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Abstract: 
Edge cloud computing seems to be a key enabler of 5G networks which essentially brings 
the servers as close to the users as possible. Among all the benefits this tendency can 
provide, this master thesis focuses on the advantages in terms of reduction of the latency. 
First of all, an Edge network model that combines this paradigm with Software-defined 
Networks (SDN) is presented so as to provide an example of a potential production 
scenario. Then, a videoconference application is chosen as a particular case study of 
latency-sensitive and bandwidth exhaustive application and the traffic that it generates is 
inspected. Thanks to this analysis, a methodology to compute the latency can be proposed 
which is used during the test runs afterwards. Lastly, a testbed analogous to the model 
previously presented showcases the benefits of this approach. The results prove the 
improvement in the quality of the videoconference by means of a noticeable reduction of 
the latency when the servers are on the edge. Moreover, it is demonstrated the feasibility 
of providing a dynamic environment where the server can be live migrated. For the sake of 
providing a complete quality overview, the impact of the available bandwidth and packet 
loss is evaluated as well. 

Keywords: Edge cloud computing, SDN, videoconference services, latency-sensitive 
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1. Introduction 

 
Edge cloud computing addresses many challenges that enterprise IT faces when running 
data-centric workloads in the cloud. To begin with, it enables IT to retain sensitive data on-
premises while still taking advantage of the elasticity offered by the public cloud. It also 
reduces the amount of data that flows back and forth between the enterprise headquarters 
and the cloud. Aside, it reduces the latency involved in dealing with public cloud platforms. 
This last statement motivates the study presented in this project. Bringing the cloud to the 
edge seems to be an adequate solution for bandwidth exhaustive and latency-sensitive 
applications. For this reason, this project considers the case study of videoconferencing 
services, which meets these two characteristics, and it tries to tackle this challenge with 
the particular use of Edge cloud computing and SDN.  
  
Videoconferencing is a very interesting case study for examining the potential of Edge 
cloud computing. It is a very well known application, bandwidth exhaustive and sensitive in 
terms of delay. Moreover, with the presence of organisations globally and increasing 
international collaborations, videoconferencing is one of the most common applications 
running in today’s business offices. Business cyclical shifts and economic downturns tend 
to see a rise in the use of videoconferencing facilities. Used judiciously and strategically, 
videoconferencing can enhance organizational productivity, engage employees at all levels 
and reduce travel budgets. Nowadays, real-time services aim to provide more immersive 
experiences by means of higher resolution videos, three-dimensional audio, or even 
Augmented reality (AR). With traditional videoconferencing, participants only look into a 
camera and onto their screens to see one another. This often leads to missed eye contact 
and a continued feeling of separation. With technology like HoloLens [1], participants can 
turn their head to the left to look at the hologram of the person sitting on their left and turn 
to their right to interact with the person on their right. In addition, they can share projects 
and manipulate them in real-time. Nevertheless, one of the main barriers often is not the 
existence of such high fidelity audio and video systems, but the capacity of in-building 
networks. Immersiveness of the advance videoconferencing sessions also depends on the 
latency of the sessions and increased data rate has an immediate inverse impact on the 
latency. Therefore, there is such an intriguing challenge of offering a network architecture 
that provides a reliable infrastructure to deploy this kind of services and overcome the 
latency problem. 
 
The scenario under study consists of a number of individuals either in a large office building 
or a campus, joining the same videoconferencing session. The main and unique 
requirement is that the network runs under the same management. In other words, the 
network topology and configuration within the building or campus is completely adjustable 
to the needs of those individuals. In this plot, the placement of the termination point of the 
videoconferencing sessions is designed based on the participants’ location. Specifically, 
these edge-cloud points consist of servers that would be collocated in office printers. This 
idea clearly follows the edge-cloud paradigm, i.e. placing the server at the edge of the 
network. Normally, printers are nearby workers and consequently, placing the servers 
inside these traditional appliances gives the opportunity to reduce the distance between 
the user and the server. 
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The project has been divided into two phases. The former focuses on the aggregation of 
videoconferencing sessions in the edge-cloud and the corresponding SDN functionalities 
required. The latter, users will be equipped with AR goggles to join the teleconferencing 
sessions and hence low latency will be required. In this second phase, the implementation 
will expand to allow in-network function placement and low the latency of the sessions. This 
thesis is only focused on the first part of this project and all the information found in this 
document makes reference exclusively to this phase. Nevertheless, the fact that this project 
will be further developed by the time this thesis is concluded has been crucial at the time 
of taking some decisions. In other words, some of the made choices during the 
development of this thesis obviously took into account the roadmap of the overall project. 

 

1.1. Objectives 
 
The aim of this project is to showcase the capabilities of Edge cloud computing in dynamic 
management of data traffic, and in-network function placement in order to improve the 
videoconference experience. Combining Edge cloud computing and SDN proves to be a 
good approach to achieve a critical enhancement in the Quality of service (QoS) of real-
time communications. Therefore, this proof of concept (POC) checks the impact of bringing 
the servers to the edge in the quality of videoconference services. 
 
In order to achieve this broad objective, several tasks have to be attained. Firstly, an edge 
network model has to be presented so as to depict the scenario in detail. Secondly, a 
concrete case study has to be selected, i.e. a particular videoconference service. The 
chosen application need to be studied so as to comprehend how the quality can be correctly 
measured. Only afterwards, it will be possible to start evaluating the performance of the 
approach presented. Regarding this evaluation, the first test must highlight the impact of 
Edge cloud vs different locations, i.e. demonstrating how the latency can be reduced by 
means of bringing the servers to the edge. A second test must show the feasibility of having 
a dynamic system where the servers can be even live-migrated from one node to another. 
Finally, for the sake of providing a complete analysis of the videoconference quality, the 
impact of the available bandwidth and the packet loss in the system must be studied. 
Nevertheless, it is well known that in the case of videoconferencing, the latency is the 
principal matter of lack of quality. For this reason, this last must be analysed in much more 
detail. 
 

1.2. Motivation 
 

This project was born of the agreement between King’s College London and Konica Minolta 
Laboratory Europe (KMLE), who pioneers office solutions and has an R&D effort on its next 
generation. KMLE is the hub where innovative solutions in the field of ICT come to life to 
transform the next generation of products and services from Konica Minolta. As a research 
organization, KMLE shares innovative projects and ideas with its network of academic and 
industrial partners. The work foreseen in this project provides a POC for a way forward in 
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the next generation Workplace Hub [2] and allow the in-building network of large offices to 
run more efficiently. Particularly, the project focus on delivering bandwidth exhaustive 
applications such as videoconferencing by means of Edge cloud computing and SDN. 

 

1.3. Work plan 
 

Figure 1 depicts the work plan followed throughout the development of this thesis. 

 

 
Figure 1 – Gantt chart 
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1.4. Deviations 
 

The most relevant time deviation in the presented work plan has been the task “Prepare 
the final environment for testbed”. In theory, this task was completed on time, i.e. week 42, 
however, two weeks later a misconfiguration in the switch was found. In a nutshell, the port 
configured in a sniffing mode was duplicating the packets. The port was replicating ingress 
and egress packets in the switch and therefore the traffic observed was mirrored. This error 
in the configuration led to a revision of all the experiments in progress and the repetition of 
them.  

Another remarkable deviation has been the fact of using physical machines for the clients 
connected to the videoconference while the experiments were performed. At the beginning 
of the process, the clients were emulated with Virtual machines (VMs) but after some 
testing, it resulted harmful since the traffic due to Virtual network computing (VNC) 
connections with Proxmox nodes was biasing the results. When this phenomenon was 
detected, it was needed to find available physical machines in the university so as to gather 
them and attached them to the testbed. Of course, this logistical issue provoked a certain 
delay in the progress of the experiments. 

 

1.5. Organization of the document 

 

This document is composed of different sections. Firstly, the State of the Art evidences the 
current tendency of Edge cloud computing at the same time that the work done so far in 
this field is presented. Moreover, this section provides the needed background in reference 
to the application used in this POC to comprehend the subsequent sections. Afterwards, 
the Methodology presents the suggested architecture for production environments and 
provides the procedure followed to achieve computing the latency once the application’s 
traffic is studied. Then, in Test and Results, the tests performed are disclosed and the 
outcome of those are presented. Finally, a conclusion is provided and future development 
is suggested as well. 
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2. State of the art  

 

In this section of the document, the technologies in use in the POC developed in this project 
are presented. The purpose of the sections below is to put in context the project and provide 
reliable references of the potential and advantages of all the technologies considered. 
Firstly, an overview of the cloud environment is provided. It is crucial to understand this 
technology and its current status among the different industries to better comprehend its 
evolution towards Edge cloud computing. Afterwards, in a different subsection, a high-level 
description of a key-enabler of Edge cloud computing is provided, i.e. SDN. Finally, in order 
to provide some background about the application used as a case study, the last 
subsection bids a description of the specific videoconference used in this project.  

 

2.1. From Cloud to Edge Cloud computing 
 
Cloud computing is the practice of using a network of remote servers on the Internet to 
store and process data, rather than a local server or a personal computer. During the last 
decade, cloud computing has grown from being a promising business idea to one of the 
fastest growing sectors of the IT industry [3]. A definitive deal breaker of Cloud computing 
paradigm is the fact that it gives the opportunity to any kind of enterprise to deploy 
applications and offer services without the costs associated of holding their own premises 
[4].  Another interesting characteristic of Cloud computing is the ability to scale computing 
capacity up or down on-demand basis. This elasticity gives the chance to adjust the 
resources depending on the real demand. This feature is especially important for the 
companies which their demand is very seasonal and suffer a lot of demand peaks [5]. 
Moreover, charging policies are elastic as well [6]. In the past, when a company wanted to 
make use of an IT system or offer any kind of service on the Internet to their clients, they 
had to face a considerable initial investment to buy the infrastructure required that, of 
course, only well-established companies could handle. Nowadays, the Cloud offers pricing 
models that fit better to start-ups [7], which often cannot afford to spend large sums of 
money at the beginning of their business journey.  

Companies are increasingly aware of the business value that cloud computing brings and 
are have already taken steps towards the transition to the cloud. Anyhow, a smooth 
transition entails a thorough understanding of the benefits as well as challenges involved. 
Of course, the main challenge is delivering reliable and available services [8]. Cloud-based 
services have the potential to meet or exceed the service reliability and availability 
requirements of traditional deployments only if there is awareness of the proper procedures 
to perform cloud operations and the new points of vulnerability are recognized. Another 
fundamental concern relies on how Cloud computing addresses the security and 
privacy concerns [9].  

Cloud computing is going through a fundamental shift in which the traditional model of 
accessing highly centralized resources is replaced by a distributed, decentralized 
architecture [10]. This new paradigm, known as Edge cloud computing, brings the core 
building blocks of cloud – compute, storage and networking – as close to the consumers 
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as possible. Nevertheless, edge computing is in its early days and vendors from multiple 
segments are positioning it in different forms. The current market landscape consists of 
players from the public cloud, networking companies and industrial automation companies 
[11]. For the sake of simplicity, we could divide Edge cloud computing solutions into two 
kinds: Fog computing or edge computing [12]. In a nutshell, the former pushes intelligence 
down to the local area network level of network architecture, processing data in a fog node. 
The latter pushes the intelligence, processing power and communication capabilities of an 
edge gateway or appliance directly into devices. However, it must be said that on many 
occasions the terms of edge-computing and fog-computing are used frequently and 
interchangeably [13]. At any rate, by moving the computing nodes closer to the origin of 
the data, the latency involved in the roundtrip to the cloud gets reduced. This benefit has 
been already exploited in many fields such as gaming [14], healthcare [15], Internet of 
Things (IoT) [16] or video streaming [17]. Though IoT might be the key driver of Edge cloud 
computing, many other use cases are accelerating the pace of adoption. Edge cloud 
computing is all set to become the most preferred architecture for running data-driven 
applications [18]. 
 
The underpinning for the majority of clouds is a virtualized infrastructure which allows 
increasing hardware utilization density [19]. This is one of the technologies that enables 
elasticity, and so has provided increased flexibility in terms of speed of deployment, 
dynamic auto-provisioning, and cloud management [20].  Nowadays, there are multiple 
vendors offering virtualization environments. A determining factor during the cloud 
environment selection process in this project was the live migration feature [10]. For the 
sake of synthesising, only the one used in the testbed of this project is commented, i.e. 
Proxmox Virtual Environment (VE) [21]. This platform for virtualization tightly integrates 
KVM hypervisor [22] and Linux containers (LXC) [23], offering live migrations for the former. 
Therefore, a comparison between the use of these two technologies could be performed 
similarly to [24] where a review of Edge cloud requirements and the suitability of container 
technology is offered. Proxmox also handles high availability clusters and disaster recovery 
tools with the built-in web management interface. Moreover, it is an open-source project. 
For all these reasons, it seemed to be such a convenient tool for running the experiments 
involved in the project. 
 

2.2. Virtualized network 
 

Telecommunications networks contain a variety of proprietary hardware. The launch of new 
services usually demands network reconfiguration and on-site installation of new 
equipment. By the same token, the innovation cycles require greater flexibility and 
dynamism than hardware-based appliances allow. In the same way that applications are 
supported by dynamically configurable cloud environments, virtualized network functions 
allow networks to be agile and capable to respond automatically to the needs of the traffic 
and services running over it [25]. Key enabling technologies for this vision are Network 
Functions Virtualisation (NFV) and SDN.   

On one hand, NFV is an initiative to virtualize the network services that are now being 
carried out by proprietary, dedicated hardware. The goal of NFV is to decouple network 
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functions from dedicated hardware devices and allow network services that are now being 
carried out by routers, firewalls, load balancers and other dedicated hardware devices to 
be hosted on VMs. This capability is important because it means that network 
administrators no longer need to purchase dedicated hardware devices in order to build a 
service chain [26]. Any server capacity can be added through software so IT departments 
can respond in a more agile manner to changing business goals and network service 
demands. 

On the other hand, SDN introduces the ability to program the network via a logically 
software-defined controller, and separate the control plane from the data plane [27]. 
Compared to traditional networking paradigms, SDN makes it easier to introduce new 
abstractions in networking, simplifying network management and facilitating network 
evolution. SDN allows logical centralization of control, and decisions are made by the 
centralized controller, which has a global view of the network [28]. This controller installs 
control demands to the devices in the data plane by means of a well-defined API between 
them, for instance, OpenFlow [29].  

The potential of NFV and SDN for facing the challenge of adapting Edge cloud computing 
has been discussed for a while and seems to be a key enabler of the future 5G 
infrastructures. In [30], a preliminary architecture for a 5G infrastructure is presented based 
on the latest advances in SDN, NFV and Edge computing. On this wise, the architecture 
aims to reduce dramatically the end-to-end latency for mission-critical type of traffic. In [31], 
the authors highlight the opportunity of integrating NFV and SDN for building up an edge-
cloud based architecture for IoT. In [32], the authors provide an analysis of SDN and NFV 
different architectural options to address Edge cloud computing. In [33], the authors 
propose the introduction of SDN-enabled containers to support SDN/NFV applications 
located at the network edge which are able to trigger on-demand connectivity services. In 
this case, a video analytics use case is demonstrated. As a good summary of this trend, 
[34] deliberates how can Edge cloud computing benefit from SDN making use of different 
use cases.  
Following this tendency, the services are increasingly provided by cloud computing 
systems and they are often accessed while on the move. Therefore, the mobility of users 
becomes such a relevant topic to confer. In [35], the authors propose an OpenFlow based 
implementation for migrating services in unison with the user’s movement, i.e. follow-me 
cloud. The basic idea behind this concept is that services provided by a cloud follow users 
throughout their journey. Of course, the follow-me cloud concept could be implemented by 
different technologies. However, as shown in [36], SDN and NFV can be used for 
distributed mobility management instead of the existing protocols and the test results 
demonstrated that the proposed approach is an efficient mechanism.  

 

2.3. Videoconference application 
 

Since the purpose of the project was not developing a videoconference service but using 
it as an application example, a research of open source videoconference applications had 
to be done. The criteria of selection have been strictly based on previously defined 
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requirements: the videoconference application had to handle high-quality (HQ) sessions 
and an unlimited number of users. Aside from that, it could be interesting selecting an 
application that could be easily adapted for developing an AR module in the future phase 
of the project. The different open source applications that had been under study during the 
application selection process are listed in Table 1. In this table, it is clearly shown that just 
two of the applications fully met the requirements defined.  

 

App  HQ max. # 
users 

Potential AR 
development 

Jitsi Yes Unlimited No 
Kurento Yes Unlimited Yes 
Licode Yes Unlimited Yes 
Hubl.in No 9 No 
Spreed No Unknown No 
Janus No Unknown No 

Table 1 – Videoconference applications 

 

Kurento  [37] and Licode [38] are both open source projects that offer the application and 
server side to run a videoconference plus other capabilities. Although both projects met the 
requirements, Kurento offered many more application examples and documentation. 
Moreover, Kurento seemed to be much more modular what would help to develop AR 
features as outlined in the project plan [39]. For these reasons, Kurento became the 
videoconference solution chosen for the POC and a brief study of its architecture has to be 
presented in section 2.3.1. 

In [40], a cloud-oriented solution that uses Kurento is proposed. This platform, known as 
Nubomedia, follows a Platform as a Service (PaaS) scheme based on ETSI NFV. 
Nevertheless, Nubomedia did not fit the testbed of this project since it required hardware 
that could support OpenStack [41] as in a real production environment. Consequently, just 
Kurento was used in this POC. 

 

2.3.1. Kurento 
 

Kurento is a WebRTC media server and a set of client APIs making simple the development 
of advanced video applications for WWW and smartphone platforms. Kurento Media Server 
(KMS) features include group communications, transcoding, session recording and mixing, 
broadcasting and routing of audiovisual flows. As a differential value, KMS also provides 
advanced media processing capabilities involving: computer vision, video indexing, AR and 
speech analysis [42].  Kurento modular architecture makes simple the integration of third-
party media processing algorithms (i.e. speech recognition, sentiment analysis, face 
recognition, etc.), which can be transparently used by application developers as the rest of 
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Kurento built-in features. KMS capabilities are exposed by the Kurento API implemented 
by means of libraries called Kurento Clients. Kurento offers two clients out of the box for 
Java and JavaScript. However, if it is necessary to develop in any other language, Kurento 
can be used too. For this particular project, Java out of the box client was selected.  
 
The architecture is based on a client-server model [43].  In Figure 2, the client-side 
applications make reference to the users that run the applications on their browsers, mobile 
or any other medium. Otherwise, the application server is the responsible for the signalling 
whereas the KMS is responsible for media stream communications. In the particular case 
of a videoconference service, the client connects to the application server through a 
browser. The client requests joining a call and the application server establishes the 
session. From that moment, the client will exchange media streams with the KMS whereas 
the application server will keep performing signalling tasks. 

 
 

Figure 2 – Kurento architecture [44] 
 
 

Although the purpose of this section is not understanding the details of each component 
but to comprehend the overall system, some of the modules pictured in Figure 2 deserve 
being detailed. This is the case of the filters that the KMS contains which process the 
incoming data to forward it once processed. Kurento offers a lot of filters, some of them 
biding AR, but what it is even better, is the fact that new components could be developed 
and included in the server, thanks to its modularity. Also in the KMS, a database can be 
used as the media repository, i.e. storing the inputs and outputs of a session. Lastly, in the 
application server, there are two main blocks that basically depict the fact that there’s a 
Kurento Client component that is responsible for establishing the communications with the 
KMS whereas there’s another component that describes the proper application logic, 
handling the signalling of the communications system. 
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The outcomes of this brief study of Kurento were crucial to the development of the project. 
Discerning that the signalling and the media had two separate planes was a complete deal-
breaker. Following the edge-cloud computing paradigm, it seemed reasonable having the 
KMS as near as possible to the clients whereas the location of the application server 
became not a critical issue.  
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3. Methodology 

3.1. Edge cloud network model 
 

In this section, the architecture of a production environment is presented. The suggested 
approach consists of a well-known architecture as a result of its acceptance in the Cloud 
industry. Since the goal of the project is not to design a new architecture but to offer an 
Edge cloud computing environment, an eminent implementation was taken as a reference 
[45]. The combination of OpenStack and SDN has been widely used already and the results 
show that it is a feasible and valid solution [46] [47] [48]. 

The starting point is having the computing nodes as near as possible to the users. These 
are the edge computing nodes whose task is to serve the clients with the lowest latency 
possible. A good location for these servers could be the office printers where a server can 
be easily attached to each of these appliances. The computing resources given to each of 
these printers are independent computing nodes that shape a bigger system. In order to 
define this pool of computing nodes, a cloud operating system is required. The cloud 
operating system is responsible for controlling the nodes, the storage, and the networking 
resources throughout the datacentre, which in this case consists of a set of distributed 
computing nodes attached to the different printers in the same office.  

In this section, for the sake of illustrating the architecture, OpenStack is used as an 
example. Nevertheless, it is important to highlight that the architecture is agnostic to this 
technology and any other alternative could be used instead. In fact, Proxmox has been 
used for the testbed of this POC, see section 4.1. OpenStack and Proxmox both use KVM 
hypervisor so all the implementations performed in Proxmox are equivalent to OpenStack. 
Given the fact that the goal is not deploying a production environment but proving the 
advantages that this kind of architecture can provide, the experiments of this project were 
run on Proxmox which resulted more economical.  

In Figure 3, the different modules that OpenStack offers are depicted. In this case study, 
just the following modules are of our interest: Nova, Glance and Neutron. Nova is basically 
the physical computing nodes, whereas Glance is the image repository where the 
virtualized instances of servers are stored, and finally, Neutron is the networking service of 
OpenStack.  

 

 
Figure 3 – OpenStack modules 

 

As seen in [45], a good approach to control the resources in a system like the one exposed 
above is by means of using an SDN controller. This particular approach integrates an SDN 
controller based on OpenDaylight (ODL) [49] to OpenStack. Anyhow, please keep in mind 
that in the overall architecture the SDN Controller is again technology agnostic. In the 
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particular example of OpenStack and OpenDaylight, Neutron interacts with the SDN 
controller via an API REST and the SDN controller controls the network through OpenFlow.  

In Figure 4, the architecture diagram is depicted. The Image repository is the analogy to 
Glance in OpenStack, which stores the virtualized servers. The physical computing nodes 
would compose Nova and finally, the network manager would be Neutron. This last is the 
responsible for interacting with the SDN controller which is the intelligence entity used to 
change the path of the network packets across the network and send instructions when 
necessary.  

 

 
Figure 4 – Architecture diagram 

 

Figure 4 also illustrates how an extra module could be attached to the SDN controller, in 
[50] a similar approach can be found. In the case of OpenDaylight SDN Controller, an API 
REST is exposed and this will be used to append the module. The purpose of this module 
is providing the intelligence to the controller to take action when necessary. Thanks to the 
nature of SDN, this module can gather networking metrics, i.e. monitoring the server and 
the user, and afterwards store this information in a database to be used as input in the 
algorithms running. Notice, that there are different algorithms criteria in the module that can 
be used depending on the business case. In this case study, the focus is on the latency so 
this module would be the responsible for computing the latency and providing an outcome 
to the controller. The result can be, for example, the decision of migrating one server 
instance from one computing node to another. In brief, these algorithms decide if a change 
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in the network configuration is required or an instruction has to be sent to one of the nodes 
hosting certain service. They are the responsible for providing decisions in function of the 
data gathered and the criterion followed.  

The purpose of this project is not the development of these modules, however, in Appendix 
1, a pseudo-code implementation example is shown. In this example, the module provides 
the intelligence to the controller so as to forward the necessary instructions to the 
computing nodes when the migration of the KMS instance is required. 

As a summary, the architecture consists of a cloud operating system such as OpenStack 
to build up the cloud infrastructure and an SDN controller that is used to run the intelligence 
components needed to automate decisions. The end purpose of the presented architecture 
is providing a system that enables adapting dynamically the environment in function of the 
data gathered. SDN allows obtaining valuable networking metrics such as bandwidth, 
packet loss or jitter. Furthermore, with this information, other relevant metrics can be 
computed, such as the latency. All this data can be conveniently stored in a database and 
this information can be used for decision making. The most exciting feature is the fact of 
having the opportunity of changing the criterion in the SDN module. Depending on the 
application, the decision criterion might change. This flexibility is priceless in production 
environments where the business cases constantly change. 

 

3.2. Videoconferencing application 
 

It is well known that the traffic of bandwidth exhaustive applications impacts the network 
profoundly [51]. Consequently, in order to have a better understanding of the application 
selected, some exploratory study had to be done. The first preliminary evaluation tested 
the hardware required to offer a stable service. The second exercise checked the resources 
needed in terms of bandwidth so as to ensure that the POC network could be correctly 
dimensioned and the application met the HQ requirement. Anyhow, before presenting 
those evaluations, the data flow of the communications involved in the videoconference 
between two clients deserves being commented. 

After the study of Kurento architecture in section 2.3.1, we know that the client interacts 
with two entities, the application server and the KMS. In a two client communication, each 
client connects to the application server which offers the possibility of creating or joining a 
videoconference session. Once both clients have joined the same session, they exchange 
the media stream with the KMS, see Figure 5. This figure shows how Client A and Client B 
never communicate in a peer to peer manner but on a client-server basis. 

Notice that, for the sake of simplicity, Figure 5 depicts just one flow of data, i.e. the data 
coming from Client A to Client B. Obviously, it is equivalent in the other way around for the 
communications from Client B to Client A. 
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Figure 5 – Data flow diagram 

 

3.2.1. Hardware requirements 
 

A quick hardware requirement test was performed for the sake of setting up the testbed 
with the adequate hardware to support the traffic and processing load. For this reason, 
making use of three available spare machines in the workspace, the following ad-hoc 
environment was set up: 

 

• Machine 1: This machine hosted one VM running the KMS and another VM running 
the application server. 
 

• Machine 2 and 3:  Each machine hosted a VM that simulate a client using a browser 
to connect to the videoconference session.  
 

All these machines were connected to the same network so there was completely 
connectivity between them. 

 

Ø KMS 
 

The KMS had to be tested in order to be able to justify the specifications requirements for 
the virtual servers that the testbed would need. During this test, the focus was completely 
on the VM that runs the KMS since it was modelling the future server in the testbed. 
Therefore, the main specifications of the VM hosting the KMS in Machine 1 are specified 
in Table 2.  

CPU 4 
RAM 4GB 

Storage 
(HDD) 

30 GB 

 
Table 2 – KMS VM specifications 

 
Once the KMS and the application were running, each client connected to their respective 
browser. Firstly, each client opened just one browser, simulating a one to one call. 
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Secondly, each user opened different tabs (sessions) in their browsers to simulate extra 
users. For this reason, in this section, the outcomes are showcased for two and four clients. 
 
The tools used to record the performance of the server while running were htop [52] and 
bmon [53]. In a nutshell, the former provides memory and processors information whereas 
the latter informs about the traffic in the running interfaces. However, for specifying the 
server requirements, we focused only on htop since bmon only provided information about 
the data flow. 
 
During the testing period, it was observed that the server could easily handle the 
communication among all the users and the performance was very good. As an example, 
in Figure 6 and Figure 7, it is shown that for two and four users respectively, the usage of 
the processors is minimal and that the memory is almost idle.  
 

 
Figure 6 – htop: KMS performance screenshot for two users 

 

 
Figure 7 – htop: KMS performance screenshot for four users 

 
As shown above, with a regular machine it is possible to offer such a service. This tests 
gave credibility to the fact that Kurento claimed to be possible to host this server on any 
regular machine and not high-performance servers were required. It could be found in the 
literature [54], that the KMS could handle up to thirty users with machines of 8 CPUs and 
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16GB RAM. However, since the analysis performed did not require such amount of clients, 
the specifications shown in Table 2 are good enough for the testbed set up. 
 

Ø Application server 

 

The analysis of the application server was much more simple. In this case, the VM that 
runs application server is just the responsible for the signalling as detailed in section 2.3.1. 
This application server could be even co-hosted in the same VM that runs the KMS but for 
experimental reasons, it has been always hosted in a different machine. In that way, an 
extra degree of freedom was achieved. 

Making use of the same tools commented in the case of the KMS, it was proved that any 
machine with specifications such as listed in Table 2 could perform the signalling tasks 
correctly. 

 

3.2.2. Bandwidth consumption  
 

The main requirement the application had to meet was handling HQ communications. As 
a result, it was necessary to check that the application taken as an example met the 
previous condition. For this sake, several traffic captures were performed while an ongoing 
session was running. These traffic captures were used to compute and plot the bandwidth. 
In Figure 8, it is shown the bandwidth for each of the existent communications, i.e. Client 
A to KMS, KMS to Client B, Client B to KMS and KMS to Client A. In this figure, it is shown 
that, approximately, each of the communication consumes 600Kbps. 

 

 
Figure 8 – Bandwidth consumption (bps) 
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In [55], it is defined that in order to support HQ videoconferences, it is required a bandwidth 
above 400Kbps. Since the clients were above this threshold, the fact that the KMS can 
handle HQ communications was proven. 

 

3.2.3. Analysis of traffic and latency calculation  
 

Once it was confirmed that the videoconference application was suitable for our study in 
terms of hardware and bandwidth requirements, a deeper traffic analysis was performed. 
The purpose of this investigation was to observe the traffic so as to know how to compute 
the latency during the tests. 

The very first and trivial approach to compute the latency is based on its definition. The 
end-to-end latency between Client A and Client B can be obtained by computing the time 
difference between when a data packet egress Client A and when it actually arrives at 
Client B. Unfortunately, the scenario under study does not consist of a single link where 
the data goes straight from Client A to Client B, there is the KMS in the middle, see Figure 
5. This figure depicts that there are two links for the same data flow. The data flow consists 
of packets sent from Client A to the KMS and from the KMS to Client B. Notice that again, 
for the sake of simplicity, this study only refers to the communication from Client A to Client 
B but it is obviously reciprocal. In any case, the presence of the KMS in the middle of the 
communication is very challenging. Since the packets are sent through this entity, in order 
to compute the end-to-end latency, it is required detecting for KMS ingress packets the 
corresponding KMS egress packets. If this packet association is possible, it will be feasible 
measuring the time difference between when a packet departures one client and when 
arrives at the other, and this is, of course, the latency. This latency will be the sum of the 
latencies of both links observed in Figure 5 plus the processing time of the KMS.  

After sniffing the traffic, it was observed that the KMS does just not forward packets but it 
processes them. By means of observing the traffic captures in both links, and by simply 
noticing that the number of packets in each link was different, it could be concluded that in 
some cases, the KMS directly forwarded the received packets but in other occasions, it 
processed and grouped them. Given the observed the behaviour, computing the latency 
from Client A to Client B would be only possible if the relationship of at least some of the 
ingress and egress packets could be detected. Ideally, we would like to compute the 
latency for all the packets, but it has been proven that it is not possible to follow the strict 
definition in this case. For this reason, a new methodology to compute the latency had to 
be proposed. 

For the sake of knowing the traffic better, the inter-packet time (IPT) for both 
communications were examined, see Appendix 2. In Figure 9.a, we can observe that Client 
A generates most of its packets at certain rates, every 5ms and 20ms approximately. 
However, there is a considerable dispersion of the IPT that makes not possible to consider 
that the client was sending the packets at constant rates. On the other hand, in Figure 9.b, 
it is observed that the outgoing traffic of the KMS consists mostly of sent packets every 
20ms but the IPT is really dispersed as well. 
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                               a) Client A→KMS                                           b) KMS→Client B 

 Figure 9 – IPT 

 

If the plots in Figure 9 are zoomed, an interesting outcome is discovered, see Figure 10. In 
this zoomed plot, a burst pattern is found for both data flows. There are different bunches 
of packets that travel together, i.e. small IPT between them, and some that have clearly 
higher IPT that would correspond to the first packet of each burst. 

 

 
                               a) Client A→KMS                                           b) KMS→ Client B 

Figure 10 - IPT zoom 

 

For the sake of corroborating this statement, the histogram and the empirical cumulative 
distributed function (ecdf) [56] of the IPT were figured out, see Figure 11 and Figure 12 
respectively. Notice that in the case of the histogram, the y-axis is logarithmic. 
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                               a) Client A→KMS                                          b) KMS→ Client B 

Figure 11 - IPT logarithmic histogram 

 

 
                               a) Client A→KMS                                          b) KMS→ Client B 

Figure 12 - IPT ecdf 

 

In case of analysing the IPT of Client A→KMS communication, both, the histogram in 
Figure 11 and the ecdf in  Figure 12, they show again that there is a considerable amount 
of packets that are sent at a rate of 5 ms and another peak at 20ms. However, the 
dispersion of the IPT commented above is again observed. When it comes to KMS→Client 
B communication, a peak in 20 ms is observed but the dispersion of IPT is depicted as 
well, both in the histogram and the ecdf.  In any case, the most relevant conclusion we can 
obtain especially from the histograms of Figure 11 is the fact that there are numerous 
packets with a low IPT and numerous packets with high IPT. What this means is that both 
traffics can be modelled as a burst-based traffic. This phenomenon is depicted in Figure 
13, where the IPT can be clearly differentiated from the inter-burst time (IBT) by the 
noticeable difference of its values. 
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Figure 13 – IBT vs IPT 

 

Notice that in Figure 11, the dispersion in the histograms indicate that the IBT and IPT are 
not constant at all. In other words, the bursts could contain more or fewer packets 
depending on the occasion because the IPT and IBT are diverse. Notwithstanding, knowing 
that this traffic behaves on a burst basis could give us the possibility of exploiting this 
pattern.  

By virtue of modelling the traffic mathematically to ease the latency calculation, both data 
flows were evaluated trying to fit a well-known distribution. For this process, Easyfit [57] 
was used, a data analysis tool specifically developed for distribution fitting as performed in 
[58]. According to the results provided, none of the available distributions fitted with the 
data under study. Unfortunately, neither the traffic from Client A to the KMS nor the traffic 
from the KMS to Client B seemed to resemble a recognised pattern. This meant that the 
traffic could not be mathematically modelled on this wise. As proof, the results obtained are 
shown in Table 3. In this table, for each link, the best distribution for each statistical test is 
noted.  For Client A to the KMS data, it can be observed that all of them differ, whereas the 
Normal distribution matches for two of the criteria in the case of the KMS to Client B data. 
Nevertheless, the results are far from being hopeful in any case since, for all them, the 
parameters indicate that the fits must be rejected. In brief, even for the best fit of each 
statistical test, the fits were not good enough to assume the data followed a well-known 
distribution. 

 

 
Table 3 – Distribution fitting results 

 

In any case, thanks to the fact that the traffic behaves on a burst basis, it is possible to 
propose a method based on this pattern. Figure 14 shows the proposed method, where 
the first packet of each Client A→KMS burst can be corresponded to the first packet of 
each KMS→Client B burst and then the latency can be computed. This methodology 



 

 29 

exploits the assumption that the data contained in the first packet of a KMS→Client B burst 
is the equivalent processed data of the data contained in the first packet of the associated 
Client A→KMS burst. Figure 14 also depicts that on some occasions, the KMS just forwards 
packets like the packets in burst 1 and in other cases, the KMS process and group packets 
like the packets in burst 2. 

 

 

 
Figure 14 – Latency estimation model 

 

Of course, with the methodology proposed, the latency cannot be computed for every 
single packet but at least for enough quantity of packets so as to obtain representative 
latency values.  
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4. Tests and results 

 

In this section, the testbed implementation is detailed and the results for each of the 
experiments performed are presented. 

The first experiment, Edge cloud vs different locations, aims to demonstrate the impact of 
the distance in the latency when the server is placed in different locations. This experiment 
pretends to motivate the placement of the server as close to the user as possible. In short, 
it was performed to analytically demonstrate the impact of the distance in the QoS, 
specifically in terms of latency, then justifying Edge cloud computing. The KMS was placed 
at different locations having a different relative distance to the client. Since the resources 
in the laboratory were limited and the server could not be hosted on a server physically 
located in an overseas country, the set of locations were emulated by means of tc and 
netem [59], Linux commands that enable configuring the network card in the server 
introducing the desired delay, see Appendix 3. As seen in [14], the emulated locations were 
chosen to take into account the real locations offered by Amazon Web Services (AWS) 
[60]. In order to use realistic latency values when emulating, the latency was computed by 
means of pinging these servers. In Table 4, where the distance is relative to the location of 
the laboratory, central London, the ping times obtained for each location are noted. Please, 
notice that the location London makes reference to servers that are in the same city as the 
laboratory but not in the edge since they were not placed in the office where the analysis 
was performed. 
 
 

Location Distance (Km) Latency (ms) 
Edge 0 0.451 

London 10 6 
Frankfurt 638 22 
Virginia 6174 79 
Oregon 7980 140 
Tokyo 9569 276 

 
Table 4 – Server locations and obtained ping latencies 

 
For each location, a different videoconference session was established and the traffic 
between the clients and the KMS was captured for posterior analysis, particularly, to 
observe the latency in function of the distance. Before starting the tests, in order to 
corroborate the necessary session time, three different sessions of 5, 10 and 15 minutes 
were performed. When comparing those sessions, the traffic was barely the same. 
Consequently, all of them led to the same results so we could choose the most convenient, 
sessions of 5 minutes. Besides, notice that for each location the analysis was performed 
twice, with VMs and LXC.  
 
The second experiment, Impact of Live migration, aims to show empirically the impact on 
the latency when migrating the server in an on-going session. The reason behind this 
interest is justifying how feasible the architecture proposed is since good results in this 
experiments would mean having a dynamic environment where the server can be easily 
relocated when necessary, even when the service is running. This migration pretends to 
be the kind of decisions that the SDN controller module could take in case of potential QoS 
improvement.  
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Like in the first experiment, the traffic captured consisted of a whole videoconference 
session between two clients during 5 minutes for each location where the tests were 
performed twice, for VMs and LXC. The difference relies on having a live migration of the 
server while the session is running. This means that the KMS is firstly hosted in one location 
and in the middle of the session, the server is live migrated to the edge. Again, in this 
second experiment, the focus relied on the latency. This experiment pretends to show how 
the latency can be reduced when the server can be located closer to the user, Edge cloud, 
instead of having it in a further location, the Cloud. 
 
Aside from observing the latency, other QoS metrics such as bandwidth and packet loss 
were explored.  The purpose of exploring the bandwidth was showcasing the importance 
of having enough network resources in the office in order to enjoy the benefits in terms of 
latency brought by Edge cloud computing. Not having enough bandwidth would vanish the 
effort of moving the servers around to improve the QoS. In section 3.2.2, the bandwidth 
consumed by the application in use was obtained. Having this value in mind, it was possible 
to define different available bandwidth during the videoconference. The idea behind this 
experiment was that the bandwidth of the application represents a certain percentage of 
the available bandwidth. To achieve it, tc and netem were used to configure the network 
card in the KMS, simulating the available bandwidth, see Appendix 3.  

When there are network problems and some of the packets are lost, the user experience 
can be negatively impacted. For this reason, as an extra final analysis, a simplistic quality 
analysis is provided. The packet loss phenomena in the KMS for this experiment was 
emulated again by means of tc and netem, see Appendix 3. In this occasion, the network 
card deliberately dropped a certain percentage of packets as if the network was the one 
losing those. This last experiment highlights the impact the network can have on the quality 
and it details the behaviour of this particular application when struggling with packet loss. 

For all the experiments, the analysis of the traffic had to be performed as follows. In order 
to capture the whole session and obtain relevant data, the capture always began before 
the videoconference had started and finished once the videoconference had ended. It must 
be highlighted that the data could not be obtained from raw captures but filtered ones, see 
Appendix 4. Then, in the case of the first and second experiment, where the latency was 
computed, the methodology exposed in section 3.2.3. was used to compute the latency, 
see Appendix 5. 

 

4.1. Testbed implementation 
 

The three subsections below describe how the scenario where the experiments were run 
was prepared with the assets required for their success. 

The laboratory scenario consists of a set of Proxmox nodes, where all the VMs and LXC 
are hosted. In this case, with two nodes is enough to perform the experiments. Although 
these nodes should be installed in servers, on this wise, for the sake of having an 
economical setup, Proxmox nodes are installed in regular PCs. These machines are the 
analogy to the computing nodes that will be attached to the printers mentioned in section 
3.1. In other words, these nodes are the edge-servers in the office. 

One host per client was used, these are Client A and Client B in Figure 15. A different host 
had to be used for displaying the Proxmox Guest User Interface (GUI), just in case any 
administrating task was required without the disposal of a terminal. And finally, the Sniffer 
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consisted of a different host whose work was just capturing all the traffic that received 
through the interface connected to this network, see section 4.1.2. In this figure, it can also 
be seen that the machines exposed above were all connected to the same Local Area 
Network (LAN), in this case, under the same switch. Please, also notice that inside the 
Proxmox nodes, either the KMS or the Application, both could be VMs or LXC indifferently.  

 

 

 
Figure 15 – Laboratory configuration 

 

4.1.1. Resources needed 
 

The setup of the testbed was simple and economical since there was no need of using 
high-performance devices, all of them were regular PCs and a switch. As a reference, 
check the specifications of the devices in Table 5. Additionally, the respective Ethernet 
cables are required since all the links are wired based.  

 

4.1.2. Conditions and requirements 
 

The most important condition to run the experiments correctly was having a completely 
controlled environment. Since the main goal of the experiments was to observe the latency 
performance, the impact of the network conditions over this parameter was critical. For this 
reason, the scenario had to be completely isolated from any other traffic, otherwise, the 
measurements obtained would be tremendously affected by external agents. In order to 
have a controlled scenario, a new network had to be set up. This network had to be 
completely independent of university premises so as to have a configurable and clean 
scenario where all the traffic was originated by the machines under study in the testbed. 

Aside from having this self-contained scenario, it must be said that it would not have been 
possible to perform the traffic captures in the university network. Normally, public access 
points do not allow that any of the clients sniff the traffic in the network, obviously for 
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Device Specifications 

Switch Cisco Catalyst 2960G 
Series 

Proxmox nodes i7-6700/3.4GHz       
16GB RAM                 

500GB            

Sniffer i5-5257U @2.7GHz              
8GB RAM                 

256GB 

Client PCs i7-3770 @3.4GHz      
8GB RAM                 

500GB            Proxmox GUI 

Table 5 – Laboratory Hardware specifications 

 

security concerns. Therefore, another relevant aspect of the testbed is its governance. In 
the interest of observing the traffic in the private network, the switch had to be configured 
in promiscuous mode [61] in one of the ports. Basically, the Sniffer connected to this 
configured port and could sniff all the traffic in the network, i.e. all ingress and egress 
packets in the switch. 

 

4.1.3. Proxmox set up 
 

In pursuance of having a controlled virtual environment, Proxmox was installed as the 
Operating System (OS) of the machines that would host the virtualized servers. The 
installation was pretty straightforward since the only input required was offering an IP 
address to the machine which, of course, had to be under the network of the testbed.  

Once the nodes had Proxmox installed, both had to be configured as a cluster in order to 
be able to perform VMs and LXC migrations [62]. It was really important to configure the 
nodes properly to avoid having independent entities and attain having a single virtualization 
environment. 

 

4.1.4. KVM and LXC preparation 
 

In order to perform the experiments presented in section 4, it was needed to set up the 
KMS and the application server. The videoconference service had to be run either in a VM 
or LXC and for this reason, the procedure described below was performed twice, once for 
each virtualization technology. 
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Firstly, in order to run a KMS in a virtualized environment, it had to be installed on this 
isolated machine following the instructions in [43]. For the sake of improving the security of 
the service, a certificate was created and added to the server following the 
recommendations in this instructions. Thanks to this last modification, the communications 
with the KMS were through WebSocket Secure (WSS) instead of WebSocket (WS). 

Secondly, the application server was configured on another isolated machine. The 
videoconference application was gathered from Kurento room projects [63], in particular, 
kurento-room-demo was cloned by means of git. In order to be able to compile the project, 
Java and Maven [64] had to be installed. Aside from this installation, a self-signed 
certificate had to be created and specified in application.properties file. Finally, the 
configuration required was as simple as adding in the kurento-room-demo.conf.json file the 
KMSs in use. 

 

4.2. Edge cloud vs different locations 
 

The results in Figure 16 demonstrate the huge difference of hosting the KMS in a close or 
far datacentre. Obviously, the location with the best performance in terms of latency is, as 
expected, the edge. Therefore, these plots analytically demonstrate that placing the KMS 
as close to the user as possible can provide significant benefits with regard to latency. 

 

 
                     a) Edge                                     b) London                                  c) Frankfurt 

 
                     c) Virginia                                  d) Oregon                                  e) Tokyo 

Figure 16 – Latency for different locations 

 

In behalf of studying the latency in detail, the latency obtained for the edge case is further 
analysed, i.e. Figure 16.a. The observed latency is the overall end-to-end latency, i.e. the 
latency from Client A to Client B. Since the KMS is in the middle of this communication, the 
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latency is composed of the network latency plus the KMS processing latency. The former 
is the latency suffered by packets just for the fact of travelling through the network, while 
the latter corresponds to the time the KMS needs to process and forward these packets to 
the destination. Notice that in this figure, despite the dispersion in the values, three main 
latency values can be clearly identified. If we take a look at the logarithmic histograms in 
Figure 17, these three values are manifested as well. This pattern remains wherever the 
KMS is located. Of course, these peaks are shifted depending on the location since there 
is more latency as long as the KMS is moved away from the user.  

 
                     a) Edge                                     b) London                                  c) Frankfurt 

 
                     c) Virginia                                  d) Oregon                                  e) Tokyo 

Figure 17 – Latency logarithmic histogram for different locations 

 

By this means, it can be concluded that when the KMS processes the packets introduces 
three kinds of latencies depending on the task that it has to perform with them.   

The analysis of the latency in function of the distance was performed with VMs but with 
LXC as well. In this case, the difference is almost inexistent since the only possible impact 
is the performance of the KMS when uses one technology or the other. The ecdf of the 
latency for each technology is depicted in Figure 18. The semblance between the figures 
is obvious. 

An interesting outcome is the fact that the percentage of packets of each process might 
depend on the latency suffered. In that sense, the KMS behaves differently depending on 
when the packets arrive at it. Nonetheless, the scope of this project is not studying the 
specific behaviour of this particular media server but the overall comparison of different 
real locations. The study of the behaviour of the KMS regarding the latency for a wider 
range of latencies could open a future line of research. 
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Figure 18 – Latency ecdf for all locations 

 

4.3. Impact of Live migration 
 

With regard to live migration of the KMS, the analysis can be clearly divided into two parts 
depending on the technology in use: VMs or LXC. In both cases, it is must be highlighted 
that the KMS was always migrated during an on-going session from each location to the 
edge. 

The results for the VM are shown in Figure 19 where the migration exercise can be spotted 
at a glance. The migration from any location to the edge show the same phenomena, even 
when migrating within the same location, i.e. edge to edge. There is an increment in the 
latency during the migration process. Therefore, it can be immediately concluded that 
actually, there is an impact in terms of QoS. Nevertheless, the overall reduction of the 
latency is obvious when migrating from a further location to the edge. This should motivate 
the migration from the cloud to the edge even when the session is running and affects the 
latency. In the case of edge to edge migration, this study has analysed the feasibility of 
providing a videoconference service that is migrated as long as the user moves within the 
office. For instance, if the user moves from one part of the office where one of the nodes 
is placed to a new area with a closer node, it would make sense migrating the server to 
this new node. As seen, there will be an impact during the migration process but at the end 
of it, the videoconference service will be provided with the lowest latency possible. 

In the interest of analysing the results further, one of the migration has been taken as an 
example in Figure 20, particularly the migration from London to the edge. In this figure, 
three phases are highlighted in the timeline. The first one is the latency when the KMS is 
placed in London, the second one is the latency during the migration process and, the last 
one corresponds to the latency once the KMS is in the edge. Using the indexes provided 
in the plot, i.e. A, B and C, the evolution of the latency is matched with A’, B’ and C’. These 
three values for the latency pattern was previously observed and analysed in Figure 16. 
The relevance of Figure 19 remains in observing how all of them are reduced by means of 
approaching the server to the user, i.e. migrating from the cloud to the edge. However, and 
as mentioned above, there is an impact in the latency during the migration time that cannot 
be ignored. It is clearly seen how during the migration time the latency increments during 
the process. Therefore, the slower the migration is the more worrying this concern is.  
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                     a) Edge                                     b) London                                  c) Frankfurt 

 
                     c) Virginia                                  d) Oregon                                  e) Tokyo 

Figure 19 – VM live migration latency for different locations 

 

 

 
Figure 20 – VM Live migration London to Edge latency 

 

Reducing the migration time depends on many factors, but especially on the size of the 
machine being migrated and the available bandwidth in the network. If the migration time 
can be reduced, the observed impact can be diminished. This also highlights the 
importance of the network configuration. In the testbed, these migrations were performed 
on the data plane because each machine unfortunately just provided one interface. 
However, in a production scenario that properly follows the SDN paradigm, a dedicated 
interface for the control plane must be provided. Then, the migration could be performed 
without impacting the data plane at all, where the videoconference packets are. 
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Anyhow, it is known beforehand that the migration of VMs is slower than LXC because of 
their nature [65]. Consequently, it was very interesting studying both cases in detail. 
Notwithstanding, the results for LXC live migration are not hopeful, see Figure 21. This 
figure shows how the latency could just be computed before the migration started. In other 
words, LXC live migration did not succeed. At the time of this study was performed, the 
environment described in section 4.1. offered LXC migration but not live. Nowadays, the 
live migration of LXC is being developed and hopefully, in the near future, this feature will 
be stable enough to be included in virtualization environments such as Proxmox. In order 
to follow the development of live LXC migration, consult CRIU [66], the current solution 
taking the lead. 

 

 

 
                     a) Edge                                     b) London                                  c) Frankfurt 

 

 
                     c) Virginia                                  d) Oregon                                  e) Tokyo 

 

Figure 21 – LXC live migration latency for different locations 

 

Despite the technology limitation exposed above, a further analysis had to be done to 
deeply understand the issue. Since the videoconference session was lost when the 
migration started, a parallel process had to be run to check the status of the server during 
the migration. A simple approach was pinging the server throughout all the experiment. In 
Figure 22, the latency for these pings is shown jointly with the videoconference data 
packets latency. This figure mainly shows how the server stopped replying pings when the 
migration started. Eventually, the KMS started replying the pings again but effectively, the 
KMS was shut down. Consequently, there is a noticeable migration downtime that 
concludes that the migration was not live. In other words, the KMS was shut down, migrated 
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and started in the new location. Certainly, this procedure was the cause of losing the 
videoconference sessions. 

 

 
Figure 22 – LXC Live migration London to Edge latency 

 

4.4. Available bandwidth and packet loss 
 

The experience perceived as the videoconference user when the available bandwidth was 
changed is shown in Table 6. Notice that the focus of this project is not the Quality of 
Experience (QoE), therefore the information provided in this table was not obtained from 
multiple samples but from the experience of just one user. At any rate, this analysis was 
performed in view of knowing the performance of the videoconference service under study 
and providing a reference to the experience. 

 

Available 
Bandwidth 

QoE perception 

4.8 Mbps Very good 

4 Mbps Good  

3.43 Mbps Noticeable lag 

3 Mbps Unacceptable lag 

 2.67 Mbps Unacceptable lag 

2.4 Mbps Unacceptable lag 

Table 6 – User perception depending on the available bandwidth 
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When the available bandwidth was reduced along the session, an interesting outcome was 
obtained: the session suffered lag when the available bandwidth was reduced. In 
contemplation of this awareness, the latency for this session was computed, see Figure 
23. In this figure, it can be observed how the dispersion of the latency values incremented 
as long as the session elapsed. In brief, the less bandwidth was available for the 
videoconference the more probable of obtaining higher latency values. 

  

 
Figure 23 – Latency evolution depending on the available bandwidth 

 

The reason for this increment in the latency can be explained with the help of Figure 24. In 
this figure, the overall bandwidth consumed by the videoconference was computed every 
1000 packets and every 100 packets. In this conditions, the evolution of the average 
bandwidth and the instant bandwidth is represented. It can be observed how the average 
bandwidth is always below the available bandwidth and how the instant bandwidth 
fluctuates around the average. Theoretically, the application had the required bandwidth 
available in the whole session, on the worse occasion 2.4Mbps were available, i.e. the 
videoconference occupied 100% of the available bandwidth. Nonetheless, as long as the 
bandwidth occupation of the videoconference represented a higher percentage of the total 
available bandwidth, the experience worsened. Essentially, when the available bandwidth 
was closer and closer to the average bandwidth, there was more certainty that at some 
point the instant bandwidth would stand out of the available bandwidth and this would 
provoke a bad experience to the user. 

As a summary, the results of this first analysis pretends to remark how important is 
quantifying the real resources needed when setting up the system. In this particular case, 
a minimum of 4 Mbps bandwidth must be available to offer a good service. 

Regarding the packet loss analysis, it could be observed that the videoconference service 
could handle the packet loss particularly better. In Table 7, it is shown how the packet loss 
was not noticed until losing 15% of the packets. This means that up to this point, the 
application was able to handle losses. Naturally, the videoconference data was sent 
through UDP packets, therefore the recovery of lost packets had necessarily to be done at 
the application level. In either way, the analysis of the application itself was not under the 
scope of this project. To conclude this last analysis, a set of pictures for different packet 
loss ratio are displayed in Figure 25. 

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6
x 104

time (s)

La
te

nc
y 

(µ
s)



 

 41 

 

 
Figure 24 – Available bandwidth  

 

 

Packet loss QoE perception 

0% Very good  

5% Very good 

10% Good 

15% Acceptable 

20% Noticeable but 
annoying 

25% Noticeable but 
annoying 

 30% Blurry image 

35% Blurry image 

40% Unacceptable 

Table 7 – User perception depending on the packet loss 
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Figure 25 – Packet loss pictures 
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5. Budget 

 

The budget presented below makes reference to the implementation of the testbed 
presented in section 4.1. Proposing a budget for a final production environment would 
result very erratic since it would highly depend on the scenario. Therefore, do not consider 
this budget as a proposal for a production environment. 

The approximated budget to deploy a laboratory where to run the experiments exposed in 
section 4 is detailed in Table 8. Notice that the hardware exposed in this table can be 
substituted with similar devices that might be cheaper. Consequently, the total amount 
required is, of course, an approximation. Moreover, the setup used for this project did not 
need to purchase any of these items since the university could offer them. 

 

Item Price per unit (€) Quantity Total 

Switch 750 1 750 

Proxmox nodes 800 2 1600 

Sniffer 600 1 600 

Client PCs 700 2 1400 

Proxmox GUI (PC) 700 1 700 

Ethernet wires 6 6 36 

Matlab license 800 1 800 

TOTAL 

5886€ 

Table 8 – Testbed budget 

 

As proven, the implementation of the testbed is simple and economical in comparison to 
deploying a real service in a data centre. One one hand, the hardware is not especially 
demanding, see the specifications in Table 5. On the other hand, the virtualization 
environment, Proxmox, and the videoconference application, Kurento, both are open-
source software and therefore, free. The only license to add to the budget is Matlab, used 
for post-processing data purposes.  



 

 44 

6. Conclusions and future development 

 

The aim of this dissertation has been to deliver a POC that motivates the implementation 
of an Edge cloud computing and SDN based solution, especially, for improving the quality 
of low sensitive and bandwidth exhaustive applications in enterprise environments. For this 
reason, firstly, an Edge network model has been presented and detailed. This model has 
been proven to be industry-accepted and its most exciting facet is having the ability to 
easily change the decision criterion depending on the business case. 

The videoconference application used to perform the quality analysis was primarily 
evaluated. This exercise enabled understanding the traffic generated by this particular 
application which resulted to be burst based. Detecting this pattern was crucial at the time 
of proposing a methodology to compute the latency. In fact, this methodology had to be 
implemented so as to proceed with the quality analysis afterwards. 

Essentially, the first experiment demonstrated how the latency could be significantly 
reduced by means of bringing the servers to the edge. Moreover, the second experiment 
proved the feasibility of having a dynamic environment where the service can be migrated. 
At the same time, this experiment highlighted the importance of following the SDN 
paradigm, where two different planes must be used for control and data purposes. And 
lastly, for the sake of providing a complete quality analysis, the impact of available 
bandwidth and packet loss in the edge was commented. One one hand, it was remarked 
the importance of having an extra margin of available bandwidth reserved for this kind of 
applications in enterprises infrastructures. It was observed how the lack of bandwidth 
incremented the latency, ruining the effort of bringing the servers to the cloud. On the other 
hand, it could be observed that the particular application under study behaved pretty good 
handling packet loss.  

Ultimately, all of these tests together showed the capabilities of Edge cloud computing to 
improve the videoconference experience. Notwithstanding, several future milestones have 
been left for the future. The next step would be implementing a proper SDN module that 
could be integrated with an SDN controller. This would enable moving towards a real 
deployment in production analogous to the testbed presented in this work. In this case, it 
would be compulsory the disposal of enough interfaces to use different planes for control 
and data. Aside, it would be compelling the use of an advanced videoconference 
application that makes use of AR. In other words, an application that demands even more 
bandwidth for its correct functioning. 
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Appendix 1: SDN module example 

 

The pseudo code available in this Appendix pretends to show an example of one Algorithm 
criteria seen in Figure 4. Notice that the aim is not providing a real ODL module but to 
depict the essence of the logic presented in section 3.1 with an easy example.  

In this example, the module basically decides in which node the KMS has to be hosted 
depending on the demand in the network, i.e. the number of users. Each of the zones is 
physically identified by means of different subnetworks. This means that we would have a 
distribution of IPs as seen in Table 9. 
 

 
Zone 1 Zone 2 Zone 3 

10.81.59.X 10.81.60.X 10.81.61.X 
 

Table 9 – IP networks distribution 
 
 

The SDN module checks periodically the database, which is systematically updated thanks 
to SDN, and if it detects that there are more users requesting service in another zone rather 
the one where the KMS is hosted, the SDN controller will trigger the migration, as illustrated 
in Figure 26.  
 

 
Figure 26 – User zones 

 
 
The logic of this module is presented below in code format. It has been written in Java for 
being ODL compliant. In brief, the code updates a Map where stores the number of users 
per location and requests to migrate the KMS to the node with more demand if necessary. 

 
 // This pseudocode showcases the logic behind the proposed OpenDaylight module  
// Every x seconds, this module will recieve as an input: 
//   - A .csv with all the packets captured in the network.  
//   This .csv passed as an input contains the following four columns: 
timestamp, IP source, IP destination and packet size 
//   - The current server IP address 
// The server will always have the same last octet in the IP@: X.X.X.111 
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public class odlEdgemodule{ 
 
 public Map<String,Integer> userMap = null; // This map will contain the number 
users per subnet 
 public String csvFile;  
 public String serverIP;  
 
 public odlEdgemodule(String captureCsv, String currentServerIP){ 
  userMap =  new Map<String,Integer>(); 
  csvFile = captureCsv; 
     serverIP = currentServerIP;  
 } 
 
  
    public static void main(String[] args) throws Exception{ 
  updateUserMap();  
  Map.Entry maxEntry = null; 
  for (Map.Entry<String,Integer> entry : userMap.entrySet()) 
  { 
       if (maxEntry == null || 
entry.getValue().compareTo(maxEntry.getValue()) > 0) 
      { 
          maxEntry = entry; // Subnet with highest number of users 
      } 
  } 
   
  String[] number = serverIP.split("."); 
        String sn = number[3]; 
 
  if(!maxEntry.getKey().equals(sn)){ // Just in case the current location 
has not the highest number of users then, migrate. 
   String [] newServerIP = new String[4]; 
   newServerIP[1] = number[1]; 
   newServerIP[2] = number[2]; 
   newServerIP[3] = maxEntry.getKey(); 
   newServerIP[4] = "111"; 
   serverIP = newServerIP; 
   migrate(newServerIP); 
  }  
 } 
 
 /*This method update the map with the number of users in each subnet*/ 
 public void updateUserMap(){ 
 
  Set<Integer> ipSet = ipSet = new HashSet<Integer>(); 
  ipSet = getIps(this.csvFile); 
  Set<Integer> subnetSet = new HashSet<Integer>(); 
  Iterator<Integer> iterator = ipSet.iterator(); 
 
  while (iterator.hasNext()) { // We want to identify the list of subnets 
    
   String[] number = iterator.next().split(".");  
    // Since subnetSet is a Set variable only unique values will be 
added in each iteration 
   subnetSet.add(number[3]); 
 
      if (number[4].equals("111")) { // Additionally, when we detect the 
server IP we remove it from the list from users 
          iterator.remove(); 
      } 
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  } 
 
  iterator = subnetSet.listIterator(); //reset the iterator 
 
  while (iterator.hasNext()) { // Once the subnet Set is ready we can put 
them on the Map 
   userMap.put(iterator.next()); 
  } 
 
  iterator = ipSet.listIterator(); //reset the iterator 
 
  while (iterator.hasNext()) { // Finally we want count the number of 
users in each subnet and store it in the Map  
         String[] number = iterator.next().split("."); 
         String subnet = number[3]; // Subnet address 
         userMap.put(subnet, userMap.get(key) + 1); 
  } 
 } 
 
 /*This method parses the csvFile so as to get a list of the set of IPs that 
appear in the capture*/ 
 public void getIps(String csvFile){ 
   
  String[] packet = null; 
        String line = ""; 
        String cvsSplitBy = " "; // use space as separator 
 
        try (BufferedReader br = new BufferedReader(new FileReader(csvFile))) { 
 
            while ((line = br.readLine()) != null) { 
             packet = line.split(cvsSplitBy); 
             // Since ipSet is a Set variable only unique values will be added in 
each iteration 
                ipSet.add(packet[2]); 
                ipSet.add(packet[3]);  
            } 
 
        } catch (IOException e) { 
            e.printStackTrace(); 
        } 
    } 
 
} 

 

 

 

 

 

 

 

 

 



 

 52 

Appendix 2: IPT script 

 

The Matlab script code below computes the IPT of a given .csv file that contains the trace 
of a captured traffic. 

 
% In order to use this script a .csv file has to be imported. 
% This .csv has to contain four columns: timestamp, IPsource, IPdestination and packet 
% size. 
 
format long; 
[nr,nc] = size(snifftable); 
 
for i=1:nr 
    snifftable{i,1} = snifftable{i,1}*1000000; % convert to microseconds 
end 
 
timeshift = snifftable{1,1}; 
 
for i=1:nr 
    snifftable{i,1} = snifftable{i,1} - timeshift; % shift timestamp origin 0 
end 
 
ipt = zeros(nr-1,2); 
 
for i=2:nr 
    ipt(i,1)= snifftable{i,1}; 
    ipt(i,2)= snifftable{i,1}-snifftable{i-1,1}; 
end 
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Appendix 3: tc and netem commands 

 

In this section, the shell scripts used to perform the experiments presented in section 4 are 
detailed. Namely, the simulations of delay, available bandwidth and packet loss. 

Firstly, this tiny shell script shows how the delays were set in the KMS for the different 
locations, in this example, 6ms. 

!#/bin/bash 
# Set delay to the KMS  
ssh kcl@10.81.59.111 tc qdisc add dev ens18 root netem delay 6ms 

 

Secondly, this shell script was used to simulate available bandwidth: 

!#/bin/bash 
# Considering that the KMS requires 2.4Mbps 
echo "Please, start capturing – No bandwidth limitation" 
sleep 60 
echo "Videoconference traffic occupies 50% of the available bandwidth" 
ssh kcl@10.81.59.111 tc qdisc add dev ens18 root tbf rate 4800kbit latency 0.01ms burst 1540  
sleep 60 
echo "Videoconference traffic occupies 60% of the available bandwidth" 
ssh kcl@10.81.59.111 tc qdisc add dev ens18 root tbf rate 4000kbit latency 0.01ms burst 1540 
sleep 60 
echo "Videoconference traffic occupies 70% of the available bandwidth" 
ssh kcl@10.81.59.111 tc qdisc add dev ens18 root tbf rate 3430kbit latency 0.01ms burst 1540 
sleep 60 
echo "Videoconference traffic occupies 80% of the available bandwidth" 
ssh kcl@10.81.59.111 sudo tc qdisc add dev ens18 root tbf rate 3000kbit latency 0.01ms burst 
1540 
sleep 60 
echo "Videoconference traffic occupies 90% of the available bandwidth" 
ssh kcl@10.81.59.111 sudo tc qdisc add dev ens18 root tbf rate 2670kbit latency 0.01ms burst 
1540 
sleep 60 
echo "Videoconference traffic occupies 100% of the available bandwidth" 
ssh kcl@10.81.59.111 sudo tc qdisc add dev ens18 root tbf rate 2400kbit latency 0.01ms burst 
1540 
sleep 60 
echo "Experiment finished" 

 

Lastly, this shell script was used to simulate packet loss: 

!#/bin/bash 
echo "Please, start capturing – 0% packet losses" 
sleep 60 
echo "10% packet loss" 
ssh kcl@10.81.59.111 tc qdisc add dev ens18 root netem delay 0.01ms loss 10%  
sleep 60 
echo "20% packet loss " 
ssh kcl@10.81.59.111 tc qdisc add dev ens18 root netem delay 0.01ms loss 20% 
sleep 60 
echo "30% packet loss " 
ssh kcl@10.81.59.111 tc qdisc add dev ens18 root netem delay 0.01ms loss 30% 
sleep 60 
echo "40% packet loss " 
ssh kcl@10.81.59.111 tc qdisc add dev ens18 root netem delay 0.01ms loss 40% 
sleep 60 
echo "Experiment finished" 
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Appendix 4: Capturing traffic 

 

This section pretends to show the procedure followed by the Sniffer to obtain the data 
traffic. It could be divided into three parts: capturing, filtering and formatting. 

The tcpdump [67] command shown below captures the traffic in the interface en4. Notice 
that this command is already filtering the packets of our interest. In this case, the 
correspondence of IPs is: 10.81.59.111 – KMS, 10.81.59.112 – Application server, 
10.81.59.104 – Client A and 10.81.59.105 – Client B. 

sudo tcpdump -i en4 -n "(src 10.81.59.105 and dst 10.81.59.111) or (src 10.81.59.104 
and dst 10.81.59.111) or (src 10.81.59.111 and dst 10.81.59.105) or (src 10.81.59.111 
and dst 10.81.59.104)" -w example.pcap 

 

In the case of needing to split the traffic, for instance, obtaining just the traffic from Client 
A to KMS, another filter could be applied a posteriori by means of tshark [68] command: 

tshark -r filtered-clean-cap1.pcap -Y "ip.src == 10.81.59.104 && ip.dst == 10.81.59.111" 
-w client-a-to-kms.pcap 

 

Finally, the shell script below was created so as to convert .pcap files to .csv format. This 
script creates a file where each row is a captured packet and contains four columns: 
timestamp, IP source, IP destination and packet size.  

!#/bin/bash 
 
sudo tcpdump -nn -tt -r $1 > ${1%%.*}.txt 
awk '{print $1, $3, $5, $(NF)}' ${1%%.*}.txt > raw-columns.txt 
awk '{print $1}' raw-columns.txt > timestamps.txt 
awk '{print $2}' raw-columns.txt > dirty-ipsource.txt 
awk '{print $3}' raw-columns.txt > dirty-ipdest.txt 
awk '{print $4}' raw-columns.txt > packet-lenght.txt 
cut -d. -f-4 dirty-ipsource.txt > clean-ipsource.txt 
cut -d. -f-4 dirty-ipdest.txt > clean-ipdest.txt 
paste -d' ' timestamps.txt clean-ipsource.txt clean-ipdest.txt packet-lenght.txt > 
snifftable.csv 
rm ${1%%.*}.txt raw-columns.txt timestamps.txt dirty-ipsource.txt dirty-ipdest.txt 
packet-lenght.txt clean-ipsource.txt clean-ipdest.txt 
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Appendix 5: Latency estimation script 

The Matlab script code below computes the latency of a given .csv file that contains the 
trace of a captured traffic. The logic of this code follows the already presented methodology 
in section 3.2.3. In a nutshell, this algorithm tries to find for each first packet of a burst 
departing from Client A to KMS, the corresponding first packet of a burst departing from 
KMS to Client B. If it succeeds in the finding, the latency can be computed and stored. If 
not, the algorithm tries with the following packet in the trace, skipping the ones already 
studied. 

 
% In order to use this script a .csv file has to be imported. 
% This .csv has to contain four columns: timestamp, IPsource, IPdestination 
% and packet size. 
 
format long; 
[nr,nc] = size(snifftable); % snifftable is the name of the imported .csv file 
sender = '10.81.59.104'; % sender IP  
latency_threshold = 15000; % maximum accepted latency, depends on the location (us) 
distance_threshold = 0; % lower threshold, depends on the location (us) 
 
% This loop sets the timestamps to microseconds 
for i=1:nr 
    snifftable{i,1} = snifftable{i,1}*1000000; 
end 
 
timeshift = snifftable{1,1}; 
% This loop shifts the timestamps, i.e. setting the first to zero. 
for i=1:nr 
    snifftable{i,1} = snifftable{i,1} - timeshift; 
end 
 
latencies = []; % stores the computed latencies 
latencies_pro = []; % stores the computed latencies and the corresponding timestamp 
discarded_latencies = []; % stores the not valid latencies, i.e. too high/low 
number_packets_burst = []; % stores the number of packets in each burst 
latencies_index = 0; 
cont_discarded = 0; 
cont_burst = 1; 
burst_flag = 0; 
 
i = 1; 
% This loop goes over all the rows in the capture 
while i<=nr 
    timestamp = snifftable{i,1}; 
    ip_source = snifftable{i,2}; 
    ip_destination = snifftable{i,3}; 
    size = snifftable{i,4}; 
    % Just in case of being a packet departing from the sender a latency 
    % will be computed 
    if strcmp(ip_source,sender) == 1 
        k = i+1; 
        % This loop goes over all the consecutive rows in the capture so as 
        % to find the corresponding packet from the server to the receiver 
        for j=k:nr 
            ts = snifftable{j,1}; 
            ips = snifftable{j,2}; 
            ipd = snifftable{j,3}; 
            s = snifftable{j,4}; 
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            % In case of being part of the same burst, it is posted in the 
            % burst counter 
            if (strcmp(ips,ip_source)==1) && burst_flag == 0 
                cont_burst = cont_burst +1; 
            else 
                % The burst has finished 
                burst_flag = 1; 
            end 
            % In case that the corresponding packet is found the latency 
            % can be computed 
            lat = ts-timestamp; 
            if lat>distance_threshold 
                if (strcmp(ipd,ip_source)==0) && (strcmp(ipd,ip_destination)==0) && 
(s>=size) % This if cause evaluates if this packet corresponds to the one under study 
                  burst_flag = 0; 
                   if lat<latency_threshold 
                       latencies_index = latencies_index+1; 
                       latencies(latencies_index) = lat; 
                       latencies_pro(latencies_index,1) = timestamp; 
                       latencies_pro(latencies_index,2) = lat; 
                       number_packets_burst(latencies_index)= cont_burst; 
                       cont_burst = 1; 
                       i = j; 
                       break; 
                   else 
                       cont_discarded = cont_discarded +1; 
                       discarded_latencies(cont_discarded) = snifftable{i,1}; 
                       break; 
                   end 
                end 
            end 
        end 
    end 
    i = i+1; 
end 
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Glossary 

 

AR: Augmented reality 

Ecdf: Empirical cumulative distributed function 

GUI: Guest User Interface 

HQ: High quality 

IBT: Inter-burst time 

IoT: Internet of Things 

IPT: Inter-packet time 

KMLE: Konica Minolta Laboratory Europe 

KMS: Kurento Media Server 

LAN: Local Area Network 

LXC: Linux containers 

NFV: Network function virtualization 

ODL: OpenDaylight 

OS: Operating System 

PaaS: Platform as a Service 

POC: Proof of concept 

QoE: Quality of Experience 

QoS: Quality of Service 

SDN: Software-defined networks  

VE: Virtual environment 

VM: Virtual machine 

VNC: Virtual network computing 

WS: WebSocket 

WSS: WebSocket secure 

 

 


