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1. State of the art 

1.1. History of the Solar Sail 

From a scientific point of view the dawn of the Solar Sail implementation can be placed in the 

1920s. When the Russian scientists Konstantin Tsiolkovsky and Friedrich Arturowisch Zander 

noted that a very thin sheet in space would be able to achieve high speeds propelled by solar-

light pressure. Afterwards, Carl Wiley in 1951 and Richard Garwin in 1958 published the first 

technical papers about solar sails of the modern era. In fact, Garwin was the first one to use 

“solar sailing” applied to space vehicles.  

Subsequently they were several studies and works related with the solar sail, but the lack of a 

material light enough impeded the realization of this new idea. Years later, with the discovering 

of new and stronger materials the idea of solar sailing became stronger. In the 90s and the 00s 

new important studies were realised by Japan, Europe and US. Specially the Japanese space 

agency (JAXA) and NASA have given big importance to the solar sail option for space exploration 

and utilization. Several trials of sails deployment in vacuum chambers were performed by ESA 

and NASA during the first years of the 21th century. Also, JAXA achieved a successful sail-

unfurlment test from a sub-orbital rocket. 

All these achievements have become important steps into the development of the concept of 

the solar sail. But in the year 2010 one success marked a milestone in the progress of the solar 

sail as an operational in-space propulsion system. JAXA accomplished the unfurling of the 

IKAROS solar sail technology demonstrator in the interplanetary space between the solar orbits 

of Earth and Venus. That spacecraft demonstrated that the sail could be used for controlling its 

own attitude relative to the Sun and for interplanetary propulsion.  On the other part, NASA 

succeed in the launching and unfurling of the Nanosail-D2. This spacecraft was created to 

demonstrate that the solar sails could be unfurled in low orbits to work as parachute and 

accelerate the atmospheric re-entry of carrier rockets and obsolete satellites attached to them.  

Those events show that it exists a myriad of possible applications of this new technology and 

the solar sail could be the new base of technology of the near-future spacecrafts. 

 

1.2. Current situation of the control of the Solar Sails 

Every new spacecraft implemented has to possess a control to perform a proper activity. In the 

actual spacecrafts traditional methods including reaction wheels and propellant ejection are 

used to perform the control. However current implementations of the Solar Sails like IKAROS 

are using cutting-edge control methods.  

IKAROS uses a reflective control device (RCD) to perform a control attitude of the solar sail. The 

basic idea is to change the optical properties electronically, then having different solar radiation 

pressure torque used to perform the control of the spacecraft. To accomplish this change of the 

optical properties a peculiar material is used. The sail is recovered by PDLC films, which consist 

in liquid crystal microdroplets diffused in a polymer matrix. The liquid crystal droplets are 

optically birefringent while the polymer is an optically isotropic material. If there is not an 
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electric field, the optical axes of individual bipolar droplets align randomly, thence having 

different refractive indices across the film. 

Apart from the current implementations of the control of solar sails, like IKAROS one, there is a 

great amount of theoretical studies to find the most appropriate way to control the solar sail. 

As some examples, in 2007 Bong Wie and David Murphy studied the attitude dynamic modelling 

and control profoundly considering a solar sail as a rigid body with different attitude control 

actuators. Also, in 2005 Stephanie Thomas and Michael Paluszek considered the flexible 

dynamics. Then a passive attitude control criterion for an axisymmetric solar sail with a general 

SRP model was studied by Xiaosai Hu in 2014. Then Shengping Gong and Junfeng Li in 2014 

studied the spin-stabilized control method for a sailcraft in a displaced solar orbit. The stability 

was studied for the coupled attitude/orbit dynamics.   

All these studies show that there is a growing of interest in the control of the solar sails. This 

new technology must mature, and all those studies are beneficial to provide knowledge and 

achieve a better performance of this new technology in the near-term future. 
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2. Introduction 
 

Attitude coordinates are a batch of coordinates {𝑥1, 𝑥2, … , 𝑥𝑛} that completely define the 

orientation of a rigid body in relation with a reference frame. In the case of this study, to 

completely determine the attitude of the Solar Sail, it has been used a set of three angles (Euler 

angles: roll, pitch, yaw {Φ, Ѳ, ѱ}) that describe the attitude of a reference frame β (Body Frame) 

with respect to an inertial frame 𝒩. 

To have a proper behaviour in the space, every spacecraft must control its own attitude. 

Therefore, have a knowledge of the attitude of the spacecraft and restrict non-desirable 

movements that can cause a bad movement of the spacecraft, with the possibility to lose the 

authority of the attitude of the spacecraft. To avoid this situation, every spacecraft has to own 

a control calculation and an actuator which provides this control. 

The aim of this work is to find a proper control with an appropriate actuator for a conventional 

squared solar sail. This research will consider different types of control, conventional ones and 

others up-to-date. Focusing in the benefits that provide the usage of more modern controls. 

Also, it will be studied the effect that creates the presence of the flexibility using a conventional 

control. The solar sail is normally a very big spacecraft; therefore, little flexibility of the structure 

can cause appreciable effects in the solar sail. Finally, this work is aimed to be a background for 

a future study and behave as a tool to make deeper studies in the future. 

This study focuses to find the most beneficial control of a Solar Sail situated in the L1 Lagrange 

point. Several controls will be implemented in this work to find the most suitable one. From the 

most generic ones, like the Quaternion Error Control or the Sliding Mode Control, to the most 

specialized ones, like the PD control plus a term considering flexible appendages with output 

feedback controllers. A comparison of the performance of each of the controls will be made 

reaching a final selection of the most proper control.  

Furthermore, it will be studied the performance of each control in reducing the effects of the 

disturbance in the control due to the flexibility. And a selection of the most suitable control will 

be made. 
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3. Dynamics of the Solar Sail 

3.1. Abstract 

The dynamics of an object express the behaviour of this object in relation with a reference 

frame. The movement of a spacecraft changes depending of the point of reference selected. 

Then the election of a proper reference point, thus a proper reference frame, is crucial to have 

a knowledge of the behaviour of an object in the space. 

 

3.2. Reference frame 

To select a proper reference frame, it is needed to have a first knowledge of the position of the 

spacecraft during this study. Then the first assumption must be decided; where it will be the 

spacecraft at each time. In other words, mainly thanks to Kepler, which in which orbit will be the 

spacecraft.  

In this case, it has been selected the L1 Lagrange point in a 00of inclination. This orbit has very 

nice properties that benefit a lot in particularly the Solar Sail. The L1 point is always between 

the Sun and the Earth in its same relative position. Therefore, there not exist any possibility of 

an eclipse of the Earth to the Solar Sail. Of course, other planets, like Mercury or Venus, will 

make some little eclipses to the Solar Sail, but in this first study it won’t be considered. Then it 

is selected a simple case scenario where the rays of the Sun will impact on the Solar Sail during 

all the year.  

 

Figure 1 . L1 Lagrangian point 

It has been selected an inertial frame as the reference of the body frame. The solar sail will 

remain in the Lagrangian Point L2, meaning that its motion with respect to the Sun is relatively 

slow; hence it can be considered that the solar sail is fixed in the Space while it is correcting its 

attitude. Then the error made using the inertial frame as a reference frame is negligible. 
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Once the position of the Solar Sail is selected, the next step it will be to which point it will need 

to be referenced. In this case there are two basic options; the Sun and the Earth as origins of the 

reference frame. It has been selected the Sun as the origin of the reference frame. Basically, for 

two reasons, first the sun is in essence the provider of energy of the Solar Sail, then it has way 

more importance than the Earth. The second one is more important, the relative position of the 

Sun related with the Solar Sail is mainly the same in the time when the control is implemented 

(1-week maximum). Then it can be stated that the Sun is fixed in the space during the control of 

the Solar Sail. Therefore, this assumption gives the possibility to select the Inertial Reference 

frame with the Sun as the origin of the centre of reference. Moreover, considering this 

reference frame the dynamic equations calculation and the kinematics calculation will be way 

simpler. Avoiding then changes of reference frames and the errors and complexity that can 

cause a change of the reference frame. 

 

3.3. Euler’s Rotational Equations of Motion 

 

The Euler’s Rotational Equations of Motion are an ensemble of differential equations that 

describe the rotational motions of a rigid body with respect to its centre of mass. They are the 

principal and basic tool to be able to control any spacecraft.   

Those equations come from the principle of conservation of the angular momentum 𝐻⃗⃗ ̇ of a rigid 

body respect to its centre of mass. The basic idea is that the angular momentum is conserved 

(then able to control) if the total external torque acting on the object is zero. For a detailed 

explanation of the steps made to arrive to the Euler’s Rotational Equations of Motion it is 

recommended to visit the following bibliography [14]. 

Now there are presented the Euler’s Rotational Equations of Motion: 

𝐽𝜔⃗⃗ ̇ + 𝜔⃗⃗ × 𝐽𝜔⃗⃗ = 𝑀⃗⃗  ( 1 ) 

Then for a principal-axis reference frame the Euler’s equation become:  

𝐽1𝜔⃗⃗ 1
̇ − (𝐽2 − 𝐽3)𝜔⃗⃗ 2𝜔⃗⃗ 3 = 𝑀⃗⃗ 1 ( 2 ) 

𝐽2𝜔⃗⃗ 2
̇ − (𝐽3 − 𝐽1)𝜔⃗⃗ 3𝜔⃗⃗ 1 = 𝑀⃗⃗ 2 ( 3 ) 

𝐽3𝜔⃗⃗ 3
̇ − (𝐽1 − 𝐽2)𝜔⃗⃗ 1𝜔⃗⃗ 2 = 𝑀⃗⃗ 3 ( 4 ) 

In the equations (2), (3), (4) it has decomposed the Euler’s equations of the body frame with 

respect to the Inertial frame. Therefore, usually the angular velocity 𝜔⃗⃗  is expressed as 𝜔⃗⃗ 𝐵/𝑁. 

Furthermore, those three equations (2), (3), (4) are coupled, nonlinear ordinary differential 

equations for the angular velocity 𝜔⃗⃗ 1, 𝜔⃗⃗ 2, 𝜔⃗⃗ 3 of a rigid body. 𝑀⃗⃗ 1, 𝑀⃗⃗ 2, 𝑀⃗⃗ 3 are the external torques 

acting on the body about its centre of mass. And 𝐽1, 𝐽2, 𝐽3 are the principal moments of inertia of 

the spacecraft referring to the its centre of mass.  
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3.3.1. External torques 

The objective of the attitude control is to create a torque to counteract the external torque. In 

fact, the spacecraft loses its desired attitude because an external force is “pushing” or “pulling” 

the spacecraft in a non-desired direction.  

There are many different torques influencing the spacecraft in the Space. For example, the 

gravitational attraction of other planets, the magnetic torque disturbance of other planes, solar 

windmills, solar storms, aerodynamic drag (if the spacecraft is close enough to the Earth) … But 

the most persistent disturbance which causes a major torque on the Solar Sail is the Solar 

Radiation Pressure Force. Other disturbances like the gravitational attraction of the Earth or the 

Magnetic disturbance have a minor effect on the spacecraft in this particular case. Remember 

that the Solar Sail is situated in the L1 point. Approximately 1495978 km. The noticeable effects 

of the magnetic disturbance of the Earth on the spacecraft are when the spacecraft is inside the 

Van Allen radiation belts. The Van Allen belts exist up to 60000 km above the Earth way below 

than the position of the Solar Sail, therefore in the situation of the Solar Sail the effects of the 

magnetic field will be negligible.  

On the other hand, the effect of the gravitational attraction of the Earth is counteracted by the 

effect of gravitational attraction of the Sun in the L1 Lagrange Point. Therefore, there is no need 

to consider any major perturbance due to gravitational effects. 

 

3.4. Solar Radiation Pressure 

The Solar Radiation Pressure is the key factor for the implementation of the Solar Sail. It is the 

essence of the creation of motion of the Solar Sail. But, in the attitude control point of view, the 

Solar Radiation Pressure is the principal inconvenient, the main disturbance. So, it is 

indispensable to have a good idea of what is it and how does it affect to the spacecraft. 

Imagine an existent sail in the sea. The basic idea of how it is propelled is the action-reaction 

force. The wind “pushes” the sail. In other words, the particles of air collide the sail and transfer 

their momentum to the sail. Therefore, giving a force to the sailcraft that permits the movement. 

Analogously happens to the solar sail concept. The particles of sun (photons) collide into the sail 

of the spacecraft. Those photons transfer their momentum to the sail, creating a reaction force 

in the opposite direction of the reflected photons.  

In the case of the sailing on the sea it exists a friction force between the sailcraft and the water 

and the sailcraft and the air that impedes to reach very high velocities. But in the Space, there is 

mainly non-friction! Thus, for the case of the solar sail it is possible to reach very high velocities. 

Thanks to the constant solar force exerted by the Sun there is a constant acceleration that 

increases the velocity drastically within a period of time large enough. 

3.4.1. Solar Radiation Pressure Model 

There are different types of models of the Solar Radiation Pressure. For example, models based 

on the specular reflection and reflectivity of the material of the sail. In this case it has been 
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selected a more generic model. It considers a flat Lambertian surface located at 1 astronomical 

unit from the Sun. Thence it is a quite acceptable model for this study. 

In this section the solar sail will be assumed a rigid body because the thrust vector of the solar 

sail and its control are performed in a very slow way. Then the possible vibrations (because of 

the actual flexibility of the spacecraft) will be avoided. In the following sections it will be 

explained the effect of having flexible appendages. But in the model of the solar radiation 

pressure it won’t be necessary. 

The Solar Radiation Pressure is caused when the photons impact on the surface. It exists a 

fraction of the photons that are absorbed by the sail (𝜌𝑎), then a fraction specularly reflected 

(𝜌𝑠) and another fraction diffusely reflected (𝜌𝑑) having: 𝜌𝑎 + 𝜌𝑠 + 𝜌𝑑 = 1 

If the photons are absorbed by the sail, they transfer their momentum to the sail as explained 

before. That cause a force to the sail, but it exists a loss of energy in the absorption of the photon 

by the sail. Mainly in form of temperature. On the other case, if the photons are reflected the 

loss of energy during the impact decreases a lot. Then permitting a bigger transfer of the 

momentum and then a larger net force to the solar sail. 

Usually the values of the coefficient of specular reflection (𝜌𝑠) of the photons of an average 

spacecraft are approximately 𝜌𝑠 = 0.4/0.5 . Whereas in the case of the solar sail the coefficient 

of the specular reflection (𝜌𝑠) increase up to 0.94/0.95. Theoretically in order to have a 

maximum force this coefficient should be 1. 

The generic expression of Solar Radiation Pressure force acting in a Lambertian surface located 

at 1 astronomical unit (AU) from the Sun is the following: 

𝐹 = 𝑃𝐴 {𝜌𝑎(𝑆 · 𝑛⃗ )𝑆 + 2𝜌𝑠(𝑆 · 𝑛⃗ )
2
𝑛⃗ + 𝜌𝑑(𝑆 · 𝑛⃗ ) (𝑆 +

2

3
𝑛⃗ )} 

( 5 ) 

Using the eq. (5) it can be simplified into the following form: 

𝐹 = 𝑃𝐴(𝑆 · 𝑛⃗ ) {(1 − 𝜌𝑠)𝑆 + [2𝜌𝑠(𝑆 · 𝑛⃗ ) +
2

3
𝜌𝑑] 𝑛⃗ } 

( 6 ) 

Where: 

- 𝑃 = 4,563 × 10−6𝑁/𝑚2 that is the nominal solar radiation pressure constant at 1 AU 

from the Sun 

- 𝐴 is the surface area 

- 𝑛⃗  is a unit vector normal to the surface 

- 𝑆  is a unit vector pointing from the Sun to the surface, 𝑆 = 𝑐𝑜𝑠𝛼𝑛⃗ + 𝑠𝑖𝑛𝛼𝑡  ; 

Where 𝛼 is the sun angle between the normal to the surface and the sunline and 𝑡  is the 

transverse unit vector as can be seen in Fig.2: 
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Figure 2 Solar Radiation Pressure Force Diagram 

3.4.2 Solar Radiation Pressure Torque  

The net force of the Solar Radiation Pressure is the major benefactor of the propulsion of the 

solar sail. Nevertheless, it has drawbacks. The main one is that the photons collide in all the 

structure and the structure is not completely perpendicular to the sunlines. Then it exists a 

torque produced that causes a disturbance in the attitude control of the spacecraft.  

The torque depends on the distance between the centre of pressure and the point of incidence 

of the net force. Bigger this distance, larger the torque exerted, thus more control torque 

needed. If the net force is done exactly in the centre of pressure of the spacecraft, then the 

torque will be zero. 

Also, if the coefficient of absorbance (𝜌𝑎) is zero and the centre of pressure is aligned with the 

centre of mass the unit vector between the centre of pressure and the centre of mass will be in 

the same direction (𝑆 · 𝑛⃗ = 0). In other words, α will be zero and the torque will be zero.  

In fact, there exist more complex ways to control the attitude of the spacecraft changing the 

relative position between the CM (Centre of Mass) and the CP (Centre of Pressure) using the 

idea previously explained. 

The expression of the torque is the following: 

𝑇⃗ = 𝑟 × 𝐹  ( 7 ) 

Where  

- 𝑟  is the point of incidence 

- 𝐹  is the Solar Radiation Pressure Force 

 

To do a first approximation of the torque needed to control it has been selected a distance equal 

to the 10% of the total length of the sail. Assuming a squared sail of 40𝑥40 𝑚2 and assuming 

that the CP (centre of pressure) is situated in the middle of the sail, the point of incidence will 

be ± 4 𝑚𝑒𝑡𝑒𝑟𝑠 in the vertical direction and ± 4 𝑚𝑒𝑡𝑒𝑟𝑠 in the horizontal direction. In the 

following sketch it can be seen the position of the point of incidence of the sunlines to have a 

rough approximation of the situation of this point. 
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Figure 3 Point of incidence of the rays of the Sun 

 

3.5. Euler’s Rotational Equations of Motion considering flexible appendages 

 

A real Solar Sail is a flexible object. It is composed by a minimum of four appendages that form 

the axis of the Solar Sail. Those four appendages are flexible. Therefore, it is necessary to 

consider the effects of the flexibility when computing the control of the spacecraft. 

The Euler’s Rotational Equation of Motion can be written under the hypothesis of small elastic 

deformations (See Bibliography [7]). 

𝐽𝜔⃗⃗ ̇ + 𝛿𝑇𝜂 ̈ = −𝜔⃗⃗ × (𝐽𝜔⃗⃗ + 𝛿𝑇𝜂 ̇) + 𝑢⃗  ( 8 ) 

𝜂 ̈ + 𝐶𝜂 ̇ + 𝐾𝜂 = −𝛿𝜔⃗⃗ ̇ ( 9 ) 

 

Those equations have the angular velocity of the spacecraft and the modal variables as the state 
variables. In order to be able to compute all the variables they have to be isolated. It is possible 
to isolate those variables to obtain the dynamics of the flexible spacecraft (See Bibliography [7]). 

𝜔⃗⃗ ̇ = 𝐽𝑚𝑏
−1 [−𝜔⃗⃗ × (𝐽𝑚𝑏𝜔⃗⃗ + 𝛿𝑇𝜓⃗ ) + 𝛿𝑇(𝐶𝜓⃗ + 𝐾𝜂 − 𝐶𝛿𝜔⃗⃗ ) + 𝑢⃗ ]  ( 10 ) 

𝜂 ̇ = 𝜓⃗ − 𝛿𝜔⃗⃗   ( 11 ) 

𝜓⃗ ̇ = −(𝐶𝜓⃗ + 𝐾𝜂 − 𝐶𝛿𝜔⃗⃗ )  ( 12 ) 

Having: 

𝐽𝑚𝑏 = 𝐽 − 𝛿𝑇𝛿  ( 13 ) 

𝜓⃗ = 𝜂 ̇ + 𝛿𝜔⃗⃗   ( 14 ) 
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With 𝜔⃗⃗  (angular velocity of the spacecraft), 𝜂  (modal coordinate vector) and  𝜓⃗  (total velocity of 
the flexible appendages) as the state variables of the problem.  

Then: 

-𝐶 = 𝑑𝑖𝑎𝑔{2𝜉𝑖𝜔⃗⃗ 𝑛𝑖, 𝑖 = 1,… ,𝑁} = damping matrix 

-𝐾 = 𝑑𝑖𝑎𝑔{𝜔⃗⃗ 𝑛𝑖
2 , 𝑖 = 1,… ,𝑁} = stiffness matrix 

-N=number of elastic modes considered 

-𝜉𝑖= damping associated at each elastic mode 

-𝜔⃗⃗ 𝑛𝑖= natural frequency of each elastic mode 

-𝐽 is the matrix of inertia considering the spacecraft as a rigid body 

- 𝛿 is the coupling matrix between the flexible and rigid dynamics 

-𝐽𝑚𝑏is the main body inertia matrix 

As a main difference between this flexible case and the rigid body case is the adding of the modal 

variables ( 𝜂  𝑎𝑛𝑑 𝜓⃗  ). The first one 𝜂  is the modal coordinate vector whose derivate is the modal 

velocity 𝜂 ̇. It is a non-direct measuring concept; this variable is very related with the difference 

between the total velocity of the flexible appendages 𝜓⃗  (which corresponds to the second modal 
variable added) and the global angular velocity of the flexible spacecraft. As a first idea, the 
objective is to achieve those to modal variables to become zero. Then the sailcraft won’t have 
any movement due to its flexibility and will perform a simpler global movement. That means a 
simpler way to control its attitude and a better knowledge of each position and inclination at 
any time. 

Referring to the explained before, N represents the complexity of the movement of the flexible 
appendages. As N increases, the movement of the flexible appendages becomes more complex. 
Then the dimensions of the damping matrix and the stiffness matrix increase. This increase of 
dimensions will suppose an increase of the difficulty to model the control. To model a simple 
control, it has been selected to have only 1 elastic mode considered. Due to the fact that it has 
been proved, by several trials of the simulator, that the values of the angular velocities don’t 
change a lot increasing N and then the complexity of the movement itself. The change of angular 

velocity is more sensible to the magnitude of the modal variables (𝜓⃗  𝑎𝑛𝑑  𝜂  ) and not the 
quantity of different modal variables existent.   
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4. Rotational Kinematics of the Solar Sail 
 

The kinematics of a spacecraft define the actual inclination of the spacecraft in any time. 

Without the implementing of rotational kinematics, it is impossible to control the attitude of any 

spacecraft. The concept of rotational kinematics is purely mathematical. Here it will be explained 

the key concepts of rotational kinematics to be able to control the attitude of a spacecraft. For 

a more complete explanation of rotational kinematics, to have a knowledge of where do the 

matrices, concepts and equations come from it is recommended to see the bibliography [14] in 

the chapter of Rotational Kinematics. 

 

4.1. Direction Cosine Matrix 

Imagine two reference frames, each one based in a set of three orthogonal vectors. The frame 

N, based on the set of vectors { 𝑛1⃗⃗⃗⃗ , 𝑛2⃗⃗⃗⃗  , 𝑛3⃗⃗⃗⃗ } and the frame B, based on the set of vectors 

{ 𝑏1
⃗⃗  ⃗, 𝑏2

⃗⃗⃗⃗  , 𝑏3
⃗⃗⃗⃗ }.  

 

Figure 4 Reference frames 

To express the vectors of the reference B in terms of the vectors of the reference N it must be 

done in the following way: 

𝑏1
⃗⃗  ⃗ = 𝐶11𝑎1⃗⃗⃗⃗ +  𝐶12𝑎2⃗⃗⃗⃗ + 𝐶13𝑎3⃗⃗⃗⃗  ( 15 ) 

𝑏2
⃗⃗⃗⃗ = 𝐶21𝑎1⃗⃗⃗⃗ +  𝐶22𝑎2⃗⃗⃗⃗ + 𝐶23𝑎3⃗⃗⃗⃗  ( 16 ) 

𝑏3
⃗⃗⃗⃗ = 𝐶31𝑎1⃗⃗⃗⃗ +  𝐶32𝑎2⃗⃗⃗⃗ + 𝐶33𝑎3⃗⃗⃗⃗  ( 17 ) 

Those three equations can be expressed in matrix notation as follows: 

[

𝑏1
⃗⃗  ⃗

𝑏2
⃗⃗⃗⃗ 

𝑏3
⃗⃗⃗⃗ 

] = [

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] [

𝑎1⃗⃗⃗⃗ 

𝑎2⃗⃗⃗⃗ 

𝑎3⃗⃗⃗⃗ 

] = 𝐶𝑁/𝐵 [

𝑎1⃗⃗⃗⃗ 

𝑎2⃗⃗⃗⃗ 

𝑎3⃗⃗⃗⃗ 

] 

 

( 18 ) 

 



Attitude Control of a Solar Sail               Final Thesis Bachelor’s Degree  

 
 

18 
 

Where the matrix 𝐶𝑁/𝐵 is the direction cosine matrix. It describes the relative orientation of the 

reference B with the reference N. This matrix is a key aspect to know the actual inclination of 

the solar sail in the desired reference frame. For example, the direction cosine matrix will allow 

to know the attitude in the inertial frame from the calculations done in the body frame. 

Moreover, this direction cosine matrix is an orthonormal matrix, thus its inverse it is equal to its 

transpose and the multiplication between the actual matrix by the transpose gives the identity 

matrix as the result: 

𝐶−1 = 𝐶𝑇 ( 19 ) 

𝐶𝐶𝑇 = 𝐼 ( 20 ) 

 

Those properties will simplify a lot the future calculations of the attitude. 

4.2. Euler Angles 

To change the orientation from one reference frame to the other it is trivial that the object must 

rotate. In fact, that is the information that gives the direction cosine matrix, the rotation 

effectuated from one reference frame to another. 

Euler’s eigenaxis rotation theorem states that if a rigid body rotates about an axis that is fixed 

in the body and stationary in an inertial reference frame, the rigid body can change its attitude 

from any given orientation to any other orientation. This axis of rotation is called the Euler axis. 

Furthermore, any rotation can be decompounded into the multiplication of three trivial 

rotations. So, having three Euler axes with three Euler angles effectuated, each one orthonormal 

to the others. Each trivial rotation expressed within a matrix as follows: 

𝐴1(𝜓) = [

1 0 0
0 𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓
0 −𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

] , 𝐴2(𝜃) = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] , 𝐴3(𝜙) = [
𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙 0
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0

0 0 1

] 
( 21 ) 

There are 12 ways to do any rotation within the Euler angles. Depending on the order selected 

of the Euler angles to rotate it will exist one sequence or another. Therefore, it exists twelve 

different direction cosine matrices that express the same rotation. In this case of study, it has 

been selected the sequence 123, where the first factor is the 𝐴1(𝜓), the second factor is 

𝐴2(𝜃) and the third one is 𝐴3(𝜙). So, having the expression of the direction cosine matrix as 

follows: 

𝐴𝐵/𝑁 = 𝐴123 = 𝐴1(𝜓) ∗ 𝐴2(𝜃) ∗ 𝐴3(𝜙) 

= [

𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 −𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜃 −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
] 

( 22 ) 

Kinematic differential equations 

Appling the direction cosine matrix concept but now with angular velocities it is possible to 

derive the kinematic rotational equations of motion. It is possible to know the derivative of the 
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direction cosine matrix applying the following formula. For a more detailed explanation it is 

recommended to visit the bibliography [14]. 

𝐴̇𝐵/𝑁 = −[𝜔⃗⃗ 𝐵/𝑁]^ 𝐴𝐵/𝑁 ( 23 ) 

 𝐴𝐵/𝑁 is the direction cosine matrix and [𝜔⃗⃗ 𝐵/𝑁]^ are the angular velocities of the object 

expressed in a matrix on skew symmetric form. That means that the matrix will have the 

following shape: 

[𝜔⃗⃗ 𝐵/𝑁]^ = [

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
] 

( 24 ) 

Applying the eq.23 selecting a particular 𝐴𝐵/𝑁 with a singular sequence is it possible to derive 

the kinematic differential equations after doing some algebraic steps. For example, the 

kinematic differential equations derived from the sequence 312 in a matrixial form is the 

following: 

[

𝜓̇

𝜃̇
𝜙̇

] =
1

𝑐𝑜𝑠𝜃
[

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛 𝜓𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 𝜓𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠 𝜓𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛 𝜓𝑐𝑜𝑠𝜃
0 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

] [

𝜔1

𝜔2

𝜔3

] 

( 25 ) 

At this point, the kinematics and the dynamics connect. Thanks to the dynamics it is possible to 

calculate the kinematics of a future iteration. Then, to numerically integrate the Euler angles 

thus be able to know the future values of the attitude it is only necessary to know the actual 

values of attitude and angular velocities of the object. 

However, this formulation has a problem. The existence of singularities. There are some values 

of the Euler angles that can crash the simulation. For example, in this particular case if 𝜃 is 0, it 

will produce that the first factor will go to a singularity → 𝜃 = 0 →
1

𝑐𝑜𝑠𝜃
=

1

0
 

To avoid those singularities, it is necessary to implement a new system of numbers. The 

quaternions. 

 

4.3. The Euler Parameters or Quaternions 

The Quaternions are a mathematical system of numbers in a four-dimensional form. They were 

introduced by William Rowan Hamilton in 1843. There is not a direct visualization of 

quaternions. But they have some properties that help a lot to do the control of an object. This 

system of numbers is robust against singularities and other problems happened in the previous 

case.  

The quaternions or Euler parameters {𝑞1, 𝑞2, 𝑞3, 𝑞4} are defined as follows: 

𝑞1 = 𝑒1 sin (
𝜃

2
) 

( 26 ) 
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𝑞2 = 𝑒2 sin (
𝜃

2
) 

( 27 ) 

𝑞3 = 𝑒3 sin (
𝜃

2
) 

( 28 ) 

𝑞4 = cos (
𝜃

2
) 

( 29 ) 

Where {𝑒1, 𝑒2, 𝑒3} are the Euler eigenaxis vector. Each component corresponds to the axis of the 

rotation of one of the three trivial rotations that are made when performing a rotation. As the 

three axes are orthonormal it can me stated the subsequent property: 

𝑒1
2 + 𝑒2

2 + 𝑒3
2 = 1  ( 30 ) 

Then if eq.30 is implemented, therefore: 

𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 = 1 ( 31 ) 

The four quaternion variables are constrained by the previous equation. To assure that the 

quaternions work in a proper way the equation (31) must be always satisfied. Usually if the initial 

conditions of the quaternions satisfy this condition, the condition will be satisfied during all the 

simulation. For example, a typical initial condition for initialize quaternions is the following: 

{𝑞1(0) = 0, 𝑞2(0) =
1

√3 
, 𝑞3(0) =

1

√3 
, 𝑞4(0) =

1

√3 
} . 

It must keep in mind that the quaternions have different properties than vectors. For example, 

the quaternion multiplication is not intuitive. However, those properties are not needed to be 

considered while doing the control. But it is useful to be aware that the quaternions are not as 

simple as vectors for future implementations. 

It is feasible to express the direction cosine matrix in terms of the quaternions just by 

substituting the Euler angles by the quaternions, applying the equation (31) and the following 

trigonometric identities: 

sin2 𝜃 + cos2 𝜃 = 1 ( 32 ) 

sin𝜃 = 2 sin (
𝜃

2
) cos (

𝜃

2
) 

( 33 ) 

cos𝜃 = cos2 (
𝜃

2
) − sin2 (

𝜃

2
) = 2 cos2 (

𝜃

2
) − 1 = 1 − sin2 (

𝜃

2
) 

( 34 ) 

Then, having the parametrization of the direction cosine matrix in terms of quaternions: 

𝐴𝐵/𝑁 = [

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4)

2(𝑞2𝑞1 − 𝑞3𝑞4) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 + 𝑞1𝑞4)

2(𝑞3𝑞1 + 𝑞2𝑞4) 2(𝑞3𝑞2 − 𝑞1𝑞4) 1 − 2(𝑞1
2 + 𝑞2

2)

] 

 

( 35 ) 
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4.3.1. Kinematic differential equations with quaternions 

Once the direction cosine matrix using quaternions it is known, it is possible to formulate the 

kinematic differential equations using quaternions. Basically, the eq.23 must be implemented 

to obtain the derivatives of the quaternions. Thus, being able to numerically integrate the 

quaternions and be able to know their future values with the actual ones. 

Then, implementing the eq.23 the following big expression is reached: 

𝐴̇𝐵/𝑁 = −[𝜔⃗⃗⃗ 𝐵/𝑁]^𝐴𝐵/𝑁 = [

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0
] · [

1 − 2(𝑞2
2 + 𝑞3

2) 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4)

2(𝑞2𝑞1 − 𝑞3𝑞4) 1 − 2(𝑞1
2 + 𝑞3

2) 2(𝑞2𝑞3 + 𝑞1𝑞4)

2(𝑞3𝑞1 + 𝑞2𝑞4) 2(𝑞3𝑞2 − 𝑞1𝑞4) 1 − 2(𝑞1
2 + 𝑞2

2)

] 
( 36 ) 

After doing some simplifications and considering the constrain of the quaternions (31) it is 

possible to achieve the following equations: 

𝜔1 = 2(𝑞̇1𝑞4 + 𝑞̇2𝑞3 − 𝑞̇3𝑞2 − 𝑞̇4𝑞1) ( 37 ) 

𝜔2 = 2(𝑞̇2𝑞4 + 𝑞̇3𝑞1 − 𝑞̇1𝑞3 − 𝑞̇4𝑞2) ( 38 ) 

𝜔3 = 2(𝑞̇3𝑞4 + 𝑞̇1𝑞2 − 𝑞̇2𝑞1 − 𝑞̇4𝑞3) ( 39 ) 

Therefore, writing the previous equation in a matrix form and isolating the derivates of the 

quaternions the following expression is obtained: 

[

𝑞̇1

𝑞̇2

𝑞̇3

𝑞̇4

] =
1

2
(

0 𝜔3 −𝜔2 𝜔1

−𝜔3 0    𝜔1 𝜔2

   𝜔2

−𝜔1

−𝜔1

−𝜔2

      0 𝜔3

−𝜔3 0

)[

𝑞1

𝑞2
𝑞3

𝑞4

] 

 

( 40 ) 

It can be seen that the future quaternions depend on the current quaternions and the current 

angular velocities. With this formulation there is no danger to have any singularity. The problem 

with possible existing singularities in (25) is solved. However, it is not a such direct method that 

the previous one. Due to the fact there is not a way to see the quaternions in a three-

dimensional situation.  

 

4.4. Error function – Quaternion Error 

To do the control of the spacecraft the idea of the quaternion error has to be implemented. In 

the previous case, by numerical integration it is possible to know the current inclination of the 

spacecraft. But if the objective is to control the spacecraft it is needed to implement the 

quaternion error. The quaternion error is a column vector of four components, the four 

quaternion errors. This vector is used in the control. If the control works properly it will reduce 

the first three components up to zero and the fourth one up to one, always obeying the 

constraint (31). 

The quaternion error can be calculated in the following way: 
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𝐴𝑒 = 𝐴𝐵/𝑁𝐴𝐶
𝑇  ( 41 ) 

[

𝑞1𝑒

𝑞2𝑒
𝑞3𝑒

𝑞4𝑒

] = (

𝑞4𝑐 𝑞3𝑐 −𝑞2𝑐 −𝑞1𝑐

−𝑞3𝑐 𝑞4𝑐    𝑞1𝑐 −𝑞2𝑐

𝑞2𝑐

𝑞1𝑐

−𝑞1𝑐

𝑞2𝑐

𝑞4𝑐 −𝑞3𝑐

𝑞3𝑐 𝑞4𝑐

)[

𝑞1

𝑞2
𝑞3

𝑞4

] 

 

( 42 ) 

 

 

 

Where: 

𝑞 𝑐 = 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑒𝑑 𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛 = [

𝑞1𝑐

𝑞2𝑐
𝑞3𝑐

𝑞4𝑐

]=[

0
0
0

±1

] 

( 43 ) 

The commanded quaternion roughly speaking tells the objective of the control, for example if 

the objective is to fix a desired attitude, the commanded quaternion will be fixed to [0 0 0 ±1]. 

Or if the objective is to follow some other object, the commanded quaternion will change in 

time.  

-If 𝑞 𝑐 = [0 0 0 + 1]then the control law will be 𝑢⃗ = −𝐶𝜔⃗⃗ − 𝐾𝑞𝑒⃗⃗⃗⃗  

-If 𝑞 𝑐 = [0 0 0 − 1]then the control law will be 𝑢⃗ = −𝐶𝜔⃗⃗ + 𝐾𝑞𝑒⃗⃗⃗⃗  

But physically both commanded quaternions are the same. 

In the following chapters there will be explained the control laws implemented in this study. 
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5. Implemented controls 
 

In this thesis it has been implemented four types of control to make the study of the 
performance of each one of those: 

-The first control implemented has been the Quaternion Error proportional control. It has been 
used to compare the response to the control between the rigid body solar sail case and the 
flexible solar sail case. Two types actuators have been implemented, reaction wheels and CMG. 

This type of control has been implemented before in other studies. The main pro that allows this 
type of control is that achieves the precision quickly. It is one of the most well-known controls 
implemented in many controls.  

For example, the quaternion error proportional control has been used in controlling a quadrotor, 
where the quickness of the control is crucial to have a good behaviour of the object. In the [1] 
there is a deeper explanation of this control. 

In the specific field of Solar Sails this control has been implemented before. Particularly a pitch-
control logic pf the sun-pointing mode attitude control of a sailcraft using reaction wheels. This 
control has been studied by the researcher Bong Wie. A profounder explanation of this control 
in Solar Sails can be examined in his paper [2]. 

-The second control corresponds to the sliding mode control.  

The sliding mode control is another typical control implemented in spacecrafts. It has been 
widely by the academics. The study of this control has been made of a generic satellite in the 
presence of Solar Radiation Pressure but can be translated into the implementation of a Solar 
Sail. 

More specifically talking it has been studied an adaptive fault tolerant nonlinear control based 
on the sliding mode theory to control the attitude using Solar Radiation Pressure. In this case 
the actuator is a pair of solar flaps that provide the required control torque. The flaps rotate to 
achieve be able to generate the torque required by Solar Radiation Pressure. In the bibliography 
[3] it can be found a deeper explanation of this control and a prove of the robustness of the 
control in the presence of external disturbances as well as a possible failure of the main actuator, 
the flaps. 

Moreover, in the field of the theory of the sliding mode control it can be found in other 
publications. For instance, there is a paper that explains the attitude control using solar radiation 
pressure based on non-linear sliding mode control. It is based in a closed loop control law for 
appropriately rotating solar flaps whose rotation angle is continuously adjusted by the control 
laws. It has been stated that is robust against uncertainties and has a proper effectiveness with 
initial attitude tracking errors. For a deeper explanation it is recommended to visit the 
bibliography [4]. 

-The third one is a PD control plus a term which considers the flexible dynamics. 

There have been some studies about a control considering flexible dynamics. However, there is 
not that amount of research done in this type of control as the previous controls. This type of 
control is very innovative and still needs some time to settle. Nevertheless, this controlling can 
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provide a more efficient control and this fact could be very beneficial for the control 
implementation.  

There exist a study of the performance and stability validation for a large flexible Solar Sail. This 
study examines a squared solar sail with a moving mass and quadrant rotation primary actuators 
with pulsed plasma thrusts at the tips of the sail as a backup attitude control. It studies how the 
flexible effects of the structure, as torsion and bending of the masts could affect the function of 
the control actuators. Hence affecting their thrust vector magnitude and direction. For a more 
detail explanation it is desirable to see the bibliography [5]. It is a complete stability study; 
however, it considers the spacecraft in a LEO orbit. Having so a different selection of the 
variables in the problem. But the actual way of controlling the spacecraft can be extrapolated in 
the case of this study. 

There exist studies [6] of a nonlinear attitude control for satellites with flexible appendages 
dated since the 80s. Moreover, there exist one recent study that has served at a model for the 
performance of a PD control of a Solar Sail taking into account flexible appendages, used in this 
work. That study [7], is a proposal of the usage of a dynamic controller for a generic spacecraft 
with flexible appendages and based on attitude measurements. Therefore, ensuring asymptotic 
control in a rest-to-rest manoeuvres even when the accelerometer sensors fail and there is non-
available angular velocity for the feedback.  

Then an adaptation of that control for a generic spacecraft has been done to do create the PD 
control considering flexible appendages for a Solar Sail, proposed in this work. 

-The fourth one is a non-linear state observer control. 

Regarding the non-linear state observer control there is not any study of implementation in a 

Solar Sail found. However, based on the theory, this control can allow an asymptotical stability 

that can benefit its implementation. 

 

5.1. Quaternion Error proportional control using Reaction Wheels as 

actuator 

 

The Quaternion Error proportional control is a linear state feedback control. It is one of the 
simplest controls that can be implemented. This control is based in the sum of two terms; the 
quaternion term, and the angular velocities term. Each one multiplied by a proportional (one 
fixed scalar). It has the following form: 

𝑢⃗ = −𝐾𝑞𝑒⃗⃗⃗⃗ − 𝐶𝜔⃗⃗  ( 44 ) 

Where:  

-The K and C are scalars 

- 𝑞 𝑒 are the quaternion errors: it is a vector of three components [𝑞𝑒1
, 𝑞𝑒2

, 𝑞𝑒3
]. The way to 

calculate this vector is explained in the Quaternions subsection inside the Kinematics section. 

-𝜔⃗⃗  are the angular velocities of the spacecraft respect to the body frame: it is a vector of three 
components [𝜔⃗⃗ 1, 𝜔⃗⃗ 2, 𝜔⃗⃗ 3] where the first component corresponds to the rotation of the 
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spacecraft around the x axis of the body frame, the second component is the rotation around 
the y axis and the third around the z axis. Each one is orthonormal regarding the others. 

 

 

5.1.1. Study of stability of the control 

This control ensures asymptotical stability for the rigid body and the flexible body.  This can be 
stated in the following explanation, for a more complete explanation it is interesting to visit the 
bibliography [7]. 

Deriving along the trajectories of the rigid motion and the Quaternion Error proportional control 
law with K and C as positive scalars: 

𝜔⃗⃗ ̇ = 𝐽(−𝜔⃗⃗ × 𝐽𝜔⃗⃗ + 𝑢⃗ ) ( 45 ) 

𝑞 𝑒
̇ = −

1

2
𝜔⃗⃗ 𝑇𝑞 𝑒 

( 46 ) 

𝑢⃗ = −𝐾𝑞 𝑒 − 𝐶𝜔⃗⃗  ( 47 ) 

 

Where: 

𝑞𝑒⃗⃗⃗⃗ = [

𝑞1

𝑞2

𝑞3

] 
( 48 ) 

It can be calculated the following Lyapunov function candidate: 

𝑉 = 𝐾[(𝑞4 − 1)2 + 𝑞 𝑒
𝑇𝑞 𝑒] + (

1

2
) 𝜔⃗⃗ 𝑇𝐽𝜔⃗⃗  

( 49 ) 

Where: 

 𝑞4 = 𝑞 (4) ( 50 ) 

Whose derivative is the following: 

𝑉̇ = 𝐾𝑞 𝑒
𝑇𝜔⃗⃗ + 𝜔⃗⃗ 𝑇(−𝜔⃗⃗ × 𝐽𝑚𝑏𝜔⃗⃗ + 𝑢⃗ ) = −𝐾𝜔⃗⃗ 𝑇𝜔⃗⃗ ≤ 0 ( 51 ) 

As the Lyapunov function candidate is continuously differentiable and positive with a negative 
derivative, using the LaSalle theorem a global asymptotic stability can be stated. The derivative 
of the Lyanupov function is lower than zero, then exists a tendency of decreasing the variance 
of the values up to a fixed value, therefore the values converge. 

5.1.2. Block diagram 

At the following image a block diagram it is exposed to show how the DCM proportional control 
is implemented: 
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Figure 5 Block diagram of the Quaternion Error Proportional control 

Where     corresponds to a saturation block. Basically, it is a limiter of u. The control is limited 
because physically constrained by the maximum torque that real control device (inertia wheel, 
reaction wheel, etc.) can give. In this case it is 0.2 Nm. 

In the Annex1 it will be explained the other possible actuator that will be implemented, the 
CMG. 

 

5.2. Sliding mode control 

The sliding mode control is a nonlinear state feedback control. In broad terms there is an 
objective function (S) which must converge to 0. This objective function is a straight line which 
depends on the errors and their derivative that can exist in the control of the system. The 
following equation defines the objective function and has the following graphical shape: 

𝑆 = 𝑘𝑒 + 𝑒̇ ( 52 ) 

 

 
Figure 6 Sliding mode objective function 

Then, in order to assure asymptotic control:  
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𝑒̇ = −𝑘𝑒 ( 53 ) 

Where 𝑒 is the error committed and 𝑒̇ is the derivative of this error. 

In this case of study, the control objective function is related with the angular velocity therefore 
if the S converges to 0, the angular velocities will also converge. Then the system will stabilize. 

The control equation for a generic sliding mode control is the following: 

𝑢⃗ = 𝑇𝑚𝑎𝑥𝑖𝑚 ∗ 𝑠𝑔𝑛(𝑆 ) ( 54 ) 

In this case of study, the 𝑆  corresponds to a PD controller.  

5.2.1. Implementation of the control 

The block diagram of the control in the sliding mode is exactly the same as the Quaternion Error 
control. There is only a new adding term to the calculation of the control for the next iteration 
of the simulation. In the control block it is added a conditional situation (if function). If the u of 
the previous step is below to zero, the new u will have a negative sign, the other two remaining 
case are done in an analogue way. 

The  𝑇𝑚𝑎𝑥𝑖𝑚 previously indicated in the (54) corresponds to the maximum torque that the 
control device can produce. In this situation will we 0.2 Nm. 

Basically, this control will work as an on/off mode control. Where in the on mode will have a 
maximum torque achievable by the control device and in the off mode the control will be 0.  
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5.3. PD control plus a term which considers the flexible dynamics 

 

 It is a state feedback PD control. Then it works the same way as the Quaternion Error control. 
Nevertheless, the main difference between this control and the Quaternion Error control is the 
addend of the sum in the control law. While in the Quaternion Error control has the first addend 
as a proportional multiplied by the quaternion error (See [7]), in the PD control accounting 
flexible dynamics the first addend is a matrix F multiplied by a vector a.  

The matrix F takes into account the physical properties of the solar sail. Then the vector “a” 
contains the quaternion error, the modal coordinate vector and the total velocity of the flexible 
appendages. It is worth to indicate that both matrix F and vector “a” depend on the number of 
the elastic modes selected. If the number of elastic modes increases, the complexity of the 
movement of the flexible appendages will also increase. As the complexity of the movement 
increases, the complexity of the system and its complexity of the simulation increases 
drastically. 

In this case of study, it has been selected only 1 elastic mode for practical reasons. One elastic 
mode it is enough to see the difference between the non-flexible case and the flexible case. That 
is sufficient for the purpose of this study. With one elastic mode the matrix F has a dimension of 
5x5 and the vector “a” has a dimension of 5x1. 

The control law will be the following: 

𝑢⃗ = −𝐹𝑎 − 𝑘𝑑𝜔⃗⃗  ( 55 ) 

𝐹 = [𝑘𝑝𝐼, 𝛿
𝑇 {[

𝐾
𝐶
] − 𝑃1 [

𝐼
−𝐶

]}
𝑇

] 
( 56 ) 

𝑎 = [

𝑞 𝑒
𝜂 

𝜓⃗ 
] 

( 57 ) 

Where: 

-I is the identity matrix (in this case 1x1) 

-𝑘𝑝 is a constant value 

-𝛿 is the coupling matrix between the flexible and rigid dynamics 

- 𝐾 = 𝑑𝑖𝑎𝑔{𝜔⃗⃗ 𝑛𝑖
2 , 𝑖 = 1,… ,𝑁} where N are the number of the elastic modes, in this case N=1 

- 𝐶 = 𝑑𝑖𝑎𝑔{2𝜉𝑖𝜔⃗⃗ 𝑛𝑖, 𝑖 = 1,… ,𝑁} where N are the number of the elastic modes, in this case N=1 

- 𝑞 𝑒 is the quaternion error 

- 𝜂  is the modal coordinate vector 

- 𝜓⃗  is the total velocity of the flexible appendages 

-𝑃1 is a positive definite matrix calculated as the solution of   
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𝑃1 [
0 𝐼

−𝐾 −𝐶
] + [

0 𝐼
−𝐾 −𝐶

]
𝑇

𝑃1 = −2𝑄1 
( 58 ) 

Where 𝑄1  is a fixed matrix, in this case it has been selected the identity matrix of a dimension 
1x1. 

5.3.1. Study of stability 

With this control an asymptotic stability it is achieved. To visualise the prove of the achievement 
of asymptotic stability it is recommended to see the Bibliography [7]. However, this control 
doesn’t ensure that the final value of the control will be correct. This is due to the lack of the 
modal measurements. Without the possibility to measure the modal coordinate vector thus the 
final result completely depends of the initial conditions. The initial values of the modal variables 
𝜂 𝑎𝑛𝑑 𝜓 are calculated based on a model of the structure therefore it cannot assure that the 
initial conditions are acceptable. 

 

5.4. Improvement of the controller; output feedback controllers 

With the previous controller it is not possible to assure proper results due to the lack of 
measurement of the modal variables. Therefore, it has been created an extension of this 
controller that permits calculate the control only measuring the attitude and the angular 
velocity.  

This extension of the control is based on the estimation of the modal variables (𝜂 ̂, 𝜓̂). Then the 
errors of the modal variables are introduced: 

𝑒𝜂 = 𝜂 − 𝜂 ̂ ( 59 ) 

𝑒𝜓 = 𝜓⃗ − 𝜓⃗ ̂ ( 60 ) 

Those errors are not used into the implementation of the controller. But they are used to prove 
that the control will be asymptotically stable. If the reader wants to delve into the calculation of 
the Lyapunov function of the system and the application of LaSalle theorem to prove the stability 
it is worth considering going to the bibliography [7]. 

Finally, the dynamic controller with the extension of output feedback controllers will have the 
following formulation: 

[
𝜂 ̂̇

𝜓⃗ ̂
̇ ] = [

0 𝐼
−𝐾 −𝐶

] [
𝜂 ̂

𝜓⃗ ̂
] − [

𝐼
−𝐶

] 𝛿𝜔⃗⃗ + 𝑃2
−1 [[

𝐾
𝐶
] − 𝑃1 [

𝐼
−𝐶

]] 𝛿𝜔⃗⃗  
( 61 ) 

𝑢⃗ = −𝐹 [

𝑞 𝑒

𝜂 ̂

𝜓⃗ ̂

] − 𝑘𝑑𝜔⃗⃗  

( 62 ) 

Where 𝑃2 has been calculated as the solution of the following equation: 

𝑃2 [
0 𝐼

−𝐾 −𝐶
] + [

0 𝐼
−𝐾 −𝐶

]
𝑇

𝑃2 = −2𝑄2 
( 63 ) 

With 𝑄2 as a fixed matrix, in this case it has a dimension of 1x1. 
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With this model of control, it can be proved that the errors of the estimation of the modal 
variable tend to zero because the system is asymptotically stable. Then, if the system is 
asymptotically stable, at the end of the manoeuvre the w and q will also tend to zero. And if the 
w tends to 0, therefore there isn’t any velocity of the object; hence the modal variables will tend 
to zero.  

With this explanation it can be stated that doing the estimation of the modal variables helps to 
have a more precise knowing of the system and a better transient, but they are not 
indispensable to state the asymptotic stability of the system. The solar sail can be stabilized 
without the extension, but it is highly recommended to use the extension to have a proper 
stabilization of the spacecraft. 

 

5.5. Nonlinear state observer control 

 

This is a nonlinear control used in the cases when does not exist a way to model a part of the 
control. Or there is not any possibility to do the measurements of some parameters of the 
control. 

The basic idea of this controller is to model the unknown parameters of the control as 
disturbances. These disturbances are estimated by previous values starting from some initial 
known values. This control allows an asymptotically stability of the system without the need of 
external measurements.  This controller and the previous one, the PD controller with a term 
which considers the flexible dynamics with output feedback controllers, are based on the same 
idea. 

 

5.5.1. Modelling of the disturbance 

First, here are presented the dynamic equations of the solar sail considering a flexible 
appendage: 

𝐽𝜔⃗⃗ ̇ + 𝛿𝑇𝜂 ̈ = −𝜔⃗⃗ × (𝐽𝜔⃗⃗ + 𝛿𝑇𝜂 ̇) + 𝑢⃗  ( 64 ) 

𝜂 ̈ + 𝐶𝜂 ̇ + 𝐾𝜂 = −𝛿𝜔⃗⃗ ̇ ( 65 ) 

From these equations the addends that cannot be directly measured are isolated, then those 
terms will be the corresponding disturbance:  

𝜔⃗⃗ ̇ = 𝐽−1(−𝜔⃗⃗ × 𝐽𝜔⃗⃗ ) + 𝐽−1𝑢⃗ − 𝐽−1𝜔⃗⃗ × 𝛿𝑇𝜂 ̇ − 𝐽−1𝛿𝑇𝜂 ̈ ( 66 ) 

This equation is the typical dynamic equation plus a disturbance addend: 

𝜔⃗⃗ ̇ = 𝐽−1(−𝜔⃗⃗ × 𝐽𝜔⃗⃗ ) + 𝐽−1𝑢⃗ + 𝑑  ( 67 ) 

Where d is the disturbance term and is the following: 

𝑑 = −𝐽−1𝜔⃗⃗ × 𝛿𝑇𝜂 ̇ − 𝐽−1𝛿𝑇𝜂 ̈ ( 68 ) 

In this case the disturbance term is constituted by the modal variables which cannot be 
measured in the reality.  
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5.5.2. Implementing the control 

Once the disturbance is isolated from the system then the next step is to estimate this 
disturbance. Basically, the disturbance is modelled as the error between the estimation of the 
angular velocity and the real angular velocity of the spacecraft. Therefore, the following 
equations will be implemented to consider this disturbance on the system: 

𝜔⃗⃗ ̇̂ = 𝐽−1(−𝜔⃗⃗ ̂ × 𝐽𝜔⃗⃗ ̂) + 𝐽−1𝑢⃗ + 𝑑 ̂ + 𝐿1(𝜔⃗⃗ − 𝜔⃗⃗ ̂) ( 69 ) 

𝑑 ̇̂ = 𝐿2(𝜔⃗⃗ − 𝜔⃗⃗ ̂) 
( 70 ) 

Considering:  𝜔⃗⃗ ̂(0) = 𝜔⃗⃗ (0) 𝑎𝑛𝑑  𝑑 ̂(0) = 0 

As it is possible to measure the actual angular velocity of the spacecraft and estimating the 
angular velocity 𝜔̂ of the future time. It is possible to do an estimation of the disturbance as a 
simple subtraction of the actual angular velocity minus the estimated angular velocity multiplied 
by a matrix 𝐿2 that it has to be tuned to do a proper estimation. 

Then this disturbance estimation is added in the control law thus controlling properly the 
spacecraft having in mind all the existing disturbances in the problem. 

𝑢⃗ = −𝑘1𝑞𝑒⃗⃗⃗⃗ − 𝑘2𝜔⃗⃗ − 𝑑 ̂ ( 71 ) 

 

With this control an asymptotic stability can be achieved if the tuning of the error matrices 
𝐿1 𝑎𝑛𝑑 𝐿2 is good enough. 
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6. Calculation of the Moments of Inertia of the Solar Sail 

 

6.1. Why to calculate them? 

The principal moments of Inertia are one of the principal parameters to control a spacecraft. 

Roughly speaking, they define how easy or difficult is to rotate the object in the three-principal 

axis of the object. Usually the matrix of Inertia of an object is a 3x3 matrix whose diagonal are 

the three moments of inertia of the three-principal axis. 

Dealing with the control of an object whose matrix of inertia is in the order of units is different 

than dealing with the control of an object whose matrix of inertia is in the order of thousands of 

units. The needed torque will be much higher.  

Therefore, to do a realistic simulation of the control, it is needed to calculate the actual moments 

of inertia of the spacecraft. In this case the Solar Sail. 

 

6.2. Solar Sail model using Solid Works 

In order to calculate the principal moments of inertia of the Solar Sail it has been selected to use 

Solid Works. Solid Works is a solid modelling computer aided design (CAD) computer program. 

One of its capacities is to calculate the moments of inertia of a designed object.  

6.2.1. Design of the Solar Sail 

This Solar Sail will be composed by three main parts: the sail, the control structure and the 

antenna. Each one performing basic and necessary tasks of the spacecraft. The sail provides the 

thrust to the global structure. The control structure logically provides the control. Finally, the 

antenna provides the communications of the spacecraft.  

6.2.1.1. The Sail 

The Solar Sail can have different shapes (squared, disc or heliogyro) to perform different tasks. 

In this particular case, with the sail orbiting around the Sun it has been selected a squared shape. 

To have enough pushing solar pressure to perform its activity it has been selected to have a 

squared sail of 40x40 metres. That is a really big area, thus it is necessary to have a very thin sail, 

thus avoiding a very heavy object. If the sail is so heavy, the solar pressure force won’t be strong 

enough to maintain the object in the orbit. Then, the thickness chosen has been 6 micrometres 

(6 · 10−6metres). 

The following figure represents the front view of the Solar Sail.  
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Figure 7 Front view of the solar sail 

 

The sail is not completely plane, it has a little inclination through the centre. The main objective 

of this inclination is to focalize the photons to the centre of pressure, due to the material is high 

reflective. An analogue idea is a sink with water, as the inclination increases, more amount of 

water per second will fall in the centre. But in this case, the reflected photons coming from the 

Sun will be likely conducted to the centre of the sail, where is the centre of pressure. Therefore, 

theoretically having an improvement of the force created by the solar radiation pressure and 

less solar radiation pressure disturbance. 

The next figure is the profile view of the solar sail. It can provide an idea to the reader about this 

defined inclination. 

 

Figure 8 Side view of the solar sail 
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6.2.1.2. The control structure  

The control structure is the place where all the control actuators are situated, usually Reaction 

Wheels or CMGs. Then other components with take a secondary role, like radiators. In this study 

it will be considered the simplest structure, then having an approximation of the mass and the 

volume that occupy all the existing components of the actual spacecraft. 

The control structure will be based on a nucleus with a shape of a cube whose dimensions are 

{0.16 × 0.24 × 0.24} meters plus four radiators each one measuring {0.01 × 0.24 × 0.17} 

metres, all of them situated in the corner of the nucleus so it can be folded when it is necessary. 

The following figure shows the shape of the control structure previously explained: 

  

 

Figure 9 Control stucture of the solar sail 

6.2.1.3. The antenna 

The antenna is the key parameter to perform the communication. In this case it is required to 

perform a high directive antenna. The main reason is than the spacecraft is situated very far 

away from the Earth, therefore the gain of the antenna must be high enough to assure a proper 

sending of the signal. 

The antenna will be based on 3 cylinders. The first one with a diameter of 0.1 metres and a 

longitude of 5 metres. The second one with a diameter of 0.05 metres and a longitude of 5 

metres. And the third one with a diameter of 0.025 metres and a longitude of 5 metres. 

The following figure shows the shape of the antenna previously explained: 

 

 

Figure 10 Antenna of the Solar Sail 
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6.2.2. Calculation of the moments of Inertia 

 

Once the object is created it is possible to use Solid Works program to calculate the moments of 

inertia and other aspects of the Solar Sail. The is a button named “Physical Properties” that 

automatically calculates the total mass, the volume, area and the moments of inertia of the 

spacecraft. 

6.2.2.1. Selection of the materials 

But, first must be selected the material of each structure to know its density and then be able 

to calculate all the variables described before. Solid Works provides a great variety options of 

materials that can be selected. Nevertheless, the actual materials that are used nowadays for 

the Solar Sails are not still implemented by Solid Works. Therefore, the materials used have been 

the ones whose density is the most fitted to the actual used. Their reflectivity properties are not 

considered, only their density to have an approximate calculation of the structure and its 

moments of inertia. It is necessary to recall that the materials that will be mentioned won’t be 

used in the reality, only its density will be desirable to do a first approach of the moments of 

inertia. For the studies that will continue this one it is highly desirable to select actual materials 

used. But for this first approach, this selection is accurate enough. 

For the sail itself and the control structure it has been selected the composite material Hexcel 

AS4C (3000 filaments) whose density is 1780 𝑘𝑔/𝑚3. For the antenna it has been selected the 

generic fiberglass A, whose density is 2440 𝑘𝑔/𝑚3. 

These materials selected are in the same level of magnitude of the actual ones nowadays being 

implemented, for example the Kapton, used in the actuals Solar Sails has a density of 

1420 𝑘𝑔/𝑚3 that does not differ a big amount to the composite material selected in this study. 

Accordingly, with the materials selected the physical properties has been calculated and are the 

following: 

-Total mass: 315.53 kg 

-Total volume: 0.16 m3 

-Total surface area: 3195.79 𝑚2 

-Matrix of moments of inertia, obtained in the centre of mass and aligned with respect to the 

resulting coordinate system: 

𝐼 = [
4559.79 0.00 −37.51

0.00 5184.04 0.00
−37.51 0.00 5183.05

]  𝑘𝑔 · 𝑚2 

To seek of simplicity to do the control calculations it has been selected to use only the three 

principal moments of inertia 𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 because the secondary moments of inertia at not very 

high and can be neglected. Having so, the following matrix of Inertia: 
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𝐼 = [
4559.79 0.00 0.00

0.00 5184.04 0.00
0.00 0.00 5183.05

]  𝑘𝑔 · 𝑚2 

 

In the following figure it can be seen the 3D representation of the Solar Sail. With the purpose 

that the user can have a complete idea of the shape of the Solar Sail that it is desired to be 

implemented. One clarification, the antenna is pointing towards the Earth, that is why in this 

case is in the space on the negative x axis. 

 

 

Figure 11 3D view of the solar sail 
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7. Study of the effects of flexibility in the Spacecraft 
 

As the Solar Sail is a flexible spacecraft it is necessary to consider the effects of the flexibility that 

can occur into the attitude control of the spacecraft. This study is a comparison of the behaviour 

of the spacecraft using two different controls with different configurations. The first control is a 

Quaternion Error control. The second one is a Quaternion Error control but considering flexible 

appendages. Both controls are theoretically explained before (44).To do a proper and a coherent 

comparison it has been selected the same actuator and the same control gains for both 

situations. The used actuator will be the Reaction Wheel. And the control gains 𝑘𝑝, 𝑘𝑒 will be 

fixed as 𝑘𝑝 = 50 𝑎𝑛𝑑 𝑘𝑒 = 4. It is worth remembering the simple Quaternion Error control law: 

𝑢⃗ = −𝑘𝑝𝜔⃗⃗ − 𝑘𝑒𝑞𝑒⃗⃗⃗⃗  ( 72 ) 

7.1. Results for a non-flexible spacecraft 

The following three figures are obtained for a non-flexible spacecraft implementing a 

Quaternion Error control with reaction wheels. Also Selecting the previous values of control 

gains and performing a rest to rest manoeuvre.  

 

Figure 12 Angular Velocity vs time using Quaternion Error control with non-flexible spacecraft 

In the case of the angular velocity it exists a convergence of the three angular velocities up 0 

within a time of 2650 seconds. The final precision of the angular velocities is in the order of 

magnitude of 10−6 rad/s. 

 

Figure 13 Quaternion Error vs t ime using Quaternion Error control with non-flexible spacecraft  
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Considering the Quaternion Error, a convergence of the three quaternion errors is obtained in 

2500 seconds. The third quaternion error converges to -0.01445, having a fixed error of 0.01445. 

The other two quaternions errors converge to zero. 

 

Figure 14 Control torque vs time using Quaternion Error control with non-flexible spacecraft 

 

Considering the control torque, maximum values of the control torque are reaches for the third 

component of the control torque until 1742 seconds.  In the case of the second control torque 

those maximum values are reached until 1288 seconds. 

 

7.2. Flexible Spacecraft study 

There are some new variables that take an important role in the consideration of adding flexible 

appendages in the spacecraft. There are two new state variables when the addition of flexible 

appendages is considered. The modal coordinate variable and the total velocity of the flexible 

appendages. Both are explained in the previous chapters, but basically, they express the 

magnitude of the movement of the flexible appendages and its complexity. Then they are other 

variables that are added to the control, the natural frequency and the damping ratio. Those two 

last are fixed values during the simulation and express the nature of the movement. Depend on 

the value of the damping factor, an overdamped, underdamped or critically damped response 

will be achieved.  

Therefore, there are two ways of changing the conditions of flexibility. Or changing the nature 

of the movement, then shifting the natural frequencies and the damping factor. Or changing the 

magnitude of the movement, thus shifting the initial values of the modal coordinate variable 

and the total velocity of the flexible appendages. 

 

7.2.1. First attempt; change the nature of the movement of the flexible 

appendages 

First, it has been fixed an initial modal coordinate variable equal to zero and a velocity of the 

flexible appendages equal to 0.005 m/s. Then it has been selected different values of natural 

frequencies and damping ratios. In the following table it will be expressed the results obtained. 
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Natural 

frequency 

(rad/s) 

 

Damping Ratio 

 

Observations 

0.74 0.004 No significant changes in 

𝜔 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑞𝑒 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑝𝑙𝑜𝑡𝑠 

5.69 0.017 No significant changes in 

𝜔 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑞𝑒 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑝𝑙𝑜𝑡𝑠 

70 0.3 No significant changes in 

𝜔 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑞𝑒 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑝𝑙𝑜𝑡𝑠 

 

1000 

0 

(Critically 

damped) 

Simulation time increases 1000%, there is a big change at 

time= 2000s, the 𝜔, modal coordinate variable and the 

total velocity of flexible appendages doesn’t converge. 

 

1000 

 

2 

(Overdamped) 

No significant changes in 

𝜔 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑞𝑒 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑝𝑙𝑜𝑡𝑠 

The progression of the modal coordinate variable 

changes, with a final convergence with an uncertainty of 

10−6 

 

1000 

 

0.4 

(Underdamped) 

No significant changes in 

𝜔 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑞𝑒 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑝𝑙𝑜𝑡𝑠 

The progression of the modal coordinate variable 

changes, with a final convergence with an uncertainty of 

10−7 

 

400 

 

0.4 

No significant changes in 

𝜔 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑎𝑛𝑑 𝑞𝑒 𝑣𝑠 𝑡𝑖𝑚𝑒 𝑝𝑙𝑜𝑡𝑠 

The progression of the modal coordinate variable 

changes, with a final convergence with an uncertainty of 

10−6 Much quicker response 

Table 1 Change of the nature of the movement of the flexible appendages 

As can be seen in the previous table, the natural frequency and the damping ratio do not take a 

very big role in the change of the behaviour of the system if the initial values of the modal 

coordinate variable and the total velocity of the flexible appendages is near to zero. The 

tendency of the 𝜔, 𝑞𝑒 , 𝜂, 𝜓 versus time is practically invariable considering the change of the 

natural frequency and damping ratio. Only when the natural frequency is high enough (larger 

than 1000 rad/s with a critically damped oscillation), the system turns unstable. 
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7.2.2. Second attempt; change the magnitude of the movement of the flexible 

appendages 

In this case the natural frequency has been fixed with a value of 5.69 rad/s and a damping ratio 

of 0.017. Therefore, the nature of the movement will be always the same, but in this case, its 

magnitude will vary. To vary the magnitude of the movement it is necessary to change the initial 

values of the modal coordinate variable (𝜇) and the total velocity of the flexible appendages 

(𝜓). In the following table it will be expressed all the results obtained. 

 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝜇(−) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

𝜓(
𝑚

𝑠
) 

 

Observations 

 

       0 

 

0 

No significant changes in the tendency of 𝜔, 𝑞𝑒 , 𝜇, 𝜓 versus time 

 

5 

 

0 

No significant changes in the tendency of 𝑞𝑒 versus time 

Increase of the frequency of the change of 𝜔1, 𝜔2, the values change more 

rapidly. Their final convergence has a precision of 10−3 

 

 

 

5 

 

 

 

5 

In relation with the previous case: 

-Increase of magnitude of 𝜔1 

-Increase of magnitude and frequency of change of 𝑞𝑒1 with a final 

convergence 

-Same tendency of  𝑞𝑒2 but with more oscillations in the transient 

-Same tendency of 𝑞𝑒3 than without flexible appendages 

No significant changes in the tendency of 𝜇, 𝜓 versus time 

 

 

 

0 

 

 

 

5 

-Increase of magnitude and frequency of change of 𝑞𝑒1 with a final 

convergence 

-Increase of magnitude and frequency of change of 𝑞𝑒2 with a final 

convergence 

-𝑞𝑒3 remains the same 

-Increase of magnitude and frequency of change of 𝜔 with a final 

convergence. Final precision of 𝜔1 = 1.2 · 10−4 𝑟𝑎𝑑

𝑠
, 
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 𝜔2 = 2 · 10−4 𝑟𝑎𝑑

𝑠
 , 𝜔3 = 5.7 · 10−3 𝑟𝑎𝑑

𝑠
  

 

 

0 

 

 

2.5 

In relation with the previous case: 

-Same behaviour of 𝜔, with an improvement of precision of 𝜔2 = 9 ·

10−5 𝑟𝑎𝑑

𝑠
 

-Same behaviour of 𝑞𝑒 but with a decrease of oscillations. 

0 1.25 Nearly the same performance than without flexible appendages. Non-a 

visible change adding flexible appendages. 

Table 2 Change of the magnitude of the movement of the flexible appendages 

As can be perceived in the previous table, there are some visible changes between the flexible 

and the non-flexible case when the initial velocity of the flexible appendages is higher than 1.5 

m/s (𝜓(0) ≥ 1.5
𝑚

𝑠
) with a fixed initial modal state variable of zero (𝜇(0) = 0).  

If the initial velocity of the flexible appendages increases, using the same control, the error 

committed will be greater. More particularly if the initial value of the velocity doubles, the error 

will increment a factor of 10 approximately. Especially the final precision error of 𝜔2, which is 

that variable that has behaved more dependent of the initial velocity of the flexible appendages. 

7.3. Results of Flexible Spacecraft 

In order to have a more visual comparison it has been selected one option of all the particular 

cases that have been implemented to do the study of the change of the responses. In this case 

it has been selected the Quaternion Error Control using Reaction Wheels as actuators. The initial 

conditions of the modal variables are the following: 

- 𝜔𝑛 = 5.69
𝑟𝑎𝑑

𝑠
 

- 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 = 𝜉 = 0.017 

- Initial modal coordinate variable = 𝜇(0) = 0  

- Initial total velocity of flexible appendages = 𝜓(0) = 2.5
𝑚

𝑠
  

Having the following responses:  

 

Figure 15 Angular Velocity vs time using Quaternion Error control with a flexible spacecraft 
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The convergence is accomplish in the same time. There is a substantial increase of the 

magnitude of the oscillations during the transcient of 𝜔1, 𝜔2. Also there is a reduction of the 

finale precision of the three angular velocities: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝜔1 𝑖𝑛 𝑛𝑜𝑛𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 = 2.3 · 10−6 → 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝜔1 𝑖𝑛 𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 = 1.2 · 10−4  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝜔2 𝑖𝑛 𝑛𝑜𝑛𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 = 1.8 · 10−7 → 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝜔2 𝑖𝑛 𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 = 2 · 10−4 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝜔3 𝑖𝑛 𝑛𝑜𝑛𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 = 7.5 · 10−9 → 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝜔3 𝑖𝑛 𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 = 5.7 · 10−8 

 

Figure 16 Quaternion Error vs time using Quaternion Error control with a flexible spacecraft 

In the case of the quaternion error there is a great increase of the magnitude of the 𝑞𝑒1, 𝑞𝑒2 

during the transcient. However all the quaternion errors converge in the same time and the final 

precision is the same than the non-flexible case. 

 

Figure 17 Control Torque vs time using Quaternion Error control with a flexible spacecraft 

The control torque for the flexible case has the same behaviour than the non-flexible case. 

However the final control 𝑢1, 𝑢2for the flexible case has an oscilative behaviour whose 

maximums are between  ±3.5 · 10−3𝑁 · 𝑚 
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Figure 18 Modal Coordinate Variable vs time using Quaternion Error control with a flexible spacecraft 

 

Figure 19 Total velocity of the flexible appendages vs time using Quaternion Error control with a flexible spacecraft 

 

In the case of the tendency of the modal variables showed above they tend to 0. They converge, 

therefore there is a stabilization of the spacecraft with flexible appendages. Those results are 

coherent because the other three variables 𝜔⃗⃗ , 𝑞 𝑒 𝑎𝑛𝑑 𝑢⃗  also tend to stabilise. 

 

7.4. Verdict 

There is a reduction of the performance of the control when it is considered the effects of 

flexibility. The precision of the angular velocity decreases. And the transient response becomes 

more abrupted. Nevertheless, a stability it is achieved if the control is tuned in a proper way 

with acceptable initial conditions of the modal variables. Moreover, the time needed to stabilize 

is very similar.  

In the reality, the spacecraft will perform a more extreme manoeuvre to stabilize, but it will 

finally stabilize. The control needed to realize this manoeuvre won’t be as easy as expect and its 

magnitude won’t be fixed, it will oscillate during time.  
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This study show that it is necessary to consider the effects of the flexibility in the control and in 

the system. Because if those effects are not considered, the results obtained won’t show the 

reality of the behaviour of the spacecraft. The controller will think that the spacecraft is well 

controlled, while the previous results show that the behaviour, mainly during the transient, 

changes. 

To avoid these problems, it will be necessary to perform a control that takes into consideration 

the effects of the flexibility. And, to create a background, a calculation of the dynamics 

considering flexible appendages. 
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8. Comparison of the flexible disturbance using different 

controls 
 

The main difference between an average control of a spacecraft and this specific control is that 

it is taken into consideration the presence of flexible appendages, flexibility, in the spacecraft. 

Therefore, there are some components that on a normal control are not considered. Those 

components that consider the effects of flexibility can be modelled as a disturbance.  

The objective of the control will be decrease this disturbance up to zero. Therefore those 

“flexible terms” won’t cause difficulties and inconvenient on the movement of the spacecraft. 

This Flexible disturbance torque can be mathematically isolated from the Flexible dynamic 

equations of the spacecraft (10), (11), (12). Having the following final expression: 

𝜔⃗⃗ ̇ = 𝐽𝑚𝑏
−1 [−𝜔⃗⃗ × (𝐽𝑚𝑏𝜔⃗⃗ + 𝛿𝑇𝜓⃗ ) + 𝛿𝑇(𝐶𝜓⃗ + 𝐾𝜂 − 𝐶𝛿𝜔⃗⃗ ) + 𝑢⃗ ]  ( 73 ) 

Where the flexible disturbance is: 

𝑑 𝑓𝑙𝑒𝑥 = 𝐽𝑚𝑏
−1 [(−𝜔⃗⃗ × 𝛿𝑇𝜓⃗ ) + 𝛿𝑇(𝐶𝜓⃗ + 𝐾𝜂 − 𝐶𝛿𝜔⃗⃗ )]  ( 74 ) 

In comparison with the other disturbance, the Solar Radiation Pressure torque, it has the same 
order of magnitude. Nevertheless, this flexible disturbance tends to converge up to zero if the 
control is used in a proper way. While the Solar Radiation Pressure torque does not tend to zero 
in any case because depends on external factors (mainly the Sun). 

 

8.1. Influence of the modal variables into the flexible disturbance 

There are four modal state variables accounting in the control, the natural frequency of the 
movement, the damping ratio, the modal state variable and the velocity of the flexible 
appendages. Doing several attempts with one particular control it has been noticed that as the 
initial value of the velocity of the flexible appendages, the natural frequency and the damping 
ratio of the movement of those flexible appendages increase, the peaks of the of the flexible 
disturbance increase in quantity and magnitude. 

Hence, if the complexity and the magnitude of the flexible movement increases, then the flexible 
disturbance becomes less smooth and more unstable. 

 

8.2. Action of the controllers in the reduction of the Flexible disturbance 

In this chapter there is a study of the comparison of how each one of the controls implemented 
deal with the flexible disturbance. 

(The first plot of each control is a global view of the disturbance, the second one is the an 
ampliation to see its convergence error) 

There are the same initial conditions and gains for all cases, to do a coherent comparison: 
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𝜔𝑛 = 5.69
𝑟𝑎𝑑

𝑠
  ;  𝜉 = 0.017 ;  𝜓(0) = 2.5

𝑚

𝑠
 ;  𝜂(0) = 0; 𝑔𝑎𝑖𝑛𝑠: 𝑘𝑑 = 60, ℎ𝑒 = 0.9 

 

Flexible disturbance using Quaternion Error control 

 

Figure 20 Flexible disturbance using Quaternion Error control 

 

Figure 21 Closer look of the flexible disturbance using Quaternion Error control 

Using the Quaternion Error control, the flexible disturbance decreases very rapidly, in 

approximately 45 seconds achieves its convergence. However, the x and y components of the 

disturbance have a sinusoidal nature of an amplitude of 3,7 · 10−4 𝑁 · 𝑚 for the disturbance in 

the x axis, and 5 · 10−4 𝑁 · 𝑚 for the disturbance in the y axis. Having that final sinusoidal 

convergence is not desirable because it can cause problems on the control. 

 

Flexible disturbance using Nonlinear state observer control obtaining data of the angular 

velocities from a Quaternion Error controller 

 



Attitude Control of a Solar Sail               Final Thesis Bachelor’s Degree  

 
 

47 
 

Figure 22 Flexible disturbance using Nonlinear state observer control obtaining data of the angular velocities from a 
Quaternion Error controller 

 

Figure 23 Closer look of the flexible disturbance using Nonlinear state observer control obtaining data of the angular 
velocities from a Quaternion Error controller 

In this case the convergence is achieved in a larger amount of time than the Quaternion Error 

control. Approximately the convergence is achieved in 520 seconds. Once the convergence is 

achieved the errors are constant one the order of magnitude less than the Quaternion Error 

control. 

Flexible disturbance using Nonlinear state observer control having an own calculation of the 

angular velocities 

 

Figure 24 Flexible disturbance using Nonlinear state observer control having an own calculation of the angular 
velocities 

 

Figure 25 Closer look for the flexible disturbance using Nonlinear state observer control having an own calculation of 
the angular velocities 
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Using this control, the convergence needs 900 seconds to converge, then the time of 

convergence increases. However, the error at the convergence decreases, only having an error 

in the z component of the flexible disturbance. Theoretically this control is governed by the same 

equations than the previous one. However, this control calculates its own angular velocity. Then 

in theory it is a very good control, but its real implementation if way more complex than the 

other controllers. 

Flexible disturbance using Flexible control 

 

Figure 26 Flexible disturbance using Flexible control 

 

Figure 27 Closer look to the flexible disturbance using Flexible control 

The implementation of the flexible control has some advantages and disadvantages. The error 

committed diminishes. However, this error has a sinusoidal nature of an amplitude of 1.75 ·

10−6𝑁 · 𝑚 for the x component of the Flexible disturbance and an amplitude of 2.25 · 10−6𝑁 ·

𝑚 for the y component of the Flexible disturbance. On the other hand, the time to achieve the 

convergence increases up to 750 seconds. 
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Flexible disturbance using Flexible control with output feedback controllers 

 

Figure 28 Flexible disturbance using Flexible control with output feedback controllers 

 

Figure 29 Closer look to the flexible disturbance using Flexible control with output feedback controllers 

In this final case, the progression of the disturbance works in the same way than in the previous 

case, the flexible control. Nevertheless, with two differences, the time of convergence and the 

error at its convergence. 

Using the Flexible control with output feedback controllers a convergence it achieved within 520 

seconds and the error at the convergence has a sinusoidal nature whose amplitude is 12.2 ·

10−6𝑁 · 𝑚 for the x component of the Flexible disturbance and an amplitude of 6.5 · 10−6𝑁 ·

𝑚 for the y component of the Flexible disturbance. 

 

8.3. Final comparison and corollary  

To do a complete comparison of all the cases effectuated it has been decided to rank all the 

controllers considering two variables. The first one is the time of convergence of the Flexible 

disturbance torque. The second one is the error committed at the convergence. All the results 

are noted in the following table. 
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Type of control Rank in time of 

convergence 

Rank in error at 

the convergence 

Quaternion Error control 1 5 

Nonlinear State Observer (1) 2 4 

Nonlinear State Observer (2) 5 2 

Flexible control 4 1 

Flexible control with output feedback controllers                  3                3 

Table 3 Rank of the controls in relation with the flexible disturbance performance 

(1). Nonlinear state observer control obtaining data of the angular velocities from a Quaternion 

Error controller 

(2). Nonlinear state observer control having an own calculation of the angular velocities 

Considering the two variables to do the comparison look that the most balanced controller to 

deal with the Flexible disturbance is the Flexible control with output feedback controllers. Other 

controllers, like Quaternion Error have a very good performance in the time of convergence but 

a very bad one in the error at the convergence.  

Other controls, like the Nonlinear State Observer provide very accurate results. 

Notwithstanding, there is the total lack of knowledge of the Flexible disturbance, because in the 

implementation of this control the modal variables are not used. This lack of knowledge of the 

flexible movement in the control can cause that in a real case the tuning of the estimators of the 

Nonlinear State won’t be accurate enough and won’t provide a good response. In this case the 

perform is very accurate but is not possible to assure that this control will have that good 

responses in other situations. 

Therefore, it can be state that the Flexible control using output feedback controllers is the most 

appropriate to deal with the flexible disturbance due to its liability. Theoretically it assures a 

final convergence, and that is a key factor to select the proper control. Also, as it works with the 

modal variables it is possible to understand how them interfere the control and have a 

knowledge of how to solve warning situations. It need more time to converge but is has more 

accurate knowledge of the disturbance and an error sufficiently low to avoid possible problems 

in the implementation of the control of the spacecraft, our implemented Solar Sail.                
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9. Simulation and Results 
All the controls explained in the theory chapter can be simulated numerically using Simulink. 

This program can solve numerically the needed torque and all the other parameters that are 

considered in the control.  

The idea to do a simulation of the control in Simulink is to divide the global simulator into several 

blocks, each one with a specific function. The first block is the Dynamics block, the second one 

is the Kinematics block and the third one is the Control block. Inside the Dynamics block is 

situated also the external disturbance torque block, in this case the Solar Radiation Pressure 

torque. 

All these blocks are interacting with each other working together to do the control of the 

spacecraft. The next diagram shows how those blocks interact with each other. 

 

Figure 30 Block diagram of the simulation 

Basically, the dynamics block provides the angular velocity of the body respect to the inertial 

frame 𝜔⃗⃗ 𝑏/𝑁. Then the kinematics block is feed with this 𝜔⃗⃗ 𝑏/𝑁 to be able to calculate the 

quaternion error 𝑞 𝑒 and the direction cosine matrix 𝐴𝑏/𝑁. With the 𝜔𝑏/𝑁 and 𝑞𝑒 the control 

block can calculate the control torque 𝑢⃗  to do the control of the spacecraft, required in the 

Dynamics block. Then the direction cosine matrix 𝐴𝑏/𝑁 is required in the External disturbance 

block to calculate the pointing vector of the spacecraft towards the Sun 𝑥 𝑝. This 𝑥 𝑝 is needed to 

calculate the Solar Radiation Pressure disturbance torque that is considered in the Dynamics 

block. 

Afterwards, this idea can be putted in practise in the program Simulink and performing all the 

blocks. Once all the blocks are performed in Simulink it is possible to numerically integrate the 

equations of each block and obtain the results. 

9.1. Results for each control 

Once the simulation it is done it has been decided to present in tables the results obtained to 

subsequently do a comparison of the global performance of each control. 

In these tables of results, it has been decided to note the following variables to have a complete 

knowledge of the performance of each control and be able to do a complete and coherent 

comparison, considering all the decided situations: 



Attitude Control of a Solar Sail               Final Thesis Bachelor’s Degree  

 
 

52 
 

- Gain of the angular velocity used 𝑘𝑝 

- Gain of the quaternion error used  𝑘𝑒 

-Time of convergence of the angular velocity 𝜔⃗⃗   and its final convergence error  

-Time of convergence of the quaternion error 𝑞 𝑒 and its final convergence error  

-Time of convergence of the modal state variable 𝜂 and its final convergence error  

-Time of convergence of the total velocity of the flexible appendages 𝜓⃗  and its final convergence 

error  

-Final precision error 𝜙 in º degrees. 

-Time with a maximum torque required 𝑡𝑢𝑚𝑎𝑥𝑖𝑚𝑢𝑚
  

-Torque requiring constant during the implementation 𝜏 in 𝑁2 · 𝑚2  

Where: 

𝜏 = ∫ (𝑢1
2 + 𝑢2

2 + 𝑢3
2) 𝑑𝑡

𝑡𝑓

𝑡𝑜

 
( 75 ) 

-Torque requiring constant per second 𝛾 in 
𝑁2·𝑚2

𝑠
. That is the torque required constant divided 

by number of seconds that the control has been implemented. 

The last three variables provide information of the expense of torque needed to perform each 

control. 

In all the following cases the initial modal variables are selected to be the same. Also, the Solar 

Sail will perform a rest to rest manoeuvre in all cases. With the aim of having the same initial 

situation in all cases and then be able to do a coherent and fair comparison. 

Therefore: 

-The natural frequency of the flexible movement 𝜔⃗⃗ 𝑛 is fixed as 5.69 rad/s, its damping ratio 𝜉 

fixed as 0.017.  

-The initial value of the modal state variable 𝜂 (0) = 0 . 

-The initial value of the total velocity of the flexible appendages 𝜓⃗ (0) = 2.5 𝑚/𝑠 

-The initial value of the angular velocity of the spacecraft, 𝜔⃗⃗ (0) = [0, 0, 0] 𝑟𝑎𝑑/𝑠 

To have a more pleasant view it has been decided to use two different tables. The first one will 

consider the gains, the time of convergence of 𝜔⃗⃗ , 𝑞 𝑒, 𝜂, 𝜓⃗   with their errors at the convergence 

and the final precision error 𝜙 for each control performed. The second one will consider the 
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gains, the time with maximum torque required 𝑡𝑢𝑚𝑎𝑥𝑖𝑚𝑢𝑚
, the torque requiring constant 𝜏 and 

the torque requiring constant per second 𝛾. 

Finally, here is presented the performed tables considering all the previous conditions: 

 

 

Type of 

control 

 

 

 

𝒌𝒑 

 

 

 

𝒌𝒒𝒆
 

   

Time of convergence (s) 

 

Final 

Precision 

Error  

 

𝝎⃗⃗⃗  (𝐫𝐚𝐝/𝐬) 

 

𝒒⃗⃗ 𝒆 (−) 

 

𝜼 (−) 

 

𝝍⃗⃗⃗  (𝐦/𝐬) 

 

𝝓 (º 𝐝𝐞𝐠𝐫𝐞𝐞𝐬) 

 

 

Quaternion 

Error Control 

 

 

 

50 

 

 

 

4 

3000 

𝑤1 → ±6 · 10−5 

𝑤2 → ±9 · 10−5 

𝑤3 → ±3 · 10−8 

 

2530 

𝑞𝑒1 → ±6 · 10−6 

𝑞𝑒2 → ±1 · 10−6 

𝑞𝑒3 → −0.01452 

 

80 

±0.005 

 

2000 

±0.027 

High 

freq. 

 

 

1.654 

 

 

 

Sliding Mode 

Control 

 

 

 

 

50 

 

 

 

 

4 

520 

𝑤1 → 𝑑𝑒𝑣 + 6 · 10−5 

±6 · 10−5 

𝑤2 → 𝑑𝑒𝑣 − 6 · 10−5 

±6 · 10−5 

𝑤3 → 𝑑𝑒𝑣 − 10 · 10−5 

±5 · 10−6 

 

 

 

Do not converge 

 

 

 

 

90 

±0.005 

 

 

 

500 

±0.025 

 

 

 

82 

 

Nonlinear 

State Observer 

(1) 

 

 

50 

 

 

4 

2600 

𝑤1 → ±2.7 · 10−7 

𝑤2 → ±13 · 10−7 

𝑤3 → ±9 · 10−6 

2440 

𝑞𝑒1 → ±3.1 · 10−5 

𝑞𝑒2 → ±2.27 · 10−4 

𝑞𝑒3 →d𝑒𝑣 − 0.0145 

 

68 

±5

· 10−5 

 

1680 

±0.00335 

 

 

1.657 

 

Nonlinear 

State Observer 

(2) 

 

 

50 

 

 

4 

3200 

𝑤1 → ±4.852 · 10−8 

𝑤2 → ±2.652 · 10−7 

𝑤3 → ±7.093 · 10−7 

2800 

𝑞𝑒1 → ±4.69 · 10−7 

𝑞𝑒2 ± 2.463 · 10−6 

𝑞𝑒3 𝑑𝑒𝑣 − 0.01445 

 

75 

±4.1

· 10−3 

 

1950 

±0.0237 

 

 

1.6566 

     2400 1300  
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Flexible 

Control 

50 4 Do not converge 

 

Do not converge 

 

  ±1

· 10−3 

 

±6

· 10−3 

 

--- 

Flexible 

Control with 

Output 

Feedback 

controllers 

 

 

50 

 

 

4 

1.65 · 104 

𝑤1 → 𝑑𝑒𝑣 + 5.13 · 10−6 

𝑤2 → 𝑑𝑒𝑣 − 1 · 10−9 

𝑤3 𝑑𝑒𝑣 − 8.268 · 10−6 

8.55 · 103 

𝑞𝑒1 𝑑𝑒𝑣 − 8.59 · 10−4 

𝑞𝑒2 𝑑𝑒𝑣 + 1.43 · 10−3 

𝑞𝑒3 𝑑𝑒𝑣 − 0.01445 

229.5 

+1.637

· 10−10 

 

230 

+1.243

· 10−4 

 

 

1.6589 

 

 

Flexible 

Control 

 

 

450 

 

 

125 

4700 

𝑤1 → 𝑑𝑒𝑣 − 1.5 · 10−5 

±1.5 · 10−5 

𝑤2 → 𝑑𝑒𝑣 − 1 · 10−5 

±2 · 10−5 

𝑤3 → 𝑑𝑒𝑣 − 15 · 10−8 

4800 

𝑞𝑒1 → ±3.49 · 10−4 

𝑞𝑒2 → ±2.19 · 10−4  

𝑞𝑒3 → ±4.55 · 10−4 

 

 

870 

±2.2

· 10−3 

 

 

1600 

±6.6

· 10−3 

 

 

0.054 

Flexible 

Control with 

Output 

Feedback 

controllers 

 

80 

 

15 

3540 

𝑤1 → 𝑑𝑒𝑣 + 3.32 · 10−6 

𝑤2 → 𝑑𝑒𝑣 + 5.32 · 10−6 

𝑤3 → 𝑑𝑒𝑣 − 5.83 · 10−7 

9000 

𝑞𝑒1 𝑑𝑒𝑣 + 2.13 · 10−3 

𝑞𝑒2 𝑑𝑒𝑣 − 3.51 · 10−3 

𝑞𝑒3 𝑑𝑒𝑣 + 3.85 · 10−3 

213 

𝑑𝑒𝑣 

−9.55

· 10−10 

225 

𝑑𝑒𝑣 

+3.55

· 10−3 

 

 

0.595 

 

Quaternion 

Error Control 

 

80 

 

15 

4300 

𝑤1 → ±6 · 10−5 

𝑤2 → ±1 · 10−4 

𝑤3 → ±1.83 · 10−7 

4350 

𝑞𝑒1 → ±5.065 · 10−6 

𝑞𝑒2 𝑑𝑒𝑣 − 7.39 · 10−6 

𝑞𝑒3 𝑑𝑒𝑣 − 3.86 · 10−3 

60 

±5

· 10−3 

3910 

±0.02696 

0.4418 

Flexible 

Control with 

Output 

Feedback 

controllers 

 

 

1200 

 

 

60 

6050 

𝑤1 𝑑𝑒𝑣 + 1.612 · 10−6 

𝑤2 → 𝑑𝑒𝑣 − 2.65 · 10−6 

𝑤3 → 𝑑𝑒𝑣 + 7.2 · 10−9 

7000 

𝑞𝑒1 − 3.395 · 10−4 

𝑞𝑒2 + 6.381 · 10−4 

𝑞𝑒3 → −9.64 · 10−4 

210 

±1.33

· 10−6 

350 

𝑑𝑒𝑣 

+6.14

· 10−3 

 

0.133 

 

Quaternion 

Error Control 

 

1200 

 

60 

1200 

𝑤1 → 𝑜𝑠𝑐 + 4.93 · 10−5 

−5.6 · 10−5 

𝑤2 → ±8 · 10−5 

𝑤3 → 𝑑𝑒𝑣 + 4.7 · 10−9 

1250 

𝑞𝑒1 → ±4.33 · 10−6 

𝑞𝑒2 → ±7.02 · 10−6 

𝑞𝑒3 𝑑𝑒𝑣 − 9.64 · 10−4 

90 

±5

· 10−3 

1050 

𝑜𝑠𝑐 

+0.025 

-0.038 

Oscillate to 

achieve it 

0.110 
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Nonlinear 

State Observer 

(2) 

 

1200 

 

60 

1280 

𝑤1 → ~0 

𝑤2 → ~0 

𝑤3 → 𝑑𝑒𝑣 + 3.39 · 10−13 

1250 

𝑞𝑒1 𝑑𝑒𝑣 + 3.75 · 10−8 

𝑞𝑒2 𝑑𝑒𝑣 + 7.36 · 10−8 

𝑞𝑒3 𝑑𝑒𝑣 − 9.64 · 10−4 

75 

±4.33

· 10−3 

910 

±0.0241 

 

0.11044 

Table 4  Time of convergence and precision performance of each control 

Type of control 𝑘𝑝 𝑘𝑞𝑒
 𝑡𝑢𝑚𝑎𝑥𝑖𝑚𝑢𝑚

(s) 𝜏 (𝑁2 · 𝑚2) 
𝛾 (

𝑁2 · 𝑚2

𝑠
) 

Quaternion Error Control 50 4 1650 768986.812 76.891 

Sliding Mode Control 50 4 10000 (All time) 237972.2 23.795 

Nonlinear State Observer (1) 50 4 1712 1704087.591 170.392 

Nonlinear State Observer (2) 50 4 1713 721875.273 72.180 

Flexible Control 50 4 10000 (All time) 8217100.940 821.628 

Flexible Control with Output 

Feedback controllers 

50 4 990 566077.860 56.602 

Flexible Control 450 125 10000 (All time) 8641341.755 864.048 

Flexible Control with Output 

Feedback controllers 

80 15 2575 1035861.910 103.576 

Quaternion Error Control 80 15 3753 1843707.916 184.352 

Flexible Control with Output 

Feedback controllers 

1200 60 557 453522.880 45.348 

Quaternion Error Control 1200 60 1016.4 1101525.968 110.142 

Nonlinear State Observer (2) 1200 60 1008 546577.020 54.652 

Table 5 Control Torque Requirements Performance of each control 

(1). Nonlinear state observer control obtaining data of the angular velocities from a Quaternion 

Error controller 

(2). Nonlinear state observer control having an own calculation of the angular velocities 
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9.2. Graphic results on each control implemented 

To give the reader a better knowledge about the performance of each control and to be able to 

know how the spacecraft will behave during the transient until the convergence time it is 

desirable to present the plots of the angular velocity 𝜔⃗⃗ , the quaternion error 𝑞 𝑒, the control 

torque 𝑢⃗ , the modal coordinate variable 𝜂, the total velocity of the flexible appendages 𝜓⃗ , and 

the precision error versus time.  

In all cases the time of simulation will be 10000 seconds. All the results of the tables before are 

obtained from the following plots. 

Quaternion Error Control using gains: 𝒌𝒑 = 𝟓𝟎, 𝒌𝒒𝒆
= 𝟒   

 

Figure 31 Angular Velocity vs time with Quaternion Error Control using gains: kp=50, kqe=4 

 

Figure 32 Quaternion Error vs time with Quaternion Error Control using gains: kp=50, kqe=4 

In the Angular Velocity plot and the quaternion error plot there is an underdamped tendence to 

achieve the convergence. The frequency of the oscillation is not very high. Therefore it seems 

physically achiveable to arrive to the convergence. 
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Figure 33 Control Torque vs time with Quaternion Error Control using gains: kp=50, kqe=4 

In the case of the control there are some abrupt changes of the control torque and a final 

sinusoidal behaviour of the y component of the control that can cause struggles in the 

implementation of the contol torque. 

 

Figure 34 Total Velocity of the flexible appendages with Quaternion Error Control using gains kp=50, kqe=4 

 

Figure 35 Modal state variable vs time with Quaternion Error Control using gains: kp=50, kqe=4 

In the case of the tendency of the total velocity of the flexible appendages and the modal 

coordinate variable there is a very quick transient to achieve the convergence. In particular, in 

the total velocity of the flexible appendages plot there is a quite irregular behaviour during the 

first 2000 seconds, having some peaks but with a little amplitude. Those peaks are not desirable 

to cause great complications in performing this control. 

 

Figure 36 Precision error vs time with Quaternion Error Control using gains: kp=50, kqe=4 
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Considering the precision error, the transient to achieve the convergence is quite irregular. 

There are very big changes in the control at the first moments of its action. This big difference 

in the error can cause struggles in the real performance of the control. 

Quaternion error Control using gains: 𝒌𝒑 = 𝟖𝟎, 𝒌𝒒𝒆
= 𝟏𝟓   

 

Figure 37 Angular Velocity vs time with vs time with Quaternion Error Control using gains: kp=80, kqe=15 

 

Figure 38 Quaternion Error vs time  with Quaternion Error Control using gains: kp=80,kqe=15 

 

Figure 39 Control Torque vs time with Quaternion Error Control using gains: kp=80, kqe=15 
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Figure 40 Total velocity of the flexible appendages vs time with Quaternion Error Control using gains: kp=80, kqe=15 

 

Figure 41 Modal coordinate variable vs time with Quaternion Error Control using gains: kp=80, kqe=15 

 

Figure 42 Precision Error vs time with Quaternion Error Control using gains: kp=80, kqe=15 

In comparison with the previous case, if the gains increase, the number of oscillations to achieve 

the convergence also increase. The time when the maximum control torque is required also 

increases. However, the transient has the same progression as the previous case, the quaternion 

control using gains 𝑘𝑝 = 50, 𝑘𝑞𝑒
= 4 . Furthermore, the final error at the convergence 

decreases. Therefore, the final precision is better but the movement to achieve this final stable 

state becomes more complex. 
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Sliding mode control using gains: 𝒌𝒑 = 𝟓𝟎, 𝒌𝒒𝒆
= 𝟒   

 

Figure 43 Angular velocity vs time with sliding mode control using gains: kp=50, kqe=4 

 

Figure 44 Quaternion Error vs time with sliding mode control using gains: kp=50, kqe=4 

 

Figure 45 Control Torque vs time with sliding mode control using gains: kp=50, kqe=4 
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Figure 46 Total velocity of the flexible appendages vs time with sliding mode control using gains: kp=50, kqe=4 

 

Figure 47 Modal coordinate variable vs time with sliding mode control using gains: kp=50, kqe=4 

 

Figure 48 Precision error vs time with sliding mode control using gains: kp=50, kqe=4 

A final stabilization is not achieved using this type of control. This aspect can be easily noted 

regarding the plots of quaternion error and precision error, the final values are not zero or do 

not tend to zero. That shows that a final stabilization is not achieved. Nevertheless, in terms of 

angular velocity there is a great transient response using this control. The total velocity of the 

flexible appendages and the modal coordinate variable progress in the same way than using the 

quaternion error control. Moreover, the required control torque seems unfeasible. There is a 

need of using the maximum torque during all the implementation. Theoretically the required 

total torque in global during all the implementing time is not really high but implementing this 

type of control in the reality it seems not possible that the thrusters (the actual actuator of the 

sliding mode control) would work that amount of time continuously.  
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Nonlinear state observer control (1) using gains: 𝒌𝒑 = 𝟓𝟎, 𝒌𝒒𝒆
= 𝟒   

 

Figure 49 Angular velocity vs time with nonlinear state observer control (1) using gains: kp=50, kqe=4 

 

Figure 50 Quaternion Error vs time with nonlinear state observer control (1) using gains: kp=50, kqe=4 

 

Figure 51 Control Torque vs time with nonlinear state observer control (1) using gains: kp=50, kqe=4 
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Figure 52 Total Velocity of the flexible appendages vs time with nonlinear state observer control (1) using gains: 
kp=50, kqe=4 

 

Figure 53 Modal coordinate variable vs time with nonlinear state observer control (1) using gains: kp=50, kqe=4 

 

Figure 54 Precision Error vs time with nonlinear state observer control (1) using gains: kp=50, kqe=4 

 

Considering only the progression of the variables during the transient, the nonlinear state 

observer (1) has approximately the same evolution than the quaternion error control. 

Nevertheless the final convergence error decreases, that is a crucial aspect to consider in the 

comparison. Particularly, the first component of the angular velocity and the first component of 

the component of the quaternion error has a less oscillative nature. The amplitude of its 

oscillation is way lower than the other two components and has a smoother progression. 
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Flexible Control using gains: 𝒌𝒑 = 𝟒𝟓𝟎, 𝒌𝒒𝒆
= 𝟏𝟐𝟓   

 

Figure 55 Angular Velocity vs time with Flexible Control using gains: kp=450, kqe=125 

 

Figure 56 Quaternion Error vs time with Flexible Control using gains: kp=450, kqe=125 

 

Figure 57 Control Torque vs time with Flexible Control using gains: kp=450, kqe=125 

 

Figure 58 Total velocity of the flexible appendages vs time with Flexible Control using gains: kp=450, kqe=125 
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Figure 59 Modal Coordinate Variable vs time with Flexible Control using gains: kp=450, kqe=125 

 

Figure 60 Precision Error vs time with Flexible Control using gains: kp=450, kqe=125 

The flexible control has a slightly different response of the transiend regarding the angular 

velocity and the quaternion error plot. Usually the three components of the angular velocity and 

the quaternion error have a similar tendence during the transcient. In this case the three 

components have an independent response than the others.This aspect reduces the probability 

of coupling of the response. Nevertheless this aspect will not cause a mayor consequence of the 

implementation of the control. 

 

Flexible control Estimation with output feedback controllers using gains: 𝒌𝒑 = 𝟓𝟎, 𝒌𝒒𝒆
= 𝟒  

 

Figure 61 Angular Velocity vs time with Flexible Control Estimation with output feedback controllers using gains: 
kp=50, kqe=4 
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Figure 62 Quaternion Error vs time with Flexible Control Estimation with output feedback controllers using gains: 
kp=50, kqe=4 

 

Figure 63 Control Torque vs time with Flexible Control Estimation with output feedback controllers using gains: 
kp=50, kqe=4 

 

Figure 64 Total Velocity of the Flexible Appendages vs time with Flexible Control Estimation with output feedback 
controllers using gains: kp=50, kqe=4 
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Figure 65 Modal Coordinate Variable vs time with Flexible Control Estimation with output feedback controllers using 
gains: kp=50, kqe=4 

 

Figure 66 Precision Error vs time with Flexible Control Estimation with output feedback controllers using gains: 
kp=50, kqe=4 

This control with these selected gains provide a really smooth response of the main part of the 

transient of the quaternion error and the precision error. Also, the number of oscillations to 

achieve the convergence of the angular velocity reduce. Those two aspects are very desirable in 

the implementation of the control. However, the required torque has an oscillating nature. This 

can cause inconvenient and complexity on the real implementation of the control. 

Flexible control estimation with output feedback controllers using gains: 𝒌𝒑 = 𝟖𝟎, 𝒌𝒒𝒆
= 𝟏𝟓   

 

Figure 67 Angular Velocity vs time with Flexible control estimation with output feedback controllers using gains: 
kp=80, kqe=15 
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Figure 68 Quaternion Error vs time with Flexible control estimation with output feedback controllers using gains: 
kp=80, kqe=15 

 

Figure 69 Control Torque vs time with Flexible control estimation with output feedback controllers using gains: 
kp=80, kqe=15 

 

Figure 70 Total Velocity of the flexible appendages vs time with Flexible control estimation with output feedback 
controllers using gains: kp=80, kqe=15 
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Figure 71 Modal Coordinate Variable vs time with Flexible control estimation with output feedback controllers using 
gains: kp=80, kqe=15 

 

Figure 72 Precision Error vs time with Flexible control estimation with output feedback controllers using gains: 
kp=80, kqe=15 

Increasing the gains of the flexible control with output feedback controllers cause a big change 

in the transient of the variables. Specially in the angular velocity, the quaternion error and the 

precision error. The quantity and amplitude of the oscillations increase, lossing the smooth 

tendency accomplished in the previous case. The time when maximum torque is required 

increases.  

The modal state variable and the total velocity of the flexible appendages tendency do not suffer 

a major change. The convergence is still achieved in a very quick way.  

The final error in the convergence of most of the state variables decresases. This fact is really 

desirable considering the possible implementation of the control. Also the oscillating nature of 

the control torque required vanishes, simplifying the implementation of the control. 

Quaternion Error Control using gains: 𝒌𝒑 = 𝟏𝟐𝟎𝟎, 𝒌𝒒𝒆
= 𝟔𝟎   
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Figure 73 Angular Velocity vs time with Quaternion Error Control using gains: kp=1200, kqe=60 

 

Figure 74 Quaternion Error vs time with Quaternion Error Control using gains: kp=1200, kqe=60 

 

Figure 75 Control Torque vs time with Quaternion Error Control using gains: kp=1200, kqe=60 

 

Figure 76 Total Velocity of the Flexible Appendages vs time with Quaternion Error Control using gains: kp=1200, 
kqe=60 
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Figure 77 Modal Coordinate Variable vs time with Quaternion Error Control using gains: kp=1200, kqe=60 

 

Figure 78 Precision Error vs time with Quaternion Error Control using gains: kp=1200, kqe=60 

Increasing the gains, the number of oscillations of the angular velocity and the quaternion error 

decrease, and its convergence is achieved in less time. This fact is high desirable when 

performing the control. In terms of the modal state variable and the total velocity of the flexible 

appendages the transient response is approximately the same. The main disadvantage is that 

the required torque to perform the control is higher during the implementation. 

Nonlinear state observer control (2), using gains: 𝒌𝒑 = 𝟏𝟐𝟎𝟎, 𝒌𝒒𝒆
= 𝟔𝟎 

 

Figure 79 Angular Velocity vs time with Nonlinear state observer control (2), using gains: kp=1200, kqe=60 
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Figure 80 Quaternion Error vs time with Nonlinear state observer control (2), using gains: kp=1200, kqe=60 

 

Figure 81 Control Torque vs time with Nonlinear state observer control (2), using gains: kp=1200, kqe=60 

 

Figure 82 Total Velocity of the flexible Appendages vs time with Nonlinear state observer control (2), using gains: 
kp=1200, kqe=60 
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Figure 83 Modal Coordinate Variable vs time with Nonlinear state observer control (2), using gains: kp=1200, kqe=60 

 

Figure 84 Precision Error vs time with Nonlinear state observer control (2), using gains: kp=1200, kqe=60 

In comparison with the quaternion error control using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60, the big 

difference is that the quaternion error performance has a high improvement. The number of 

oscillations of the second and the third component of the quaternion error reduce dramatically. 

The third component of the quaternion error has practically a constant behaviour. This 

quaternion error response of this selected control with those gains selected is the best one 

achieved considering all the controls implemented.  

The required torque needed to perform this control becomes lower that using the same control 

but with lower gains. Also, the torque needed at the convergence has a constant behaviour. This 

circumstance is advantageous when performing the selected control. 

Referring to the modal state variable and the total velocity of the flexible appendages there is 

not a big difference in the behaviour of the response. 

 

Flexible control estimation with output feedback controllers using gains: 𝒌𝒑 = 𝟏𝟐𝟎𝟎, 𝒌𝒒𝒆
=

𝟔𝟎  

 

Figure 85 Angular Velocity vs time with Flexible control estimation with output feedback controllers using gains: 
kp=1200, kqe=60 
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Figure 86 Quaternion Error vs time with Flexible control estimation with output feedback controllers using gains: 
kp=1200, kqe=60 

 

Figure 87 Control Torque vs time with Flexible control estimation with output feedback controllers using gains: 
kp=1200, kqe=60 

 

Figure 88 Total Velocity of the Flexible Appendages vs time with Flexible control estimation with output feedback 
controllers using gains: kp=1200, kqe=60 
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Figure 89 Modal Coordinate Variable vs time with Flexible control estimation with output feedback controllers using 
gains: kp=1200, kqe=60 

 

Figure 90 Precision Error vs time with Flexible control estimation with output feedback controllers using gains: 
kp=1200, kqe=60 

The flexible control with output feedback controllers using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60 has the 

best performance in terms of the angular velocity. The number of the oscillations are the same 

as the nonlinear state observer control (2), using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60 however the 

amplitude of that oscillations is lower, having so a smoother tendency. 

Referring to the quaternion error performance this control with those selected gains has the 

smoother response of the three components of the quaternion error. The second-best 

performance found of the quaternion error is the found using the flexible control estimation 

with output feedback controllers using gains: 𝑘𝑝 = 50, 𝑘𝑞𝑒
= 4 .  

The modal state variable and the total velocity of the flexible appendages have a higher variance 

of the first implementation time, nevertheless both variables converge rapidly. Therefore, at a 

general view there is not a big difference implementing this control instead of the other controls. 

In comparison with the quaternion error control using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60 and the 

nonlinear state observer control (2), using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60  there is an improvement 

of the required torque to control the spacecraft. The time when the maximum torque is required 

becomes lower and the global control required on the implementation is lower than the other 

two cases. Hence, this control with these selected gains is more cost effective, requiring less 

torque, and then less energy to perform its correct activity. 

9.3. Ranking of the controllers and final selection 

At this moment there is a knowledge of the results of each control in each configuration of gains. 

Also, a knowledge of the tendency of each of the variables during the transient. Therefore, to 
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do a proper comparison and a selection of the most appropriate control it is required to rank 

the controls according to different preferences. In the following table there is a ranking of all the 

configurations of the controls implemented. It has been decided to rank each control with each 

configuration considering the time of convergence of the angular velocity 𝜔⃗⃗ , the quaternion 

error  𝑞 𝑒, the modal state variable 𝜂 and the total velocity of the flexible appendages 𝜓⃗ .  

Then also it has been decided to rank each control with each configuration considering the final 

error at its convergence of the time of convergence of the angular velocity 𝜔⃗⃗ , the quaternion 

error  𝑞 𝑒, the modal state variable 𝜂 and the total velocity of the flexible appendages 𝜓⃗ .  

Moreover, it has been decided to rank each control with each configuration considering the final 

precision error 𝜙. And finally considering the time with maximum torque required 𝑡𝑢𝑚𝑎𝑥𝑖𝑚𝑢𝑚
 

and the torque requiring constant per second 𝛾. 

 

Type of 

control 

 

 

𝒌𝒑 

 

𝒌𝒒𝒆
 

 

Time to converge 

 

Error at the convergence 

Torque 

require-

ment 

𝝎⃗⃗⃗  𝒒⃗⃗ 𝒆 𝜼 𝝍⃗⃗⃗  𝝎⃗⃗⃗  𝒒⃗⃗ 𝒆 𝜼 𝝍⃗⃗⃗  𝝓 𝒕𝒖𝒎𝒂𝒙𝒊𝒎𝒖𝒎
 𝜸 

Quaternion 

Error 

Control 

 

50 

 

4 

 

5 

 

4 

 

 

5 

 

11 

 

8 

 

7 

 

11 

 

11 

 

7 

 

6 

 

6 

Sliding 

Mode 

Control 

 

50 

 

4 

 

1 

 

11 

 

 

6 

 

4 

 

10 

 

11 

 

10 

 

9 

 

11 

 

12 

 

1 

Nonlinear 

State 

Observer 

(1) 

 

50 

 

4 

 

4 

 

3 

 

2 

 

9 

 

4 

 

8 

 

4 

 

2 

 

9 

 

7 

 

9 

Nonlinear 

State 

Observer 

(2) 

 

50 

 

4 

 

6 

 

5 

 

4 

 

10 

 

3 

 

6 

 

7 

 

7 

 

8 

 

8 

 

5 

Flexible 

Control 

50 4 12 12 12 7 12 12 5 4 12 11 11 

Flexible 

Control 
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with 

Output 

Feedback 

controllers 

 

50 

 

4 

 

11 

 

9 

 

10 

 

2 

 

5 

 

10 

 

1 

 

1 

 

10 

 

2 

 

4 

 

Flexible 

Control 

450 125 9 7 11 8 9 3 6 6 1 10 12 

Flexible 

Control 

with 

Output 

Feedback 

controllers 

 

 

80 

 

 

15 

 

 

7 

 

 

10 

 

 

9 

 

 

1 

 

 

6 

 

 

9 

 

 

2 

 

 

3 

 

 

6 

 

 

8 

 

 

7 

Quaternion 

Error 

Control 

 

80 

 

15 

 

8 

 

6 

 

1 

 

12 

 

11 

 

5 

 

9 

 

10 

 

5 

 

9 

 

10 

Flexible 

Control 

with 

Output 

Feedback 

controllers 

 

 

1200 

 

 

60 

 

 

10 

 

 

8 

 

 

8 

 

 

3 

 

 

2 

 

 

4 

 

 

3 

 

 

5 

 

 

4 

 

 

1 

 

 

2 

Quaternion 

Error 

Control 

 

1200 

 

60 

 

2 

 

2 

 

 

7 

 

6 

 

7 

 

2 

 

12 

 

11 

 

2 

 

4 

 

8 

Nonlinear 

State 

Observer 

(2) 

 

1200 

 

60 

 

3 

 

1 

 

3 

 

5 

 

1 

 

1 

 

8 

 

8 

 

3 

 

3 

 

3 

Table 6 Global Rank of the Performance of each Control 

(1). Nonlinear state observer control obtaining data of the angular velocities from a Quaternion 

Error controller 

(2). Nonlinear state observer control having an own calculation of the angular velocities 

The ranking effectuated helps to do a fair selection of the most suitable control. There are three 

different scenarios. The first one is that is desirable to have a quick control. Therefore, the 

control would have a lower time of convergence of the state variables. The second one is to 

have a very precise control. In this case, the time of convergence will not have such importance. 
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It will be only considered the final error at the convergence. The third scenario would be having 

a low consuming control. Therefore, the required torque will be lower. Finally, considering the 

three scenarios it will be possible to select the most suitable control as a globally most desirable 

control. 

In terms of the time of convergence, the most suitable control would be the Nonlinear State 

Observer control having an own calculation of its angular velocities and using gains: 𝑘𝑝 =

1200, 𝑘𝑞𝑒
= 60 . It has the quickest convergence of the quaternion error and the third position 

out of twelve options in the quickness of the convergence in the angular velocity response and 

the modal state variable response. Then the time of convergence of the total velocity of the 

flexible appendages is not as good as the other variables. However, it is one of the quickest, 

being the fifth most rapid. Other controls, like the quaternion error control using gains: 𝑘𝑝 =

1200, 𝑘𝑞𝑒
= 60 have a very fast convergence in the angular velocity and the quaternion error. 

Nevertheless, the time of convergence of the modal state variable and the total velocity of the 

flexible appendages is not that low. 

In terms of the precision of the control, the most indicated control would be the Flexible Control 

with Output Feedback Controllers using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60. In average has better 

performance that the other ones. In this case, the selection has been tough because there are 

other controls, like the Nonlinear State Observer control having an own calculation of its angular 

velocities and using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60 , that has also a very low error at the 

convergence in the angular velocity and the quaternion error. However, a lower error at the 

convergence of the modal state variable and the total velocity of the flexible appendages is 

achieved with the Flexible Control with output Feedback Controllers.  

In terms of the consumption and torque requirement, clearly the best control would be the 

Flexible Control with Output Feedback Controllers using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60. It is the 

control that requires less time using the maximum torque and the second best in terms of the 

torque requiring per second. It is a really low consuming control. It should be noted that the 

Sliding Mode control has the less torque requiring per second, that is caused because there are 

many seconds that the control is in off position, no consuming anything. However, the time 

required using the maximum torque is very high (all the implementation time). This fact shows 

the unfeasibility of this control, it will cause much consumption during the working life of the 

spacecraft.  

Accordingly, having in mind the three different scenarios previously selected it can be stated 

that globally the best control for the implementation of a Solar Sail situated in the L1 point would 

be the Flexible Control with Output Feedback Controllers using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60. It 

is averagely the most precise control and the less consuming control. As the Solar Sail it is 

situated in the L1 point orbiting around the Sun, there is not a big necessity to do a really fast 

control because its relative movement with the Sun is very slow. It is more interesting to have a 

more precise control because an accumulate error in that big amount of time of implementation 

will cause major problems. Also, as the life time of the Solar Sail is wished to be very large it is 

desirable to select a low consuming control because then it will lead to a saving in the required 

reserve of energy and a more efficient spacecraft.  
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10. Conclusions 
 

The Solar Sail is a flexible spacecraft. During this work it has been shown that the effects of the 

flexibility are not negligible in the implementation of the control of the sail. The precision of the 

angular velocity decreases and the transient of the angular velocities and the quaternion error 

to stabilize becomes more abrupted. Therefore, the performed movement to achieve the final 

stable state is more precipitous. However, the time to stabilise is similar. Hence those results 

indicate that it is highly desirable to consider the effect of the flexibility in the simulation of the 

control in order to have a complete knowledge of the movement of the spacecraft to achieve 

the stabilization and avoid unexpected movements or disturbances appeared during the 

transient. 

Also, during this work it has been intended to quantify the effects of causes the flexibility of the 

spacecraft in the control. The effects have been quantified as a flexible disturbance. It has been 

proved that concerning all the controls, the most appropriate to deal with the disturbance is the 

PD control with a term which considers flexible appendages with output feedback controllers. 

The main factor that has make this controller the most appropriate is its liability. It assures a 

final convergence of the angular velocity and the quaternion error. Hence, a final stabilization. 

Moreover, it works with the modal variables, so it allows to have a more precise knowledge of 

how the nature and the magnitude of the movement of the flexible appendages interfere in the 

control of the spacecraft. This knowledge will be very profitable to solve warning situations. 

The final objective of this work is to find the most suitable control for the solar sail. To find the 

most proper control a deep comparison of the performances of all the controls implemented 

with different gains has been done. There are three important factors that are considered to do 

the comparison. The time of convergence of the state variables, angular velocity, quaternion 

error and the modal variables (total velocity of the flexible appendages and modal state 

variable). The precision of the control. And the consumption of the control.  

In terms of the time of convergence of the state variables, the most appropriate control found 

is the Nonlinear State Observer control having and own calculation of its angular velocities and 

using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60. Having the quickest convergence of the quaternion errors 

and the third quick convergence of the angular velocity and the modal state variable. Then the 

fifth quickest response regarding the total velocity of the flexible appendages. It is a rapid 

control. However, due to it is a highly theoretical control it seems difficult to have a real 

implementation of this control.  

In terms of the precision of the control, the most indicated control would be the PD control plus 

a term which considers flexible appendages with Output Feedback Controllers using gains: 𝑘𝑝 =

1200, 𝑘𝑞𝑒
= 60. Averagely has better performance that the other ones. Other controls have 

very low error in a specific state variable. But regarding a global performance and considering 

all the variables it has the best behaviour. 
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In terms of the consumption of the control, the most efficient is the PD control plus a term which 

considers flexible appendages with Output Feedback Controllers using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
=

60. It is the control that requires less time using the maximum torque and the second best in 

terms of the torque requiring per second. It is the best cost effective consuming control from all 

the controls considered. 

Thus, considering all the three factors explained before and focusing in a global performance it 

can be stated that the most suitable control is the PD control plus a term which considers flexible 

appendages with Output Feedback Controllers using gains: 𝑘𝑝 = 1200, 𝑘𝑞𝑒
= 60. As the solar 

sail will be placed in the L1 Lagrange point there is not a need to perform a fast control. It is 

more important to have a precise control, to avoid the accumulate error. Because the time of 

implementation of the solar sail will be very large and it is not desirable to have accumulate 

error in a big amount of time because it will rise. Another important factor is related with the 

implementation time of the spacecraft. The solar sail it designed to have a very long lifetime, 

therefore it is very interesting to have a low consuming control to avoid a very large reserve or 

use of energy. Then have a more efficient spacecraft.  

This work is wished to be a proper background for future studies. It is important to note that it 

is achievable to have a most precise model of the spacecraft. Then being able to have a more 

precise control and have a more complete knowledge of the real movement and attitude of the 

solar sail. It would be useful to do a thermal study of the structure. And a study of the vibration 

movements of the flexible appendages that could create possible frequency resonance in the 

structure. Which could put in danger the solar sail. 
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Annex 1: Quaternion Error proportional control using CMG as 

actuator 
This type of control uses a CMG (momentum exchange device) as the generator of the required 
torque to control the spacecraft. The CMG is a more efficient device than a RW or IW. Then it 
will be a more efficient control. However, the control algorithms are much more complex. Here 
there is a light explanation about how this control works and how is it implemented. 

The control departs from a generic Quaternion Error control ideal. Then it is constrained by the 
maximum momentum and torque achievable by the real control device. Then it is implemented 
the real control law that is the following one: 

𝑢⃗ = 𝐴̇ℎ𝑟
⃗⃗⃗⃗ − 𝜔⃗⃗ × 𝐴ℎ𝑟

⃗⃗⃗⃗  ( 76 ) 

-A is a matrix that defines the position of the CMGs respect to a point of reference. That is to 
say, how the CMGs are positioned in the space. 

-𝐴ℎ𝑟
⃗⃗⃗⃗  corresponds to the angular momentum of the CMGs (ℎ𝐶𝑀𝐺). 

-𝐴̇ℎ𝑟
⃗⃗⃗⃗  corresponds to the derivative of the angular momentum of the CMGs (ℎ𝐶𝑀𝐺

̇ ) 

Also it is needed to recall that some configuration of angles between the CMGs have 
singularities, therefore it is needed to avoid them. For example: 

[𝛿1 = 900 𝛿2 = 00 𝛿3 = −900 𝛿4 = 00]    𝑜𝑟    [𝛿1 = 900 𝛿2 = 1800 𝛿3 = −900 𝛿4 = 00]   

Block diagram 

The block diagram differs from the two controls previously explained. For a more complete 
explanation of the implementation it is recommended to visit the bibliography [13]. 

 

Figure 91 Block diagram of the Quaternion Error proportional control using CMG as actuator 

 

The loop of the two saturation boxes of the lower part of the diagram is the implementation of 
the constraints to obtain the real values of angular moment. 
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