios.

• Compliant: when the output forces of the system depend on its configuration and on

the stiffness of the elements in the mechanism:

[Fa F a
1 . . . F a

n ]T = K [θa θa1 . . . θan]T (1.2)

where, K is the stiffness matrix of the system.

• Self-locking: this type of mechanism have the inherent ability to block any return motion

of the elements independently of any external wrench applied. The self-locking property

is achieved when the system configuration is constrained by a set of inequalities like:

δi θ̇
a
i ≥ 0 ∀i = {1, . . . , n} (1.3)

where δi = ±1 depending on the case.

All underactuated hands use one or more of this mechanisms as their properties vary de-

pending on the design. Table 1.1 summarizes them.

Types Strengths Drawbacks

Differential Isotropic-force Return system and Space

Compliant Inherent adaptability Short displacements

Self-locking Blocking mechanism Weight

Table 1.1: Comparison table of driving mechanisms.

Driving mechanisms

Driving mechanisms are related to how the torque is transmitted from the input to the

output. From the existing works, two subdivisions based on the assembling structure are made:

mechanisms to drive the fingers and to drive the phalanges. The major distinction is that

the mechanism, generally, needs parallel outputs to transmit the movement to fingers, while

phalanges are built in series, hence, a way to transmit progressively is needed.

Parallel outputs can be obtained with any of the three classes presented above and, are

usually combined. Progressive serial outputs can be obtained with differential and self-locking

mechanisms but no work with phalanges driven by compliant mechanisms has been developed,

probably due to the stiffness property, which is well suited for parallel outputs but not for

progressive serial ones.
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Types Strengths Drawbacks

Pulley-cable Adaptability and simplicity
Needs space, low force, lose
of wrench by elasticity and
high friction

Linkages
High wrenches, small mech-
anisms and easy manufac-
turing

Short transmission distance

Gears High wrenches
Needs space, weight and
short transmission distance

Pneumatic High wrenches
Needs space and short
transmission distance

Table 1.2: Comparison table of underactuation between fingers

Number of fingers and fingers DOF

Depending on the final purpose, hands can be classified by its number of fingers. Usually,

two fingers are enough for planar applications, while for grasping objects in the space three

fingers should be sufficient if well design. Many works, as they were aimed at the prosthetic

field, emulate the human hand with five fingers.

The number of DOF of the finger are less clear to define as it depends on the stability

requirements to accomplish. Most of the works design hands with 2 or 3 DOF in each finger

(emulating the human hand), but other propositions like the Soft Gripper [13], with 10 links

each finger, have been studied.

1.2 Stability

“A grasp is stable if and only if the finger is in static equilibrium.”

(Birglen et al. 2007 [7])

As it has been already introduced, underactuated grippers are very interesting when referring

to control vs. shape adaptability. Fully-actuated or over-actuated grippers rely on a dedicated

control and feedback in order to grasp and hold an object stable, in contrast, underactuated

grippers don’t need any control nor feedback because the adaptability and the stability

depend only on the mechanical design (geometry). This is the reason why the research

area is focused on developing different models that accomplish the required tasks avoiding

instability.

In order to design an underactuated gripper, it is important to forget about using intuition

because underactuation does not behave like a single body, coupled ones or independently of

the other bodies. Therefore, the design must be based on design/stability criteria. Many can be

found in the literature but, the aim is almost always the same, analyze two well-differentiated

aspects (Kragten et al. 2009 [17]):
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• Ability to grasp: the capability to grasp reaching a stable equilibrium with a range of

objects that can move freely.

• Ability to hold: capability to keep a stable holding of the grasped object when external

forces are applied.

For fully-actuated and over-actuated grippers, the latter abilities are well-defined in the lit-

erature as form-closure and force-closure respectively. However, as will be seen in the following

sections, the main hypotheses of these criteria is that the mechanical system is fully control-

lable. Hence, they are not suited for underactuated systems and consequently, this chapter is

dedicated to review the criteria used to analyze the performance of the underactuated grippers

when performing grasping and holding tasks. First, a general kinetostatic model and a brief

classification are presented. After, the most relevant criteria for this thesis are developed.

1.2.1 Static model for robotic fingers

For many years, the research have faced the topic of underactuated grippers either, only theo-

retically, focused on grasping and manipulating, or designing essentially by intuition. Finally,

quite recently, Birglen et al. 2004 [6] presented a kinetostatic analysis for underactuated fingers1

that relates the two approaches, a useful tool that gives the formulation to link the grasping

theory with the design optimization. The purpose, was to create a common framework to an-

alyze the contact forces because, until then, the existing models that formulated the finger’s

behavior were dependent of the finger, hence, different for each design.

This work has been widely accepted because the model is built in the same way independently

of the differential transmission mechanism. The fact that the same model can be applied to

different mechanisms will allow to compare diverse hands with the same criteria. For instance,

it allows to compare the force distribution and to analyze the stability or if whether the fingers

can exert or not, forces to the target.

1.2.1.1 General model

Based on the general layout of the fingers, the model below is based on the following working

hypotheses (see Fig.1.3):

1. Fixed object: the object is attached to the environment and the fingers are already in

contact with it (quasi-static condition).

2. Planar finger: each finger, individually, performs 2D motions; no abduction or adduction

motions are considered.

1The model presented below is the updated one from Birglen et al. 2007 [7].
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3. Revolute joints: all joints are revolute with parallel axes. First joint is fixed to the ground.

4. Single actuator: only one actuator transmits the power and the torque is applied to the

first joint.

5. Springs on joints: as a return back method, springs are considered on the joints.

6. Friction: consideration of a tangential force in the contact points due to the Coulomb

friction between the phalanges and the object.
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Figure 1.3: Underactuated finger’s diagram [7].

The finger is composed of np phalanges. Each phalanx is formed by a revolute joint attached

either, to the ground or the previous phalanx, and the phalanx itself of length li. All phalanges

have, by definition, a frame fixed in the joint (point Oi) with the xi axis along the phalanx, the

yi axis perpendicular to the phalanx and, orthogonal to them and pointing out of the plane,

the zi axis. Each phalanx can also have a contact point with the object, Cp
i , at a distance lci

from Oi and along xi.

Given the finger model and based on the screw theory, the input and output virtual powers
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of the system can be computed as:

tTωa =

np∑
i=1

ξi ◦ ζi (1.4)

where t is the input torque vector exerted by the joints, ωa is the joints velocities vector, ξi

and ζi are the twist and the wrench of the contact point i (Cp
i , belonging to phalanx i), and

the operator ◦ defines the reciprocal product operation. Being,

t =



Ta

T2

T3
...

Tnp


, ωa =



θ̇a

θ̇2

θ̇3
...

θ̇np


, ξi =

ωivxi
vyi

 , ζi =

ftifi
τi

 , (1.5)

where Ta and Ti are the actuator and the ith joint torques. For ωa, θ̇a and θ̇i are the actuator

and the ith joint velocities. For ξi, ωi, v
x
i and vyi are the angular and linear velocities at the

contact point i. And finally, for ζi, fti and fi are the tangential and normal forces applied by

the phalanx i and, τi the torques applied by the phalanx i.

Grouping terms and developing, one can obtain

tTωa =

np∑
i=1

(
fi

(
i∑

k=1

θ̇k rTki xi − µi
i∑

k=1

θ̇k rTki yi + ηi

i∑
k=1

θ̇k

))
(1.6)

with µi and ηi being coefficients relating the tangential force and the torque to the normal force

through friction.

1.2.1.2 Contact matrix

The latter equation (1.6) can be grouped in matrices, obtaining

tTωa = fT (Jθ̇) (1.7)

where, J is a matrix that only depends on the contact points poses and the friction coefficients.

In the literature it is introduced as the “Jacobian” matrix for robotic fingers. As will be seen

later, it actually corresponds to the kinematic Jacobian of the contact points in a quasi-static

analysis of the system. By identification of eq. (1.6), J for fingers with two phalanges and with

friction is defined as (Birglen et al. 2007 [7]):

J =

[
lc1 0

lc2 + l1(cos θ2 − µ sin θ2) lc2

]
(1.8)
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As explained above, J only depends on the configuration of the finger when the phalanges are

in contact with the object, hence, the transmission system is not introduced in the model, facil-

itating in this way the comparison of the fingers only taking into account the geometric design.

Even though, the encouragement of developing such model were the underactuated fingers, note

that it can also be applied to fully actuated fingers. Regarding the friction parameters, the

inclusion of them depend on if friction is considered

1.2.1.3 Transmission matrix

It is possible that, at some point, one is interested in modeling the fingers in function of their

driving mechanism. For instance, in order to optimize the transmission ratios. This can be

done with the model presented above introducing a new matrix in the system, derived from the

virtual power equation (1.6),

tTωa = fT (JTωa) (1.9)

where, T is the transmission matrix that relates the vector ωa to the time derivatives of the

phalanx coordinates as: θ̇ = Tωa. For a two-phalanxed finger,[
θ̇1

θ̇2

]
=

[
1 Rt

0 1

][
θ̇a

θ̇2

]
(1.10)

where Rt is the transmission ratio relating the first link with the actuator and the second link.

As will be seen later, T is a reformulation of the kinematic model relating the active joints with

the passive ones.

1.2.2 Stability performance criteria

With the creation of new designs, new criteria have been introduced in the research works to

analyze their performance. Following, a short classification (Kragten et al. 2009 [17]) aims to

summarize them divided by if they do not require object information or, on the opposite, the

target must be known.

1.2.2.1 Unknown object

Relative to the unknown object, two aspects can be considered: one corresponding to the motion

of the fingers and, the other one, related to the contact forces with the object. The latter class

is more relevant as it relates the stability with the interaction with the object through the

configuration of the fingers. The main criteria considered on this class are:

1. Positiveness: as the fingers can only apply compression forces, the contact forces on the

fingers must be positive or null for each studied configuration.

2. Resultant force direction: the resultant contact force must be facing the palm in order to

keep the object.
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1.2.2.2 Known object

In the case that the target object is known (shape, dimensions ans position), no assumptions

need to be made, as happened with the latter case. Hence, three classes can be defined: contact

forces, ability to grasp and ability to hold. The criteria regarding the first class, the contact

forces, have been already defined in the previous subsection; yet, a small change is introduced

as the position of the contact forces is known. In the second class, by definition, the ability to

grasp includes a stable grasp. Hence, the proposed criteria aim to maximize some ranges where

stability is ensured. Finally, the third class is related to the ability to hold an object. These

criteria try to deal with the exterior forces applied to the object:

1. Modified Form-closure: as a specific case for non-backdrivable fingers, kinetically deter-

mines the number of non-backdrivable elements needed to acquire form-closure.

2. Force disturbances: evaluates the maximal wrench that the fingers are able to oppose.

This classification is far from extensive but, for the case of this thesis, where the grasping

phase and the transporting phase can be considered static with some external wrench applied,

there will be enough with the four previous criteria.

1.2.3 Force positiveness

As previously introduced, stability in underactuation grippers is when the final configuration

of the fingers with the object is in static equilibrium (Birglen et al. 2007 [7]).

Figure 1.4: Ejection phenomenon of a two-phalanxed finger [7].

The forces on the system are only contact forces, i.e., defined bigger or equal to zero as the

fingers are not able to reproduce any pulling force. Namely, any phalanx in contact with the

object should have a non-negative force and those that are not in contact, purely null forces.

When this condition is not accomplished and some contact forces are negative, the phalanges

in contact slip over the object giving the ejection phenomenon (see Fig.1.4). This event is also

identified as instability and is the one that all grippers want to avoid because it can mean the
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loss of the object. This section is then, dedicated to the study of the contact forces that define

the criterion2.

If all phalanges are in contact, the model proposed in the previous section is used in order

to analyze the contact forces exerted by the finger. Specifically, from equations (1.7) and (1.9),

next relation can be written:

f = J−TT−T t (1.11)

Then, vector f can be computed with the latter relation (1.11), the geometric model of the

finger and the transmission matrix. However, as only the geometry of the finger is known, the

final values will be in function of the geometric parameters lci and θi. Thus, the stability of the

grasp can be studied analyzing the positiveness of f in function of the contact configuration

defined by the set of geometrical parameters pairs, lci and θi, which are grouped in the vectors

l?c = [lc2 . . . lcnp ]T θ? = [θ2 . . . θnp ]T

Figure 1.5: Forces on each phalanx and the finger’s grasp-state space
assuming the contact point is on the middle of the phalanges of a

three-phalanxed finger [6].

With this tool, we are able to physically see the contact forces and the stability region of the

finger. However, the ratios between the forces depend on the contact configuration and, not

2Main references for the following section are Birglen et al. 2004 [6] and Birglen et al. 2007 [7].
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on the actuator. Hence, to achieve different ratios, the contact configuration must change, i.e.,

the geometric design should be modified. In addition, it is important to notice that this results

can be obtained only if all phalanges are in contact (a condition imposed by the existence of

solution in equation (1.11)) but, other stable configurations may exist where not all phalanges

are in contact with the object.

1.2.4 Form-closure

The form-closure property is a largely studied property in the literature. Introduced by

Reuleaux 1875 [23], where defined the form-closure property as the capability of a system

to constraint the motions of a grasped object, only depending on unilateral, frictionless con-

tact constraints, i.e., the form-closure property is a geometric property. In Fig.1.6 there is

an example of the form-closure grasp of a 2D square; in order to move the square, this would

have to break the contact condition of non-penetration, hence, the grasp is form-closure. In

the same figure, a partially form-closure grasp can be observed; this property, introduced by

Lakshminarayana et al. 1978 [20], is a more general case of the form-closure where only some

DOF want to be constrained.

Figure 1.6: Left: form-closure grasp of a planar square. Right: partially
form-closure grasp of a planar square [3].

1.2.4.1 General case

Coming, the general expressions for the form-closure analysis are presented3. Even though the

general case takes into consideration some conditions that are not achievable by underactuated

systems, the concept remains the same.

3This subsection is based in the work presented by Bicchi et al. 1995 [3]
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R

Figure 1.7: Form-closure parameters
diagram [3].

Lets consider a rigid object (see Fig.1.7) with an

infinitesimal motion in the space respect to a fix

frame R. The working hypotheses are:

1. The motion is composed by a linear velocity,

v, applied in the origin of the object, O, and

an angular velocity ω.

2. The motion of the object is fully constrained.

3. The constraints are applied on fixed contact

points Co
i , i = 1, . . . , nc, on the surface of

the object.

4. The set of contact constraints prevent the contact points of having any velocity.

5. Contact points are considered frictionless, hence, the contact constraints are defined nor-

mal to the object’s surface.

Given the previous hypotheses, the contact constraints and the velocity of the contact points

can be defined in matrix form by:

ċo = GT u̇ (1.12)

NT ċo ≥ 0 (1.13)

where,

u̇ =

[
v

ω

]
, ċo =


ċo1
...

ċonc

 , G =

[
I3 . . . I3

[Co
1 ]× . . . [Co

nc
]×

]
, N = diag(n1, . . . ,nnc)

where, ni is the unit vector defining the forbidden direction for the velocity of the ith contact

point and ċi the velocity of such point expressed on the reference frame. G is the Grasp matrix

(as called in the literature) in which, [Co
i ]× are the skew symetric matrices for the contact

points. In equation (1.13), the inequality is treated elementwise.

Definition A set of contact constraints is defined Form-Closure if, for all object’s motion u̇,

at least one contact constraint is violated.

Hence, the way to know if find a grasp is form-closed is to try to find a solution of (1.13)

under (1.12). If no solution is found, means that the unilateral contact constraints are broken

for any movement, hence, the grasp is form-closed. Two ways are usually used, one, solve a

linear programming problem and find the kernel as a single solution. The second, compute the

convex polytope of the grasp and check if the origin (kernel) lies inside it (proposed by Mishra
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et al. 1987 [22]). As an extension of the linear programming problem, a necessary condition

can be written:

Reuleaux-Somov [23] The minimum number of contacts necessary to form-restrian an

object in its configuration space is

nc ≥ d+ 1 (1.14)

being d is the configuration space dimension of the object, for instance, d = 3 for planar cases

and d = 6 in the three-dimensional space.

1.2.4.2 Underactuated case

M 

puley 1
mq

x

1 2n

1x 1xu 0

n

puley 2

puley 0

Figure 1.8: Non-form closure grasp for
underactuated gripper [19].

One of the considered hypothesis of the form-

closure is that the contact points are fixed in

the space. For fully-actuated grippers means

that, once a configuration is established, if

the motors are not actuated, the configura-

tion rests in the same pose. However, with

underactuated grippers, this hypothesis is not

always true, as presented in Fig.1.8. Applying

(1.14) in the horizontal dimension, the neces-

sary condition is respected, however, the ob-

ject still moves, thus is proven that the defi-

nition as it is by now, is not suitable for un-

deractuated mechanisms. Bégoc et al. 20104

[19] introduces a modified form-closure prop-

erty to include the non-static contact points

and also, the unilateral conditions that can be imposed by non-backdrivable mechanisms. The

modified form-closure property is then reformulated as:

Definition A grasp is said to be formed-closure if, and only if, for any variation of the

configuration of the grasp at least one of the unilateral kinematic constraints is violated.

In comparison with the non-penetration condition (1.13), where the points are fixed, the

displacement velocities of the phalanges are introduced into it:

ċy,o − ċy,p ≥ 0 (1.15)

ċy,o = NTGT u̇ = Pu̇, ċy,p = Jθ̇ (1.16)

where P is called Projection matrix, J is the one defined in the static model (1.8) under the

assumption of frictionless contacts, ċy,o is the vector of contact points velocities attached to the

4Work used as a base to develop the following subsection
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object and projected on the normal vectors of the contact surfaces for all fingers and ċy,p is the

vector of the phalanx velocities along its normals for all fingers. The previous equations are

valid if all phalanx are in contact, hence, S matrix is added as a Selection matrix, an identity

matrix where the row of the phalanx not in contact is removed. The system then,

S(Pu̇− Jθ̇) ≥ 0 (1.17)

Nevertheless, checking the relative velocity is no enought, the introduction of non-backdrivable

mechanisms is needed. The actuator transmission vector (1st row of T) computed in (1.10) can

be group in a matrix as Tf = diag(Tnpk
). Finally, in order to check the kinematic constraints,

they have been grouped in the vector qc, vector of unilateral constraints. Each component of

the vector is defined negative if that constraint is violated, hence, the condition of form-closure

will be given if all components are positive or zero. Namely,

qc = Uωg =

 SP −SJ

0 Tf

n̂Tpalm 0

[u̇
θ̇

]
(1.18)

where U is the matrix of unilateral constraints and ωg defines the motion of the grasp. The

matrix n̂Tpalm is the contact constraint with the palm because it is not included in P. As the

resulting system is still linear, it can be solved by a linear programming program to check the

property.

Lastly, an extension of the minimum contact points to achieve the property is extended from

the one in (1.14). Being,

• ng = nh + d the dimension of the grasp configuration space with,

– nh the dimension of the hand configuration.

– d the dimension of the object configuration.

• nk = nc + nu the number of unilateral constraints of the problem with,

– nc the number of unilateral contact constraints.

– nu the number of unidirectional mechanism constraints.

By analogy with (1.14),

nk ≥ ng + 1 ⇒ nc + nu ≥ nh + d+ 1 (1.19)

And, in the general case where one contact per phalanx is assumed (including the palm),

nc = np + 1 ⇒ nu ≥ d, at least d non-backdrivable mechanisms are needed to ensure the

form-closure property.

19



Chapter 2

Modeling

2.1 Finger model

As stated in the problem formulation, the main objective is to analyze the closing process of a

high-speed gripper. The introduction of high-speeds and interactions with the environment (see

section 2.2) shifts the need from studying quasi-static models to the necessity of considering

a dynamic model of the system. In the following section, the dynamic model for the gripper

is developed. To carry out the model, the outlines of the finger are presented and also the

kinematic model is developed, as it is necessary for the computation of the dynamic model.

2.1.1 Geometry outline definition

From all the possible combinations that can be built using the classification presented previously

(see section 1.1), a two-phalanxed linkage-driven finger was chosen. The major reasons to choose

this composition is because:

1. The space dimension of the object will be 2: translations in x and y axis. Hence,

applying the necessary condition imposed by the Form-closure (see (1.19)), three well-

positioned contact points are sufficient to constrain the object. However, the gripper must

be symmetric, thus two phalanges for each finger is the minimum affordable.

2. Linkage-driven mechanisms can support good wrenches, implying that the transmission

is going to be robust and easy to block. Moreover, they can be small mechanisms with a

low weight in comparison with others. Finally, the main drawback is the occupied space

in large transmission distances but, given the general dimensions of the problem, it will

not present an inconvenience.
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The general lines of the studied finger are defined by a five-bar mechanism. This mechanism

is defined by five links and five revolute joints of which two are fixed on the ground and the

distance between them is null, so at sight, it resembles a four-bar mechanism (see Fig. 2.1). The

type of system seen in the figure is called closed-loop mechanism because if the links are followed

in order, the path ends in the initial point; this property is important because it changes the

method to compute the models.

Passive Joint

Actuated Joint

Link

Figure 2.1: Finger mechanism outline.

Computing the degrees of freedom of the mechanism, one gets that two actuators are needed

in order to fully constrain the system. These actuators are placed in the joints fixed to the

ground. Note that, in the development of this thesis, only one actuator is considered as under-

actuation is studied, however, for the kinematic model, a fully constrained model needs to be

considered and after, due to the dynamic relations, one of the actuators is suppressed.

Based in Fig. 2.2, the model parameters are defined as:

• O,Aij: the Origin and the joints position.

• base: the distance along x from O to the center of the object. Note that the object size

is known and that it is considered in contact with the palm, so no vertical coordinate is

needed.

• lij: the distance between joints of each link j of the serial mechanism i. Each link have a

coordinate axis system centered in the joint shared with the precedent link, or the origin,

and oriented with the xij axis along the link and the zij axis pointing out.

• t22: the useful distance of the tip phalanx.

• ϕ22: the angle between the l22 link and t22 defined in the vectorial positive direction.

• w: is the width of the finger measured from the link to one of the sides, thus the total

width is 2w.

• rc: is the radius of the cylindric object.
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• qa: the actuated coordinates of the system, defined between the system x axis and the

link xij axis in the vectorial positive direction.

qa = [q11, q21]
T

• qd: the passive coordinates of the system, defined between the xi(j−1) axis and the link

xij axis in the vectorial positive direction. The joint A13 is defined as the end-effector,

hence, q13 is read as the orientation of the link l22 from x axis in the vectorial positive

direction.

qd = [q12, q13, q22]
T

• x: the end-effector position, placed in the A13 joint and expressed in reference to O.

x = [x, y]T

q11

q21

q12

q13q22

O
A12

A13

(x,y)

x

y

A22

l21

l22

l12

l11

t22
φ

22

x

y

O

s21

s22

s12

s11

m21,I21

m11,I11

m12,I12

m22,I22

τ11

g
θgP22FN22

FT22

P21FN21

FT21

FNS

τs

dij bij

aij

αij

sij

a(lij) p(lij)

rc

φc21

φc22

O

�

base
Figure 2.2: Finger parameters definition. Left, geometric parameters.

Right, dynamic parameters.

• sij: the center of mass (CoM) position defined by the distance aij along the xij axis and
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the distance bij along the yij axis.

• mij, Iij: the mass of the link and the inertia along the zij in the CoM.

• g, θg: the gravity vector and its orientation with respect to the reference x axis.

• τ : the actuator efforts of the system, defined as torques in the vectorial positive direc-

tion. Note that, only the one applied on to the link l11 is active because the system is

underactuated.

τ = [τ11, τ21]
T = [τ11, 0]T

• τs: the wrench applied by the spring.

• FN2j, FNS: the normal contact forces applied either in the collision/contact points P2j

and defined positive pointing towards the finger, or in the joint limit contact force.

• FT2j: the friction forces at the points of contact.

Note that in the latter graphics, mostly are a line-diagram to simplify the understanding of

the parameters. However, due to the width (w), the contact points P2j are separated from the

links in the diagram (Fig. 2.2).

2.1.2 Modeling of closed-loop systems

In the following paragraphs is presented the general methodology used to compute the system

relations between the generalized coordinates, their velocities and their accelerations (qa, q̇a, q̈a)

with the end-effector ones (x, ẋ, ẍ), or the set of passive coordinates ones (qd, q̇d, q̈d), for closed-

loop systems. Along with the methodology, the results for the proposed finger are also pre-

sented.

2.1.2.1 Direct Geometric Model

The direct geometric model (DGM) expresses the existent relation between the actuated co-

ordinates and the end-effector only relying in the geometric configuration as x = dgm(qa, γ),

being γ the assembly mode. If the system is closed-loop, there will be passive coordinates which

can be computed from the actuated ones and the end-effector as qd = passive joints(qa,x).

As the architecture the finger is quite simple, the DGM has been extracted by direct inspection

of the architecture as
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x = dgm(qa, γ) → OA13 = OA12 + A12H +HA13 (2.1)

with,

A12H =
a∣∣A12A22

∣∣A12A22

HA13 = γ
b

a

[
0 −1

1 0

]
A12H

H
a

b

q11

q21

O
A12

A13

(x,y)

x

y

A22

Figure 2.3: DGM
parameters diagram.

Once the DGM is computed, the expression of the passive joints is

qd = passive joints(qa,x) → qi2 = tan−1

(
y − li1 sin(qi1)

x− li1 cos(qi1)

)
− qi1, ∀i = 1, 2 (2.2)

2.1.2.2 Direct Kinematic Model

The direct kinematic model (DKM) relates the velocities of the generalized coordinates with

the end-effector as ẋ = dkm(qa, q̇a,qd,x) by the Jacobian matrix J, which can be obtained

from the following relation:

Aẋ + Bq̇a = 0 → ẋ = −A−1Bq̇a → ẋ = Jq̇a (2.3)

In order to obtain the previous relation, one has to differentiate the proper geometric equations.

If the architecture of the legs is complex, an analysis through the application of the Screw

theory can be used, however, in the current case, it has been obtained from the closed-loop

equations of the robot that are of the form h(x,qa,qd) = 0 (2.4). As there is no interest on

the passive coordinates for computing the DKM, one can reduce the closed-loop equations to

hp(x,qa) = 0 (2.5). Finally, differentiating the latter w.r.t. time, the equation (2.3) is obtained

with

A =
∂hp
∂x

=

[
x− l11 cos(q11) y − l11 sin(q11)

x− l21 cos(q21) y − l21 sin(q21)

]
(2.6)

B =
∂hp
∂qa

=

[
xl11 sin(q11)− yl11 cos(q11) 0

0 xl21 sin(q21)− yl21 cos(q21)

]
(2.7)

And again, as the system is closed-loop, the passive coordinates velocities can be computed

from the actuated ones and the end-effector through differentiating (2.4) w.r.t. time. Moreover,

to obtain a simplified form, the closed-loop equations have been transformed to hd(qa,qd), so
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they do not depend on the end-effector parametrization. Hence, differentiating the latter w.r.t.

time, the passive joints velocities can be computed as:

Jtaq̇a + Jtdq̇d = 0 → q̇d = −J−1
td Jtaq̇a → q̇d = Jdaq̇a (2.8)

with

Jta = −∂hd
∂qa

= −

[
−l11 sin(q11)− l12 sin(q11 + q12) l21 sin(q21) + l22 sin(q21 + q22)

l11 cos(q11) + l12 cos(q11 + q12) −l21 cos(q21)− l22 cos(q21 + q22)

]
(2.9)

Jtd = −∂hd
∂qd

= −

[
−l12 sin(q11 + q12) l22 sin(q21 + q22)

l12 cos(q11 + q12) −l22 cos(q21 + q22)

]
(2.10)

2.1.2.3 2nd Order Direct Kinematic Model

The 2nd order direct kinematic model (DKM2) relates the accelerations of the system with the

ones of the actuated coordinates as ẍ = dkm2(qa, q̇a, q̈a,qd, q̇d,x, ẋ). This model is the direct

differentiation w.r.t. time of the DKM:

Aẍ + Bq̈a = −(Ȧẋ + Ḃq̇a) → ẋ = −A−1(Bq̈a + b) (2.11)

with,

Ȧ =

[
ẋ+ ˙q11l11 sin(q11) ẏ − q̇11l11 cos(q11)

ẋ+ ˙q21l21 sin(q21) ẏ − q̇21l21 cos(q21)

]
(2.12)

Ḃ =

[
(ẋl11 sin(q11) + xq̇11l11 cos(q11))− (ẏl11 cos(q11)− yq̇11l11 sin(q11))

0

0

(ẋl21 sin(q21) + xq̇21l21 cos(q21))− (ẏl21 cos(q21)− yq̇21l21 sin(q21))

]
(2.13)

As with the DKM, the accelerations of the passive joints can also be obtained by differentiating

the equation (2.8) w.r.t. time:

Jtaq̈a + Jtdq̈d = −(J̇taq̇a + J̇tdq̇d) → q̈d = Jdaq̈a + J−1
td dc (2.14)

with,

J̇ta =

[
q̇11l11 cos(q11) + (q̇11 + q̇12)l12 cos(q11 + q12) −(q̇21l21 cos(q21) + (q̇21 + q̇22)l22 cos(q21 + q22))

q̇11l11 sin(q11) + (q̇11 + q̇12)l12 sin(q11 + q12) −(q̇21l21 sin(q21) + (q̇21 + q̇22)l22 sin(q21 + q22))

]
(2.15)

J̇td =

[
(q̇11 + q̇12)l12 cos(q11 + q12) −(q̇21 + q̇22)l22 cos(q21 + q22)

(q̇11 + q̇12)l12 sin(q11 + q12) −(q̇21 + q̇22)l22 sin(q21 + q22)

]
(2.16)
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2.1.2.4 Direct Dynamic Model

The dynamic model gives the relation between the efforts applied on the actuated coordinates

and the position, velocities, accelerations and external forces on the system. Hence, the direct

dynamic model can be expressed as q̈a = ddm(τ ,qa, q̇a). The model has been calculated using

the Lagrange formulation, which one of its extension to parallel robots is (Ibrahim and Khalil,

2010 [14]):

1. Virtually open the closed-loop to create virtual tree structures composed of serial fully-

actuated manipulators (two in the case of the finger model) and a virtual free-moving

platform (see Fig. 2.4).

2. Compute the inverse dynamic models for the tree structures.

3. Close the loop again, using the loop-closure equations and the Lagrange multipliers.

+ +

x

y

O

A22 A13

s21

s22

A13

x

y
A12

A13

s12

s11O

Virtual tree 1 Virtual tree 2
Moving
platform

Figure 2.4: Finger decomposition into tree structures.

Applying the Lagrange formulation, the efforts of the tree structures can be computed as

τti =
d

dt

(
∂Lti
∂q̇ti

)T
−
(
∂Lti
∂qti

)T
, i = 1, 2

Lti = Eti − Uti
(2.17)

For any rigid robot, the Lagrange formulation leads to the following expression (Khalil and

Dombre, 2002 [16]):

τti = Mti(qti)q̈ti + cti(qti, q̇ti)

cti = Btiq̇i1q̇i2 + Cti[q
2
i1, q

2
i2]
T + Qti

(2.18)

where τti = [τi1, τi2]
T is the actuators efforts’ vector, qti = [qi1, qi2]

T is the vector of the gen-

eralized coordinates of the tree structure; note that for the case of the finger, the virtual tree
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structures are composed by 1 actuated joint and 1 passive. Lti is the Lagrangian of the tree

structure, Eti is its kinematic energy and Uti is its potential energy. Once the equations are

developed for each tree structure, Mti is the mass matrix and cti is the vector containing the

centrifugal (Cti), Coriolis (Bti) and gravity (Qti) effects. The virtual tree structures have been

computed using the Christoffel symbols formulation, which gives:

Mti =

[
mi1d

2
i1 +mi2(l

2
i1 + d2i2 + 2li1(ai2 cos qi2 − bi2 sin qi2) + Ii1 + Ii2)

mi2(d
2
i2 + li1(ai2 cos qi2 − bi2 sin qi2) + Ii2)

mi2(d
2
i2 + li1(ai2 cos qi2 − bi2 sin qi2) + Ii2)

mi2d
2
i2 + Ii2

]
(2.19)

Bti =

[
−2mi2li1(ai2 sin qi2 + bi2 cos qi2)

0

]
(2.20)

Cti =

[
0 −2mi2li1(ai2 sin qi2 + bi2 cos qi2)

2mi2li1(ai2 sin qi2 + bi2 cos qi2) 0

]
(2.21)

Qti = [−mi1g(ai1 sin(θg − qi1)− bi1 cos(θg − qi1))−mi2g(li1 sin(θg − q11) + ai2 sin(θg − qi1 − qi2)−

−bi2 cos(θg − qi1 − qi2)), −mi2g(ai2 sin(θg − qi1 − qi2)− bi2 cos(θg − qi1 − qi2))]T (2.22)

Finally, closing the loop with the constraint equations and the Lagrange multipliers, the

direct dynamic model for the finger is:

q̈a = M−1(qa)(τ − c(qa, q̇a)) (2.23)

with,

M(qa) = [I2×2 JTda]S
TMt S

[
I2×2

Jda

]

c(qa, q̇a) = [I2×2 JTda]S
T

(
ct + Mt S

[
∅2×1

J−1
td dc

])
where,

• Mt groups the mass matrices as

Mt =

[
Mt1 ∅2×2

∅2×2 Mt2

]

• ct = [ct1, ct2]
T

• Jtd,Jda,dc are defined in (2.8), (2.8) and

(2.14) respectively.

• S is a sorting matrix. It sorts the active

joint elements first and the passive ones

after.

S =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1
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Note that, by now, τ = [τ11, τ21]
T , which means that the system’s model is not considering

underactuation. Next section, will introduce the necessary to eliminate τ21.

2.1.3 External efforts models

The dynamic model presented in the previous section only contemplates the relation between

the evolution of the system and the actuator efforts. However, the studied case is involved in

an environment, which leads to the need of developing the models of external forces applied

on to the system. Specifically, there will be two types of external efforts: contact forces on

the phalanges of the finger and a torque between two of the links. As the dynamic model is

additive, the external wrenches’ contributions can be directly added into the DDM giving as a

result:

q̈a = M−1(qa)((τa + τs + τC21 + τC22)− c(qa, q̇a)) (2.24)

where τa = [τ11, 0]T is the actuator torque, τs is the contribution of the spring and τC2j are the

contributions of the contact forces. To compute the effect of these external wrenches on to the

system, a well-known relation in robotics has been used, the static model, which states

τ = JTnwn (2.25)

where Jn is the kinematic Jacobian matrix of the studied point belonging to any of the system

links, and wn the wrench applied in such point.

2.1.3.1 External forces

The finger will have two external forces applied on to it, one for each contact between the

phalanx and the grasped object. Each of the forces have a normal and a tangential (friction)

component. The computation of the normal and the tangent forces are given in the next section.

The contact point on l21 is defined as P21 (see Fig. 2.5) and its contribution to the system

following (2.25) is

τC21 = JTP21
(FN21 + FT21) =

[
0

−lC21 − µw

]
FN21 (2.26)

The contact point on t22 is defined as P22 (see Fig. 2.5) and its contribution to the system has

been computed following the same method. The kinematic Jacobian of P22 is

J∗
P22

(q̇21, q̇22) =

[
−l21 sin q21 − lC22 sin(q21 + q22 + ϕ22)− w cos(q21 + q22 + ϕ22)

l21 cos q21 + lC22 cos(q21 + q22 + ϕ22)− w sin(q21 + q22 + ϕ22)

−lC22 sin(q21 + q22 + ϕ22)− w cos(q21 + q22 + ϕ22)

lC22 cos(q21 + q22 + ϕ22)− w sin(q21 + q22 + ϕ22)

]
(2.27)
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Note that this Jacobian is expressed in function of q̇21 and q̇22, therefore, it has been transformed

to depend on the active joints only as

JP22 =

[
J∗
P22

(1, 2) J∗
P22

(1, 1)

J∗
P22

(2, 2) J∗
P22

(2, 1)

][
Jda(2, 1) Jda(2, 2)

0 1

]
(2.28)

Finally, the effort of the contact force is expressed as

τC22 = JTP22
(FN22 + FT22) = JTP22

[
cosϕc22 + µ | cos(ϕc22 − ϕnc22)| cosϕnc22

sinϕc22 + µ | cos(ϕc22 − ϕnc22)| sinϕnc22

]
FN22 (2.29)

where,
• lC2j is the distance from the precedent joint of the link

to P2j along the axis x2j.

• w is the distance from the link to P2j along the axis y2j.

• FN2j and FT2j are the normal and tangent contact forces.

• FC22 is the generalized contact force in the tip with a

collision angle ϕc22.

• µ is the friction coefficient and it is developed in the next

section.

• ϕnc22 is the normal contact orientation, which can be

also expressed as ϕnc22 = q21 + q22 + ϕ22 − π/2.

Remark that the differentiation between the orientation of the

tip phalanx and the normal contact is necessary as the phalanx

can slip until the tip, losing the normality of the contact.
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�C22

x

φc22

φnc22

P22

Figure 2.5: Contact
parameters definition.

2.1.3.2 External torque

Finally, the finger will also have a torsional spring between two consecutive links in order to

restrain the missing actuator in q21, to a certain degree. Using the method presented above,

the spring torque in function of the active joints is expressed by the angle formed in between

the two consecutive links (qs) as

τS =

[
∂qs
∂qa

]T
(cs − τlimit)(qp + ∆qs) =

[
Jda(2, 1)

Jda(2, 2)

]
ks (2.30)

where cs is the constant of the spring, τlimit is the value of the joint limit contact torque that

will modify the total spring constant, qp the preload angle, ∆qs the increment of the spring

coordinate. Note that, ks = (cs − τlimit)qp, i.e., ks is the spring constant of a constant spring
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(force does not vary with the deformation of the spring but, as a mathematic solution, the joint

limit modifies it); also note that it is placed in the point A22, between the links l21 and l22. The

reason of these decisions is solved in the next chapter (see section 3.3.2.3).

2.1.4 Static equilibrium model

As it has been introduced, Birglen 2007 [7] presents a generalized model to study the finger

performance in static equilibrium. However, the study is presented in pieces, analyzing the

impact of including one of the three following hypotheses at a time:

1. Consideration of springs.

2. The phalanges width.

3. Friction.

The model required to compute the stability of the current finger must incorporate all three

hypotheses at the same time (have a spring, phalanx width, and friction) as all of them are

considered. Through the analysis of the analytical results of the model presented in this chapter,

the equivalent model to Birglen can be developed by applying the static equilibrium condition

(null velocity and acceleration of all the joints) on the final configuration of the finger in the

full model equation (2.24), obtaining

τa + τs + τC21 + τC22 = 0 (2.31)

As it is explained in the next chapter (see Chapter 3), the actuator torque and the spring

constant are computed with respect the geometry and the closing time condition, thus, the

normal contact forces depend on them through the static equilibrium model as:[
FN21

FN22

]
= −J−1

C (τa + τs) (2.32)

with,

JC,(2×2) = [JC21,JC22], JC2j,(2×1) = JTP2j

(
FN2j

|FN2j|
+

FT2j

|FT2j|

)
Then JC is defined as the Jacobian matrix of the collisions and is the same matrix presented

by Birglen in [7] (see (1.8)) but with the incorporation of all the hypothesis at once.

2.2 Interactions

As explained before, the main point of this thesis is the development of a model that allows the

analysis of the whole closing sequence of an underactuated gripper at high-speed. This is the
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reason why, besides the dynamic model, also the external wrenches due to the collision between

the finger and the object, and between the links of the finger have been considered. These

interactions can be modeled by a contact model that expresses their magnitude. This section

will model a collision model for the above-mentioned phenomenon which will allow the analysis

of the transition between having the fingers freely moving in the environment and the static

phase. To ensure that the model is working properly, a crosschecking with ADAMS software is

done. ADAMS is an MSC software widely used for dynamics simulation and model checking of

multi-body systems. Due to its extended use among researchers, can be considered as Ground

Truth when it comes to check new models or to use the results for highly complex systems.

This software includes many possibilities for modeling physical phenomena, such as collision

and friction between two bodies. The specific final equations to compute the variables values

have been placed in Appendix B.2.1 as they are mainly geometric relations.

2.2.1 Hertz contact and Coulomb’s friction theory

The contact and friction phenomena are a well-known issue in the modeling of systems by its

complex mathematical characterization. Nevertheless, these phenomena exist and can highly

influence the model, thus they must be taken into consideration.

2.2.1.1 Hertz contact

Collisions or interactions between different solids are a substantial topic of research because it

is a complex problem to understand and model. When an interaction occurs, many physical

phenomena are happening simultaneously and, in addition, the problem can not be isolated

as all the interacting bodies’ properties are exerting an influence on the output of the studied

region. As some of the physical phenomena have a not so obvious models by themselves and

many data is usually missing (for instance, precise geometry around contact point or accurate

models for the non-linear phenomena), the collision models tend to be simple and take some

compromise in the accuracy, as long as the practical applications are respected.

Two types of contact models can be found in the bibliography (Chatterjee 1997 [8]), Algebraic

and Incremental models. The first is mainly based on the satisfaction of some inequations where

the parameters of the model appear, these models depend on the impulse response rigidity (f.e.

the restitution coefficient). The second group is defined by the evolution of the interaction

expressed as a set of ODEs and depend on the force response rigidity. The fisrt group includes

models like Poisson functions, based on the restitution coefficient (energy conservation on the

collision). The second group contemplates models like the Hertz model, which computes the

contact force values. Extending the Herts model with a damper, energy loss can be introduced

in the collisions (Giesbers 2012 [11]).

A small reminder in Hertz contact theory based on Johnson 1987 [15], beginning by the

assumptions that it incorporates:
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1. Adhesion is neglected. No force tries to tie both bodies after the collision.

2. Initial contact is a point or a line.

3. Only elastic deformations occur around the contact point.

4. Deformation is much smaller than the objects’ curvature radii.

5. There is no friction.

Figure 2.6: Spring Bed model simplification

The contact force is computed using the interference volumes of two spheres (an imaginary

volume that penetrates the opposed object if no deformation is considered). The Hertz theory

develops the pressure distribution due to this penetration. A simplification of this theory is

the Spring Bed approach, where the two bodies are changed by a single body with the shape

equal to the sum of the two penetrated volumes and a space of springs that compress under

the object collision (see Fig. 2.6). Finally, the solution of this model relates the penetration of

the spheres with the contact force under the shape

Fn = k δ3/2n (2.33)

Where, Fn is the normal contact force, k is the contact stiffness and δn the normal penetration

distance. The contact stiffness is a variable that depends on both objects to be determined and

can be defined as

k = 2aE∗ (2.34)

with,

a =

(
3LNR

4E∗

)1/3

, R =

(
1

R1

+
1

R2

)−1

, E∗ =

(
1− ν21
E1

+
1− ν22
E2

)−1

Where, a is the Hertz contact radius, R the combined radius of curvature, E∗ the combined

Young’s modulus, LN the normal load with which both objects are pressed together, Ri the

respective radius of curvature, νi the respective Poisson’s moduli and Ei the respective Young’s

moduli.
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2.2.1.2 Coulomb friction

Friction between solids is a complex phenomenon that depends on many parameters. The most

used and known model to evaluate friction is Coulomb’s friction model. It establishes a relation

between (see Fig. 2.7a) the friction force Ff (tangential) opposed to a motion produced by the

tangential force Ft of an applied force Fapp and the normal force of contact between the two

solids Fn, with a friction coefficient µ as

Ff = µFn (2.35)

One can differentiate static friction (stiction) and kinetic friction (sometimes called dynamic

friction) with two different coefficients. As one can feel by trying to move an object on a table,

the friction is more important when the object is static and then it decreases with the slipping

of the object. This relation can be defined by Coulomb’s Friction Cone (see Fig. 2.7b) asif: Ft ≤ µsFn → µs ≥
Ft
Fn

= tan(θf ) then: Ff = µsFn (2.36)

else: Ff = µdFn (2.37)

where, µs is the static friction coefficient, µd is the kinetic friction coefficient and θf is the

Cone angle respect the vertical. Equation (2.36) expresses the fact that if a randomly force

applied on to the object (Fapp) is not great enough, the object will remain static. While, if

Fapp is greater enough, the object will slip with an opposing force as in (2.37). Usually, the

value of the coefficient is between 0 and 1, but specific cases/materials can have bigger friction

coefficients. Note that, as the transition between static and kinetic friction is instantaneous, in

the transition a discontinuity appears.

FN

Ff

Fapp

FT

θ

(a) Simple representation of Coulomb friction

dynamicstatic

θf

FN

FT

(b) Coulomb’s friction cone

2.2.2 Normal contact force model

As it has been introduced previously, a normal contact model has been developed. This contact

model is defined by two parts, a spring (as the Hertz model indicates) and a damper, which
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is the responsible for the non-elastic collisions (see Fig. 2.8). Hence, the normal contact force

have the following structure:

Fcn = k(δn)e − STEP (cmax, δmax,x, ẋ) (2.38)

where, Fcn is the normal contact force, k the contact stiffness, δn the normal penetration

distance and e the exponent of the penetration, as defined in (2.33) by the Hertz model. The

STEP function makes reference to the damper part of the system. In the real world, the

damper system (as the spring system) acts as soon as the contact begins. However, in the

spring system the force value is continuous and progressively increasing from 0, while in the

damper system, the damper goes from null effect to full influence. The behavior of the damper

results in a problem when integrating the model because the discontinuous force induces the

integrator to oscillate around the equilibrium point and it can lead to unstable solutions or

long convergences. For this reason, is a usual practice to provide this kind of functions with a

transition zone, approximated by a continuous function (as the model is checked with ADAMS,

a cubic function has been chosen to match the results with the software [2]), to eliminate the

discontinuities. In this case, the STEP function is defined as

STEP (cmax, δmax,x, ẋ) = cẋ (2.39)

with c(cmax, δmax,x) being the damper constant defined as
if no contact: c = 0

elseif δn > δmax c = cmax

else c = a(δn)3 + b(δn)2 with a =
2cmax
δ3max

, b =
3cmax
δ2max

where, cmax is the value of the damper constant when it is over the transition zone, δmax is the

width of the transition zone.

Figure 2.8: ADAMS Spring (left) and Damper (right) functions [2].
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2.2.3 Friction force model

As it has been introduced previously, a model Coulomb’s friction model is used. The Friction

force model, as presented before in equation (2.35) is:

Ff = µFn

where µ is a generic value of the friction coefficient and computed in the following paragraphs.

Following the same methodology as in the previous model, the transition zone for the discon-

tinuous friction coefficient has been modeled according to ADAMS [2] in order to obtain the

same results in the crosschecking. The used parameters are: Coulomb Friction, Static Coeffi-

cient, Dynamic Coefficient, Stiction Transition Vel.and Friction Transition Vel. As it has been

stated, the friction model used will be the Coulomb’s model. The two first parameters refer to

the already explained coefficients µs and µd. The other two parameters that one can set are the

Stiction Transition Velocity (vs) and the Friction Transition Velocity (vd). These coefficients

will set the transition zone because the friction coefficients do not follow a continuous function

(as they are different), which implies that there is a discontinuity when the object starts slip-

ping. The friction coefficient function is based on the slipping velocity between phalanx and

object (see Fig. 2.9).

slip velocity [m/s]

Fr
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0

-vs-vd vs vd

µd

-µd

µs

-µs

Real coeff.
Coeff. function

Friction Coefficient function

Figure 2.9: Friction coefficient function vs. real coefficient behavior.

Taking into account this graphic, in equation (2.35), the friction parameter is defined as

µ = µ(vslip), where vslip is the slipping velocity between the two contacting objects. This

antisymmetric chart can be divided in five sections (two of them antisymmetric) that allow to
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define µ(vslip): 
|vslip| > |vd| → µ = −sign(vslip)µd

|vs| < |vslip| < |vd| → µ = −sign(vslip)
[
av3slip + bv2slip + µd

]
−vs < vslip < vd → µ =

[
cv3slip + dv2slip − µs

]
with

a =
−2(µs − µd)

(vd − vs)3
, b =

3(µs − µd)
(vd − vs)2

, c =
−2(2µs)

(2vs)3
, d =

3(2µs)

(2vs)2
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Chapter 3

Grasp Analyses

3.1 Design theory

In the previous chapters, the main idea has been presented several times:

The performance of an underactuated gripper is directly related to its mechanical design.

Therefore, this chapter is dedicated to analyzing the model in order to get the best possible

design. Before proceeding to the analysis, a short recall on design process methodology is

hereafter presented.

There are several methodologies for a design process, however, optimization belongs to the

end of the design loop. A general design methodology (French et al. 1985 [10]):

1. Need: the design is born from a need to cover requisites. This necessity becomes the main

objective around which the design evolves.

2. Analysis: once the need is formulated, it is analyzed. This analysis performs mainly two

actions,

(a) a study of the current or similar solutions, if existing.

(b) the study of the potential tools to develop a new one.

3. Problem statement: having acquired the general knowledge on the topic, it is possible to

state which are the actual tools and the missing ones to solve the main objective.

4. Conceptual design and selection: only one in a thousand times, the first design is the

good one. For this reason, it is advised to start with very different simple concepts and

little by little narrow them down. It depends on the problem.
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5. Embodiment: usually, the main objective includes the general dimensions or performances

that are expected. These allow to scale or give to the drafts a set of base parameters to

define them to a higher order. Sometimes, in this phase, the set of possible solutions is

narrowed to one.

6. Detailing: here is where optimization takes part. The possible solutions must be analyzed

in order to select the best one. Hence, optimization (and simulation) is a useful tool to

analyze the performances of the different options to create and objective selection.

7. Testing: once the model is fully completed, it is time to prototype and check that the

results were the expected ones.

Due to feasibility and improving issues, is usual to go back to the analysis of the problem or

the conceptual designs to change them and getting feedback, starting a design loop.

3.2 Gripper requirements

In the following section, the finger requirements and hypotheses considered are detailed in order

to have a general overview of the achievements the finger must accomplish. Beginning by the

problem formulation,

• the gripper must grasp and hold stable and fixed 2D cylindric object of �40 mm subject

to gravity to perform planar pick-and-place operations.

• the gripper must be underactuated and perform the closing operation in less than 10 ms.

• the gripper must be symmetric.

• the gripper must be robust in front of vibrations, however, the positioning error is assumed

to be null.

• the gripper must be robust in front of the object’s material.

• while accomplishing the previous tasks, total mass, actuator torque and contact forces

should be the smallest possible.

Apart from the requirements stated by the problem, there is a set of conditions that are

interesting when considering the high-speed closing of the system. As can be seen in Massa et

al. 2002 [21], when there is a fast movement of the finger, the underactuated DOF act as a

coupled mechanism. This event is used in Kaneco et al. 2003 [12] to design the finger such as

it makes contact with all phalanges at the same time. However, this method is only applicable

if the object position is known and with the drawback that the design is useful only for a single

object. For this reason, in the present thesis, the same study has been used but in the opposite

sense of Kaneco et al. 2003 [12] as the exact position could be unknown. Then, the desired

behavior of the fingers is
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• to perform the approaching phase (from the beginning until the first collision) as if it

were a rigid solid, i.e., the spring must be stiff enough to maintain the finger links in null

relative velocity, only rotating around the actuator joint. Which means that the finger

will have a progressive closing.

3.3 Model analyses and settings

In the following section, some analysis over the model has been done in order to define the

design parameters and the methodologies to ensure the requirements stated in the previous

section.

3.3.1 Model variables and constants

The first analysis is regarding the number of design variables that have to be set for a single

finger. Having defined the outline of the fingers and the models, the design variables go up to

sixty if no hypotheses are considered and no values are given. After some considerations and

values decisions using ADAMS, the design is reduced down to eight (see Table 3.1).

Class Variables After Reduction

Geometry 13 4
Mass 18 0
Spring 9 2
Contacts 20 1
Actuator 1 1

Total 60 8

Table 3.1: Design variables summary and reduction.

The 8 design variables over which the model is expressed are:

• base, l21, ϕ22, rl(= l22/l11)

• cs, spring type and placement

• µs

• τ11

Some of the values have been chosen as a dimensioning of the finger by direct inspection of

the conceptual designs and simulations with ADAMS:
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Geometry Spring Contact Object Contact

l11 = 15 mm kSC = 1011 N/m kOC = 108 N/m
w = 2.5 mm eSC = 2.2 eOC = 2.2
q0 = 25◦ cmaxSC = 109 N·s/m cmaxOC = 106 N·s/m
ϕc21m = 0◦ dmaxSC = 10−5 m dmaxOC = 10−5 m
ϕc22m = 5◦ µSC = 0 rµd = 0.7
rh = 0.9375 vd = 2vs = 0.2 m/s
depth = 40mm

Table 3.2: Chosen parameters for the model.

where, the initial orientation of the finger is defined as the first collision angle plus an offset

of q0 = 25◦, the minimum collision angle for l21 is ϕc21m and the minimum for l22 is ϕc22m and

the maximum reachable height of the finger when closing is defined as height ratio rh of the

object’s diameter. To simplify the contact with the object, µd = rµdµs.

The hypotheses assumed for the development of the reductions and the general relations are1

(see Appendix B.2.2 for the complete functions):

• Geometry

– The links width are constant and equal for all links.

– The initial configuration is a right trapezoid (q11 = 0◦, q21 = 90◦).

– The palm normal is in +y axis direction.

→ [l21min, l21max] = f(base), [ϕc2j, t22] = f(base, l21), l12 = f(l21, l12, l22, ϕ22)

• Mass

– Links are made of homogeneous ABS of density ρABS.

– Geometry studied is a planar section of the part.

→ [mij, aij, bij, Iij] = f(body volume)

• Contacts: contact properties between the phalanges and the object are equal for any link

(defined in Table 3.2).

• Actuator: is driven by a non-backdrivable mechanism.

• Gravity is in +y axis direction, pulling the object away from the palm.

1Note that the functions only include the variables dependency but not the constants.
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3.3.2 Requirements analyses

Following the requirements presented in section 3.2, this section presents the relations and

results that arise from them. The direct results are:

• The symmetry of the system, and the null positioning errors with respect the object allow

simplifying the study to a single finger.

• In order to grasp the object stable, static stability criteria must be used: force positiveness,

palm force positiveness and form-closure.

• In order to hold stable the object, some of the previous criteria can be used: form-closure.

• In order to be robust to the fingers’ and object’s material, friction must be neglected if

possible.

• Closing the grasp in less than 10 ms will determine the minimum constant spring and

actuator torque.

• In order to reduce the spring and the actuator’s torque, the placement of the spring is

also important. These last two analyses are further developed hereafter.

3.3.2.1 Test trajectory

qf11O
x

y

qi11

Figure 3.1: Evolution of the
desired trajectory.

In order to ensure that the finger can perform the closing trajec-

tory (see Fig. 3.1) in at least 10 ms, a test trajectory is computed

given, the time to perform it (10 ms), the base, the set of geomet-

rical variables and q0. The function used is a 7th order polynomial

that will ensure that the initial and final velocities, accelerations

and jerks of the link l11 are null.

3.3.2.2 Minimum spring constant and actuator torque

In order to respect the desired behavior of the finger, moves as

a rigid solid until the first contact, the adequate spring constant

cs must be chosen. Applying the rigid solid constraints into the

model and simulating the system using the test trajectory as the input, the right side of the

IDM is computed, leaving the left side as the computation of two torques equaled to a constant

that varies along the trajectory: [
τ11

0

]
+

[
∂qs
∂qa

]T
cs = cnt(t) (3.1)
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From the two equations that can be extracted, the minimum cs(t) and its respective τ11(t) can

be computed. Finally, the minimum spring constant that respects the criteria is cs = max(cs(t))

and the torque that accomplished the trajectory in at least 10 ms is τ11 = RMS(τ11(t)). Note

that, the trajectory is going to be faster than 10 ms as the torque is a constant and not a

continuous function.

3.3.2.3 Spring placement

Given a trajectory and the computation of the minimum spring constant, four qs can be ex-

perimented in order to know in which of the joints the spring is the smallest. As the behavior

conditions are the same for any of the spring positions, the resultant torque is not affected by

them. The expressions of qs are:

1. qs1 = q21 − q11

2. qs2 = q12

3. qs3 = q22

4. qs4 = q11 + q12 − (q21 + q22)

In Fig. 3.2 can be seen that ks3 and ks4 have the lowest values. Even though, the figure only

shows a single experiment, the result is the same in all the experiments. As stated previously,

the interest is to find the minimum spring constant with the same performances, however,

taking into account the similarity between ks3 and ks4, the first is preferred in front of the

latter because it is a traction spring, while the latter is a compression spring. The preference

arises from the mechanical design of the finger, in which implementing a joint limit and the

spring attachments to the links is for easier and comfortable. Thus, the best placement for the

spring is in the joint q22, between the links l21 and l22.

3.3.2.4 Spring type

The last analysis around the spring is regarding the spring type: constant or torsional. The

difference between both types is only noticeable when the first collision occurred and the spring

is incrementing its coordinate. The best spring type is the one that causes lower actuator

torques. Given the best placement for the spring and a trajectory, using the equation (2.30)

for the contribution of generic springs, the process of the last experiment is repeated, obtaining

Fig. 3.3. As can be appreciated in the figure, the constant spring causes smaller torques than

the torsional spring during the extension phase, hence, the best spring type is the constant

spring.
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Figure 3.2: Example of the Minimum spring constant required along the test trajectory with
base = 12 mm, l21 = 18.9 mm, ϕ22 = 100◦ and rl = 0.5.
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Figure 3.3: Example of the Spring type comparison using the test trajectory with base = 12
mm, l21 = 18.9 mm, ϕ22 = 100◦ and rl = 0.5.
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3.4 Workspace analysis: Grasp-state Volume

Given the model, the hypotheses and the relations, the design variables are left to study.

In order to get a general overview of how the system behaves in statics and to ensure that

at least the finger in statics respects the requirements, a workspace analysis tool has been

developed. The main idea of this tool is based on the grasp-state space presented by Birglen

in [7], where, given a geometry, makes an analysis of its stability around the configuration

workspace. Nevertheless, the case of this thesis is the opposite as the one presented by Birglen

as the object is known and its position is chosen but, the geometry of the finger is the focus of

the study.

The tool developed is a grasp-state volume, an atlas of the workspace mixed with the con-

sidered criteria, that is capable of showing up to five dimensions: three geometric parameters,

stability (defined by Birglen’s Force positiveness of the contacts), and an extra criterion. The

arrangements decided for this tool are: given a base distance and a static friction coefficient

µs, the three axis of the volume belong to l21(%), ϕ22 and rl. Over this volume, the useful zone

is determined by the stability of the finger in statics through the use of the force positiveness

criterion (see Fig. 3.4). Is in the remaining region that the finger properties can be analyzed

as a fifth dimension. As there are many volumes’ figures commented hereafter, they have been

placed in the Appendix A.1.
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Figure 3.4: Volumes for base = 19 mm and three friction conditions. The black volume is the
unstable (by force positiveness) region and the empty one the useful workspace.

3.4.1 Stability by force positiveness

In order to compare the influence of the base and µs, the following table (see Table 3.3) presents

the useful workspace volume over the whole studied volume from computing the force positive-

ness criterion using the static equilibrium model presented in Section 2.1.4. As can be seen
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Base µs = 0 µs = 0.4 µs = 0.8

12 mm 93.66% 93.91% 93.91%
15.5 mm 89.29% 92.11% 92.11%
19 mm 74.7% 78.21% 78.41%
22.5 mm 26.05% 26.64% 26.64%

Intersection 23.26% 26.44% 26.64%

Table 3.3: Volume stability percentage in function of the base and µs.

in Table 3.3, the parameter that influences the most the useful volume is the base parameter.

As it grows bigger, the volume that is stable shrinks up to a 70%. However, the reduction is

exponential in relation to the base, which means that, if possible, the working range of the

finger in relation with the base should be kept far from the higher limits. A result that is also

interesting is the intersection, which is computing how much useful volume is common to al

base dimensions. It is in the analysis of the latter that the contribution of µs can be slightly

appreciated, as the introduction of friction contributes to the increase of the stable volume.

Nevertheless, it can be observed that, apparently, the value of the friction coefficient does not

have a notorious influence. Lastly, analyzing the distribution of the useful volumes (see Ap-

pendix A.1), for any base, it can be seen that the combination of ↓ l21, ↑ ϕ22 and ↑ rl leads to

instability.

3.4.2 Palm Force Positiveness

In order to compare the influence of the base and µs, the following table (see Table 3.4) adds the

analysis of the palm force positiveness, to the useful workspace volume previously presented.

This criterion analyzes the resultant force from all the contacts between the phalanges and the

object in the palm normal direction (as the component parallel to the palm is neutralized by

the symmetry of the design) as:

PFP = FN22(sin(q21 + q22 + ϕ22 − π/2) + µ sin(q21 + q22 + ϕ22)

−FN21(cos(q21 − π/2) + µ sin q21)
(3.2)

The expected result is to obtain a negative reaction, which means that the palm is applying

a unidirectional contact force, i.e., it is not pulling the object (as it cannot). As can be seen

in Table 3.4, the parameter that influences the most the useful volume is µs. When it is null,

the base lower values are highly affected. The reason of this lies in the fact that lower base

dimensions decrease the collision angle of l21, leading to smaller collision angle of l22. In such

configuration, the first phalanx vertical component is much bigger than the tip phalanx one.

Moreover, in the larger values of base, the effect is just the opposite, allowing the tip phalanx

to push towards the palm. As can be observed, the introduction of friction rises the useful

volume of the lower base values (as the bigger ones are not affected) as well as the PFP results.
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µs = 0 µs = 0.4 µs = 0.8

Base Stb.Ref. %Vol. Max. [N] Stb.Ref. %Vol. Max. [N] Stb.Ref. %Vol. Max. [N]

12 mm 93.66% 0.3% 2.47 93.91% 1.3% 5.47 93.91% 68.21% 24.58

15.5 mm 89.29% 9.54% 2.05 92.11% 81.46% 10.92 92.11% 92.11% 28.21
19 mm 74.7% 21.3% 2.24 78.21% 78.21% 10.5 78.41% 78.41% 21.37
22.5 mm 26.05% 26.05% 2.11 26.64% 26.64% 8.94 26.64% 26.64% 16.45

Base
Intersection

23.26% 0% - 26.44% 0% - 26.64% 26.24% -

Table 3.4: Useful volume percentage analyzing the PFP over the stable workspace in function
of the base and µs. Stb.Ref. are the Stability Reference results from Table 3.3.

Finally, analyzing the distribution of the useful volumes (see Appendix A.1), for any base can

be seen that the combination of ↑ l21, ↑ ϕ22 and ↓ rl leads to the higher PFP values if there is

no friction. When friction is introduced, the maximums moves to the ↑ rl region.

3.4.3 Form-Closure

In order to compare the influence of the base, the following table (see Table 3.5) adds the analysis

of the form-closure, to the useful workspace volume previously presented. Recall: this criterion

analyzes the capability of the gripper to constrain the grasped object without using friction,

which means that this criterion is independent of friction. To respect the form-closure, the

gripper must at least respect the inequality presented in (1.19). Note that in the current case,

the gripper is composed of a pair of two-phalanxed linkage-driven finger with non-backdrivable

actuators; in addition, the cylinder dimension space is considered as two, because no rotation

of it will appear. Finally,

nc + nu ≥ nh + d+ 1

4 + 1 + 2 ≥ 4 + 2 + 1

7 ≥ 7

where, recall that, nc is the number of contacts (phalanges and palm), nu is the number of

non-backdrivable mechanisms, nh is the dimension of the hand configuration space and d is

the dimension of the object’s configuration space. Nevertheless, this is a necessary but not

sufficient condition, as can be seen in the results table Table 3.5. As can be seen in it, the

form-closure criterion is quite restrictive over all the workspace as in the best of the cases, the

useful volume decreases from 90% until 23%. Moreover, from the results it can be seen that the

best values of base to work on, are not placed in the extremes as the previous results showed.

Fortunately, the performance of the finger in the middle range base dimensions is competent

with the best values proposed in the previous paragraphs. Finally, analyzing the distribution

of the useful volumes (see Appendix A.1), notice that it is interesting the fact that even though

the form-closure criterion is purely geometric, there is not any apparent correlation between
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Base Stability Ref. %Volume

12 mm 93.66% 9.98%
15.5 mm 89.29% 22.68%
19 mm 74.7% 2.61%
22.5 mm 26.05% 0%

Intersection 23.26% 0%

Table 3.5: Useful volume percentage analyzing the Form-Closure over the stable workspace in
function of the base and µs.

the different base values, while a small relation can be guessed between the increment of ϕ22

and the existence on form-closure.
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Chapter 4

Results

In the following chapter, first, different finger designs are analyzed and, then, the method used

to select the final design is presented along with the results and the final design that has been

used to create the prototype of the gripper. In the previous chapter, the graps-state volumes

(section 3.4) have been introduced and through their analysis, the existence of solutions has

been proofed. However, given the fact that any new analyzed geometry needs to be simulated

over a range of time in order to compute the dynamic stability, the design optimization has

been performed over the discretization of a bounded design space.

4.1 Criteria

Some of the criteria used to analyze the validity of the geometric models have been presented

when the graps-state volumes have been developed. These criteria belong the static analysis

checking and are:

• Force Positiveness

• Palm Force Positiveness

• Form-Closure

Nevertheless, the current static criteria do not contribute with any information of the dynamic

performance. For this reason, dynamic criteria have been set.

4.1.1 Dynamic criteria

In order to determine if the performance of the design is good enough, two parameters are

checked. In order to obtain these parameters, the full model must be simulated (developed in

next section 4.2) because it is not possible to determine the dynamic evolution of the finger

from the geometric analysis, yet.
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4.1.1.1 Time to stability

The first dynamic parameter is the time to stability (tts), i.e., the time that the finger requires

to reach a static configuration. Note that this criteria is highly related to the force positiveness

one, as in order to know if the finger has reached a static configuration:

• The finger dynamic configuration must be equal to the geometrical final configuration qf,ij

computed, thus: qij = qf,ij±ε, where ε is a threshold to take into account the penetration

depth δn of the phalanges into the object.

• Must respect the force positiveness criterion:

– The contact forces must be positive.

– The contact forces of the dynamic model at the tts must match those computed

through the static model (force positiveness).

To respect the requirements, the tts should be smaller than 10 ms. However, to expand the

solutions scope, the criteria has been set to 15 ms.

4.1.1.2 Rebound

The second dynamic parameter is the rebound, expressed as the percentage of time that the

finger needs to reach the tts from the instant in which it reaches the geometrical final config-

uration qf,ij for the first time, i.e., as there may be rebound, the first time that the finger is

inside the thresholds defined in the paragraph above, does not necessarily imply that the finger

is in equilibrium already:

rebound(%) = 100

∣∣∣∣ mean(t(qf,ij : end))

mean(t(stable : end))
− 1

∣∣∣∣ (4.1)

where, t(qf,ij : end) is the time vector between reaching the geometric stability and the end

of the simulation, and t(stable : end) is the time vector between reaching stability and the end

of the simulation. Note that the parameter depends on the simulation length and the time to

stability, hence, the thresholds can change depending on it. This expression of the rebound has

been chosen to take into account that designs need a shorter time to stabilize, can have bigger

rebound values. This criterion can divide the dynamic behavior into three classes:

• Stable: rebound = 0%. The finger does not rebound on the contact.

• Semi-stable: rebound ≤ 5%. The finger does rebound but for a short-period.

• Unstable: rebound > 5%. The finger rebound could cause instability due to the contact

forces and the time passed without contact.
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4.1.2 Weighted criterion

Hereafter, in the design selection phase (see section 4.3), will be seen that some results ac-

complish the requirements, so in order to characterize the design with the best performance

a weighted criterion is proposed, grouping the main characteristics that are desired from the

gripper:

• The highest Palm Force Positiveness (PFP).

• The shortest time to stability (tts).

• The best composed normal contact forces to achieve PFP with less friction:

– Small FN21.

– High FN22.

After converting the previous values, of the selectable finger designs, to a ratio in the range

[0-1], the weighted criterion is defined as the mean of the four performances. All the ratios have

been considered of the same importance, thus all of them are weighted equally, however, this

can change if in further analyses it considered that any of them is more critical than the rest.

For the current hypothesis:

rWC = mean(r(PFP ), (1− r(tts)), r(FN21), (1− r(FN22))) (4.2)

4.2 Simulation

As introduced in the above paragraphs, one of the most efficient ways to optimize the design

is to discretize a bounded design space and analyze its results. This process can be iterated

around the solution of the previous iteration, however, the method have not been iterated in

the present thesis. The design space where the finger has been searched is:

• base = [12, 15.5, 19, 22.5] mm

• l21 = l21,min + [0, 1/4, 1/2, 3/4](l21,max − l21,min), where l21,min and l21,max are determined

in function of base (see Appendix B.2.2 for the complete functions)

• ϕ22 = [90, 100, 110, 120]◦

• rl = l22/l11 = [1/3, 1/2, 2/3]

• µs = [0, 0.8]

Given the design space, composed of 192 different designs in two different friction conditions,

they have been simulated over a time of 20 ms. Note that the simulation is two times the

length required in order to be able to check that the model is stable for a longer time and that

no delayed effects from the collision are taking place.
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4.2.1 Simulation Results

A short analysis of the experimentation results is presented having decided the design space

and acquired the simulation data. In Appendix A.2 can be found all the results figures that

are not in the current chapter due to the large quantity of them. Fig. 4.1 shows a summary

of the geometrical combinations of the 192 experiments along with the repercussion they have

in the computation of the model parameters and the dynamic performance. Note that all the

results are expressed in function of the experiment index, thus Fig. 4.1 is the base of the results

analysis.
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Figure 4.1: Summary of the geometric combinations of the 192 experiments simulated.
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4.2.1.1 Parameters variation

In the case of the current thesis, can be observed that the total mass (without springs and

axes) of a single finger (see Fig. 4.2) is in between 20.6 g and 27.5 g, a difference that can

be considered insignificant, thus, not necessary to take into account in the decision variables.

However, is important to remark the strong correlation that exists between the design variables

and the total mass, as the tip phalanx is responsible for almost the 50% of the weight. Note

that it is also the most remote part, meaning that, the inertia it introduces to the system must

be taken into account for bigger designs.

Regarding the total test trajectory each experiment has to perform, can be observed in

Fig. 4.2, that it oscillates between 26◦ and 75◦. The rl ratio has a big influence as it is

directly influencing the transmission ratio between links l11 and l22 but, the bigger variation is

introduced by the base value as de proximity between the two collision points decreases when

base increases.

As all the model is geometrically related, is not coincidence that there is a relation between

τ11 and, the total length of the test trajectory and the total mass of the finger (see Fig. 4.2).

For ks also a correlation can be guessed, however, it is lighter because ks depends only on the

maximum point and not the whole evolution of the system.

4.2.1.2 Dynamic performance

The main analyzed characteristic in the dynamic performance is the consideration of friction

forces into the model. In order to analyze the effects they produce, several comparisons have

been carried out. In Fig. 4.3, the Birglen stability with and without friction is contrasted,

obtaining an increase of 5% more of stable results if friction is considered, outcome that concurs

with the ones obtained analyzing the grasp-state volumes in Table 3.3.
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Figure 4.3: Birglen stability checking with and without stability. (F: friction, NF: no friction,
S: stable, U: unstable).

Going further into the analysis of the stability, in Fig. A.15, the simulation results are

compared to Birglen obtaining the summarized Table 4.1. In it can be appreciated that, while

in the static analysis the contribution of friction is minor, the friction in the dynamic analysis
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has a strong influence. This can be explained by the concept of friction, which by definition

opposes to the movement and produces non-conservative work, i.e., dissipates the finger energy

faster. The extra energy dissipation during the collision produces smaller penetrations δn, thus,

smaller collision forces that lead to less rebound and more stability.

µs = 0 µs = 0.8 Comparison

Class Static (%) Dynamic (%) Static (%) Dynamic (%) ∆Static (%) ∆Dynamic (%)

Stable 70.3% 28.1% 75.5% 50% ↑5.2% ↑21.9%
Unstable 29.7% 71.9% 24.5% 50% ↓5.2% ↓21.9%

Table 4.1: Stable designs over the discretized design space in statics and, in dynamics, with
and without friction.

In Fig. 4.4 and Fig. A.19, the design variables are presented sorted by its individual iteration

order without and with friction respectively, allowing to analyze each design variable effects

over the system when changed and class them in four groups:

• stable: no rebound and stable in less than 15 ms.

• semi-stable: small rebound but stable in less than 15 ms.

• semi-unstable: large rebound but stable in less than 20 ms.

• unstable: negative contact forces (Birglen) or stable in more than 20 ms.
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Figure 4.4: Dynamic stability analysis without friction in function of each one of the design
variables.
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The interest of the latter graphics lie in the fact that they allow to identify correlations

between dynamic stability and the geometry of the design. Namely, in the case of the finger,

can be guessed that some combinations of base and l21 lead to semi-unstable results, i.e., large

rebounds. No further analysis have been done in these outcomes as they fall out of this thesis

scope, however, can be an interesting topic to study if any relation exist between the rebound

and the system configuration.

Regarding the Form-Closure criterion, can be observed in Fig. A.24 that it is rather restric-

tive, as from the 192 experiments (as friction does not have any effect on it) only twenty-two

respect it. Thus, the design solution is highly bounded due to it. However, with this criterion

one can ensure that the object is going to be blocked by the geometry without relying on the

existing friction.

Finally, in Fig. 4.5, can be observed the palm force positiveness of each experiment with

and without friction. As has been checked during the analysis of the grasp-state volumes (see

Table 3.4), in theory exists a design solution that will respect the specified criteria without

friction, nevertheless, the useful volumes are a quarter of the design space at its best and none

of the discretized designs respect the PFP with null friction.
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Figure 4.5: Palm force positiveness with and without friction.

4.2.1.3 Extension of the results

Through minor adaptations, the obtained results can deal with the elimination of one of the

base hypotheses: the assumption of null positioning error. The main change into the study is

that two complementary fingers must be studied simultaneously, hence, the design variables
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must be adjusted to respect the finger condition symmetry with the use of the two extremes of

the base parameter, in order to ensure the design robustness in front of such parameter values.

In the first place, the determination of the palm width is necessary in order to match the

complementary pair of fingers that must be studied. In the current case and, under the as-

sumption that the model could be used in the IRSBot-2, a ±2◦ oscillation of the moving

platform along a 10 cm distance from it until the gripper palm are considered. Then, the pos-

sible positioning error of the center of the palm is bounded to ±3.5 mm, leading to at least a

palm ≥ 2basemin + 2 · 3.5 mm = 31 mm. Finally, with some security coefficient, an acceptable

palm width could be 34 mm.

Once the palm width is decided, the experimentation can be repeated setting the right (r)

and left (l) fingers parameters to:

• Initial position as qr,li,11 = min(qri,11, q
l
i,11).

• Torque and spring as τ r,l11 = max(τ r11, τ
l
11) and kr,ls = max(krs , k

l
s)

In the analysis of the grasp-state volumes (see Tables 3.3, 3.4 and 3.5), intersection parame-

ters are presented. Those parameters can be used in the current hypothesis in order to check if

a solution exists where the design is robust in front of the base. Static stability can be achieved

without friction, PFP requires high friction in order to present robustness in front the base

dimensions and, unfortunately, there is no volume intersection for the Form-Closure. However,

note that, in the case of symmetric base (null positioning error), Form-Closure is most likely

to be given.

In summary, a design robust to the positioning error cannot be ensured to exist due to the fact

that the Form-Closure criterion is considered necessary for the specific case of high-speed closing

and moving. Nevertheless, further investigation on the evolution of the contact could be made

in order to analyze if a non-form-closed configuration could lead to form-closed configurations

due to the non-compensated horizontal forces of the grasp actuating as an automatic control

of the system.

4.3 Design selection

Finally, the design is computed from the experimentation performed in the previous section

through the use of the criteria presented at the beginning of the chapter. A summary graphic

can be observed in Fig. 4.6. From the 384 design options, only eighteen remained after the

requirements checking. Note that all the results are in the domain of friction existence, this is

mainly because of the palm force positiveness checking, as (unfortunately) the discretization is

not inside of the useful workspace of the grasp-state volumes without friction.

Following the weighted criterion, the best performance is given by the experiment 95 with a

rWC = 0.67, with:
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• PFP = 16.3 N

• tts = 7 ms

• FN21 = 23.6 N

• FN22 = 8.3 N

and the design variables:

• base = 15.5 mm

• w = 2.5 mm

• l11 = 15 mm

• l21 = 24.4 mm

• l12 = 22.4 mm

• l22 = 7.5 mm

• t22 = 12.6 mm

• ϕ22 = 120◦

• τ11 = 480 N·mm

• ks = 132.6 N·mm
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Figure 4.6: Summary of the selection results.
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4.4 CAD model

Once the design has been selected, a real design of the finger has been done respecting the given

dimensions and adapting the interpenetrations between the links in the joints zone to be able

to build a prototype1. In order to ensure that the design works properly, it has been simulated

in ADAMS MSC to analyze its performance. Although, the mass of the axis and the spring

have been neglected, the results are considered satisfactory.

Figure 4.7: CAD model of the finger along with the object and the palm.

An interesting remark, on the obtained results, is the time the finger needed to reach stability

(see Fig. 4.8), dropping the stabilization time from 7 ms to 4.7 ms. This behavior can be

explained by the mass difference (see Table 4.2) between the extruded planar links used to

compute the simulations and the final design of the parts, while the applied torque and the

spring have not been changed. This result show the fact that the torque can be reduced in

order to attain the 10 ms milestone, which will improve the general result of the design by

reducing the collision efforts and the grasping forces applied onto the target object.

Regarding the transmission mechanism between the fingers, although it falls out of the studied

scope of the current research work, a proposition is made only for the sake of building a complete

prototype. In order to reduce to the maximum the number of actuators, the robot arm will

provide the closing torque to the gripper, actuating it when contacting the object (on the case of

1The prototype is a 2:1 scale of the design meant to show the kinematics of the system and not to perform
tests. Its drawings can be found in Appendix C
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Figure 4.8: Angles evolution of the closing cycle for the real model.

Links Simulated design [g] Final design [g] Variation (%)

l11 4.28 2.18 49.07%
l21 6.29 4.73 24.80%
l12 5.86 2.78 52.56%
l22 8.21 4.63 43.61%

Total 24.64 14.24% 42.21%

Table 4.2: Difference between the finger’s mass used in the simulated model and the final
design.

the current prototype will be the hand). With this configuration, a blocking (non-backdrivable)

mechanism is needed. Any actuator could provide this blockage, nonetheless, it should be able

to block the mechanism with a variable actuating distance, as a proposition, an electromagnet

would do the job.

To transmit the torque from the robot arm to both fingers (see Fig. 4.9), a planar seesaw (a

differential mechanism) has been implemented in order to divide the force isotropically while

adapting to the contact conditions of the system. This system consists of a obtuse triangle

where the larger angle is placed in a translational joint, and the extremes transmit the force

forward.
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joint

Figure 4.9: Two-finger gripper adapting to a non-symmetric contact condition through the
seesaw mechanism.
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Conclusion

Conclusions

This research work has provided a first design of an underactuated gripper that is capable

of performing a stable closing cycle in less than 10 ms. The results of this thesis are not

only relevant because the main objective has been accomplished but, because through the

development of this research, an important gap in the literature of underactuated hands has

started to be studied: the use of a dynamic model for analyzing the complete grasping cycle

(from the approaching phase until reaching stability), and how the interactions between the

gripper and the object affects the stability. Moreover, it also proofs that the underactuated

grippers can offer an interesting performance and be competitive in the industry. However,

cannot be forgotten that the adequate design has to be found in order to reach a stable grasp.

After the contextualization of this thesis and a brief problem statement, in the contributions

is presented an abbreviated survey of the current methodologies to design underactuated fingers.

In it, a main idea is highlighted: the current State of the Art of underactuated fingers hardly

considers non-static design problems, probably due to the lack of applications until now.

The first chapter of this thesis introduces the general concepts related to underactuated

hands and outlines their inherent characteristic of adapting to unknown objects, provided by a

suitable geometric design and without the need of a dedicated control. As the behavior of the

underactuated mechanism is unknown a priory, the design must rely on criteria. Hence, two of

the main static stability criteria are defined as they are imperative constraints and the main

guidelines in the design development. The importance of considering static design criteria, in a

dynamic environment, is due to the fact that, if the gripper is not stable in statics, neither will

by in dynamics. The presented static criteria are the force positiveness and the form-closure.

The modeling chapter is where most of this research work has been done, divided into two

sections, provides the models to study the complete dynamic closing cycle. In the first part of

the chapter, the geometric, kinematics and dynamic models are developed. In the latter model,
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the condition of underactuation is applied on the model through the elimination of one actuator,

and the addition of a spring to partially exert some control on the system while providing it with

a return-back mechanism. It is, also, on the dynamic model where the external wrenches of the

contact forces are applied. The second section of this chapter develops the models developed

to obtain the dimension of the contact forces. These models are based on the simulations

with ADAMS software, as a manner to obtain a direct comparison between the models and

the recognized simulator software. The theory behind the models, the Hertz contact theory

and the Coulomb’s friction theory, is recalled before introducing them. The latter models are

handful, as they allow the introduction of rebound into the system. However, obtain the correct

constants values for the contacts is still an open problem.

Following, the recalling of the basic steps of design theory introduce the third chapter. Follow-

ing these steps, the complete list of the gripper requirements, along with the desired behavior,

is presented. The main requirements are the closing cycle time inferior to 10 ms and the ro-

bustness in front of vibrations (as, for now, the positioning error falls out of the scope). After

performing some analyses over the proposed models, the number of variables is highly reduced

(from sixty to eight), and the torque and the spring are defined. Finally, a new tool is presented

to analyze the effects of the variables on the stability and other the criteria: the grasp-state

volumes. This tool allows identifying if a proposed design is at least stable in statics, along

with other possible criteria, for the required task.

Finally, in the last chapter, the dynamic criteria to determine the validity of a proposed

design are presented. Then, the results are analyzed over a set of 192 designs in two different

friction conditions. As can be observed in the chapter, friction plays an important role in

the defined stability criteria, as it reduces the time needed to reach stability and increases

the strength of the grasp. However, the form-closure criteria played an important role in the

selection process, as it appears to be quite restrictive. At the end, from 384 possible designs,

only eighteen respected the proposed criteria. Between these, the dynamic performance has

been evaluated, obtaining a design that performs above the requirements with a closing cycle

time of 7 ms.

Future work

The focus of this research work has been in the development of a model for an underactuated

finger that allows analyzing the complete closing cycle, from the approaching until reaching a

stable grasp. However, as the topic is extensive and not deeply studied, many works can follow

the one presented.

The main direction of further study is introduced in section 4.2.1.3, where an extension of

the proposed hypotheses is introduced and slightly analyzed. This thesis simplified the first
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studies by assuming that the positioning error is minimal, hence, it has been disregarded.

This assumption simplifies the design by considering a single finger in the study, however,

if some error is introduced, the design space that respects the generic problem conditions

shrinks. Moreover, the torques and initial conditions will be varied and the system evolution

not symmetric anymore.

The introduction of the latter hypothesis opens new problems. The first is the non-symmetry

of the collisions, for which is considered that would be interesting to study the system if the

object is free (as has been already introduced in Saliba [24]). Secondly, as can be observed

in Table 3.5, the non-symmetry of the grasp does not allow to ensure that any configuration

exists by which the grasp is formed-closed, hence, a second non-static study can be performed:

evolution of the configuration due to the horizontal components of the contact forces.

Finally, as has been already introduced in the analysis of the simulation results, would be

interesting being able to relate in some manner, the design variables base and l21 with the

existence of rebound, as some relation appears to exist (see Fig. 4.4 and Fig. A.19).

In addition to the theoretical part of the design, the actuator and the transmission mechanism

need to be design and optimized. As a first guess, the actuator needs to be able to perform

the target torque independently of the actuated distance. After some analyses of the system, a

blocking mechanism based on an electromagnet is proposed in conjunction with a mechanism

tha actuates the gripper by contacting the object.
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[8] A. Chatterjee, Rigid body collisions: some general considerations, new collision laws, and

some experimental data. Cornell University Ithaca, NY, 1997.

[9] M. Claffee and N. R. Corson, “Compliant Underactuated Grasper,” 2014. [Online].

Available: http://www.google.ch/patents/US20140132018

[10] M. J. French, J. Gravdahl, and M. French, Conceptual design for engineers. Springer,

1985.

63



[11] J. Giesbers, “Contact mechanics in msc adams,” Faculty of Engineering Technology Applied

Mechanics, p. 20, 2012.

[12] M. Higashimori, M. Kaneko, and M. Ishikawa, “Dynamic preshaping for a robot

driven by a single wire,” in 2003 IEEE International Conference on Robotics and

Automation (Cat. No.03CH37422), vol. 1. IEEE, pp. 1115–1120. [Online]. Available:

http://ieeexplore.ieee.org/document/1241742/

[13] S. Hirose and Y. Umetani, “The development of soft gripper for the versatile robot hand,”

Mechanism and machine theory, vol. 13, no. 3, pp. 351–359, 1978.

[14] O. Ibrahim and W. Khalil, “Inverse and direct dynamic models of hybrid robots,” Mech-

anism and machine theory, vol. 45, no. 4, pp. 627–640, 2010.

[15] K. L. Johnson and K. L. Johnson, Contact mechanics. Cambridge university press, 1987.

[16] W. Khalil and E. Dombre, “Modeling, identification and control of robots hermes,” Pen-

ton., Paris et Londre, 2002.

[17] G. A. Kragten and J. L. Herder, “The ability of underactuated hands to grasp and hold

objects,” Mechanism and Machine Theory, vol. 45, no. 3, pp. 408–425, 2009.

[18] S. Krut, “A Force-Isotropic Underactuated Finger,” in Proceedings of the 2005 IEEE

International Conference on Robotics and Automation. IEEE, pp. 2314–2319. [Online].

Available: http://ieeexplore.ieee.org/document/1570458/

[19] S. Krut, V. Bégoc, E. Dombre, and F. Pierrot, “Extension of the form-closure property

to underactuated hands,” IEEE Transactions on Robotics, vol. 26, no. 5, pp. 853–866,

oct 2010. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=5560878

[20] K. Lakshminarayana, “Mechanics of form closure,” ASME, no. 78-DET-32,, pp. 2–8, 1978.

[21] B. Massa, S. Roccella, M. Carrozza, and P. Dario, “Design and development of an

underactuated prosthetic hand,” in Proceedings 2002 IEEE International Conference on

Robotics and Automation (Cat. No.02CH37292), vol. 4. IEEE, pp. 3374–3379. [Online].

Available: http://ieeexplore.ieee.org/document/1014232/

[22] B. Mishra, J. T. Schwartz, and M. Sharir, “On the existence and synthesis of multifinger

positive grips,” Algorithmica, vol. 2, no. 1-4, pp. 541–558, 1987.

[23] F. Reuleaux, Theoretische Kinematik: Grundzüge einer Theorie des Maschinenwesens. F.
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Appendix A

Figures

A.1 Grasp-state volumes
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Figure A.1: Grasp-state volume analyzing the stability with different friction and base = 12
mm.
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Figure A.2: Grasp-state volume analyzing the stability with different friction and base = 15.5
mm.

120

1100.3

 = 0  Stable Vol = 74.775%

22
 [º]

0.4

0

0.5l 22
/l 11

100

% l
21

0.6

50

0.7

90100

unstable 0.210526 0.473684 0.736842 1       

Stability

120

1100.3

 = 0.4  Stable Vol = 78.2125%

22
 [º]

0.4

0

0.5l 22
/l 11

100

% l
21

0.6

50

0.7

90100

120

1100.3

 = 0.8  Stable Vol = 78.4125%

22
 [º]

0.4

0

0.5l 22
/l 11

100

% l
21

0.6

50

0.7

90100

 Stable volumes: Base 19 mm

Figure A.3: Grasp-state volume analyzing the stability with different friction and base = 19
mm.
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Figure A.4: Grasp-state volume analyzing the stability with different friction and base = 22.5
mm.
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Figure A.5: Grasp-state volume analyzing the stability with different friction and the
intersection of all base dimension.
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Figure A.6: Grasp-state volume analyzing the PFP with different friction and base = 12 mm.
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Figure A.7: Grasp-state volume analyzing the PFP with different friction and base = 15.5
mm.
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Figure A.8: Grasp-state volume analyzing the PFP with different friction and base = 19 mm.
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Figure A.9: Grasp-state volume analyzing the PFP with different friction and base = 22.5
mm.
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Figure A.10: Grasp-state volume analyzing the PFP with different friction and the
intersection of all base dimension.
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Figure A.11: Grasp-state volume analyzing the Form-Closure with different base dimension.
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A.2 Simulation Results
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Figure A.12: Summary of the geometric combinations of the 192 experiments simulated.
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Figure A.13: Summary of the dependent variables along the experiments in relation to the
independent ones.
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Figure A.14: Birglen stability checking with and without stability. (F: friction, NF: no
friction, S: stable, U: unstable).
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Figure A.15: Stability comparison between static/dynamic and with/without friction. (B:
Birglen, D: dynamic, F: friction, NF: no friction, S: stable, U: unstable).
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Figure A.16: Birglen stability analysis without friction in function of each one of the design
variables.
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Figure A.17: Birglen stability analysis with friction in function of each one of the design
variables.
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Figure A.18: Dynamic stability analysis without friction in function of each one of the design
variables.
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Figure A.19: Dynamic stability analysis with friction in function of each one of the design
variables.

9



0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

E
nd

 fo
rc

e 
21

 [N
]

stable semi-stable semi-unstable unstable

0 20 40 60 80 100 120 140 160 180 200
0

50

100

R
el

.E
rr

or
 C

21
 (

%
)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

E
nd

 fo
rc

e 
22

 [N
]

0 20 40 60 80 100 120 140 160 180 200
Experiment Index

0

50

100

R
el

.E
rr

or
 C

22
 (

%
)

Final normal contact force: � = 0 

Figure A.20: Final normal contact force applied by the finger on to the object without friction.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

E
nd

 fo
rc

e 
21

 [N
]

stable semi-stable semi-unstable unstable

0 20 40 60 80 100 120 140 160 180 200
0

50

100

R
el

.E
rr

or
 C

21
 (

%
)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

E
nd

 fo
rc

e 
22

 [N
]

0 20 40 60 80 100 120 140 160 180 200
Experiment Index

0

50

100

R
el

.E
rr

or
 C

22
 (

%
)

Final normal contact force: � = 0.8 

Figure A.21: Final normal contact force applied by the finger on to the object with friction.
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Figure A.22: Final friction contact force applied by the finger on to the object.
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Figure A.23: Palm force positiveness with and without friction.
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Appendix B

Models developments and

cross-validations

B.1 Modeling contacts with ADAMS

How to create a contact force with ADAMS software is explained, the adequate settings are

provided and the software is check in order to know if it respects the Herz contact theory

hypotheses.

B.1.1 Create a contact between two solids

To create a contact between two bodies, go to ”forces” on the ADAMS interface and in ”special

forces”, click on the button ”create a contact”. First, must be chosen the contact type, regarding

to what is desired to model (two-dimensional or three-dimensional contact) and the 3D model.

The most intuitive contact type is ”solid with solid”, where one have to select the two solids

between which the contact will be created; for this type of contact, the order of selection does

not matter, as the phenomenon is bidirectional and symmetric. If desired, one can choose to

display the contact forces and, finally, the parameters for contact and friction must be set (see

Fig. B.1).

In a general context, where the contact won’t be strictly elastic and friction will have some

influence, one can select the IMPACT function in the Normal Force field and COULOMB

function in the Friction Force field.
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Figure B.1: Window in ADAMS for contact modeling

B.1.1.1 Normal Contact Settings

ADAMS software allows the user to set almost all the properties, from the design to the solver.

Is in the latter where an important issue has been noticed: the choosing of the proper solver and

the step size are a significant issue in the process to obtain a simulation with reliable results.
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Figure B.2: ADAMS Simulation Control Window and Settings

In Fig. B.2 are shown the Simulation Control window and the Solver Settings window (ac-

cessible through the button at the bottom of the Simulation Control window). The first thing

that is worth changing is that, by default, the simulation is set to 50 steps independently of the

simulation time. This can be changed in the Steps field to Step Size, which will ensure a better

control on the simulation regardless of the simulation time. Second field worth checking is the

Sim. Type. This field refers to the type of simulation that is desired to perform. As interaction

between bodies are considered, instead of Default, we will choose Dynamic.

Moving to the Solver Settings, by default on the Dynamics Category, the solver is set to

GSTIFF Integrator and I3 Formulation with an Error of 10−3.

An important and interesting topic is the choosing of the good values for the Step Size and

the Error, as they highly influence the outcome simulation in compromise with the computation

time. Big Step Size will compute fast but is sensitive to miss important events (as the beginning

of a collision) and if it is very small it will have a high computation cost. The same goes for

the Error, where the iterations to converge are larger when smaller is the requirement.

For future research purposes explained later on this report, the simulation of a contact

between two spheres (as Hertz model analyses) in ADAMS has been done and the Force has

been plotted over the time (see Fig. B.3) using different of the above commented settings. If

we take as a real reference, the modified setting that resulted on the purple curve, one can

14



observe that, taking a step size of a 1%, respect the plotted time, with the default settings

(orange curve in Fig. B.3), the result is quite discontinuous and presents an error of a 60% in

comparison with the purple curve. For the same solver but redefining the step size to 0.001%

(clear blue curve), the number of computations have grown by 103 (the computation time is not

scaled linearly) and the result approaches the real behavior of the collision, however, the time

required is quite big for a non-smooth result. After some search into ADAMS documentation

[1], one can find that if instead of using the default I3 Formulation, we can use SI2 Formulation,

a more stable and reliable formulation of the integrator that achieves good results with much

less computational cost, as can be appreciated with the red curve, in which the step size is of

a 1% and the error decreased only by a tenth. Another positive point for this solver is that

it has been noticed that if the step size is reasonable, the solver makes an interpolation when

approaching the collision event and adjusts the step size to match the first contact.
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Figure B.3: Different Simulation/Solver settings comparison for a two spheres collision

B.1.1.2 Hertz contact hypotheses checking

The validity of the Hertz contact model has been checked. In the next sections, the model will

be developed, but for now, the important point is to note that it is based in a spring. By the

definition of the contact, no adhesion phenomena is modeled; the initial contact is a point (two

spheres); because the collision is modeled by a spring, the interference between the bodies is

elastic; no friction has been added. Hence, only one hypothesis is left to check: the contact

area of the deformation is much more smaller than the objects’ dimension/curvature radii.

The previous simulation has been reproduced colliding a fixed sphere of 10 cm radius against

3 different spheres of 0.05, 5 and 10 cm which are provided with the same mass and the same

initial horizontal linear velocity (without gravity) as can be shown in Fig. B.4.
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Figure B.4: Hertz dimension hypothesis experiment setting

The results of the simulation show that this hypothesis is not checked during a collision (as

can be seen in Fig. B.5 and Fig. B.6). The evolution of the position for the three spheres and

the contact forces match exactly, meaning that the object shape is only taken into account to

compute a normal penetration distance and that is in the hands of the user make sure that the

contact parameters are set properly in order to simulate a real system. This output makes a

little bit more tricky the setting, as some common knowledge of the system should be used as

an input.
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Figure B.5: Horizontal position of the 3 spheres over the time
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B.1.1.3 Friction Settings

In the friction model there are some parameters that are user set. In the following paragraphs

some hints are provided as how to tune them.

ADAMS provides a set of default proposed parameters. However, one must not forget that

the software does not have any any material context unless the properties have been given

before. In order to set the friction coefficient values, experimental data can be obtained, but if

this is not easy to gather, ADAMS documentation gives a table with the static and dynamic

coefficients for numerous couples of materials [2], from where one can at least approximate the

values. Two notes, the first is that, unless the materials used are special, a standard value that

can be used for performing first simulations can be µs = 0.6 − 0.8 and µd = 0.4 − 0.6. The

second remark is that, independently of the pair of values for the friction coefficients, always

must be respected µs ≥ µd.

Regarding the transition velocities parameters, the best way to proceed is to simulate friction

behavior a first time using µs = µd = 0, in this way, the values of the slipping velocity can be

read but it does not have any dynamic effect into the simulation. Once the results are obtained,

one can read the values of vslip when the objects are slipping and also decide when the model

is considered static and read then vslip again. In this way a minimum and a maximum can be

obtained. Remark that this transition effect is fictitious, hence, the interest relies on obtaining

a compromise between small transition zones that respect the model and stable results / quick

convergence of the model. It is difficult to set generic values for these parameters because they

highly depend on the model.

B.1.2 Contact models crosschecking

B.1.2.1 Normal contact model crosschecking

In order to validate the two proposed models (the one for the spring and the one for the damper),

a co-simulation between ADAMS and SIMULINK has been performed. The simulated system

consists in the collision of two spheres, one is fixed and the other is given a constant velocity

in order to eliminate other forces that can influence the system. With the proper setting of the

parameters, two simulations have been performed:

1. A collision without damping. This behavior is achievable by setting cmax = 0. As can be

observed in Fig. B.7, the model presents some discrepancy in high penetrations. How-

ever, 2 cm penetration for a collision with elastic effects around the contact point (Hertz

hypothesis) is not a real effect. Nonetheless, the worst case scenario (even if it is not real)

presents a relative error < 1%.
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2. A collision without spring, only the damping effect has been taken into account. This

behavior is achievable by setting k = 0. As can be observed in Fig. B.8, the model

presents some discrepancy in the transition zone but the maximum relative error is <

2%.
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Figure B.7: Checking of the spring model in a collision.
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Figure B.8: Checking of the damper model in a collision

B.1.2.2 Friction model crosschecking

In order to validate the proposed model, a co-simulation between ADAMS and SIMULINK

has been performed. The simulated system consists in a fix plane and a sphere. The sphere is

provided with a small penetration with the plane and a constant velocity along the plane, in this

way, the normal force is constant and the only tangential force is the one opposed to friction.

As can be observed in Fig. B.9, the model is accurate, presenting relative errors < 0.001%
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taking into account that the friction force directly depends on the accuracy of the normal force

computation.
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Figure B.9: Friction coefficient function checking with ADAMS.

B.2 Geometric relations computation

The next sections will have its on notation to do not add many intermediate variables to the

main text. The main computed parameters: the penetration depth δn, the collision length lc,

and the slipping contact velocity vslip for each contacting bar. Also, the geometric relation of

l21min, l21min, l21, qc2j, l12 and t22 are developed.

B.2.1 Penetration depth (δn), collision length (lc) and slipping ve-

locity (vslip) computation

1In order to compute the penetration distance respect a fix point, a conversion of the model to

a virtual width (see Fig. B.10) eliminating the link width and adding it to the object’s radius

has been performed. Now, applying basic geometry to compute the distance between a line

and a point, and substracting it from the virtual radius of the object, the penetration depth is

obtained as (variables defined in Table B.1):

δn = (rc + w)− |a · xc + b · yc + c|√
a2 + b2

(B.1)

1To simplify the notation, symbols can change in the appendices in order to not create many intermidiate
variables. Refer to figures of the section.
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if δn ≥ 0 contact

else no contact

r
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Figure B.10: Transform the system to a virtual length system.

Given the above equation, the point of the line where the contact is happening can be

obtained, which will provide the collision length lc by

xr =
b(b · xc − a · yc)− a · c

a2 + b2

yr =
−a(b · xc − a · yc)− b · c

a2 + b2

lr =
√
x2r + y2r

(B.2)

In order to compute the slipping velocity of the con-

tact point, the angular velocity q̇c of the analyzed link

is needed. As can be seen in Fig. B.11, the slipping ve-

locity corresponds to the tangential velocity on the con-

tact point expressed on the reference base, thus for the

second link, the velocity of the first link must be taken

into account. Note that the tangential force opposes vslip

and that this one depends on the direction of q̇c. Also

is interesting to remark that the slipping velocity on l21

(and by extension, the friction force) only exists if the

contact point is not on the line defined by the link, i.e.,

only exists if the link has width.
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lrv
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.
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FT vN

Figure B.11: Slipping velocity of
the contact point.

The parameters for each link are summarized in the following table:
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Variables Link l21 Link l22

a sin q21 sin(q21 + q22 + ϕ22)
b − cos q21 − cos(q21 + q22 + ϕ22)
c 0 0
xc −base −base− l21 cos q21
yc rc rc − l21 sin q21
vslip wq̇21 l21q̇21 + w(q̇21 + q̇22)

Table B.1: Variables definition for the collision computation.

In the table above, can be noticed that in order to compute δn of l22, the reference O has

been moved to the end of l21 in order to have the same equations.

B.2.2 Variables reduction

2As introduced previously, the link l21 is bounded between a minimum and a maximum value.

Hence, in order to obtain these bounds:

rc+w

(xc, yc)h-w

x

y

O

q21

l21

qc21

qc22

t22min

t22max

(x21, y21)

(q22+φ22)

(x22, y22)

s21

s22

Figure B.12: Diagram for the computation of variables reduction.

2To simplify the notation, symbols can change in the appendices in order to not create many intermidiate
variables. Refer to figures of the section.
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where, s21 and s22 are the link generator line.These two lines are in the contact position, thus

they are perpendicular to the object radius in the contact point.

Minimum l21

The condition to compute l21min is to find the intersection between s21 and s22 (see Fig. B.12)

when qc22 = qc22min.

Variables Link l21 Variables Link l22

a21 sin qc21 m22 tan(qc22min − π/2)
b21 − cos qc21 c22 y22 −m22x22
c21 0 x22 −base+ (rc + w) cos qc22min

y22 rc + (rc + w) sin qc22min

Table B.2: Variables definition to compute l21.

l21min =
√
x221min + y221min ←



lc21 =
√
x2c + y2c − (rc + w)2

qc21 = 2 tan−1

(
−(rc + w) +

√
(rc + w)2 + l2c21 − x2c

lc21 + xc

)

x21min =
c21 + (c21/b21)

(−a21/b21)−m22

y21min =
(−c22/m22) + (c21/a21)

(−b21/a21)− (1/m22)
(B.3)

Maximum l21

The condition to compute l21max is to find the intersection between s21 and s22 (see Fig. B.12)

when t22min = t22max.

l21max = solve(l21, qc22)


l21 cos qc21 − t22max sin qc22 − (rc + w) cos qc22 − base

l21 sin qc21 + t22max cos qc22 − (rc + w) sin qc22 − rc
t22max = h− w − l21 sin qc21

(B.4)

where, qc21 is computed in (B.3) and the other variables are defined in Fig. B.12.

Computation of t22

Given a value of l21 inside the bounds,

t22 = 0.5(t22min + t22max) (B.5)
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where

t22max = h− w − l21 sin qc21

t22min =
√

(l21 cos qc21 − base)2 + (rc − l21 sin qc21)2 − (rc + w)2
(B.6)

Computation of l12

Given l11, l21, l12, l22 and ϕ22, l12 is computed based on

a right trapezoid (see Fig. B.13). The initial angle con-

sidered between l11 and l21 is 90◦, while ϕ22 can change.

Finally, the relation:

l12 =
√

(l11 − l22 sinϕ22)2 + (l21 + l22 cosϕ22)2 (B.7)
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Figure B.13: Diagram for the
computation of l12.
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Appendix C

CAD design
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