
Universitat Politècnica de Catalunya

Master Thesis

An approach to quantifying hardware

diversity against common cause failures

Author:

Sergi Alcaide i Portet

Supervisor:

Dr. Jaume Abella Ferrer

Dr. Carles Hernandez Luz

A thesis submitted in fulfillment of the requirements

for the degree of Master in Innovation and Research in Informatics

in the

Departament d’Arquitectura de Computadors (AC)

Facultat d’Informàtica de Barcelona (FIB)

at Computer Architecture - Operating Systems (CAOS) department -

Barcelona Supercomputing Center (BSC)

January 14, 2018

http://www.upc.edu
http://personals.ac.upc.edu/jabella/
http://personals.ac.upc.edu/chernand/
http://www.fib.upc.es
http://www.fib.upc.es
https://www.bsc.es/discover-bsc/organisation/scientific-structure/computer-architecture-operating-systems-caos
https://www.bsc.es/discover-bsc/organisation/scientific-structure/computer-architecture-operating-systems-caos

Declaration of Authorship
I, Sergi Alcaide i Portet, declare that this thesis titled, “An approach to quantifying

hardware diversity against common cause failures” and the work presented in it are

my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master degree

at the Universitat Politècnica de Catalunya.

• Where any part of this thesis has previously been submitted for a degree or

any other qualification at Universitat Politècnica de Catalunya or any other

institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

http://www.upc.edu
http://www.upc.edu

Universitat Politècnica de Catalunya

Abstract

Reliability is an important concern in computing systems. In some cases, full redun-

dancy is used for fault tolerant purposes so that, if one of the units experiences a fault,

the other(s) still operate correctly, thus preventing the fault from becoming a system

failure. However, redundancy may not be enough if system replicas are identical since

identical faults in all replicas may lead to the same (erroneous) output. These identical

faults can occur due to common cause faults (using automotive jargon). For instance,

an electrical interference may produce exactly the same fault in all replicas, which

provide the same erroneous output, thus defeating the purpose of using redundancy.

Diversity has been regarded as a desirable property of redundant systems, since

it allows them to behave differently in front of a given fault. Diversity relates to the

realization of the same function with different means. Such diversity can be applied at

any abstraction level, spanning from the system design to the physical implementation.

However, although, diversity is a well understood concept, there is no current metric

which is able to quantify it. In this thesis, we cover this gap by introducing DIMP, a

low-cost diversity metric based on analyzing the paths of the circuits. Relating it to

the particular case of automotive microcontrollers that implement lockstep cores, we

show that DIMP can provide relevant information for addressing the common cause

faults. In particular, we have validated DIMP in the context of timing faults with

SPICE simulations. Additionally, we have also extended DIMP metric to cover other

types of faults like the ones caused by systematic process variations.

ii

http://www.upc.edu

Acknowledgements
First, I want to deeply thank my advisors Carles and Jaume for their guidance

and mentoring through the development of this thesis.

I also want to thank the rest of the people of the CAOS group at BSC who always

offer help when I needed.

Furthermore, I would like to acknowledge BSC for financially supporting my mas-

ter studies.

Last but not least, I would like to thank my parents and my sister for their

unconditional support both in my studies and in my life.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Structure of the Thesis . 3

2 Background 4

2.1 Faults, Failures and Errors . 4

2.2 Safety Related Systems . 5

2.3 Safety Mechanisms for Safety Related Systems 6

2.3.1 Fault Detection . 6

2.3.2 Redundancy, Sphere of Replication and Lockstep Execution . . 7

2.3.3 Examples from Fault-Tolerant Platforms for Automotive Safety-

Critical Applications . 10

Lockstep Dual Processor Architecture 11

Loosely-Synchronized Dual Processor Architecture 12

Triple Modular Redundancy System 12

2.4 Robustness Verification . 13

iv

2.5 Diversity . 14

2.5.1 Other efforts to quantify diversity 16

2.5.2 Main problem of diversity for the Industry 17

3 DIMP: A DIversity Metric based on circuit Path analysis 18

3.1 Motivation of DIMP . 18

3.2 Rationale behind DIMP . 19

3.3 A realization of DIMP . 20

3.4 DIMP Implementation . 22

3.4.1 Inputs tool . 22

3.4.2 Diversity implementation . 23

3.5 DIMP evaluation . 24

3.5.1 FALLES Fault Injector . 24

3.5.2 ISCAS evaluation . 25

3.5.3 8-bit full adder designs . 27

3.5.4 SPICE validation . 28

SPICE . 28

Validation . 28

3.5.5 Computation complexity . 30

3.6 Conclusions . 31

4 Specialization of DIMP 33

4.1 Considered Fault Model . 33

4.1.1 Tailoring DIMP to the specific fault model 34

4.1.2 Gate Selection . 35

4.2 Evaluation . 35

4.2.1 FALLES Fault Injector . 36

4.2.2 Matching mechanism . 36

4.2.3 ISCAS evaluation . 37

Results . 41

4.3 Removing the aliasing . 42

4.3.1 Modifications on the matching 42

Results . 45

v

4.4 Conclusions . 45

5 Conclusions and Future Work 47

Bibliography 50

Acronyms 53

A DIMP on ISCAS’89 54

B Published Work 55

vi

List of Figures

2.1 Examples of different redundancy . 7

2.2 Schematics for different SoR granularities, [1] 10

2.3 Lockstep dual processor architecture, [2] 11

2.4 Loosely-Synchronized Dual Processor Architecture, [2] 12

2.5 Triple modular redundancy, TMR [2] 13

2.6 Different ways of achieving diversity for a given functionality, extracted

from [3] . 15

3.1 Pseudocode of a realization of DIMP. 20

3.2 Small example: {NAND2, NOR2, XOR2} is the solution of LCS . . 21

3.3 Format of the file listing all paths . 23

3.4 1-bit full adder design for FA-AND and FA-MIX 27

3.5 1-bit full adder design, using only NAND gates, for FA-NAND and

FA-MIX . 27

3.6 1-bit full adder design, based on half adders, used only in FA-2 28

3.7 Format of the input circuits descriptions 29

3.8 Computational complexity. Square brackets show the range of the

depth of the paths . 31

4.1 Pseudocode of the modification for specialized DIMP. 34

4.2 Software pipeline of the matching mechanism. 37

vii

List of Tables

3.1 Diversity results computed injecting random faults (DINJ) using FALLES

Fault Injector. 25

3.2 DIMP’s results on ISCAS’89 circuits. 26

3.3 DIMP’s results applied to full adders circuits. 28

4.1 Selected gate for each circuit and percentage respect to the total . . . 35

4.2 ISCAS’89 working set . 38

4.3 Results from Generic DIMP, Specialized DIMP and the Matching per-

centage from the fault injection . 40

4.4 Results after the matching modifications 44

A.1 DIMP results for ISCAS’89 circuits . 54

viii

Chapter 1

Introduction

1.1 Motivation

Safety-related systems must undergo an exhaustive validation and verification (V&V)

process before being deployed to prove that their safety goals are met. This process

needs to collect enough evidence to prove that either the risk of death or serious injury

to people, the loss or severe damage to equipment/property and/or the environmental

harm due to malfunctioning behavior of the system can be regarded as negligible.

Therefore, a hazard analysis and risk assessment is needed for safety-related systems to

determine the degree of prevention or mitigation needed in order to avoid unreasonable

risk.

These safety goals are defined at the scope of the whole system, but also they

are propagated to all the components so their composition preserves the safety goals.

This translates into attaching to each component a Safety Integrity Level, which

determines the type and amount of evidence needed in the V&V process to prove

that the component under analysis will meet its specifications. For instance, in the

case of the automotive domain, the ISO26262 functional safety standard is used for

the V&V process of electrical and electronic systems, and defines four Automotive

Safety Integrity Levels (ASIL), from A to D, being D the highest integrity level and

A the lowest [4]. Other similar examples can be found in other domains, such as

avionics (e.g., DO178B/C [5]), railway (e.g., EN50126/8 [6]) and general electronic

safety-related systems (e.g., IEC61508 [7]) among others.

When mapping safety integrity levels to hardware components such as microcon-

trollers, meeting the requirements for high integrity levels requires providing hardware

1

Chapter 1. Introduction

components with specific safety mechanisms. For instance, in the context of the auto-

motive domain, microcontrollers providing ASIL C and D functionalities often require

some form of hardware redundancy [8, 9]. Although redundancy is very useful against

most faults, it is vulnerable to faults that can produce the same failure on each of the

instances of the system (e.g., due to voltage droops). This type of failures are often

produced by common cause faults and need, not only redundancy but also diversity,

so that the manifestations of the fault are different in each diverse instance and hence,

the fault can be detected before becoming a failure.

Diversity can be obtained by using different implementations of the same hard-

ware functionality and can be applied at different abstraction levels (e.g., gate level,

transistor level). However, although diversity is well-understood at a qualitative level,

it is hard to quantify it since it relates to the specific target that creates the common

cause fault and the abstraction level at which it is considered. Some efforts have been

done to quantify diversity systematically [10, 11], but specific realizations have only

been proven successful for random faults. Unfortunately, the existing diversity quan-

tification methods were not designed targeting common cause faults, whose nature

and effects are different. Therefore, industry faces the complex issue of delivering di-

verse implementations without practical means to quantify their effectiveness. These

issues exacerbate with the increasing complexity of microcontroller designs needed to

keep pace with the performance requirements of the safety-related functionalities in

different domains such as automotive [12, 13] and avionics [14] among others.

1.2 Contribution

In this thesis we cover the gap of quantifying diversity by proposing DIMP, a new met-

ric that systematically compares circuits and measures the diversity based on path

analysis of these circuits. The proposed metric has a relatively low cost in terms of

computational effort and complexity compared to the existing diversity quantification

metrics. In this thesis, we suit DIMP to the particular case of timing faults as a

representative example of common cause faults, and apply it at the gate-level granu-

larity. The results are compared against existing diversity metrics and we show that

2

Chapter 1. Introduction

in controlled scenarios, where specific outputs are expected, our metric is the only

metric delivering a meaningful answer.

We have also specialized the proposed metric to cover other type of common cause

faults. In particular, we consider the impact of systematic process variation to define

our fault model. In this regard, we have extended the evaluation method and compare

the original DIMP implementation with the results of the specialized metric. Unfor-

tunately, we have found that there is no strong correlation between the specialized

metric and the error manifestations for the considered fault model. However, although

we cannot correlate the results of the new metric with the evaluation method, we pro-

pose some ideas that can be explored in the future to overcome some of the problems

we have faced.

1.3 Structure of the Thesis

The rest of this thesis is organized as follows:

Chapter 2 presents some background about safety related systems and the most

widely used safety mechanisms to help the reader understanding the scope of the

thesis and the main problem we want to solve.

Chapter 3 presents DIMP, our solution to quantify diversity in a systematic man-

ner, and its evaluation and validation. In this chapter we also compare DIMP against

other existing diversity quantification approaches.

Chapter 4 extends DIMP to cover systematic faults originated by systematic pro-

cess variations.

Chapter 5 presents the conclusions and gives some ideas about future work to be

done in this area.

Chapter 6 contains the bibliography used for this thesis.

Appendix A: Shows the complete results for one of the experiments of chapter 3.

The work done in this thesis has been published in the Design Automation con-

ference (DAC), which is the premier conference in the area of circuits and systems,

and also presented in the ACACES Summer School. The exact references of the

publications can be found at Appendix B: Published Work.

3

Chapter 2

Background

2.1 Faults, Failures and Errors

In this thesis, we use the common terminology in fault-tolerant systems:

Fault is a defect within the system, it can be due to multiple reasons: Erroneous

design, software bug, random hardware fault, due to cosmic rays, defect of some

component, etc.

When faults are not correctly fixed they can lead to errors. An error is a deviation

from the required operation of the system, or subsystem. Errors are the manifestations

of the faults, although a fault may not lead to an error.

For example, consider a 2 (inputs) AND gate at some circuit design. The expected

output of this gate is a ’1’ since both inputs are ’1’. If in one of the inputs there is a

fault that causes one of the inputs to switch to a ’0’, we will have an error because the

output of this gate will not be ’1’. However, if the fault causes the input to be stuck

at ’1’, since the correct output value is a ’1’, the output is correct anyway. Despite

that in both cases we have the same fault, only in one of them the fault becomes an

error.

A system failure occurs when a system fails to perform its required operation.

The presence of an error might cause the whole system to deviate from its required

operation or not. One of the main goals of the safety-critical systems is minimizing

the likelihood that errors lead to system failures.

4

Chapter 2. Background

2.2 Safety Related Systems

A safety related system or safety-critical system, is a system whose failure or mal-

functioning may result in a death or an injury to a person, loss or severe damage to

equipment/property or an environmental harm. These systems must be protected to

ensure safety is not compromised and failures occur with negligible probability. For

example, in the aircraft industry a figure of 10−9 accidents per hour is often quoted

as an acceptable target in the standards [15].

Failures can be produced by different kinds of faults: bugs in the software, faults

in the hardware, spontaneous malfunctioning of the system, etc. Some of them can

be corrected during their testing before the deployment but others, such as transient

faults, require specific mechanisms to ensure that those faults will not cause a system

failure, or that at least failures will only occur within a given target failure rate.

Transient faults, also called single event upsets (SEU’s) or soft errors, are faults

that can appear in some parts of our system and can alter its behavior momenta-

neously. They are random in nature, temporary and unpredictable. Because of their

characteristics, one solution to recover from their effects is to power off the system

and restart it. However, in general it is difficult to detect when a transient fault is

affecting our system, and at the same time, powering off or reseting a safety-critical

system is not always possible.

One of the sources of transient faults are the voltage variations caused by the

power supply. Voltage variations affect some of the transistors and can potentially

modify their behavior. In 2000, the likelihood of having transient faults was low, less

than one fault per year per thousand computers [16], making fault-tolerant computers

attractive only for mission-critical applications, such as online transaction processing,

space programs, transportation systems (e.g., railway, avionics, automotive), nuclear

engineering, medicine, in other words, to the systems that are regarded as safety-

critical. Since then, industry has evolved following Moore’s Law, which states that

the number of transistors in the same area is almost doubled every 2 years. As a

consequence of this, the probability that one of the transistors suffers a transient fault

has increased, not just because we doubled the number of transistors frequently, but

also because other sources of transient faults, like capacitive crosstalk or inductive

5

Chapter 2. Background

crosstalk, have also become more likely with the shrinking of transistors size. For in-

stance, new physical features of the transistors, which are smaller and usually operate

at a lower operative voltage than the previous generation, make them more vulnerable

to these and other transient faults.

Process variation must also be taken into account. Process variation is inherent to

the manufacturing process and affects the attributes of transistors (lengths, widths,

oxide thickness) [17]. The effect of the manufacturing variability becomes specially

important as the size of transistors shrinks since relative variations increase and lead

to increased fault rates. This kind of faults, once appear, remain during all the life of

the system and for this reason they are called permanent faults.

Regardless of the type of fault, transient or permanent, processors need to have

some mechanisms, that despite the costs (at least for the moment), protect safety-

critical systems. Systems with the ability to operate correctly in spite of the presence

of faults are referred to as fault-tolerant.

Fault tolerance requires at least two basic mechanisms: fault detection and re-

covery. Fault detection allows the construction of fail-stop components, which are

components that, in case of fault, stop the propagation of the fault to avoid its propa-

gation to the outputs and to other components. Fault detection also alerts the system

that an error has been detected so the system can activate the appropriate recovery

mechanism. Recovery mechanisms restore the execution from a point in which we

ensure the system was error free or simply correct system state so that error-free op-

eration can continue. These two mechanisms are the basis of highly reliable systems.

2.3 Safety Mechanisms for Safety Related Systems

2.3.1 Fault Detection

For fault detection mechanisms we have two main strategies: Hardware fault detection

and Software fault detection. In general, hardware fault detection performs better

than software fault detection by two main reasons. The first one is that hardware

fault detection has a lower latency catching faults than software, using software the

detection is delayed more and thus, it can occur that the erroneous outputs have

already been propagated. The second is that hardware fault detection usually incurs

6

Chapter 2. Background

lower performance overhead compared to software, producing a lower performance

degradation due to the fault detection mechanism.

2.3.2 Redundancy, Sphere of Replication and Lockstep Execution

One of the most common hardware fault detection mechanisms is the use of redun-

dancy. Redundancy means duplicating part of the resources of the system that will

perform the same task in order to increase reliability. We have two different kinds of

redundancy:

• Time redundancy

• Space redundancy

(a) Time redundancy

(b) Space redundancy

Figure 2.1: Examples of different redundancy

Time redundancy (2.1a) requires to execute the same operation (an instruc-

tion, a whole program) more than once at the same functional unit. Space redun-

dancy(2.1b) on the other hand, is to have multiple functional units that execute the

7

Chapter 2. Background

same software/operation. After all executions are performed, either in time redun-

dancy or space redundancy, a comparison is done with the outputs from each execution

in order to find for potential errors. If results mismatch, it means that at least one

execution has gone wrong, because in regular systems there is only one correct result.

Note that redundancy can be complete or partial. For instance, for space redundancy

one may replicate full pieces of data or codify properties of such data (e.g. parity).

For time redundancy, one may execute an operation and sample the result twice from

the output circuit instead of reexecuting the operation completely.

When a mismatch is detected, recovery actions need to be activated to restore

the system from a safety point. Then, the system will re-execute, and repeat the

process until no mismatch in the outputs is found. In that respect, redundancy highly

relays on the probability that all the executions produce the same erroneous outputs

is almost zero. For most of the cases this premise it is valid but, as we will show later,

there are some cases in which this cannot be taken for granted.

Time redundancy is used mainly to protect against transient faults. Because

transient faults can appear and disappear in time, the transient fault will unlikely be

present during all the executions. In this context, the execution affected by a transient

fault and the fault-free execution, or the execution with a different transient fault, will

produce different outputs allowing the comparator to effectively detect a mismatch

between executions. In the low probable case that the transient fault remains during

all the executions, then time redundancy will fail only if, the transient faults produces

exactly the same erroneous outputs in every execution. The protection against perma-

nent faults is completely ineffective with time redundancy, because permanent faults

will produce the same erroneous outputs for all the executions and the comparator

will not detect the errors.

Space redundancy on the other hand, is able to detect the presence of errors

caused by permanent faults, since it is very likely the permanent fault will only affect

one of the executions, and thus, the fault will be effectively detected by the compara-

tor. Transient faults can also appear, and like in the time redundancy, as long as

they not affect all the executions (instances) in the same way, different outputs will

be generated and the comparator will detect the mismatch.

Space redundancy increases area costs because we have to add more functional

8

Chapter 2. Background

units that do not add new functionalities, but since such functional units can exe-

cute in parallel the multiple required executions, the impact in performance is lower

than for time redundancy, that needs to execute them sequentially. In most systems,

replicating the full system is not needed.

The granularity at which redundancy is applied is known as the Sphere of Replication

[18] or SoR for short. In the context of microprocessors for example, SoR can be de-

fined at the instructions granularity so that the output of each instruction is compared

before it is committed. However, this approach has a huge impact on performance

since we will need to perform a comparison at every instruction, so very often. On

the other hand, if the SoR is set at this granularity the recovery mechanism is much

simpler and faster. In fact, the SoR presents a trade-off between the performance

and the overhead that is determined by the granularity at which the replication is

performed (see the Figure 2.2 extracted from [1]). Fine granularities will also reduce

the amount of work that the recovery system will do since we will detect the fault

earlier.

In a particular application of redundancy, some authors also mentioned the idea

of using threads [18] instead of replicating the whole core and take advantage of some

properties like locality in caches. With this redundancy consideration, replication

is provided by the actual inherent redundancy of the system and so minimizes the

required hardware overhead. However, because they use the same hardware, they are

vulnerable to permanent faults. Moreover, the increase in the performance overhead

must be considered with this approach.

9

Chapter 2. Background

Figure 2.2: Schematics for different SoR granularities, [1]

2.3.3 Examples from Fault-Tolerant Platforms for Automotive Safety-

Critical Applications

Lockstep execution is a space redundant fault-tolerant system used on processors,

that is widely extended in safety critical systems and has been used in that industry

for many years. For instance, the Infineon AURIX microcontroller [19], implements a

dual-core lockstep processor to satisfy the reliability requirements of ASIL-D applica-

tions for the automotive domain. Following, we analyze different lockstep approaches.

10

Chapter 2. Background

Lockstep Dual Processor Architecture

Figure 2.3: Lockstep dual processor architecture, [2]

In a dual lockstep architecture (figure 2.3) two processors usually referred as the

master and the checker, execute the same code being strictly synchronized. The

master has to access to the system memory and drives all the systems outputs while

the checker continuously executes the instructions moving on the bus. The outputs

of the checker, both addresses and data, feed the monitor, which is a comparator that

checks the consistency of all the data and addresses, the outputs from the master are

observed directly from the bus. When a mismatch appears on the comparator this

indicates that at least one of the CPU’s had a fault (fault detection). However, it

is not possible to know which one executed correctly and which one had the fault,

so the system has to re-execute again the same program piece. In this architecture

the SoR is only the CPU which means the monitor is not capable of detecting bus

and memory errors. Memory and bus must be protected using some form of error

correction and detection codes. Lockstep architectures can be employed in safety

critical system providing the capability of detecting any single errors, permanent or

transient, occurring indifferently in one of the CPU’s, the memory system or the

communication channel.

11

Chapter 2. Background

Loosely-Synchronized Dual Processor Architecture

Figure 2.4: Loosely-Synchronized Dual Processor Architecture, [2]

In a loosely-synchronized architecture (Figure 2.4) two CPU’s run independently hav-

ing access to distinct memory system. A real-time operating system running on both

CPU’s handles the interprocess communication that is the responsible for checking

and synchronizing the error detection. In this architecture the SoR is larger that in

the previous architecture (subsection 2.3.3), which directly implies an increase in the

cost of the system since we have to replicate more functional units and more area

needed for the same functionalities.

The subset (or set) of tasks designed as critical are executed on both CPU’s.

The image is copied in both memories and the outputs are compared after each run

on a time triggered basis. Each processor is responsible for keeping their memory

consistency. The errors are detected with the comparison of values and prevent them

to be sent them out of the system. We can also use what is called a sanity-check,

which is to execute a predefined computation in order to find and identify a faulty

component.

Triple Modular Redundancy System

Apart from the architectures we have seen, we can apply the same techniques: lockstep

dual and loosely synchronized, but using 3 instances instead of 2. In this case we have

12

Chapter 2. Background

a majority voter component instead of a simple comparator. This component has to

select the option that has more votes. Thus, if one of the instances has a fault, can

be corrected in flight since the others are regarded as fault free. This reduces the

overhead of the recovery system. In other words TMR increases performance. The

fault coverage is also increased, as now we are able to detect two different faults on

two different instances, that produce different outputs.

Using 3 instances instead of 2 has increased costs. However, we have also increased

reliability since now the system can detect up to 2 errors. Furthermore, in the case of

a single error we gain performance since the error can be corrected in flight avoiding

costly re-executions. An example of this system is shown in Figure 2.5.

Figure 2.5: Triple modular redundancy, TMR [2]

We see that we can obtain new architectures by merging the ones we have seen

so far and adding more instances. However, although the new architectures may add

more protection, using more than three instances is not often employed because the

costs of the final system are too high, compared to the obtained benefit.

2.4 Robustness Verification

Robustness verification has become one of the fundamental stages in the verification

process for any new design. Verification for complex microcontrollers challenges prod-

uct design cycles, what can lead to financial loss and severe delays if it is done at the

13

Chapter 2. Background

final production stages. Hence, designers have been striding to move this procedure

towards the early stages of the design. Simulation-based verification has been shown

to reduce costs associated with the robustness verification process as any misbehav-

ior or defect can be corrected at earlier stages. Simulation-based verification can be

carried out at different abstractions levels. Simulation at lower levels such as physical

or gate level can be extremely time-consuming. With higher levels of abstraction like

RTL, the burden is reduced but it is still overwhelming. Simulation-based verification

using Instruction-Set Simulator (ISS) arises as one of the most promising approaches

to reduce the timing constraint. However, modeling processors at higher levels reduces

information required for more accuracy simulation. Fault injection is carried out at

the level of instructions and smaller granularity faults, such as transistor or physical

faults, cannot be modeled. Therefore, fault injections modify directly the instruction

and become an error, since a modification in the instruction level cannot be masked.

However, J. Espinosa et al. [20] show that correlation between fault injection at ISS

and the RTL level exists for different permanent fault models.

The Architectural Vulnerability Factor (AVF), is a metric calculated in the ro-

bustness verification process to quantify the robustness of a processor architecture.

Although the term is widely used in different applications, the methodology of how

is calculated depends on the particularities of the employed architecture. Different

methodologies have been proposed to calculate this value, the most used is assuming

the AVF can be approached by the percentage of faults injected that lead to an error

w.r.t. the total of faults injected.

2.5 Diversity

Design diversity has been proposed in the past to protect redundant systems against

common cause faults [21]. Diversity is defined as achieving different implementations

of the same hardware functionality. Those different implementations can be obtained

at different abstraction levels. Different ways of implementing diversity are shown on

the Figure 2.6.

14

Chapter 2. Background

Figure 2.6: Different ways of achieving diversity for a given func-
tionality, extracted from [3]

The first option on the figure will be the use of two circuit designs with completely

different architectures. Given a multiplier we could implement it using Booth’s mul-

tiplication algorithm or using multiply-accumulate algorithm. This option will have

an enormous cost of design, because both designs must be developed independently

and in different teams to ensure that the designs are completely diverse. However, the

resulting designs may be very secure against common cause faults like voltage droops

or crosstalk because the probability that one fault leads to exactly the same error is

very low.

A second option could be the use of different gate implementations, for example

by using two different libraries when performing the synthesis of the designs. Thus,

we may avoid failures produced by process variation. We could try to use different

transistor geometries or different electrical characteristics for each instance, which

could avoid faults produced by voltage droops, or at least avoid producing the same

errors.

Diversity, as explained, can be obtained by different methods, some will have a

higher increase of the costs than others and each method will be specialized in offering

more protection against specific fault types than the others. Despite the abstraction

level, the objective is the same for all, use diversity in a lockstep system so when a

transient or permanent common fault appears and affects all the instances, produces

different error manifestations. With this premise the system will be able to detect

a fault and perform the pertinent actions, achieving then a common fault tolerance,

and not leading to a common cause failure. However, for other types of faults that

only affect one of the instances, transient or permanent, diversity is not needed since

the fault will only affect one of the outputs and a mismatch will be discovered at

the comparison of the outputs. In those cases redundancy is enough to protect the

system.

15

Chapter 2. Background

2.5.1 Other efforts to quantify diversity

To our knowledge, only one methodology has been proposed to quantify diversity

[10, 11, 22] systematically. This methodology proposes an abstract diversity metric D

that can be suited for any fault type. Mitra et al. define D as:

D =
∑
fi,fj

P (fi, fj)di,j

where di,j is the probability that both designs do not produce the same erroneous

output when a fault is injected in each of them. P (fi, fj) is the probability of having

the fault fi and fj at each circuit instance. However, deriving fault probabilities for

a given fault pair is not practical in the general case, if otherwise we consider that all

faults are equally probable, thenD can be computed systematically using the equation

given in [10, 11, 22]:

DINJ =
1

m

∑
i,j

di,j

m stands for the number of fault pairs injected in both instances and di,j has the

same value like in the first expression. DINJ bases in injecting the same number of

faults randomly in two non-identical instances. Then DINJ represents how reliable

are the two instances in front of random injected faults. But as we explained before,

common cause failures are due to one fault. Thus, in our case we cannot apply this

fault model. Also, if we consider two almost identical implementations which have

both a 10% error probability when a fault occurs, DINJ will obtain around 1% of

the time errors in both instances. And will likely lead to different erroneous outputs,

which will traduce in a DINJ close to 0. In our model instead, we expect that when

we apply the same fault, the 10% of the times will produce an error in both instances,

and in those cases, very likely will lead to same erroneous outputs (because are almost

identical). But following DINJ one could conclude that those circuits are not diverse

at all because DINJ is close to 0. Here we must take into account the fact that 90%

of the faults do not produce an error in both instances and thus, should not be taken

into account when calculating diversity since it relates to the robustness of the circuits

instead.

16

Chapter 2. Background

2.5.2 Main problem of diversity for the Industry

One may think the most important problem of diversity for the Industry, is the increase

in terms of cost of deploying two diverse implementations. However, the main problem

is that, despite the cost of deploying two diverse implementations, once we have

both implementations side to side, there is no mechanism or method to measure how

(quantitatively) diverse those implementations are.

We have explained some mechanisms that can lead to diverse designs, like creating

two different teams that work independently in each implementation, subcontract two

different companies to build the same components, but the result of these methods

cannot be quantified. Therefore the formulation of the problem is that, despite the

metric explained on Section 2.5.1, which we have seen that do not measure exactly

diversity, there is not any other mechanism to quantify diversity quantitatively, thus

Industry cannot validate the diversity of their systems.

The target of this thesis is trying to mitigate the impact that common cause

failures have in the system. Common cause failures are caused by a single fault, also

called common-mode faults, that affects all the instances of a lockstep execution. This

faults can be for example voltage droops, crosstalk, systematic process variation etc.

The errors produced by these faults are difficult to detect because in most of the cases

they produce the same error for all the instances, specially if the instances are just

replicas. Thus, causing that the comparator/monitor cannot observe any difference

because in fact there is not, although all results can be potentially wrong. Also most

of the faults are transient, so even with the sanity-checks we are not able to detect

them.

17

Chapter 3

DIMP: A DIversity Metric based

on circuit Path analysis

In this chapter we present DIMP a metric proposed to quantify diversity in a pair of

designs. We start by explaining the rationale behind DIMP algorithm. Then, we detail

our implementation of DIMP and how we evaluate it. For the evaluation we use 3

different implementations of ISCAS’89 circuits and applied our DIMP implementation.

For comparison purposes we also compute DINJ to these circuits. Finally, we validate

DIMP using diverse implementations of an 8-bit full adder and other representative

circuits and using SPICE simulations.

3.1 Motivation of DIMP

Using space redundancy, as shown before, protects systems against transient and

permanent faults. However, protection against the particular case of common cause

faults is not provided. Common cause faults can either be permanent or transient,

but the characteristic that defines them is that affect multiple instances inside our

redundant system. Therefore, if instances inside the SoR are affected simultaneously

and identically, redundant elements will produce the same erroneous outputs and the

output comparator will not detect the errors, leading to a system failure.

In order to protect systems against common cause faults, diversity must be used

across the different instances inside the SoR. However, there is no mechanism able

to calculate diversity across circuits systematically. In this master thesis we propose

18

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

DIMP to cover this gap and offer a systematic mechanism to accurately quantify

diversity and thus, improving system robustness against common cause faults.

3.2 Rationale behind DIMP

DIMP is built on the idea that lack of diversity occurs when starting a signal from

an input pin (Ii) and traversing through the path until we reach an output pin (Oj),

the devices that the signal goes through are similar. Therefore, in order to quantify

diversity we must consider the devices that are traversed from a given input to a given

output, also called a path. Comparison must be done on paths that have the same

input and output since they are in fact carrying out the same functionality.

Once all irrelevant parts of the circuit have been filtered out and the devices

traversed to get from Ii to Oj kept, we are able to perform the comparison. Before

that, we must consider to put a weight for each path to reflect the importance of

each path in the manifestation of the given fault. For example if we consider the

timing faults, longer paths can be more susceptible than shorter paths. Then one

may consider that the shorter paths are less likely to induce erroneous outputs and

thus, be less relevant than longer paths. In that case we can put a small weight in

paths that are shorter than a given threshold for instance.

19

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

3.3 A realization of DIMP

1 DIMP = 0

2 MaxDIMP = 0

3 For i = 1 to N

4 For j = 1 to M

5 Paths1i,j =
⋃(

Paths
(
I1i , O

1
j

))
6 Paths2i,j =

⋃(
Paths

(
I2i , O

2
j

))
7 While Paths1i,j 6= ∅ and Paths2i,j 6= ∅ do

8 Take p1k ∈ Paths1i,j and p2l ∈ Paths2i,j

with highest overlap(p1k, p
2
l)

9 DIMP = DIMP + weight(p1k, p
2
l) ·

(
1− overlap(p1k, p

2
l)
)

10 MaxDIMP = MaxDIMP + weight(p1k, p
2
l)

11 Remove p1k from Paths1i,j

12 Remove p2l from Paths2i,j

13 Endwhile

14 RemainingPathsi,j = Paths1i,j ∪ Paths2i,j

15 While RemainingPathsi,j 6= ∅ do

16 Take any pq ∈ RemainingPathsi,j

17 DIMP = DIMP + weight(pq , ∅)

18 MaxDIMP = MaxDIMP + weight(pq , ∅)

19 Remove pq from RemainingPathsi,j

20 Endwhile

21 Endfor

22 Endfor

23 Return DIMP
MaxDIMP

Figure 3.1: Pseudocode of a realization of DIMP.

Now we describe a particular realization of DIMP that we have implemented. This

realization is intended for fault types like voltage droops, residual faults escaping

diagnosis coverage and permanent faults in the root of the power network of the

circuits instances. Pseudocode of the realization can be seen on figure 3.1.

First, we initialize the two main values, DIMP and MaxDIMP to 0. As we will

iterate over the designs, DIMP will be the diversity value, while MaxDIMP will be

the maximum value of diversity possible. The loops at lines 3 and 4, stand for the

number of inputs (N) and the number of outputs, (M). First we will group all the

paths for each pair < Ii, Oj > separately, lines 5 and 6. Since we work at gate level,

the devices correspond to all gates that traverse from the input to the output. Then

Paths1i,j , stands for all the paths from circuit 1 that traverse from input i to output

j, and each path consists in an ordered list of gates.

20

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

Once all the paths are grouped in sets, we will iterate over all the sets, line 7.

Given a pair < Ii, Oj > we will have paths from circuit 1 and paths from circuit 2, we

will select the pair of paths, one for each circuit, that have the highest overlapping.

We define overlap(p1k, p
2
l) as the number of gates that repeat across paths in the same

order, even if some other gates are interleaved. This is a problem known as LCS [23]

(Longest Common Subsequence problem). We divide the value by the total number of

gates in both paths, otherwise the longer paths will easily have high values instead of

shorter paths that are similar.

For instance if p1k = {NAND2, NOR2, NOT,XOR2} and p2l = {NAND2, NOR2, XOR2},

see figure 3.2 then {NAND2, NOR2, XOR2} will be the longest common subsequence

and the overlap(p1k, p
2
l) = 6/7, since 6 gates repeat in both paths out of 7 total gates.

Other definitions of overlap(p1k, p
2
l) are possible.

(a) Example p1k (b) Example p2l

Figure 3.2: Small example: {NAND2, NOR2, XOR2} is the solu-
tion of LCS

Because DIMP variable is the diversity value, we increase DIMP with the non-

overlap (see line 9), which is subtracting from 1 the value of the overlapping, and

then we multiply it with relative weight (weight(p1k, p
2
l)) of those paths. Since we

target timing we define weight(p1k, p
2
l) as the maximum gate count of those paths.

Other considerations of weights can be used according to the fault model being used.

MaxDIMP is also increased with the relative weight (line 10), but as we explained

MaxDIMP is the maximum potential value of diversity, so accordingly, we have 0

overlapping in all the cases. Then we remove the paths considered from the sets in

lines 11 and 12.

We continue evaluating and subtracting paths from the sets until one of the sets

is empty. If the other set is still not empty, we consider the rest of the paths of

the non-empty set as 0 overlapping (fully diverse) paths because we cannot compare

against any other path from the other circuit. Once we iterate over all the sets, we

21

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

will have the DIMP and MaxDIMP value computed. At line 23 we finally return

the diversity value as the division of the diversity of the circuits (DIMP) divided by

the maximum potential diversity (MaxDIMP).

Notice that in the case of two identical circuits the overlapping will be 1 in all the

cases, thus leading to a value of DIMP = 0 and leading to diversity 0. On the other

hand having two completely different circuits (e.g., one implemented with NOR gates

and the other with NAND gates) will have a 0 overlapping in all the cases which will

lead to DIMP = MaxDIMP and resulting in a diversity of 1.

3.4 DIMP Implementation

Our diversity algorithm takes as inputs all the paths for a given circuit. Thus, we

need first to create a tool that creates the input for diversity evaluation.

3.4.1 Inputs tool

First, we create a small Python scripting tool that analyzes a circuit descriptor file

in VHDL and lists all the paths of the circuit. Note that we require the VHDL

implementation of the circuit to define a gate-level implementation of the circuit or

a netlist. The program reads from an input file in VHDL and identifies for all gates

their inputs and outputs. Then, for each input net of the circuit we create a N-ary

tree, in which their nodes are the gates. Next, we traverse the tree at the same time

we are building it. When we arrive to an output pin, which is a leaf, we write the

path and continue traversing the tree. The format in which the paths are listed is the

following:

22

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

Figure 3.3: Format of the file listing all paths

3.4.2 Diversity implementation

We have implemented the algorithm show in section 3.3 in C++. Once we have read

the input file that contains all the paths that is computed by the developed Python

scripts, we iterate over all the input-output pairs. For each set of paths of an input-

output pair, we create a matrix in which the columns represent the paths from circuit

1 and rows represent the paths from circuit 2. Each cell contains the “overlap” of

both paths. Since each path contains a list of the gates, we have used Hunt and

Szymanski algorithm [24] to obtain the Longest Common Sequence (LCS) value. We

have modified the code from [25], to change the granularity of the solution since we

consider as the minimum element the gate names and the code considers the letters.

Therefore, cells of the matrix contain the overlapping value of two paths. Then, we

search for the highest overlapping and perform the increase of DIMP and MaxDIMP

values accordingly. Since we already have computed all the overlapping values, we

simply deactivate the rows and columns used, and search for the highest overlapping

again until we either use all columns, all rows or both. In the case that one of the

designs has more paths in a particular set (non-square matrix), once the other design

runs out of paths, the remaining paths will be considered as fully diverse.

We repeat this process for all input-output pairs and, finally, we perform the

division of DIMP and MaxDIMP values to obtain the diversity value.

23

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

3.5 DIMP evaluation

To test our metric, we have two different sets of circuits, the first ones are obtained

from the ISCAS’89 bench suite [26]. We have used a synthesizing tool to obtain

different implementations, we used three synthesis optimizations for different delay

targets, being 0.3ns the most demanding and 1.0ns the most relaxed constraint. We

have also used different designs implementations for an 8-bit full adder which we will

use for illustration purposes.

For all the circuits considered we have computed the diversity using the metric

proposed in [10] and our DIMP metric. To compute DINJ we have followed the

methodology described in [20] since its computation requires injecting faults. For

fault-injection we have used FALLES Fault Injector tool that we describe in the next

section. For each experiment we have injected randomly stuck-at faults at gate-level

and explored all the input combinations. For each input combination we have injected

10,000 different stuck-at faults, and we compare the outputs against the golden run.

Due to the size of the circuits, we cannot perform this experiment in all the ISCAS’89

circuits. This is in fact a limitation of the DINJ metric that is not suffered by DIMP.

We have also used the SPICE [27] tool, to compute the diversity w.r.t. voltage

droops applying it to the different implementations of the 8-bit full adder. We in-

spected the outputs of the different implementations while we modify the voltage,

reproducing voltage droops, and we analyzed if they produce the same error manifes-

tations or not.

3.5.1 FALLES Fault Injector

In order to inject faults in our circuit implementations, we have used the FALLES

Fault Injector jointly developed by BSC and the UPV [20]. FALLES Fault Injector

comprises a set of scripts that enable injecting faults into a VHDL model and simulate

it to observe the consequences using the Modelsim or Questasim simulators. Faults

are injected by means of simmulation commands. The injection and the posterior

analysis phase are automated using scripts, that can be highly personalized. FALLES

supports different fault models – both permanent and transient faults are supported.

It is built around the ModelSim Simulator [28] environment.

24

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

3.5.2 ISCAS evaluation

To test DIMP, we have implemented ISCAS circuit using a synthesis tool with three

different constraints: 0.3ns, 0.6ns and 1.0ns to obtain three diverse implementations

of the same design circuit. On Table 3.1 we can see the results of applying DINJ

to the different ISCAS’89 circuits implementations. Each column shows the results

of applying the mentioned metric between two of the three implementations using

FALLES Fault Injector.

0.3 vs 0.6 0.3 vs 1.0 0.6 vs 1.0

s1196 0.999945 0.999998 0.999986

s1238 0.999999 0.999999 0.999999

s1488 0.998937 0.999332 0.998904

s1494 0.999998 1 0.999962

s27 1 1 1

s298 0.996409 0.999571 0.996084

s382 1 0.998712 1

s386 0.999878 1 0.99947

s400 0.99855 0.998784 0.9988

s444 1 0.999234 1

s953 1 1 1

Table 3.1: Diversity results computed injecting random faults
(DINJ) using FALLES Fault Injector.

All results are very close to 1, this would mean that all the implementations are

very diverse among them no matter what synthesizing constraint we have used. How-

ever, after we analyzed in detail the different implementations, we can observe that

the paths that are not time critical are quite similar, and we have small synthesizing

optimizations in those paths. Therefore we should not expect values so close to 1 for

all the cases.

This occurs because DINJ is suitable for random faults and the probability that

two random faults affecting to each of the circuit instances produce the same erroneous

outputs is almost zero. In fact, when this metric is computed systematically for

random faults it measures how robust a circuit is w.r.t. random faults rather than

how diverse two given circuits are. Thus, if we apply this metric to 2 almost identical

circuits, 2 random faults will rarely produce the same erroneous outputs in both circuit

25

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

instances, so DINJ ≈ 1. However, the actual diversity of those circuits would be close

to 0.

Results of applying DIMP to the same subset of ISCAS’89 than DINJ are shown on

table 3.2. Results of all ISCAS’89 circuits are on appendix A. In this case we observe

diversity values have ranges from 0.6 to 1, which better represents the differences

across the different implementations.

0.3 vs 0.6 0.3 vs 1.0 0.6 vs 1.0

s1196 0.87885 0.990901 0.989536

s1238 0.881473 0.980223 0.977516

s1488 0.898724 0.951677 0.815758

s1494 0.884235 0.98916 0.973529

s27 1 0.949367 1

s298 0.77582 0.991486 0.981879

s382 0.678801 0.873572 0.901327

s386 0.933984 0.960784 0.791227

s400 0.60297 0.880554 0.880322

s444 0.601725 0.879051 0.827288

s953 0.625419 0.892768 0.885153

Table 3.2: DIMP’s results on ISCAS’89 circuits.

We observe a particular behavior in almost all the cases, the diversity values have

the higher values on the pair 0.3ns vs 1.0ns. This is an expected behavior since in

those circuits the constraints applied are the ones more different, one is the more

demanding (0.3ns) and the other the more relaxed (1.0ns) optimization. However,

there are two circuits which do not follow this pattern: s382 and s27. We have

inspected the gate implementations of these two circuits and have realized that the

utilization of some gates in some paths produces some cascade effects on the automatic

choice of other gates in the same path. Those other gates, therefore, may repeat

across implementations targeting 0.3ns and 1.0ns, but not for the implementations

targeting 0.6ns. Analogously, lower diversity values are in almost all the cases, in

the pair 0.3ns and 0.6ns. For most of the circuits, the delay without optimizations

is close to 0.7ns. This results in applying similar timing optimizations in both 0.3ns

and 0.6ns, which end up using the same gates relatively often. For the 1.0ns target,

26

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

instead, the optimizations focus on reducing power since most of them already pass

the timing constraint, thus leading to more diverse implementations w.r.t. the other

targets.

3.5.3 8-bit full adder designs

We have used 4 different implementations of an 8-bit full adder design. First, we have

implemented an 8-bit full-adder made of 8 1-bit full adders implemented with NAND

gates (FA-NAND). In order to have another implementation fully diverse we have

replicated the FA-NAND but replacing all NAND gates with an AND gate followed

by a NOT gate, we called this design as FA-AND. Then we have built a full adder

based on half adders (which use OR, AND and XOR gates) that we called FA-2.

Finally, we mixed the FA-NAND and the FA-AND in the sense that we use 4 bits

with the components of FA-NAND and 4 bits with the components of FA-AND, we

called this design as FA-MIX.

On the next figures we can see the designs for 1 bit of the different full adder

designs. As explained, FA-MIX uses both AND (figure 3.4) and NAND (figure 3.5).

Figure 3.4: 1-bit full adder design for FA-AND and FA-MIX

Figure 3.5: 1-bit full adder design, using only NAND gates, for FA-
NAND and FA-MIX

27

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

Figure 3.6: 1-bit full adder design, based on half adders, used only
in FA-2

3.5.4 SPICE validation

SPICE

SPICE (Simulation Program with Integrated Circuit Emphasis) is a general-purpose

analog electronic circuit simulator. It is used in order to check the integrity of circuits

designs in integrated circuits and/or board-level design and to predict circuit behavior.

There have been three main stable releases, SPICE1 SPICE2 and SPICE3. The first

and the second are written in Fortran while the last one is written in C. In our

experiments we have used the third version, in particular the HSPICE Synopsys tool.

We have used SPICE to observe the behavior of the circuits when we decrease the

operating voltage and specially how the outputs are affected.

Validation

Results of applying DIMP to the full adder circuits are shown in the next table.

FA-NAND vs FA-AND FA-NAND vs FA-2 FA-NAND vs FA-MIX FA-AND vs FA-2

DIMP 1 1 0.41 0.96

Table 3.3: DIMP’s results applied to full adders circuits.

Pairs FA-NAND / FA-2 and FA-NAND / FA-AND have both maximum diversity

according to DIMP. This is naturally correct based on how these circuits are designed,

since both pairs do not have any gate in common.

28

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

Instead, the pair FA-AND / FA-2 has diversity less than 1 according to DIMP.

Again, if we look at the 1-bit designs, in this case the AND gate appears in both

designs. Thus, we should expect a value below 1. However, the designs are very

different and therefore, the DIMP value is very close to 1. The last pair is the most

similar according to DIMP. FA-NAND and FA-MIX, have the same circuits for 4 of

their 8 bits adders. Thus, makes sense that DIMP diversity is the lowest of all pairs.

We used SPICE to simulate the full-adders designs and try to reproduce voltage

droops. The experiments consisted in downgrading the nominal voltage, which is

1V , to 0.6V where a large fraction of errors was expected and observe the effects

produced on the outputs values. With SPICE simulations, we compute the percentage

of outputs providing different results for different circuit pair combinations. Note

that this metric is different from the one provided by DIMP. A value 1 represents

the maximum diversity, 0 represents either that the circuits are identical or that the

outputs provided by the circuits are all correct. However, the results will help us

understanding if DIMP is able to capture the diversity of the error manifestations

caused by voltage droops.

Figure 3.7: Format of the input circuits descriptions

29

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

In figure 3.7 we can see the results of the SPICE simulation for the different pairs

we have considered for DIMP with the DIMP values next to them. As expected all

pairs have a value of 0 on the nominal voltage (1V), because at nominal voltage all the

circuits produce correct results. When decreasing the nominal voltage, we see that the

pairs FA-AND vs FA-2 and FA-NAND vs FA-AND start to produce diverse erroneous

output at 0.8V . Those are the pairs that, according to DIMP, have more diversity

and in this figure we confirm that the topological diversity translates in diverse error

manifestation. For the case of the pair FA-NAND vs FA-MIX, until 0.7V either they

produce correct results or they produce the same erroneous outputs. It is the behavior

that DIMP predicted for this pair.

3.5.5 Computation complexity

An important property of our metric is that it can be computed systematically and

that its computational costs are low. In order to test the computational power required

to compute DIMP, we use different synthetic circuits with different sizes and observe

the amount of time it takes to compute their diversity. We have used synthetic circuits

to understand the scalability of our metric and validate that the circuits assessed with

SPICE require a complexity quite close to the one computed for the synthetic circuits

when they are tailored to the specific size.

Since design size and complexity are not simple to measure, we modify different

parameters to observe how our algorithm behaves. The parameters that we considered

are: the number of paths, the sizes of the paths and the number of inputs and outputs.

We created a tool that creates synthetic circuits based on these parameters. Figure

3.8 shows the amount of time our implementation took for computing DIMP for the

different synthetic circuits. The complexity is higher when number of paths and their

sizes are increased and the number of inputs and outputs are low. However, computa-

tional costs are in general low, and only for some circuit configurations computation

take up few hours. We have confirmed also this with the ISCAS circuits where only

2 circuits from this suite required more than one hour. Instead, the computation of

DINJ may require several days of computation for some of the circuits. The reason for

this huge computational cost is explained by the fact that DINJ requires performing

exhaustive fault-injection campaigns. Although a computational cost of few hours is

30

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

not negligible, note that diversity needs to be quantified only once for each pair of

diverse implementations during product development and thus, such cost seems to be

affordable. For larger circuits, in order to reduce timing, we could simply do the quan-

tification at different granularity: instead of quantifying the whole designs, we could

use it on the different functional unit blocks (e.g., ALU, Register files). Therefore,

using this methodology designs could be evaluated considering their components and

also the multiple fine-grained quantifications could be done in parallel.

Figure 3.8: Computational complexity. Square brackets show the
range of the depth of the paths

3.6 Conclusions

Lockstep execution is often used in safety-related microcontrollers to meet the safety

requirements for the highest integrity levels. However, although lockstep has been

proven efficient to detect independent faults across the redundant cores, it is unable

to detect those faults that lead to a common cause failures unless diverse designs are

used. Therefore, industry requires a mechanism to quantify systematically diversity

across designs.

This thesis tackles this challenge by providing DIMP, a low-cost metric to quantify

diversity based on circuit path analysis. DIMP can be suited to different abstraction

levels (e.g., gate level, transistor level) and different fault types. We provide a specific

realization of DIMP suited to gate level and timing faults. Our evaluation shows

the effectiveness and low cost of DIMP to quantify diversity and the validation using

31

Chapter 3. DIMP: A DIversity Metric based on circuit Path analysis

SPICE simulator shows that the metric results correlate with common cause failures

of the 8-bit full adder simulations.

32

Chapter 4

Specialization of DIMP

In this chapter we tailor DIMP to a specific common cause fault. In particular, we

have tailored it to faults caused by systematic process variation. We explain all the

modifications that are required to tailor the DIMP metric and the evaluation of this

specification. However, we will show that despite our efforts, we could not correlate

the results of the new metric with the ones obtained using fault injection. We analyze

the reason of this mismatch and show how it can be improved.

4.1 Considered Fault Model

Process variation is an inherent consequence of the manufacturing process and the in-

ability of such process in producing exact copies of all circuit elements due to physical

limitations and other imperfections. Process variation affects the attributes of tran-

sistors (lengths, widths, oxide thickness) and wires (length, width) when integrated

circuits are fabricated. These manufacturing deviations can slightly or significantly

modify the behavior of the circuit by the alteration of transistor and wire electrical

properties under some stress circumstances.

To understand how DIMP behaves when we tailor this metric to the faults caused

by manufacturing deviations, we have to define an appropriate fault model. For

this model, we consider some gates are more vulnerable to certain conditions – such

as magnetic fields or voltage droops – than others due to the impact of systematic

process variations. Therefore, during the simulations we assume that only some gates

are affected by faults while all other parts of the design are fault free. To model this,

we will only inject faults to the selected gates.

33

Chapter 4. Specialization of DIMP

As system model we again assume a lockstep design in which both instances are

within the SoR. Therefore, system failure will occur when both instances generate the

same erroneous outputs.

4.1.1 Tailoring DIMP to the specific fault model

We can easily adapt DIMP to the new specific fault model. In fact, we make DIMP

remain almost the same as shown in section 3, but imposing a restriction when we

create the sets of paths. Since we know that the probability of some gates to be faulty

is zero for the specific fault model, we now consider only the paths that contain at

least one gate of the gates regarded as more likely to fail due to process variations.

Thus, the specialization will ignore parts of the circuit and will focus only on the

paths that contain the selected gate or set of gates. We can see the new restriction in

the algorithm at line 5 and 6 of Figure 4.1.

1 DIMP = 0

2 MaxDIMP = 0

3 For i = 1 to N

4 For j = 1 to M

5 Paths1i,j =
⋃(

Paths
(
I1i , O

1
j

)
| Filtered_Gate ∈ Paths

(
I1i , O

1
j

))
6 Paths2i,j =

⋃(
Paths

(
I2i , O

2
j

)
| Filtered_Gate ∈ Paths

(
I2i , O

2
j

))
7 While Paths1i,j 6= ∅ and Paths2i,j 6= ∅ do

8 Take p1k ∈ Paths1i,j and p2l ∈ Paths2i,j

with highest overlap(p1k, p
2
l)

9 DIMP = DIMP + weight(p1k, p
2
l) ·

(
1− overlap(p1k, p

2
l)
)

10 MaxDIMP = MaxDIMP + weight(p1k, p
2
l)

11 Remove p1k from Paths1i,j

12 Remove p2l from Paths2i,j

13 Endwhile

14 RemainingPathsi,j = Paths1i,j ∪ Paths2i,j

15 While RemainingPathsi,j 6= ∅ do

16 Take any pq ∈ RemainingPathsi,j

17 DIMP = DIMP + weight(pq , ∅)

18 MaxDIMP = MaxDIMP + weight(pq , ∅)

19 Remove pq from RemainingPathsi,j

20 Endwhile

21 Endfor

22 Endfor

23 Return DIMP
MaxDIMP

Figure 4.1: Pseudocode of the modification for specialized DIMP.

34

Chapter 4. Specialization of DIMP

4.1.2 Gate Selection

The new model requires a gate selection of the designs to decide which gates we select.

The rationale behind this is that, due to process variability, some gates may be more

vulnerable than others since they have different sizes and electrical properties, and

this will also translate in a systematically higher fault probability. Note that a specific

type of gate is not only determined by the logic function implemented, but also by

its strength. The strength of a gate is associated to its ability to switch a given

capacitance and relates to the size of the transistors used to build it. To model this,

we create a tool that lists the gates of a design and their number of occurrences.

Using this tool, we noticed that most of the gates appear only once in the designs.

Since we want to have a representative number of occurrences but still want to select

just one gate type, we simply decided to choose the gate with more instances for each

design. We also considered using the two most occurring gates for two circuits in order

to observe how the metric will behave with more gate representatives. For these two

circuits, we performed 3 different experiments, one using both gates and two using one

of the gates. Table 4.1 summarizes the gates selected for each circuit. Our working

set is a subset of the ISCAS’89 circuits.

Circuit 0.3 0.6 1.0

Gate Filtered Num Gates % of total gates Num Gates % of total gates Num Gates % of total gates

s1196

ND2M2W 28 4.90% 44 9.57% 38 12.62%

INVM2W 28 4.90% 48 10.43% 22 7.31%

both 56 9.81% 92 20.00% 60 19.93%

s1238

ND2M2W 39 6.29% 59 12.04% 34 10.97%

INVM2W 30 4.84% 26 5.31% 34 10.97%

both 69 11.13% 85 17.35% 68 21.94%

s1488 ND2M2W 56 10.67% 47 9.29% 30 8.98%

s1494 ND2M2W 51 8.89% 23 4.47% 28 7.98%

s386 NR2M2W 8 7.14% 7 6.25% 11 15.49%

Table 4.1: Selected gate for each circuit and percentage respect to
the total

4.2 Evaluation

Our fault model differs from the one in Section 3, since now we consider another

particular case of common mode fault, systematic defects caused by process variations.

35

Chapter 4. Specialization of DIMP

Therefore, we need to use a different evaluation that can be less generic and more

precise to the particular fault model.

4.2.1 FALLES Fault Injector

We have used the FALLES Fault Injector for the validation. To do so, we have

modified some of the parameters. In particular, we have modified the fault injection

to make it being able to choose between injecting always a stuck-at 1 fault or a stuck-

at 0, and forcing the faults to be injected at the beginning of the simulation to have

a more predictable behavior that we can use to validate DIMP.

4.2.2 Matching mechanism

FALLES Fault Injector is the tool in charge of performing the fault injection, simu-

lating the consequences and finally analyzing the results. The analysis phase consists

in comparing the results of fault-injection with the Golden Run1. Then, we will have

a huge file reporting all the erroneous outputs of the design.

According to our system model, we must match the cases where a common cause

failure appears. This is when both designs created the same erroneous outputs with

the same conditions (same input values). Therefore, we will extend the FALLES Fault

Injector tool with a new phase which is the comparison between two experiments

reports.

Due to the size of both inputs files, there is heavy work to process them. However,

since one of the restrictions of the matching is that errors must appear under the

same input values, for a given error, we only need to consider those errors that were

produced with the same input values. Thus, one easy way to parallelize the work

consists of splitting the errors based on the input values producing them.

In order to perform this task, we created a C++ tool that runs on a parallel cluster.

The program receives 2 analysis reports from the analysis phase of FALLES Fault

Injector, and replicates the files for each worker thread. Then, using MPI (Message

Passing Interface) as a parallel programming model, the master thread informs the

workers about the errors they must match (by giving them the input values). Matching
1Golden Run is an execution without errors. In this context it is used to be compared with other

executions to find errors.

36

Chapter 4. Specialization of DIMP

is then done in parallel by all the workers: they read their input files and select only

the errors assigned. Then, they perform the matching and once they are done, they

send back a message to the master with the information of how many matches they

found and the total number of errors considered. The master collects information from

all the workers and calculates the final value. An overview of the software pipeline is

shown in Figure 4.2.

Figure 4.2: Software pipeline of the matching mechanism.

4.2.3 ISCAS evaluation

For this experiments we cannot use all ISCAS’89 circuits because we are evaluating

all states, instead of doing it sampling a subset of them in a statistical manner. This

makes the amount of experiments required to perform increase a lot with the number

of inputs. Therefore, we reduce the working set to a subset of the ISCAS’89 circuits.

Table 4.2 shows the ISCAS circuits we have employed for this fault injection campaign.

37

Chapter 4. Specialization of DIMP

ISCAS’89 Circuit Inputs Outputs

s1196 16 14

s1238 16 14

s1488 10 19

s1494 10 19

s386 9 7

Table 4.2: ISCAS’89 working set

Because we model a lockstep design, the evaluation consists in quantify the number

of cases that faults appearing in both designs could lead to a system failure. Following

the fault model, the faults will be injected on both instances of a specified gate. Since

we simulate each design separately, after the injection phase, we perform a matching

that pairs the cases that having the same input values lead to the same erroneous

output. Finally, we calculate the fraction between the errors paired against all the

errors produced.

Simulation consists in performing an injection at the beginning of the simulation.

The injection we have used is a stuck-at 1 fault. Then, we vary the input values until

we cover all the possible inputs (2n cases, n number of inputs). This is the reason

why we cannot use all the circuits from ISCAS’89. In order to let signals propagate

through the circuit, we wait for a small amount of time between each input change

(20ns). We repeat all the process for each input value and for all the possible injection

points of the design.

Once the simulation is finished, the analyzer component of the FALLES Fault

Injector reports the errors found compared to the Golden Run. Since the file contains

the injections done on all the possible injection points, we must filter all the injections

that were not done in the instances of the selected gates. With the filter process we

eliminate some of the unnecessary data reported by the FALLES Fault Injector to

reduce the size of the files. Note that due to the high amount of required injections,

reducing the amount of tracked information is crucial to keep the problem tractable.

In fact we only save for each error: the timestamp of the error, the input values, and

the erroneous output value.

38

Chapter 4. Specialization of DIMP

After the previous process, we run our matching tool on a parallel cluster to

perform the matching. Because our model is a lockstep design, we will match those

errors that have the same input and output values, which are the ones that can lead

to a common cause failure. In order to parallelize the process, we divide the amount

of inputs between the number of workers, so each worker has to analyze the errors of

2n

w inputs, where w is the number of workers and n the number of inputs of the design.

Notice that there is no work balancing since we do not know a priori the number of

errors reported for each input. Even with the parallelization, this final step can take

up 2 days, mostly due to the large file sizes.

After the matching phase, we are ready to compute the final value. The value

consists in a rate between the number of errors that we matched divided by the total

number of errors produced. This can be seen as an approximation of the AVF on our

model considering we divide the number of errors that can lead to the system failure

by all the errors produced by the injections.

39

Chapter 4. Specialization of DIMP

CIRCUIT + FILTER Generic DIMP Specialized DIMP Matching percentage

s1196

Gate: ND2M2W

0.3∼0.6 0.879962 0.699909 63.25%

0.3∼1.0 0.989662 0.987574 60.88%

0.6∼1.0 0.987646 0.972088 62.26%

Gate: INVM2W

0.3∼0.6 0.879962 0.596522 71.30%

0.3∼1.0 0.989662 0.964201 60.74%

0.6∼1.0 0.987646 0.935969 63.31%

Gate: INVM2W + ND2M2W

0.3∼0.6 0.879962 0.667136 70.13%

0.3∼1.0 0.989662 0.983005 68.19%

0.6∼1.0 0.987646 0.967317 68.60%

s1238

Gate: ND2M2W

0.3∼0.6 0.881975 0.529878 39.42%

0.3∼1.0 0.979199 0.956967 34.43%

0.6∼1.0 0.976734 0.936694 62.73%

Gate: INVM2W

0.3∼0.6 0.881975 0.628794 64.98%

0.3∼1.0 0.979199 0.982548 52.54%

0.6∼1.0 0.976734 0.977272 55.70%

Gate: INVM2W + ND2M2W

0.3∼0.6 0.881975 0.573767 61.13%

0.3∼1.0 0.979199 0.968309 54.56%

0.6∼1.0 0.976734 0.957104 65.82%

s1488

Gate: ND2M2W

0.3∼0.6 0.76609 0.673546 43.95%

0.3∼1.0 0.988728 0.901524 34.48%

0.6∼1.0 0.976887 0.794531 39.41%

s1494

Gate: ND2M2W

0.3∼0.6 0.838476 0.880282 32.33%

0.3∼1.0 0.952615 0.923454 35.39%

0.6∼1.0 0.936673 0.932814 39.81%

s386

Gate: NR2M2W

0.3∼0.6 0.821197 0.71831 58.31%

0.3∼1.0 0.968137 0.879121 55.43%

0.6∼1.0 0.935917 0.820628 62.78%

Table 4.3: Results from Generic DIMP, Specialized DIMP and the
Matching percentage from the fault injection

40

Chapter 4. Specialization of DIMP

Results

A summary of the results obtained with the experiments can be seen in Table 4.3.

We have divided the results for each circuit and gate filtered. For each comparison we

have the values for the generic DIMP, which are the same shown on Section 3, plus the

values for the specialized DIMP and the matching percentage from the fault injection.

From the results we expect having the highest percentage of matching for the circuits

that are less diverse. Additionally, we expect the specialized DIMP results to be more

precise than the regular DIMP metric and follow the mentioned trend more clearly.

In general, the results of Specialized DIMP still follow the pattern seen in the

generic DIMP metric, which is that the lowest values are on the 0.3 vs 0.6 pairs and

the highest on 0.3 vs 1.0 pairs. We believe that the reason of why both metrics have

similar results is due to the selection of gates: since we selected the most representative

gates of the circuit, results are similar. Notice that the values of the 0.3 vs 0.6 pairs

are lower than on the generic DIMP, because now we consider paths that at least have

one gate in common, the selected one. Therefore, overlapping will never be 0 on those

paths, except when we run out of paths from one of the circuits and the other one

still has unmatched paths.

As mentioned before, one should expect matching percentages to be higher when

the DIMP values are close to 0, since we have lower DIMP values when gates across

paths are “similar” in both designs. More precisely, in the case of specialized DIMP,

paths that contain the potentially erroneous gates are the ones analyzed and the rest

of the design is ignored. Considering we know in advance the potentially erroneous

gates, we know also, that the paths analyzed with specialized DIMP are the ones

that will traverse the erroneous signal. Therefore, lower values of specialized DIMP

will indicate that the mentioned paths are very similar and thus, will potentially have

similar erroneous outputs.

It is important to remark that matching percentages measured are very high for

all circuits (lowest value is above 30%). Thus, that means that at least 1 out of

every 3 injections can be matched and potentially lead to a system failure. This is

a very interesting result and can give us an estimation of how important is having

diverse implementations to face common case faults since the percentage of matching

41

Chapter 4. Specialization of DIMP

in identical designs will be even higher.

In summary, we cannot generally see a clear correlation between DIMP, neither the

generic or the specialized, and the matching percentage. Only in three cases, (s1196-

INVM2W, s1488-ND2M2W and s1238-INVM2W) the behavior is the one expected.

In that respect, in the next section we try to understand the reason for this and

propose different approaches to improve the results.

4.3 Removing the aliasing

As shown before, our metric does not fit the needs of the specified fault model. There-

fore, we need to reconsider all the steps taken and try to identify the reason why we

are obtaining such results. In general, it can be either that specialized DIMP is not

well suited for the particular fault model or that experiments are not representative

enough, or both.

If we start considering that the specialized DIMP algorithm is wrong, this still

cannot explain per se why the generic DIMP, which we have already shown to behave

correctly, cannot also correlate with the results. Although the regular DIMP imple-

mentation is more generic, we expect at least some degree of correlation, but this is

not the case. Furthermore, the results of the matching seem to have different patterns

for each circuit. Thus, we consider that in our results we are having some form of

noise or aliasing that makes results not to be consistent across circuits.

Surprisingly, matching percentages are huge, being 32% the lowest value. This

means that almost 1 out of 3 errors can potentially cause a system failure. We be-

lieve that this is again because of the aliasing since we are comparing faults that are

injected at gates belonging to different paths and, therefore, DIMP quantification is

not considering that effect. Note that DIMP metric is computed on a per-path basis

and therefore, matching errors originated at different paths can only contribute to

introducing noise to the obtained results.

4.3.1 Modifications on the matching

In order to remove this aliasing, we introduce a new filter or constraint in the matching

process. In fact, we impose to the matching of errors, that injections belong to gates

42

Chapter 4. Specialization of DIMP

that are in the same path. Now, when we apply the filter after the FALLES Fault

Injector tool, we must save the path in which the injection was made to be able to filter

out this result. With this new restriction we expect the noise within the matching

percentages to be reduced and having better correlation for the specialized DIMP.

43

Chapter 4. Specialization of DIMP

CIRCUIT + FILTER Generic DIMP Specialized DIMP Matching percentage

s1196

Gate: ND2M2W

0.3∼0.6 0.879962 0.699909 1.36%

0.3∼1.0 0.989662 0.987574 0.23%

0.6∼1.0 0.987646 0.972088 1.61%

Gate: INVM2W

0.3∼0.6 0.879962 0.596522 1.04%

0.3∼1.0 0.989662 0.964201 0.06%

0.6∼1.0 0.987646 0.935969 1.03%

Gate: INVM2W + ND2M2W

0.3∼0.6 0.879962 0.667136 0.97%

0.3∼1.0 0.989662 0.983005 0.23%

0.6∼1.0 0.987646 0.967317 2.61%

s1238

Gate: ND2M2W

0.3∼0.6 0.881975 0.529878 0.66%

0.3∼1.0 0.979199 0.956967 7.26%

0.6∼1.0 0.976734 0.936694 3.67%

Gate: INVM2W

0.3∼0.6 0.881975 0.628794 0.15%

0.3∼1.0 0.979199 0.982548 0.27%

0.6∼1.0 0.976734 0.977272 0.17%

Gate: INVM2W + ND2M2W

0.3∼0.6 0.881975 0.573767 0.26%

0.3∼1.0 0.979199 0.968309 0.11%

0.6∼1.0 0.976734 0.957104 0.18%

s1488

Gate: ND2M2W

0.3∼0.6 0.76609 0.673546 3.37%

0.3∼1.0 0.988728 0.901524 3.08%

0.6∼1.0 0.976887 0.794531 5.43%

s1494

Gate: ND2M2W

0.3∼0.6 0.838476 0.880282 0.13%

0.3∼1.0 0.952615 0.923454 2.90%

0.6∼1.0 0.936673 0.932814 1.61%

s386

Gate: NR2M2W

0.3∼0.6 0.821197 0.71831 12.56%

0.3∼1.0 0.968137 0.879121 0.22%

0.6∼1.0 0.935917 0.820628 0.74%

Table 4.4: Results after the matching modifications

44

Chapter 4. Specialization of DIMP

Results

Looking at the results shown in Table 4.4, the first thing we see is that, as expected, the

new restriction has reduced the matching percentages significantly, being now 12.56%

the highest value among all the circuits. However, in spite of that, results are still

inconsistent across different circuits. The expected behavior can only be seen in 3 out

of 9 experiments (s1196-INVM2W, s1238-INVM2W ND2M2W and s386-NR2M2W),

which means that, despite we have removed the inter-paths aliasing, we cannot match

the specialized DIMP with the our expectations yet.

We have also evaluated some new experiments where we used two gates at the

same time. Unfortunately, these results are also inconsistent between them, since

only one of them matches with the expected behavior.

4.4 Conclusions

Lockstep is widely used in safety-related microcontrollers to meet the standard re-

quirements of highest integrity levels. In this chapter, after validating the generic

DIMP for the case of timing faults, we tried to specialize it in order to focus to a cer-

tain systematic fault type. In particular, we have targeted the impact of systematic

process variation since these faults are becoming more relevant as transistors become

smaller. Therefore, system failures due to this kind of faults will continue increasing

while we continue reducing transistor’s geometry and increasing their count.

We have developed a set of mechanisms in order to evaluate our metric, that

consisted in a selection gate tool, a filter for the outputs of the FALLES Fault Injector

and a parallel matching program. Despite our efforts in finding a correlation between

the specialized DIMP and the percentage of matching reported by our evaluation

method, we have failed to show the expected correlation. We have deeply investigated

the reasons for that, but we think that they are related to the following causes. For

the generic DIMP, diversity is computed on a per path basis and the particular fault-

model we have employed in this chapter is not suitable for this restriction. In that

respect, we have specialized DIMP to be able to filter on a per-path basis and also

failed on showing the expected behavior. Our intuition here is that after filtering out

so many gates – the ones not belonging to the path and the ones not having a specified

45

Chapter 4. Specialization of DIMP

gate – and also having in mind that the circuits that we were able to evaluate are

the smallest ones, the remaining parts of the circuits are too small to provide any

meaningful result. We plan to perform modifications to our evaluation method to

solve that limitation. However, we leave this as future work.

46

Chapter 5

Conclusions and Future Work

Reliability is one of the most important design constraints in safety-critical systems.

In this thesis we have focused in the utilization of lockstep execution as one of the most

relevant existing safety mechanisms to protect designs. Lockstep execution is a par-

ticular implementation of space redundancy that is very suitable to protect processors

and microcontrollers. Lockstep designs provide protection against permanent faults

and soft errors (transient faults) that appear in one of the instances. Unfortunately,

lockstep processors cannot protect against common cause faults without the use of

diversity since they will provide identical error manifestations in both core replicas.

Diversity can be intuitively achieved by different methods but there is still not

a method able to quantifying it on a systematic manner. Even in the automotive

standards (ISO26262: 1.28) that require processor designers to employ diversity, there

is a lack of concretion on how to quantify it and its requirements stick to: different

solutions satisfying the same requirement with the aim of independence (1.61) [29].

The need for diversity in the safety critical systems industry calls for a metric that

helps clarifying to what extent the diversity requirements have been fulfilled for a

particular design implementation.

In this thesis we have made an effort in this direction and presented DIMP, a

systematic method to quantify diversity, which is based on a circuit path analysis.

DIMP can be suited to different abstraction levels and can also be used at different

granularities (e.g., full adders, full designs). Still, there is a long path until there is

an automated quantification of diversity in the safety critical systems, but we think

that DIMP is a first step towards it.

We have seen that DIMP matches the expectations when used on smaller and

47

Chapter 5. Conclusions and Future Work

controlled design implementations (full adders). More generically, we have also show

that DIMP is well suited to the case of timing-failures validating this by means of

voltage droops simulations using SPICE. There are steps that need to be done to-

gether with the industry such as carrying out experiments with industrial-relevant

examples or integrating diversity quantification as a part of the safety standards such

as ISO26262 in the automotive domain to further understand the benefits of DIMP,

but our preliminary findings are promising, as acknowledged with our publication in

the automotive track of a top conference (Design Automotion Conference).

Furthermore, we have tried to extend DIMP to cover other fault models with the

purpose of understanding to what extent DIMP is able to quantify diversity w.r.t.

systematic fault patterns. In particular, we selected the systematic process variation

as the root of the faults to model and considered that process variations cause some

specific gates to be more prone to errors than others.

However, although we carried out a huge and exhaustive number of experiments

for which we had to develop different tools, we have observed that DIMP is not yet

well suited to specific fault models like systematic faults caused by process variations.

We have deeply analyzed the reasons why the DIMP metric fails to provide meaningful

diversity quantification results for that particular fault model and tried to solve this by

proposing a specialization of DIMP tailored to this particular case. Unfortunately, we

were not able to prove the expected correlation between the diversity values computed

and the percentage of errors that can potentially produce the same erroneous outputs.

There is still work that can be done to try to improve results such as using fewer

specific gates, increasing the size of the designs to increase the representativeness of

the results, and/or use DIMP at different granularities, but all this work will be done

as future work and beyond the scope of this thesis.

An important observation we can make after the thorough evaluation performed

in this thesis, is that DIMP works well for fault models affecting specific paths of a

circuit. This is for example the case of timing-faults. Timing faults are only relevant

for the path or set of paths that are close to the timing properties of the critical path.

The reason for this is that DIMP quantifies diversity on a per-path basis and thus,

searches for similarities across paths. However, some other type of faults, like the ones

affecting some gates systematically, are not necessarily captured properly with DIMP

48

Chapter 5. Conclusions and Future Work

since several faulty gates not belonging to the same path can contribute to a given

erroneous output. We let as future work the corroboration of this hypothesis.

49

Bibliography

[1] C. Hernandez and J. Abella, “Live: Timely error detection in light-lockstep safety

critical systems,” in Proceedings of the 51st Annual Design Automation Confer-

ence, DAC ’14, (New York, NY, USA), pp. 25:1–25:6, ACM, 2014.

[2] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, and

S. Pezzini, “Fault-tolerant platforms for automotive safety-critical applications,”

in Proceedings of the 2003 International Conference on Compilers, Architec-

ture and Synthesis for Embedded Systems, CASES ’03, (New York, NY, USA),

pp. 170–177, ACM, 2003.

[3] S. Alcaide, C. Hernandez, A. Roca, and J. Abella, “DIMP: A low-Cost Diversity

Metric based on circuit Path analysis,” in Proceedings of the 54th Annual Design

Automation Conference 2017, DAC ’17, (New York, NY, USA), pp. 45:1–45:6,

ACM, 2017.

[4] ISO/DIS 26262. Road Vehicles – Functional Safety, 2009.

[5] RTCA and EUROCAE, DO-178B / ED-12B, Software Considerations in Air-

borne Systems and Equipment Certification, 1992.

[6] CENELEC, EN50126. Railway Applications: The Specification and Demon-

stration of Dependability, Reliability, Availability, Maintainability and Safety

(RAMS), 2012.

[7] International Electrotechnical Commission, IEC61508. Functional safety of elec-

trical/electronic/programmable electronic safety-related systems, 2010.

[8] Freescale Semiconductor, “Qorivva MPC5643L microcontroller data sheet. rev.

9,” 2013.

[9] Infineon, Tricore 1. 32-bit Unified Processor Core v1.3, October 2005.

50

BIBLIOGRAPHY

[10] S. Mitra, N. Saxena, and E. McCluskey, “A design diversity metric and analysis

of redundant systems,” IEEE Transactions on Computers, vol. 51, no. 5, 2002.

[11] S. Mitra, N. Saxena, and E. McCluskey, “Techniques for estimation of design

diversity for combinational logic circuits,” in DSN, 2001.

[12] R. Charette, “This car runs on code,” in IEEE Spectrum online, 2009.

[13] P. Clarke, “Automotive chip content growing fast, says gart-

ner,” 2010. http://www.eetimes.com/electronics-news/4207377/

Automotive-chip-content-growing-fast.

[14] G. Edelin, “Embedded systems at thales: the artemis challenges for an industrial

group,” in Presentation at the ARTIST Summer School in Europe 2009, 2009.

[15] J. Bowen, “The ethics of safety-critical systems,” Commun. ACM, vol. 43, pp. 91–

97, Apr. 2000.

[16] A. Wood, “Data integrity concepts, features, and technology,” White paper, Tan-

dem Division, Compaq Computer Corporation, 1999.

[17] S. Mittal, “A survey of architectural techniques for managing process variation,”

vol. 48, 02 2016.

[18] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via simultaneous

multithreading,” in Proceedings of the 27th Annual International Symposium on

Computer Architecture, ISCA ’00, (New York, NY, USA), pp. 25–36, ACM, 2000.

[19] Infineon, “AURIX Multicore 32-bit Microcontroller Family to Meet

Safety and Powertrain Requirements of Upcoming Vehicle Generations.”

http://www.infineon.com/cms/en/about-infineon/press/press-releases/

2012/INFATV201205-040.html.

[20] J. Espinosa, C. Hernandez, J. Abella, D. de Andres, and J. C. Ruiz, “Analysis

and rtl correlation of instruction set simulators for automotive microcontroller

robustness verification,” in Proceedings of the 52Nd Annual Design Automation

Conference, DAC ’15, (New York, NY, USA), pp. 40:1–40:6, ACM, 2015.

51

http://www.eetimes.com/electronics-news/4207377/Automotive-chip-content-growing-fast
http://www.eetimes.com/electronics-news/4207377/Automotive-chip-content-growing-fast
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2012/INFATV201205-040.html
http://www.infineon.com/cms/en/about-infineon/press/press-releases/2012/INFATV201205-040.html

BIBLIOGRAPHY

[21] R. A. Ashraf, O. Mouri, R. Jadaa, and R. F. Demara, “Design-for-diversity for

improved fault-tolerance of tmr systems on fpgas,” in 2011 International Confer-

ence on Reconfigurable Computing and FPGAs, pp. 99–104, Nov 2011.

[22] S. Mitra, N. R. Saxena, and E. J. McCluskey, “Efficient design diversity estimation

for combinational circuits,” IEEE Trans. Comput., vol. 53, pp. 1483–1492, Nov.

2004.

[23] Wikipedia, “Longest common subsequence problem — wikipedia, the free ency-

clopedia,” 2017. [Online; accessed 20-October-2017].

[24] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest com-

mon subsequences,” Commun. ACM, vol. 20, pp. 350–353, May 1977.

[25] “Longest common subsequence,” 2017. https://rosettacode.org/wiki/

Longest_common_subsequence#C.2B.2B.

[26] F. Brglez, D. Bryan, and K. Kozminski, Combinational profiles of sequential

benchmark circuits, 1989.

[27] L. W. Nagel and D. Pederson, “Spice (simulation program with integrated cir-

cuit emphasis),” Tech. Rep. UCB/ERL M382, EECS Department, University of

California, Berkeley, Apr 1973.

[28] I. Corporation, “Modelsim *- Intel FPGA,” 2017. https://

www.altera.com/products/design-software/model---simulation/

modelsim-altera-software.html.

[29] ISO, “ISO26262 - Road vehicles — Functional safety — Part 1: Vocabulary,”

2011. [Online; accessed 1-January-2018].

52

https://rosettacode.org/wiki/Longest_common_subsequence#C.2B.2B
https://rosettacode.org/wiki/Longest_common_subsequence#C.2B.2B
https://www.altera.com/products/design-software/model---simulation/modelsim-altera-software.html
https://www.altera.com/products/design-software/model---simulation/modelsim-altera-software.html
https://www.altera.com/products/design-software/model---simulation/modelsim-altera-software.html

Acronyms

V&V Validation and Verification. 1

ASIL Automotive Safety Integrity Level. 1, 2

SEU Single Event Upset. 4

SoR Sphere of Replication. 8–11, 18, 33

TMR Triple Modular Redundancy. 12

AVF Architectural Vulnerability Factor. 14, 37

RTL Register-Transfer Level. 14

ISS Instruction-Set Simulator. 14

DIMP Diversity Metric based on circuit Path analysis. 18–20, 23, 25, 26, 28–32

SPICE Simulation Program with Integrated Circuits Emphasis. 18, 24, 28, 29, 31

LCS Longest common subsequence problem. 21, 23

MPI Message Passage Interface. 35

53

Appendix A

DIMP on ISCAS’89

0.3 vs 0.6 0.3 vs 1.0 0.6 vs 1.0

s1196 0.87885 0.990901 0.989536

s1238 0.881473 0.980223 0.977516

s13207 0.712577 0.878367 0.903798

s1423 0.781312 0.933486 0.929485

s1488 0.898724 0.951677 0.815758

s1494 0.884235 0.98916 0.973529

s15850 0.902511 0.949534 0.698047

s208_1 0.739288 0.928969 0.851585

s27 1 0.949367 1

s298 0.77582 0.991486 0.981879

s344 0.597537 0.912125 0.929464

s349 0.664762 0.934632 0.917834

s35932 0.728343 0.897606 0.881384

s382 0.678801 0.873572 0.901327

s38417 0.793578 0.96827 0.869858

s38584 0.724989 0.845901 0.813881

s386 0.933984 0.960784 0.791227

s400 0.60297 0.880554 0.880322

s420_1 0.996923 0.999903 0.991359

s444 0.601725 0.879051 0.827288

s510 0.596014 0.917991 0.943923

s526 0.556871 0.888151 0.880187

s526n 0.571667 0.898126 0.910305

s5378 0.885166 0.963412 0.893173

s641 0.789491 0.878476 0.892225

s713 0.872436 0.955024 0.901885

s820 0.895561 0.976798 0.945946

s832 0.965325 0.966387 0.927405

s838_1 0.965755 0.999818 0.980561

s9234_1 0.568182 0.728395 0.582278

s953 0.625419 0.892768 0.885153

Table A.1: DIMP results for ISCAS’89 circuits

54

Appendix B

Published Work

DIMP: A Low-Cost Diversity Metric based on Circuit Path Analysis

Sergi Alcaide, Carles Hernandez, Antoni Roca, and Jaume Abella, in Proceedings

of the 54th Annual Design Automation Conference 2017, DAC ’17, (New York, NY,

USA), pp. 45:1–45:6, ACM, 2017.

Abstract presented in ACACES Summer School 2017. Fiuggi (Italy), July 10-14.

POSTER: DIMP: A Low-Cost Diversity Metric based on Circuit Path

Analysis

Sergi Alcaide, Carles Hernandez, Antoni Roca, and Jaume Abella

ACACES Summer School Poster Session 2017,

Fiuggi (Italy), July 12th

55

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	Background
	Faults, Failures and Errors
	Safety Related Systems
	Safety Mechanisms for Safety Related Systems
	Fault Detection
	Redundancy, Sphere of Replication and Lockstep Execution
	Examples from Fault-Tolerant Platforms for Automotive Safety-Critical Applications
	Lockstep Dual Processor Architecture
	Loosely-Synchronized Dual Processor Architecture
	Triple Modular Redundancy System

	Robustness Verification
	Diversity
	Other efforts to quantify diversity
	Main problem of diversity for the Industry

	DIMP: A DIversity Metric based on circuit Path analysis
	Motivation of dimp
	Rationale behind dimp
	A realization of dimp
	DIMP Implementation
	Inputs tool
	Diversity implementation

	DIMP evaluation
	FALLES Fault Injector
	ISCAS evaluation
	8-bit full adder designs
	SPICE validation
	SPICE
	Validation

	Computation complexity

	Conclusions

	Specialization of DIMP
	Considered Fault Model
	Tailoring DIMP to the specific fault model
	Gate Selection

	Evaluation
	FALLES Fault Injector
	Matching mechanism
	ISCAS evaluation
	Results

	Removing the aliasing
	Modifications on the matching
	Results

	Conclusions

	Conclusions and Future Work
	Bibliography
	Acronyms
	DIMP on ISCAS'89
	Published Work

