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Abstract
Exploring Machine Learning Models

for
Wind Speed Prediction

by Ing. Maritza PRIETO EMHART

The aim of this work present a comprehensive exploration of machine learning mod-
els and compare their performance for wind speed prediction.

The prediction is based on variables from atmospheric reanalysis data from a
specific wind farm located in Spain as predictive inputs for the system. The ERA-
Interim reanalysis data from the European Center for Medium-Range Weather Fore-
casts has been the source for obtaining the explanatory variables in this work.

Specifically the experiments include testing and selecting different global models
which we later classify as single and combined models, and local models which we
construct by means of the creation of clusters of the predictive variables dataset.

The goal is to explore which are the best model among all ones trying to get the
estimation of the Wind Speed Prediction, and extract some conclusions from all the
study.

Experimental evaluation of the prediction system was performed in real data
from the mentioned wind farm , obtaining excellent prediction results when apply-
ing combined models.

This work also outlines the combined forecasting approaches and presents an
up-to date annotated bibliography of the wind forecasting literature.

Furthermore, the thesis also points out the possible further research directions
of combined techniques so as to help the researchers in the field to develop more
effective wind speed forecasting methods.
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Chapter 1

Introduction

This chapter explains the main motivation of our work, as well as the main goal
proposed for the work.

1.1 Motivation

Development of alternative energy sources has become a necessity as fossil energy
resources are declining. At the same time, energy demand is rapidly increasing,
putting the world on the verge of a global energy crisis. Moreover, the extensive
use of conventional energy sources is polluting the environment and causing global
warming. On the other hand, wind and other renewable energy sources are viable
and clean alternatives to fossil fuels. Low operating cost and extensive availability
make wind one of the most advantageous and effective renewable energy sources
[1].

Wind energy is of vital importance among the low-carbon energy technologies,
which has the potential to achieve sustainable energy supply and constitutes a key-
stone component for micro-grids in a way towards the smart grid infrastructure.
However, stochastic and intermittent wind power generation poses a number of
challenges to the large scale penetration of wind power. These wind-related uncer-
tainties can put the system reliability and power quality at risk with the increasing
penetration of wind power and thus, the main grid integration issues such as bal-
anced management and reserve capacities can come into question [2, 3, 4]. Reducing
the need for balancing energy and making the power generation scheduling and
dispatch decisions can be realized with the help of wind speed and power gener-
ation forecasts [5]. Furthermore, the forecasts can play a vital role in keeping the
costs competitive by reducing the need for wind curtailments and thereby, increas-
ing revenue in electricity market operations [6]. However, the random and unstable
characteristics of the wind make it considerably difficult to forecast the wind speed
and power accurately. Hence, extensive efforts have been devoted for the devel-
opments and improvements of wind speed and power forecasting approaches by
numerous energy and environment related research centers and universities [7].

In the literature, many forecasting approaches have been studied and proposed,
each utilizing a different technique and performing well with a different prediction
horizon. Recent studies in the area of wind prediction are predominantly focused
on the short-term wind predictions ranging from minutes to a few days due to the
importance of these data on power systems [7]. Especially day-ahead predictions
are of significant interest for system operations such as scheduling, unit commit-
ment and load following [8, 9]. However,it is generally difficult to accomplish such
a long-term prediction and moreover, the approaches designed for long prediction
horizons maybe deficient for shorter terms in terms of prediction performance. Fol-
lowing many studies in the wind forecasting field, it can be indicated that, to date,
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the targeted performance levels have not been attained with the individual models
due to the fact that these models can not give satisfactory results for all situations.
For instance, the physical models produce coarse predictions for short-term hori-
zons while mostly outperform the other models in medium and long-term horizons.
Also, Artificial Intelligence (AI) based models that rely on a large number of his-
torical data for constructing an input/output mapping function can be less effective
than some basic conventional statistical methods for certain application areas in the
case of inadequate available information. Therefore, the approaches that incorpo-
rate the individually superior features of various forecasting models have emerged,
called as hybrid models and combined models, in order to obtain an advanced fore-
casting method for higher accuracy levels and wider forecast horizons [7].

After evaluating the findings of the studies on the hybrid models, which will be
detailed in next chapter, it can be concluded that these models do not generally con-
tribute to the forecasting performance of the individual models considerably and
they can even lead to poor performances under some circumstances [10]. On the
other hand, combined forecasting methodologies, which follow a different approach
and produce the final forecast generally from the weighting of the single approaches,
can be a more viable solution for improving the accuracy of the individual mod-
els. To that end, the search effort has been recently oriented towards designing new
combined algorithms as well as combination methods, which exploit different sin-
gle prediction models and enhance the prediction performance while providing a
reasonable computation time. A study on the classifying and summarizing of the
combined methods, which might give an insight about the performance, superior-
ity and application area of various algorithms, was presented in [7] which we will
review in order to base this work.

1.2 Goal

With the continuous increase of wind power penetration in power systems, the prob-
lems caused by the volatile nature of wind speed and its occurrence in the system
operations such as scheduling and dispatching have drawn attention of system op-
erators, utilities and researchers towards the state-of-the-art wind speed and power
forecasting methods. These methods have the required capability of reducing the
influence of the intermittent wind power on system operations as well as of harvest-
ing the wind energy effectively. In this context, combining different methodologies
in order to circumvent the challenging model selection and take advantage of the
unique strength of plausible models have recently emerged as a promising research
area [7].

In this work, we present a comprehensive exploration about machine learning
models including global and local, as well as combined models and how these mod-
els are constructed and affect the forecasting performance and final Wind Speed Pre-
diction.

The goal is to explore which are the best models among all ones trying to get
the estimation of the Wind Speed Prediction. Furthermore, we want to draw some
conclusions from the study.
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Chapter 2

State of Art

In this chapter the state of the art related to the work done is presented. First, the
domain were the machine learning models has been applied i.e. the Wind Speed
prediction problem is presented. Afterwards the different methodologies applied in
the Wind Speed prediction problem are explained. Finally, main machine learning
techniques are detailed.

2.1 Wind Prediction Problem

2.1.1 Wind Farms

A wind farm is the site where a group of wind turbines are installed for bulk elec-
tricity generation. Nameplate capacity of modern wind parks has increased by up
to thousands of MWs. Wind farms can be categorized as onshore and offshore based
on the location where wind turbines are installed.

Any wind power system typically comprises of wind turbines, generators, power
transformers, and a connection to the power grid [11]. There are usually three kinds
of wind systems: the constant speed wind turbine system with a standard squir-
rel cage induction generator (SCIG), the variable speed wind turbine system with a
double-fed induction generator (DFIG), and the variable speed wind turbine with a
full rated power electronics conversion system and a synchronous generator [1].

2.1.2 Wind Prediction

A wind power forecast corresponds to an estimate of the expected production of
one or more wind turbines referred to as a wind farm. By production is often meant
available power for wind farm considered (with units kW or MW depending on the
wind farm nominal capacity). Forecasts can also be expressed in terms of energy, by
integrating power production over each time interval [12].

2.1.2.1 Time scales of forecasts

The basic role of wind speed and power forecasting is to provide information about
the wind speed and power that can be expected in the next few minutes, hours, or
days. Based on power system operation requirements, the forecast can be divided
into four different horizons: very short-term (few seconds to 30 min), short-term (30
min to 6 h), medium-term (6–24 h), and long-term (1–7 days). [13, 14] Very short-
term forecasts are used for turbine control and load tracking. Short-term forecasts
are utilized for preload sharing. Medium-term forecasts are used for power sys-
tem management and energy trading. Long-term forecast are used for maintenance
scheduling of the wind turbines.
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For the last two possibilities, the temporal resolution of wind power predictions
ranges between 10 minutes and a few hours (depending on the forecast length). Im-
provements of wind power forecasting has focused on using more data as input to
the models involved, and on providing uncertainty estimates along with the tradi-
tionally provided predictions [12].

2.1.3 Reason for wind forecasts

As detailed in [12], in the electricity grid at any moment balance must be maintained
between electricity consumption and generation - otherwise disturbances in power
quality or supply may occur. Wind generation is a direct function of wind speed
and, in contrast to conventional generation systems, is not easily dispatchable. Fluc-
tuations of wind generation thus receive a great amount of attention. Variability of
wind generation can be regarded at various time scales. First, wind power produc-
tion is subject to seasonal variations, i.e. it may be higher in winter in Northern
Europe due to low-pressure meteorological systems or it may be higher in summer
in the Mediterranean regions owing to strong summer breezes. There are also daily
cycles which may be substantial, mainly due to daily temperature changes. Finally,
fluctuations are observed at the very short-term scale (at the minute or intra-minute
scale). The variations are not of the same order for these three different timescales.
Managing the variability of wind generation is the key aspect associated to the opti-
mal integration of that renewable energy into electricity grids.

The challenges to face when wind generation is injected in a power system de-
pend on the share of that renewable energy. It is a basic concept, the wind penetra-
tion which allows one to describe the share of wind generation in the electricity mix
of a given power system. For Denmark, which is a country with one of the high-
est shares of wind power in the electricity mix, the average wind power penetration
over the year is of 16-20% (meaning that 16-20% of the electricity consumption is met
wind energy), while the instantaneous penetration (that is, the instantaneous wind
power production compared to the consumption to be met at a given time) may be
above 100%.

The transmission system operator (TSO) is responsible for managing the electric-
ity balance on the grid: at any time, electricity production has to match consump-
tion. Therefore, the use of production means is scheduled in advance in order to
respond to load profiles. The load corresponds to the total electricity consumption
over the area of interest. Load profiles are usually given by load forecasts which are
of high accuracy. For making up the daily schedule, TSOs may consider their own
power production means, if they have any, and/or they can purchase power gener-
ation from Independent Power Producers (IPPs) and utilities, via bilateral contracts
or electricity pools. In the context of deregulation, more and more players appear on
the market, thus breaking the traditional situation of vertically-integrated utilities
with quasi local monopolies. Two main mechanisms compose electricity markets.
The first one is the spot market where participants propose quantities of energy for
the following day at a given production cost. An auction system permits to settle
the electricity spot price for the various periods depending on the different bids.
The second mechanism is the balancing of power generation, which is coordinated
by the TSO. Depending on the energy lacks and surplus (e.g. due to power plant
failures or to intermittence in the case of wind power installations), the TSO deter-
mines the penalties that will be paid by IPPs who missed in their obligations. In
some cases, an intra-day market is also present, in order to take corrective actions.
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In order to illustrate this electricity market mechanism, let us consider the Dutch
electricity market. Market participants, referred to as Program Responsible Parties
(PRPs), submit their price-quantity bids before 11 am for the delivery period cover-
ing the following day from midnight to midnight. The Program Time Unit (PTU) on
the balancing market is of 15 minutes. Balancing of the 15-minute averaged power
is required from all electrical producers and consumers connected to the grid, who
for this purpose may be organized in subsets. Since these subsets are referred to as
Programmes, balancing on the 15-minute scale is referred to as Programme Balance.
Programme Balance now is maintained by using the production schedules issued
the day before delivery and measurement reports (distributed the day after deliv-
ery). When the measured power is not equal to the scheduled power, the Programme
Imbalance is the difference between the realised sum of production and consump-
tion and the forecast sum of production and consumption. If only production from
wind energy is taken into account, Programme Imbalance reduces to release wind
production minus forecast wind production. The programme imbalance is the wind
production forecast error.

Programme Imbalance is settled by the System Operator, with different tariffs for
negative Programme Imbalance and positive Programme Imbalance. A positive Pro-
gramme Imbalance indicates more energy actually produced than forecast. by wind
energy the realised wind production is bigger than the forecast wind production.
And vice versa, in the case of a negative Programme Imbalance by wind energy.

Note that the costs for positive and negative imbalances may be asymmetric,
depending on the balancing market mechanism. In general, wind power producers
are penalized by such market system since a great part of their production may be
subject to penalties.

In parallel to be used for market participation, wind power forecasts may be used
for the optimal combined operation of wind and conventional generation, wind and
hydro-power generation, or wind in combination with some energy storage devices.
They also serve as a basis for quantifying the reserve needs for compensating the
eventual lacks of wind production.

2.1.4 Relationship between wind speed and wind power

Wind power is directly related to the wind speed through a so-called power curve
2.1. This is a simplified way of expressing the wind power in terms of atmospheric
variables. Other atmospheric fields, such as wind shear, turbulence and air density
have also impact on the actual power production for a given wind speed. However,
for wind power verification wind speed is the most important parameter, because
the bulk of the prediction error is caused by the wind speed prediction errors [15].
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FIGURE 2.1: Relationship between wind speed and wind power (Ex-
tracted from [15]).

Given this relationship between wind speed and wind power generation, the
efforts in our work will be focused on the prediction of the wind speed variable,
because is the fundamental feature for the wind power generation.

2.2 Wind Prediction Methodology

As detailed in [12], several methods are used for short-term prediction of wind gen-
eration. The simplest ones are based on climatology or averages of past production
values. They may be considered as reference forecasting methods since they are easy
to implement, as well as benchmark when evaluating more advanced approaches.
The most popular of these reference methods is certainly persistence. This naive
predictor — commonly referred to as "what you see is what you get" — states that
the future wind generation will be the same as the last measured value. Despite its
apparent simplicity, this naive method might be hard to beat for look-ahead times
up to 4–6 hours ahead.

Advanced approaches for short-term wind power forecasting necessitate predic-
tions of meteorological variables as input. Then, they differ in the way predictions
of meteorological variables are converted to predictions of wind power production,
through the so-called power curve. Such advanced methods are traditionally di-
vided into two groups:

• The first group, referred to as physical approach, focuses on the description of
the wind flow around and inside the wind farm, and use the manufacturer’s
power curve, for proposing an estimation of the wind power output.

• The second group, referred to as statistical approach 1, concentrates on captur-
ing the relation between meteorological predictions (and possibly historical
measurements) and power output through statistical models whose parame-
ters have to be estimated from data, without making any assumption on the
physical phenomena.

2.2.1 Prediction of meteorological variables

As details in [12] Wind power generation is directly linked to weather conditions and
thus the first aspect of wind power forecasting is the prediction of future values of

1Although in the literature they are named as statistical forecasting methods they include also ma-
chine learning techniques. Therefore, it would be better to name them as data-driven forecasting meth-
ods



2.2. Wind Prediction Methodology 7

the necessary weather variables at the level of the wind farm. This is done by using
numerical weather prediction (NWP) models. Such models are based on equations
governing the motions and forces affecting motion of fluids. From the knowledge of
the actual state of the atmosphere, the system of equations allows to estimate what
the evolution of state variables, e.g. temperature, velocity, humidity and pressure,
will be at a series of grid points. The meteorological variables that are needed as
input for wind power prediction obviously include wind speed and direction, but
also possibly temperature, pressure and humidity. The distance between grid points
is called the spatial resolution of the NWPs. The mesh typically has spacing that
varies between few kilometers and up to 50 kilometers for mesoscale models. Re-
garding the time axis, the forecast length of most of the operational models today
is between 48 and 172 hours ahead, which is in adequacy with the requirements for
the wind power application. The temporal resolution is usually between 1 and 3
hours. NWP models impose their temporal resolution to short-term wind power
forecasting methods since they are used as a direct input.

Predictions of meteorological variables are provided by meteorological institutes.
Meteorologists employ atmospheric models for weather forecasts on short and medium
term periods. An atmospheric model is a numerical approximation of the physical
description of the state of the atmosphere in the near future, and usually is run on
a supercomputer. Each computation starts with initial conditions originating from
recent measurements. The output consists of the expected instantaneous value of
physical quantities at various vertical levels in a horizontal grid and stepping in
time up to several hours after initiation. There are several reasons why atmospheric
models only approximate reality. First of all, not all relevant atmospheric processes
are included in the model. Also, the initial conditions may contain errors (which in
a worse case propagate), and the output is only available for discrete points in space
(horizontal as well as vertical) and time. Finally, the initial conditions age with time
- they are already old when the computation starts let alone when the output is
published. Predictions of meteorological variables are issued several times per day
(commonly between 2 and 4 times per day), and are available few hours after the be-
ginning of the forecast period. This is because some time is needed for acquiring and
analyzing the wealth of measurements used as input to NWP models, then run the
model and check and distribute the output forecast series. This gap is a blind spot in
the forecasts from an atmospheric model. As an example in the Netherlands, KNMI
publishes 4 times per day expected values of wind speed, wind direction, tempera-
ture and pressure for the period the between 0 and 48 hours after initialization of the
atmospheric model Hirlam with measured data, and then the period before forecast
delivery is of 4 hours.

Many different atmospheric models are available, ranging from academic re-
search tools to fully operational instruments. Besides for the very nature of the
model (physical processes or numerical schemes) there are some clear distinctive
differences between them: time domain (from several hours to 6 days ahead), area
(several 10.000 km2 to an area covering half the planet), horizontal resolution (1 km
to 100 km) and temporal resolution (1 hour to several hours).

One of the atmospheric models is the High Resolution Limited Area Model, ab-
breviated HiRLAM, which is frequently used in Europe. HiRLAM comes in many
versions, that’s why it is better to speak about "a" HiRLAM rather than "the" HiRLAM.
Each version is maintained by a national institute such as the Dutch KNMI, the Dan-
ish DMI or Finnish FMI. And each institute has several versions under her wing,
divided into categories such as: operational, preoperational, semi operational and
for research purposes.
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Other atmospheric models are UKMO in the UK, Lokalmodell in Germany, Al-
ladin in France (Alladin and Lokalmodell are also used by some other country’s
within Europe), and MM5 in the USA.

2.2.2 Main Approaches

Research in the area of forecasting wind speed produced by wind farms has been
devoted to the development of effective and reliable tools and many different ap-
proaches have been proposed. These tools can be classified whether the terrain in-
formation at the location is used as an input or not. Two mainstream approaches
are the physical and the statistical approach. In some models a combination approach is
used in an attempt to integrate the advantages of both approaches. In this section an
overview of existing wind speed forecast approaches is presented [16].

2.2.2.1 Physical forecasting approach or Mechanistic model-driven

The physical approach to forecasting, in contrast to statistical approach, uses the
detailed physical description to model the on-site conditions at the location of the
wind farm [17, 18]. The basic operation of a physical approach is illustrated in Fig.
2.2.

FIGURE 2.2: The physical approach to forecasting wind speed and
power (Extracted from [16]).

It carries out the refinement of the Numerical Weather Prediction (NWP) data to
take into account the on-site conditions by the downscaling method, which are based
on the physics of the lower atmospheric boundary layer. The downscaling method
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requires the detailed physical descriptions of the wind farms and their surroundings,
including: description of the wind farm (wind farm layout and wind turbine power
curve, etc.) and description of the terrain (orography, roughness, obstacles, etc.).
Then, the refined wind speed data at the hub height of the wind turbines is plugged
into the corresponding wind power curve to calculate the wind power production.
If the on-line data is available, model output statistics are performed to reduce the
error of the forecast. Contrary to the statistical approach, the physical approach does
not require training input from historical data. However, acquiring the physical data
is one of the main drawbacks of the approach [16].

A number of physical approaches have been introduced in [16]. The Predik-
tor is developed by the Risoe National Laboratory in Denmark. It uses Wind At-
las Analysis and Application Program (WAsP) and PARK program to take the local
conditions into account by using the NWP forecast from High Resolution Limited
Area Model (HIRLAM) [19]. The Previento, developed by the University of Olden-
burg in Germany has a similar physical approach but uses a different NWP forecast
from Lakelmodell of the German Weather Service [20]. The LocalPred is developed
by CENER – National Renewable Energy Centre in Spain. It involves adaptive op-
timization of the NWP forecast, time series modeling, meso-scale modeling with
MM5, and power curve modeling [21]. The eWind, developed by AWS TrueWind
Inc. in the USA, has a similar physical approach with Prediktor but uses a high-
resolution boundary layer model (ForeWind) as a numerical weather model to take
the local conditions into account [22].

The physical approaches are based on the models using the fundamental physi-
cal principles for conservation of mass, momentum, and energy in air flows. These
models address computational fluid dynamics (CFD) for simulating the atmosphere.
Although there are many CFD models available, they are all based on the same basic
physical principles. They differ in how the grids are structured and scaled, and how
the numerical computations are performed [16].

In the majority of cases the statistical approaches provide good results in short-
term, medium-term, and long-term forecasting. However, in the very short-term
and short-term horizon, the influence of atmospheric dynamics becomes more im-
portant, and in these cases the use of physical approaches becomes essential.

2.2.2.2 Statistical forecasting approach or Data-driven

The alternative main approach for wind speed and power forecasting is based on
statistical modeling. The statistical approach represents the relation between wind
power or speed forecasting and explanatory variables including NWPs and on-line
measured data [17]. The general form of the model is illustrated in Fig. 2.3.
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FIGURE 2.3: The statistical approach to forecasting wind speed and
power (Extracted from [16]).

The statistical approach generally uses previous history data to build the statis-
tical model. This model uses NWP forecast for time t+k and on-line measurement
at time t to forecast the present over the next few hours. It is easy to model and
inexpensive. However, contrary to the physical approach, the statistical approach
requires historical data to train the statistical model. Many different approaches are
employed [16]. Some of the most representative statistical approaches are reviewed
in this section.

2.2.2.2.1 Conventional statistical approach

In the conventional statistical approach a time series model is applied to forecast
future wind power or speed. According to the forecasting process, which was pro-
posed by Box–Jenkins, this model is divided into four main steps to make a math-
ematical model of the problem including model identification, model estimation,
model diagnostics checking, and forecasting. Several types of time series models
may be considered, including autoregressive model (AR), moving average model
(MA), autoregressive moving average model (ARMA), and autoregressive integrated
moving average model (ARIMA). The general form of the model is:

Xt = c + εt +
p

∑
i=1

ϕXt−i +
q

∑
i=1

θiεt−i (2.1)

where Xt represents the forecasting parameter at time t, ϕi is the autoregressive
parameter, θi is the moving average parameter, c is the constant, and random vari-
able εt is the white noise. This model represents the ARMA model having the autore-
gressive model of order p and the moving average model of order q (ARMA(p,q)).
If the order of the moving average model (q) is zero, it represents the autoregres-
sive model of order p (AR(p)). If the order of the autoregressive model (p) is zero,



2.2. Wind Prediction Methodology 11

it represents the moving average model of order q (MA(q)). The ARIMA model is a
generalization of an ARMA model [16].

2.2.2.2.2 Artificial Neural Network approach

Another common approach is based on the use of Artificial Neural Networks (ANN).
The NWP forecasts and further meteorological variables are transformed into the
wind power or speed forecast by ANN which has been trained by the large sets of
historical data in order to learn the dependence of the output on input variables. The
general ANN approach for wind speed and power forecast is shown in Fig. 2.4.

FIGURE 2.4: ANN approach for wind speed and power forecast (Ex-
tracted from [16]).

ANN is one of the widely used statistical approaches for wind speed and power
forecasts. It consists of an input layer, one or more hidden layers, and an output
layer. Each layer has a number of artificial neurons, and it uses a connectionist ap-
proach to connect the neurons to the neurons of the previous layer. This approach
is able to model the complex non-linear relationship between the input and output
layers through a training and learning process. This approach does not require ex-
plicit mathematical expressions as used in the physical and statistical approaches
reviewed previously. Furthermore, it has the ability of self-learning, self-organizing
and self-adaption [16].

2.2.2.3 Comparison

As indicated above, the underlying idea behind combining models can be described
as the utilization of the features of different forecasting methods. In this context, it is
reasonable to first briefly mention the most widely used forecasting methods in the
literature and their characteristics. To this end, the forecasting methods are classified
according to the common terminology criteria for wind forecasting methods and
inspected by several studies from the literature [7].

The majority of the wind forecasting techniques can be clustered into two main
groups, namely physical methods and statistical methods. In short, the first group takes
into account the physical considerations such as local terrain, wind farm layout and
temperature to reach the estimate and utilizes the output from Numerical Weather



12 Chapter 2. State of Art

Prediction (NWP) models which provide weather forecasts by using the mathemat-
ical model of the atmosphere. The concept of utilizing the NWP models as an input
was taken into account by Landberg and then corrections on the wind speed predic-
tions were applied by making use of various programs such as Wind Atlas Analysis
and Application Program (WAsP) and PARK [23]. Furthermore, the NWP model
output can be used directly for wind speed predictions, as demonstrated in [24].
Likewise, another NWP model, called as Eta Model, was utilized for wind predic-
tion up to 36 h in [15] and it was shown that Eta model is quite effective in predicting
wind energy.

The latter aims at describing the relation between historical time series of wind
speed (or power) at the location of interest by generally recursive techniques and it
can be stated that short term forecasting models are generally based on statistical
approaches due to the fact that NWP models require long operation time and large
amount of computational resources.

As can be seen from the mentioned research and review studies, each forecasting
model has its own strengths and weaknesses over the other models. In order to
gather the present knowledge on the widely used wind forecasting models in the
literature, a concise comparison of these basic approaches is shown in Table 2.1.

2.2.3 Combination Approaches

The basic idea of the combination model is to combine different strategies or models,
retaining advantages of each approach. The desire is to improve the forecast accu-
racy, but combining forecasts does not always perform better than the best individ-
ual forecasts. However, in some cases it is viewed as less risky to combine forecasts
than to select just an individual forecast [25].

Several approaches have been developed based on the combination of various
models [16]. As stated earlier, combined forecasting methodologies can improve the
final forecasting performance taking advantages of individual forecasting methods
which have different performances depending on the data sets, forecast horizons as
well as their capability of capturing nonlinearity, and provide some advantages com-
pared to the individual methods. Among the advantages, the potential of utilizing
the combined methods in a wider range of application area has a special importance
due to the fact that individual models perform well only in a certain situation and
therefore different models have to be tested for deciding the most suitable one. The
mentioned time consuming drawback of individual methods can be overcome while
using combined models, particularly in the case that the determination of the best
performing model is complicated.

There is controversy and confusion in the literature about the definition and
structure of the combined models. Notwithstanding, it can be indicated that the
most widely accepted procedure for combination of models taking place in the lit-
erature is to assign a weighting coefficient to each method proportional to their past
forecasting performance. Besides, some other approaches are presented as combined
models in the literature of wind forecasting by utilizing different methodologies.
The mentioned weighting and other combination methods are elucidated and exem-
plified in detail according to a chronological sequence and by grouping the similar
studies, correspondingly in the following sections [7].
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TABLE 2.1: Brief comparison of the main methods used for forecast-
ing of wind speed in the literature (Extracted from [7].)

Wind speed forecast-
ing approach

Advantages Disadvantages

NWP models Applicable for longer predic-
tion horizons

Weakness in handling
smaller scale phenomena,
not suitable for short fore-
cast times, requires large
computational resource and
time

Time series models
(AR, ARMA, ARIMA,
f-ARIMA, etc.)

Easy to find tools, compar-
atively basic structure, ca-
pability of correcting local
trends in data, provides con-
fidence intervals for predic-
tions

Requires a great deal of
historic records, difficult to
model nonlinear problems
and decide the best structure

ANN-based models Gains knowledge from train-
ing data, no need to spec-
ify any mathematical model
a priori, high data error tol-
erance, higher adaptability to
online measurements

Requires a training procedure
and a large number of train-
ing data

SVM-based models High generalization perfor-
mance

Depends on the tuning of
parameters appropriately,
complex optimization pro-
cess and longer training
time

Fuzzy logic models Suitable for systems which
are difficult to model exactly,
relatively less complex

High complexity and a long
process time in the case of
many rules

Bayesian networks Ability to handle missing ob-
servations and to avoid the
overfitting of data, suitable
for small training data sets,
suitable for various input
data

Requires relatively more ef-
fort, depends on the user’s
expertise level

Kalman filter models Does not require to store all
historic data because of its re-
cursive form

Requires previous knowl-
edge about the system
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2.2.3.1 Weighting-based combined approaches

From a conceptual point of view, the process of weighting used for the combina-
tion of the wind forecasting models can be defined as determining the relative effec-
tiveness of each model and providing them an appropriate value that reflects their
special importance in the combined model. The general prediction process of these
combined models is depicted in Fig. 2.5.

FIGURE 2.5: Flowchart of the weighting-based combined approaches.
(Extracted from [7])

2.2.3.2 Other combined approaches

In the literature, these approaches generally consist of two different models, one for
main forecasting task and the other for the auxiliary processes such as data filtering,
data decomposition, selection of the best parameter and residual error evaluation.
Depending on the function of the models used for the auxiliary processes in the
final model, “the other combined approaches” can be gathered into three groups:

• combined approaches including data preprocessing techniques,

• combined approaches including parameter selection and optimization tech-
niques, and

• combined approaches including data post-processing techniques [7].

2.2.3.2.1 Combined approaches including data preprocessing techniques

In the first group, the main objective of the data pre-processing models is, as the
name implies, to realize a preliminary process on data sets by decomposing the non-
linear wind speed time series into more stationary and regular subseries which are
generally easier to analyze and/or by filtering out the irrelevant and redundant fea-
tures of the data set. Thus, more stable subseries are obtained as well as the most
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informative training data is determined enabling to improve the quality of the data
and avoiding the unnecessary computation burden. The basic flowchart followed in
a large part of the mentioned approaches is illustrated in Fig. 2.6.

FIGURE 2.6: Flowchart of combined approaches including data pre-
processing techniques (Extracted from [7]).

2.2.3.2.2 Combined approaches including parameter selection and optimization
techniques

In a large numbers of papers on wind forecasting, it has been reported that cer-
tain parameter selection and optimization approaches also can make a considerable
contribution to the prediction performance during the training process. The selec-
tion of explanatory variables and determination of model parameters while using
the mentioned approaches can allow avoiding the time consuming process of the
optimization of the prediction method, which is usually carried out by testing the
method over a large number of candidate parameters and deriving the structure of
the model heuristically. The approaches in question perform the predictions after a
parameter evaluation process with a suitable method, as shown in Fig. 2.7.
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FIGURE 2.7: Flowchart of combined approaches including parameter
selection and optimization techniques. (Extracted from [7])

2.2.3.2.3 Combined approaches including error processing techniques

Apart from the approaches mentioned before, there exists a few combined approaches
in the literature that have a structure that takes into account the residual error values
obtained from a forecasting model, as denoted in Fig. 2.8.

FIGURE 2.8: Flowchart of combined approaches including error pro-
cessing techniques (Extracted from [7]).

2.2.3.3 Comparison

In the literature, there exist a lot of studies on the predictions of wind speed and
power with various methods, which mostly generate reasonable values and each
method has its own advantages and disadvantages. However, due to the fact that the
prediction models developed are generally site-specific and considerably influenced
by the changing of required prediction times, the suitable model is selected regard-
ing the specific data characteristic of the site and the application area of the method
with a time-consuming and specialist process. In order to address this problem by
avoiding the ambiguity of model selection and to further improve the prediction
performance, combining several methods have been proposed, especially at the last
years and the results obtained have verified the effectiveness of these approaches.
The subject of combined wind speed and power forecasting methods can be deemed
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as a novel research area. Therefore, a consensus has not yet been reached concern-
ing the fundamentals of the subject and the basic definitions about the related terms.
For instance, it can be readily indicated that predictions errors are always propor-
tional to the prediction time; however, it is not possible to say exactly which method
is the most appropriate candidate for a certain prediction time. In this issue, only
some suggestions and assumptions are available at this stage. Likewise, the clas-
sification of the methods according to the prediction time is another subject that is
suggested in various ways in the literature. For instance, the short term prediction
is defined as the predictions up to six-hour-ahead in [26]; however, it corresponds
to 24-h-ahead predictions in [27] and 72-h-ahead predictions in [9]. Besides, com-
parison of the forecasting performance of the models is another troublesome topic
evidently due to the fact that no single model provides the best predictions in terms
of all performance metrics, meaning that a universal standard for a fair comparison
of prediction performances is not yet present [7].

Similar to the above mentioned problems, it is important to highlight that there
still exist discrepancies in the definitions and structures of the combined and hybrid
forecasting approaches and this situation complicates the classification and compar-
ison of the approaches. For this purpose, the approaches were divided into several
main and sub-categories and the effects of different models on the forecasting per-
formance are briefly described and discussed by pursuing an extensive body of the
literature in this direction [7]. According to the mentioned studies, firstly there is no
doubt that combination of proper prediction techniques is of significant importance
in terms of improving the accuracy. Then, the preliminary processing of the input
data, particularly with decomposing and filtering methods such as a Wavelet Trans-
form (WT) and EMD (Empirical Mode Decomposition) methods, has been found
valuable for facilitating the forecasting process and thereby, improving the predic-
tion quality with the cost of spending more time on final model building. Likewise,
it was observed that evolutionary algorithms such as GA (Genetic Algorithms), EP
(Evolutionary Programming) and DE (Differential Evolution) methods and Kalman
filtering method tend to perform well for the selection and optimization of the pre-
diction system parameters. Moreover, it was realized that the total performance of
the prediction methods can be augmented by also predicting and then including the
residual error values with a variety of models. A brief evaluation about each class
of the combined approaches which is determined according to the above mentioned
criterion is shown in Table 2.2 [7].

By examining the characteristics of the combined approaches summarized in Ta-
ble 2, it can be concluded that the approaches with a weighting model and with a
data preprocessing model are very suitable for longer and harder prediction tasks,
which are required for power system operations such as scheduling, unit commit-
ment and load following. Weighting-based approaches consisting of an NWP model
should also be utilized effectively for the much longer term objectives such as main-
tenance of wind turbines or conventional power plants. Besides, the approaches
including parameter selection and data optimization techniques may present high-
accuracy predictions required mainly for energy trading and marketing. However,
the approaches with an error processing method may only give reasonable results in
the case of systematic errors and hence are not of a specific application area. Lastly,
it is worth mentioning that the combined models are ineffective in very short term
forecasts, ranging from milliseconds up to a few minutes and used for wind turbine
active control, due to the fact that these approaches have generally computational
time inefficiency compared to the individual methods [7].
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TABLE 2.2: Brief evaluation of combined approaches applied for fore-
casting of wind speed in the literature (Extracted from [7]).

Combined wind
speed forecast-
ing approach

Strategy Advantages Disadvantages

Weighting-based
combined ap-
proaches

Assigning weight
factors to models
according to their
performance

Easy to imple-
ment and code,
suitable for a
wide range of
prediction time,
adaptive to new
data

Does not guar-
antee the best
predictions along
the prediction
horizon, requires
an extra model
for determining
the weights

Combined ap-
proaches in-
cluding data
preprocessing
techniques

Forecasting of
the subseries
obtained by
decomposition
models

Higher perfor-
mance compared
to other ap-
proaches, easy
to find literature
examples, ro-
bustness to rapid
changes in wind
speed

Requires a de-
tailed mathemat-
ical knowledge
on decompo-
sition models,
provides slow
response to new
data

Combined ap-
proaches includ-
ing parameter
selection and
optimization
techniques

Optimization of
the parameters
of forecasting
model

Easy to find lit-
erature examples,
a relatively basic
structure

Harder to code,
dependent on de-
signer’s knowl-
edge about the
optimization
problems, com-
putationally
intensive

Combined ap-
proaches in-
cluding error
processing tech-
niques

Forecasting of
residual error
caused by fore-
casting model

High accuracy,
effective in
reducing system-
atic error

Computational
time inefficiency
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2.3 Atmospheric Reanalysis Data

Reanalysis is a systematic approach to produce data sets for climate monitoring
and research. Reanalyses are created via an unchanging ("frozen") data assimila-
tion scheme and model(s) which ingest all available observations every 6-12 hours
over the period being analyzed. This unchanging framework provides a dynami-
cally consistent estimate of the climate state at each time step. The one component
of this framework which does vary are the sources of the raw input data. This is un-
avoidable due to the ever changing observational network which includes, but is not
limited to, radiosonde, satellite, buoy, aircraft and ship reports. Currently, approx-
imately 7-9 million observations are ingested at each time step. Over the duration
of each reanalysis product, the changing observation mix can produce artificial vari-
ability and spurious trends. Still, the various reanalysis products have proven to be
quite useful when used with appropriate care [28].

Key Strengths

• Global data sets, consistent spatial and temporal resolution over 3 or more
decades, hundreds of variables available; model resolution and biases have
steadily improved

• Reanalyses incorporate millions of observations into a stable data assimilation
system that would be nearly impossible for an individual to collect and analyze
separately, enabling a number of climate processes to be studied

• Reanalysis data sets are relatively straightforward to handle from a processing
standpoint (although file sizes can be very large)

Key Limitations

• Observational constraints, and therefore reanalysis reliability, can considerably
vary depending on the location, time period, and variable considered

• The changing mix of observations, and biases in observations and models, can
introduce spurious variability and trends into reanalysis output

• Diagnostic variables relating to the hydrological cycle, such as precipitation
and evaporation, should be used with extreme caution

2.3.1 European Centre for Medium-Range Weather Forecasts

The European Centre for Medium-Range Weather Forecasts (ECMWF) is an inde-
pendent intergovernmental organisation supported by 34 states.

ECMWF is both a research institute and a 24/7 operational service, producing
and disseminating numerical weather predictions to its Member States. This data
is fully available to the national meteorological services in the Member States. The
Centre also offers a catalogue of forecast data that can be purchased by businesses
worldwide and other commercial customers. The supercomputer facility (and asso-
ciated data archive) at ECMWF is one of the largest of its type in Europe and Member
States can use 25% of its capacity for their own purposes.

The organisation was established in 1975 and now employs around 350 staff from
more than 30 countries. ECMWF is one of the six members of the Co-ordinated
Organisations, which also include the North Atlantic Treaty Organisation (NATO),
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the Council of Europe (CoE), the European Space Agency (ESA), the Organisation for
Economic Co-operation and Development (OECD), and the European Organisation
for the Exploitation of Meteorological Satellites (EUMETSAT).

ECMWF is based in Reading, UK.

What they produce:

• produce numerical weather forecasts and monitor the Earth-system;

• carry out scientific and technical research to improve forecast skill;

• maintain an archive of meteorological data.

To do so the Centre provides:

• twice-daily global numerical weather forecasts;

• air quality analysis;

• atmospheric composition monitoring;

• climate monitoring;

• ocean circulation analysis;

• hydrological prediction.

2.3.1.1 ERA-Interim

ERA-Interim is a global atmospheric reanalysis data from 1979, continuously up-
dated in real time.

The data assimilation system used to produce ERA-Interim is based on a 2006
release of the IFS (Cy31r2). The system includes a 4-dimensional variational analysis
(4D-Var) with a 12-hour analysis window. The spatial resolution of the data set is
approximately 80 km (T255 spectral) on 60 vertical levels from the surface up to 0.1
hPa.

ERA-Interim data can be downloaded from the ECMWF Public Datasets web
interface or from MARS (class=ei, expver=1).

For a detailed documentation of the ERA-Interim Archive see [29] .

2.4 Machine Learning techniques used

In this section we proceed to explain the algorithms that are going to be used on our
proposed methodology.

Firstly, we will detail the unsupervised techniques which are the ones used for
feature weighting called Unsupervised Entropy-base method and also the one used
to create the clusters which will be used to train and test our local models.

Later, we will detail the supervised techniques which we separate in two groups.
The first group refers to the simple models which are the k-Nearest Neighbor and
the Artificial Neural Network and the second group refers to the combined models
which are the Random Forest and the Ensemble model. Finally, we present the al-
gorithms used for the combined approaches that we proposed: the local models and
the ensemble approach.
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2.4.1 Unsupervised methods

2.4.1.1 Feature selection/weighting methods

2.4.1.1.1 Instance-Based Learning Feature Weighting

The results in [30] show in an empirical way that you can use unsupervised weight-
ing algorithms to determine the feature relevance in unsupervised databases, as a
first approach. They think that this is due to the fact that similarity computations
between instances in unsupervised methods capture the intrinsic distribution of dif-
ferent instances (different "classes") in a similar way than supervised methods do.

Unsupervised Entropy-Based methods
In [31], the authors present a feature selection method for unsupervised domains

based in entropy computations. Starting from this approach (UEB), in [30] they made
an extension to obtain two feature weighting algorithms (UEB-1 and UEB-2), trying
to obtain a superior performance assigning real-valued weights instead of binary-
value weights. The underlying idea is that data have orderly configurations if they
have distinct clusters, and have disorderly or chaotic configurations otherwise [31].
From entropy theory, it can be stated that entropy is lower for ordered configura-
tions, and higher for disordered configurations. The feature selection method is
based on the observation that removing an irrelevant feature from the feature set
may not change the underlying concept of the data, but not so otherwise. Following
this idea, the first step consist in compute the entropy between two instances:

E = −Slog2S− (1− S)log2(1− S) (2.2)

where S is the similarity measure based on a distance concept, and assumes a
very small value (close to 0.0) for very close pairs of instances, and a very large
(close to 1.0) for very distant pairs. For the entire data set of N instances the entropy
measure is given as:

E = −
N

∑
i=1

N

∑
j=1

Sij ∗ log2Sij + (1− Sij) ∗ log2(1− Sij) (2.3)

where Sij is the similarity value between the instance i and the instance j nor-
malized to [0,1]. When all features are numeric or ordinal, the similarity of two
instances is: Sij = e−a∗Dij where Dij is the distance between the instances i and j.
The value of α is computed automatically by: a = −ln0.5/D̄ , where D̄ is the av-
erage distance among all the instances. Euclidean distance is used to compute the
distance Dij. If all the attributes are nominal, the similarity between two instances
is: Sij = ∑M

k=1 |xik = xjk|/M where |xik = xjk| is 1 if xik equals xjk and 0 otherwise,
and M is the number of features.

-Unsupervised Entropy-Based method 1 (UEB-1)
The algorithm computes the entropy of data by removing a feature. For M fea-

tures this is repeated M times. Features are ranked in descending order of relevance
by finding the descending order of the entropy after removing each of the M fea-
tures one at a time. Feature selection algorithms focuses on deciding if one attribute
is relevant or not. On the other hand, feature weighting algorithms focus on giving
a relevance measure for each attribute. In our method (UEB-1) that is the first ex-
tension of the UEB algorithm, to obtain feature weights instead of feature selection,
the approach takes the entropy values computed for each one of the attributes, and
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applies a scaling process to assign weights. To obtain weights in [0,1] range for each
attribute k, the following computation is done:

Wk =
Entropyk − Argmin(Entropy)

Argmax(Entropy)− Argmin(Entropy)
(2.4)

In 2.9, an outline of the algorithm is described. CompEnt(i) computes the entropy of
the data after discarding the ith feature.

FIGURE 2.9: UEB-1 Algorithm outline (Extracted from [30]).

-Unsupervised Entropy-Based method 2 (UEB-2)
The second extension (UEB-2) performs a wrapper approach in the sense that

implements an update of weights in each step of the cycle taking into account the
last values of computed weights. Taking this into account, UEB-1 can be seen as a
filter approach. In UEB-2, an initial weight of 0.5 is assigned to each attribute and
the entropy for the entire database is computed. Then, it computes the new entropy
value after removing one attribute at a time. If the new entropy value after remov-
ing one attribute is less than the entropy of the entire database, then the weight of
that attribute is decreased by 0.1. If the new entropy value after removing one at-
tribute is greater than the entropy of the entire database, the weight of that attribute
is increased by 0.1. This increasing/decreasing parameter was set to 0.1 after an em-
pirical study. This cycle is performed several times allowing the weights to reach
a minimum or maximum value in the [0,1] range. After an empirical evaluation,
this parameter was set to 6. An outline of the UBE-2 algorithm is presented in 2.10.
Total Entropy is the entropy for all the database taking into account all the features.
CompEnt(i) computes the entropy of the data after discarding the ith feature.
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FIGURE 2.10: UEB-2 Algorithm outline (Extracted from [30]).

2.4.1.2 Clustering methods

A partition clustering technique generates a single partition of the data in an attempt
to recover natural groups present in the data. It tries to obtain a good partition of
the observations. The partition is composed by a set of groups or clusters. Thus, this
kind of techniques assign each observation to the “best” cluster. This “best” cluster
is the one optimizing certain criterion (minimization of the square sum of distances
of the observations to the centroids of the clusters, etc.). Either these algorithms
require the number of clusters to be obtained, namely k, or some threshold value
(classification distance) used to decide whether an observation belongs to a forming
cluster or not.

Partitional clustering methods are especially appropriate for the efficient repre-
sentation and compression of large databases, and when just one partition is needed.

2.4.1.2.1 K-means Clustering

This clustering method was utilized for power prediction by Kusiak and Li with
various data-mining algorithms [15].

One of the most popular partitional clustering algorithms is the K-means clus-
tering algorithm described for MacQueen in 1967. Starting with a randomly initial
partition, it explodes the idea of changing the current partition to another one de-
creasing the sum of squares of distances of the observations to the centroids of the
clusters. It converges, possibly to a local minimum, but in general can converge
fast in a few iterations. It has a main parameter k, which is the number of desired
clusters.

The K-Means Algorithm
The main goal of clustering is to generate compact groups of objects or data that

share similar patterns within the same cluster, and isolate these groups from those
which contain elements with different characteristics. In the field of renewable en-
ergy forecasting, this technique allows handling groups of data separately, which
provides a better understanding of the collected information and improves the ac-
curacy of the final forecast results. The K - means is a well-known, low complexity
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algorithm utilized for data-partitioning in this scenario. The algorithm starts run-
ning after an input of K clusters is given, and outputs the cluster centroids through
iterations. Let X = x1, x2, ..., xN be the set of N points to be grouped into K differ-
ent clusters, set as C = Ckk = 1, 2, ..., K. By means of the Euclidean distance, the
algorithm assigns each data point to its closest centroid Ck„ calculated by:

Ck = (
1

Nk
).

Nk

∑
i=1

Xk
i (2.5)

where Xk
i is the i-th data point in the cluster k, and Nk is the number of data points

in the respective cluster.
After the first run, the algorithm calculates the mean of the data points in each

cluster Ck and selects this value as a new cluster centroid, starting a new iteration.
As new clusters are selected, a new mean value is also obtained. The algorithm
halts once the sum of the squared error over K clusters is minimized. However,
with respect to its computational complexity and the initialization step, the K-means
approach presents some limitations [32].

The number of clusters, k, must be known before the first iteration of the algo-
rithm.

The K-means algorithm is very sensitive to the initial cluster centroids. The more
the selected initial clusters are distant from the optimal cluster centroid, the more
iteration will take for the algorithm to converge.

K-means is also strongly sensitive to noisy data, which may affect the accuracy
of the final forecasts [33].

2.4.2 Supervised methods

2.4.2.1 Single predictive methods

2.4.2.1.1 k Nearest Neighbors

As a first single model we propose the k-nearest neighbors algorithm [34]. This
choice is made for the following reasons:

• Interpretability of the model. The results of the predictive algorithm using the
k-nearest neighbors approach are based upon the occasions in the past that are
closest to the current state (according to a given distance metric). Prediction is
fulfilled by a simple averaging of the output values of the k nearest neighbors,
or by some weighted averaging. The k-nearest neighbors algorithm allows its
results to be interpreted by experts [35].

• Cyclic factors treatment. The factors used include some cyclic ones (year, month
etc.). The k-nearest neighbors algorithm can be tuned to work with them (un-
like tree methods, for example, which are not able to deal with cyclic factors).

• No multiple learning is needed with the k-nearest neighbors algorithm when
new portions of data are introduced. In this case, when adding samples, we ex-
pand the search instances without a need to recalculate the model. Removing
old data is also done without repeated learning [35].

Nearest Neighbors Algorithm
In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a non-parametric

method used for classification and numerical prediction. [36] In both cases, the input
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consists of the k closest training examples in the feature space. The output depends
on whether k-NN is used for classification or numerical prediction:

In k-NN numerical prediction, the predictable variable for the object. This value
is the average of the values of its k nearest neighbors. k-NN is a type of instance-
based learning, or lazy learning, where the function is only approximated locally
and all computation is deferred until classification. The k-NN algorithm is among
the simplest of all machine learning algorithms but is also very powerful.

Both for classification and numerical prediction, a useful technique can be to
assign weight to the contributions of the neighbors, so that the nearer neighbors
contribute more to the average than the more distant ones. For example, a common
weighting scheme consists in giving each neighbor a weight of 1/d, where d is the
distance to the neighbor.

The neighbors are taken from a set of objects for which the class (for k-NN classi-
fication) or the predictable variable (for k-NN numerical prediction) is known. This
can be thought of as the training set for the algorithm, though no explicit training
step is required.

A peculiarity of the k-NN algorithm is that it is sensitive to the local structure of
the data [37].

The main idea of k-NN algorithm is that whenever there is a new point to predict,
its k nearest neighbors are chosen from the training data. Then, the prediction of the
new point can be the average of the values of its k nearest neighbors. Wind pre-
diction using the k-NN algorithm has been developed successfully in recent years
[35], and resembles the similar-day approach for electrical load forecasting [38]. The
similar-day approach is still used by many utilities, and derives the future power
load using historical days with similar temperatures and day types. In this work,
the k-NN algorithm is used to find the appropriate historical examples with char-
acteristics similar to the future weather condition (provided by the NWP model).
Then, wind speed or power observations of these historical examples will be ex-
tracted and used to construct the wind speed or power predictive density. The main
process of probabilistic wind speed or power forecasting using the k-NN algorithm
can be boiled down to three steps:

• Calculating the predefined distance between the testing example and the train-
ing example;

• Choosing k nearest neighbors from the training examples with the k smallest
distances;

• Predicting the wind speed or power output based on a averaging technique

Firstly, a distance measure is required to characterize the similarity of any two
instances (each record in the dataset is called an instance). The most commonly
used distance metrics are the Euclidean distance, the Manhattan distance and the
Mahalanobis distance. In this work, the original Euclidean distance was used.

The Euclidean distance is calculated as:

DX,Y =

√
n

∑
i=1

(xi − yi)2 (2.6)

where X and Y are two instances from the training and testing datasets, respec-
tively; xi and yi are input variables; and n is the number of input variables. wi is
the weight assigned to the ith input variable. In the original Euclidean distance, the
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weight wi is equal to 1, which means that each input variable is assumed to make
the same contribution to the distance D. Secondly, the instances with the k small-
est distances are chosen as the k nearest neighbors. Let X1, X2, ..., XK denote the k
nearest neighbors, and their corresponding wind speed or power observations be
represented by p1, p2, ..., pK. The distance dk from the training instance Xk to the test-
ing instance Y is calculated using the euclidean distance, and follows an ascending
order d1 ≤ ... ≤ dk ≤ ... ≤ dK, where dk = D[Xk, Y]. Once k nearest neighbors have
been determined, wind power point prediction is derived using the average.

2.4.2.1.2 Artificial Neural Networks

Artificial neural network is a predictive model and classification technique employed
to model complex relationships between cause and effect variable sets or to identify
patterns within data. They have broad applications in a variety of fields including
transient detection, pattern recognition, approximation, and time-series prediction
[39, 40]. The network topology includes an input layer, one or several hidden layers
and an output layer. The neurons, which form part of the individual layers, are con-
nected by unknown parameters. These parameters can be adjusted using a variety
of algorithms, e.g., the Levenberg–Marquardt algorithm [40, 41].

ANN Algorithm
ANNs are widely accepted as a technology offering an alternative way to tackle

complex and ill-defined problems. An ANN is an information processing pattern
which works in a way that a human brain processes information. The structure of
this information processing system is composed of highly interconnected processing
elements, called neurons working in parallel to solve problems. A neural network
helps when it is highly complex to formulate an algorithmic solution and also where
there is a need to pick out the structure from the existing data. Neural networks
learn by example and they cannot be programmed to perform a specific task. They
are fault-tolerant, that is, they are able to handle noisy and incomplete data, are
able to deal with nonlinear problems and once trained can assist in prediction and
generalization at high speed. In more practical terms, neural network is a non-linear
statistical data modeling tool. The tasks for which ANNs are useful fall into various
applications such as control, pattern recognition, forecasting, optimization, etc. In
this study, ANN is applied for the prediction of wind generation from a specific
wind farm [42].

An (artificial) neural network is a network of simple elements called neurons,
which receive input, change their internal state (activation) according to that input,
and produce output depending on the input and activation. The network is built
by connecting the output of certain neurons to the input of other neurons forming a
directed, weighted graph. The weights as well as the functions that compute the acti-
vation can be modified by a process called learning which is governed by a learning
rule [43].

Components of an artificial neural network
-Neurons
A neuron with label j receiving an input pj(t) from predecessor neurons consists

of the following components [43]:

• an activation aj(t), depending on a discrete time parameter,

• possibly a threshold θj(t), which stays fixed unless changed by a learning func-
tion,
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• an activation function f that computes the new activation at a given time
t + 1 from aj(t), θj and the input pj(t) giving rise to the relation aj(t + 1) =
f (aj(t), p + j(t), θj) and an output function fout computing the output from the
activation oj(t) = fout(aj(t)). Often the output function is simple the Identity
function.

An input neuron has no predecessor but serves as input interface for the whole
network. Similarly an output neuron has no successor and thus serves as output
interface of the whole network [44].

-Connections and weights
The network consists of connections, each connection transferring the output of

a neuron i to the input of a neuron j. In this sense i is the predecessor of j and j is the
successor of i. Each connection is assigned a weight wij. [43]

-Propagation function
The propagation function computes the input pj(t) to the neuron j from the out-

puts oi(t) of the predecessor neurons and typically has the form [43]:

pj(t) = ∑
i

oi(t)wij (2.7)

-Learning rule
The learning rule is a rule or an algorithm which modifies the parameters of

the artificial neural network, in order for a given input to the network to produce a
favored output. This learning process typically amounts to modifying the weights
and thresholds of the variables within the network [43] [44].

2.4.2.2 Combined predictive methods

2.4.2.2.1 RandomForest

The algorithm of Random forests has many advantages such as less adjustable pa-
rameters, higher precision of prediction and better generalization ability [45].

RandomForest Algorithm
Random Forest (RF) was proposed by Leo Breiman [4] in 2001. The Random For-

est algorithm is based on statistical learning theory, by using bootstrap as sampling
method extracting multiple samples from the original sample, building decision tree
modeling according to each bootstrap sample, then integrating the prediction of
multiple decision trees, and coming up with the final results by voting ultimately.
The essence of RF is a classifier containing a number of decision trees, which are
formed by adopting random method. Random Forest Regression (RFR) can be re-
garded as a strong predictor integrating a lot of weak predictors (decision trees). The
realization process of random forest is as follows:

• The original training set is N, the application of bootstrap method has been
put back to the random extraction of K as a new self-help samples, and the re-
sulting the classification trees, each time has not been drawn out of the sample
composed of the out-of-bag data;

• From all available variables chose the best of the variables according to the
decision tree growth criteria (entropy gain, gain ratio or impurity)

• Each tree growth the maximum and do not apply any pruning technique;
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• The random forest is composed of trees, and the new data are identified and
classified according to the random forest classifier. Supposing the training set
is extracted independently from the distribution of random vector X, Y; as a
result, any numerical prediction value H (X) of the mean square generalization
error is [46]:

Ex,y = [Y− h(X)]2 (2.8)

The predicted value of the random forest numerical prediction is the average of
the K decision trees:

h(θ, Xk) (2.9)

It is similar to random forest classification. The theorem can be seen here [46]: The-
orem 1: k→ ∞

EX,Y = [Y− avhk(X, θk)]
2 → EX,Y[Y− Eθ(X, θk)]

2 (2.10)

Record type is the PE∗∗ on the right side. It means the generalization error of random
forest. The average generalization error of each decision tree PE∗∗ can be defined as:

PE∗∗ = EθEX,Y[Y− h(X, θ)]2 (2.11)

Theorem 2: For all of the θ, EY = Exh(X, θ)

PE∗∗ ≤ p̄PE∗ (2.12)

In this type, p̄ is the residual error Y− h(X, θ and Y− h(X, θ′)’s weighted corre-
lation coefficient and also θ and θ′are mutually independent.

The theorem 2 gives the exact regression forest condition: low correlation be-
tween residual errors and decision tree with low error. Random forest reduces the
average error of decision tree by weighted correlation coefficient p̄.

Random forest prediction can be viewed as an adaptive neighborhood classifica-
tion and numerical prediction process. For each one X = x , both of them can get the
original n observed value of the weight set. The estimation of random forest predic-
tion or conditional mean is equivalent to the weighted mean of dependent variables
[45].

In accordance with the random forest algorithm mentioned, the algorithm has
fewer parameters to adjust and need not worrying about the features such as over fit-
ting, speedy classification and high-efficient processing large sample data, estimable
characteristic factor importance, strong ability to resist noise and so on. Hence, ran-
dom forest can fully reflect the advantages of data mining and does not need to
assume the implementation of function form in order to avoid the hypothesis error.
In wind power prediction, using random forest numerical prediction method can ef-
fectively analyze the nonlinear and interaction data. It does not need to assume the
provided model of mathematical form in advance. It has good numerical prediction
analysis results.

The study of wind farm power prediction by using random forest method is
based on the learning rule of high precision fitting in samples and the ability of the
high confidence to promote knowledge out of samples. Random forest has two sorts
of techniques, namely, classification and numerical prediction.

The following part shows the calculation procedure of the wind farm power pre-
diction model [47]based on random forest: Wind power prediction of random forests
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is a collection of B trees T1(X), ..., TB(X) . Among them, X = x1, ...xp is the dimen-
sion p characteristic vectors of the wind power. The collection will produce B results
Ŷ1 = T1(X), ...ŶB = TB(X). The Ŷb(b = 1, ...B) is the predicted value of wind power
about the tree b. For numerical prediction problem, Ŷ is the mean of all trees predic-
tion.

A complete random forest training set is established in line with the process of
stochastic algorithm, and then put the independent variables into the test set, and
the result of wind power prediction comes out. The basic idea of establishing the
random forest model is shown in Figure 2.11.

FIGURE 2.11: The establishing of a random forest model (Extracted
from [45]).

2.4.2.2.2 Ensemble method

In the literature, there are several works proposing the use of a set of predictive mod-
els. The aim is to build a predictive model by combining the strengths of a collection
of single base models. There are several ways of implementing this idea. Some
approaches are based on re-sampling the training set, others on using different pre-
dictive methods, others on varying some parameters of the predictive methods, etc.
Finally, the ensemble of methods is used to combine the output of each prediction,
i.e., the predicted value, by means of a (weighted) majority voting.

Ensemble Algorithm
An ensemble model combines multiple ‘individual’ (diverse) models together

and delivers superior prediction power.

-Bagging (Bootstrap Aggregating)
It is an ensemble method. First, we create random samples of the training data

set (sub sets of training data set). Then, we build a classifier for each sample. Finally,
results of these multiple classifiers are combined using average or majority voting.
Bagging helps to reduce the variance error.
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FIGURE 2.12: Bagging Algorithm.

-Boosting
It provides sequential learning of the predictors. The first predictor is learned on

the whole data set, while the following are learnt on the training set based on the
performance of the previous one. It starts by classifying original data set and giving
equal weights to each observation. If classes are predicted incorrectly using the first
learner, then it gives higher weight to the missed classified observation. Being an
iterative process, it continues to add classifier learner until a limit is reached in the
number of models or accuracy. Boosting has shown better predictive accuracy than
bagging, but it also tends to over-fit the training data as well.
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FIGURE 2.13: Boosting Algorithm.

-Stacking
It works in two phases. First, we use multiple base classifiers to predict the class.

Second, a new learner is used to combine their predictions with the aim of reducing
the generalization error.

FIGURE 2.14: Stacking Algorithm.

2.5 Tools and Technologies used

2.5.1 Python

Python is a general-use high-level programming language that bills itself as pow-
erful, fast, friendly, open, and easy to learn. Python “plays well with others” and
“runs everywhere” (according to the language’s About page).

Conceived in the late 1980s (and named for comedy group Monty Python), Python
didn’t make inroads into data science until recently. For a long time, as Tal Yarkoni
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of UT Austin says, “you couldn’t really do statistics in Python unless you wanted to
spend most of your time pulling your hair out.”

Now, however, tools for almost every aspect of scientific computing are read-
ily available in Python. (Thanks in part, no doubt, to the $3 million the Defense
Advanced Research Projects Agency (DARPA) put toward the development of data
analytics and data processing libraries for Python in late 2012.)

Bank of America uses Python to crunch financial data. The Theoretical Physics
Division of Los Alamos National Laboratory chose Python to not only control sim-
ulations, but also analyze and visualize data. Facebook turns to the Python library
Pandas for its data analysis because it sees the benefit of using one programming
language across multiple applications.

Python’s increased use in data science applications has situated it in opposition
to R, a programming language and software environment specifically designed to
execute the sorts of data analysis tasks Python can now handle. As speculation
mounts about whether one of the languages will eventually replace the other in the
data science sphere, individuals have to decide which language to learn or which to
use for a specific project.

While there are many libraries available to perform data analysis in Python,
here’s a few to get you started:

• NumPy is fundamental for scientific computing with Python. It supports large,
multi-dimensional arrays and matrices and includes an assortment of high-
level mathematical functions to operate on these arrays.

• SciPy works with NumPy arrays and provides efficient routines for numerical
integration and optimization.

• Pandas, also built on top of NumPy, offers data structures and operations for
manipulating numerical tables and time series.

• Matplotlib is a 2D plotting library that can generate such data visualizations
as histograms, power spectra, bar charts, and scatterplots with just a few lines
of code.

• Built on NumPy, SciPy, and Matplotlib, Scikit-learn is a machine learning li-
brary that implements classification, regression, and clustering algorithms in-
cluding support vector machines, logistic regression, naive Bayes, random
forests, and gradient boosting.

2.5.2 GESCONDA

GESCONDA was designed and developed for intelligent data analysis and manage-
ment of implicit knowledge from databases and also for providing the users with
reasoning capabilities, with special focus on environmental databases and environ-
mental modeling.

GESCONDA provides a set of mixed techniques that will be useful to acquire
relevant knowledge from environmental systems, through available databases. This
knowledge will be used afterwards in the implementation of reliable IEDSS. The
portability of the software is provided by a common Java platform. In figure 2.15
there is a snapshot of the GESCONDA interface [48].
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FIGURE 2.15: Gesconda interface.

2.6 Evaluation metrics

The models with simple structure provide better generalization ability, but it may
not be easy to learn the issue. While in complex structure models learning can be
done easily, but it is slow and achieves poor generalization performance due to over-
fitting. The proposed models confirms that even though we keep the structure of our
models simple they obtain stable performance on training and prediction. The ulti-
mate aim was to fix the models for wind speed forecasting application with better
accuracy and minimal statistical error. The below given evaluation metrics are usual
evaluation metrics used in numerical predictions to select the models. The proposed
approach performance is analyzed based on the mean absolute error (MAE) and the
root mean square error (RMSE) evaluation metrics as well as the determination co-
efficient (R2) and explained variance (EV). Among the proposed different criterias,
a suitable of parameters for each model are proposed based on the minimum error
performance. The statistical error metrics employed for the best models are:

2.6.1 RMSE: Root mean squared error

In statistics, the mean squared error (MSE) or mean squared deviation (MSD) of
an estimator (of a procedure for estimating an unobserved quantity) measures the
average of the squares of the errors or deviations—that is, the difference between
the estimator and what is estimated. MSE is a risk function, corresponding to the
expected value of the squared error loss or quadratic loss. The difference occurs
because of randomness or because the estimator doesn’t account for information
that could produce a more accurate estimate [49].

The MSE is a measure of the quality of an estimator it is always non-negative,
and values closer to zero are better.

The MSE is the second moment (about the origin) of the error, and thus incor-
porates both the variance of the estimator and its bias. For an unbiased estimator,
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the MSE is the variance of the estimator. Like the variance, MSE has the same units
of measurement as the square of the quantity being estimated. In an analogy to
standard deviation, taking the square root of MSE yields the root-mean-square error
or root-mean-square deviation (RMSE or RMSD), which has the same units as the
quantity being estimated; for an unbiased estimator, the RMSE is the square root of
the variance, known as the standard deviation.

RMSEy,ŷ =

√√√√ 1
n

n

∑
j=1

(yj − ŷj)2 (2.13)

In numerical prediction analysis, the term mean squared error is sometimes used
to refer to the unbiased estimate of error variance: the residual sum of squares di-
vided by the number of degrees of freedom. This definition for a known, computed
quantity differs from the above definition for the computed MSE of a predictor in
that a different denominator is used. The denominator is the sample size reduced by
the number of model parameters estimated from the same data, (n-p) for p regres-
sors or (n-p-1) if an intercept is used.[50]

2.6.2 MAE: Mean absolute error

In statistics, mean absolute error (MAE) is a measure of difference between two con-
tinuous variables. Assume X and Y are variables of paired observations that express
the same phenomenon. Examples of Y versus X include comparisons of predicted
versus observed, subsequent time versus initial time, and one technique of measure-
ment versus an alternative technique of measurement.

The Mean Absolute Error is given by:

MAEy,ŷ =
1
n

n

∑
j=1
|yj − ŷj| (2.14)

The mean absolute error is one of a number of ways of comparing forecasts with
their eventual outcomes.

2.6.3 R2: Determination Coefficient

In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R
squared", is the proportion of the variance in the dependent variable that is pre-
dictable from the independent variable(s) [51].

It is a statistic used in the context of statistical models whose main purpose is
either the prediction of future outcomes or the testing of hypotheses, on the basis
of other related information. It provides a measure of how well observed outcomes
are replicated by the model, based on the proportion of total variation of outcomes
explained by the model [59, 50, 52].

There are several definitions of R2 that are only sometimes equivalent. One class
of such cases includes that of simple linear regression where r2 is used instead of
R2. When an intercept is included, then r2 is simply the square of the sample corre-
lation coefficient (i.e., r) between the observed outcomes and the observed predictor
values. If additional regressors are included, R2 is the square of the coefficient of
multiple correlation. In both such cases, the coefficient of determination ranges from
0 to 1.
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FVU =
MSE(y, ŷ)

var[Y]
(2.15)

R2 = 1− FVU (2.16)

2.6.4 EV: Explained variance

In statistics, explained variation measures the proportion to which a mathematical
model accounts for the variation (dispersion) of a given data set. Often, variation is
quantified as variance; then, the more specific term explained variance can be used.

FVU =
∑(X− X̄)2

n− 1
(2.17)
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Chapter 3

Methodology description

In this chapter we present the methodology we propose to solve the wind speed
prediction problem we presented in the previous chapters for a specific atmospheric
reanalysis data of a wind farm in Spain. We will start by clearly explaining the main
idea and the intuition behind it. Then we will explain the data science methodology
we will apply such as the data understanding, data preparation steps that are to be
performed and finally the modeling proposals for the methodology.

3.1 General Idea

As stated in the previous chapter, there are several machine learning methods pro-
posed in the literature to solve the wind prediction problem.

We believe that combined forecasting methodologies, which follow a different
approach and produce the final forecast generally from the combination of single
approaches, can be a more viable solution for improving the accuracy of the individ-
ual single models.

Also we know that the wind data used in the training process of the forecast-
ing models is of significant importance in terms of accuracy of forecasting model
and computational time. In the literature, prediction accuracy is often reported as
proportional to the amount of input data and computational time. However, it can
be possible to obtain good prediction accuracy while utilizing only a subset of the
data, following by a reduction in required time of prediction process. In this sense,
grouping the wind data according to the similarities between the observations and
filtering the similar groups in order to determine the most relevant input parameters
is a widely preferred method for this objective.

Most applied methods to Wind Speed prediction found on the literature used
physical model approaches or some statistical approaches. Here in this work several
data-driven approaches will be explored using several machine learning techniques.
Therefore a data science project emerge in our work.

3.2 Data Science Methodology

In this chapter the use of the standard data science methodology is proposed for the
Wind Speed prediction.
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FIGURE 3.1: Data Science methodology.

As shown in the figure 3.1 the main steps are: Business and data understanding,
data preparation, modeling, evaluation and finally results interpretation or deploy-
ment.

3.3 Business and Data understanding

Before working with the data we need to understand the problem which was deeply
analyzed in previous chapters. Thus, we will use some visualization techniques to
help us understand the data content, assess the quality of the data and discover some
initial insights into the data. We will describe the amount of data we have to work,
verify data types, data quality, check if we have some missing values, error values,
inconsistence, etc. We will perform all this data understanding tasks by means of a
data science tool developed in the UPC called GESCONDA previously described in
chapter 2.

3.4 Data preparation

The data preparation stage comprises all activities used to construct the data set that
will be used in the modeling stage. These include data cleaning, combining data
from multiple sources and transforming data into more useful variables. Moreover,
feature engineering and text analytics may be used to derive new structured vari-
ables, enriching the set of predictors and enhancing the model’s accuracy.

In this stage, as we can see in the figure 3.2 we will prepare the data by selecting
the right data to work with, selecting features, performing some cleaning, filling the
missing values and correcting the data errors to be able to proceed to the modeling
stage.
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FIGURE 3.2: Data preparation.

3.4.0.1 Data Cleaning

Missing data may be due to some equipment malfunctioning or inconsistency with
other recorded data, and thus can exist deleted data or not entered ones. Due to
misunderstanding certain data may not be considered important at the time of entry.
It is important to note that, a missing value may not always imply an error.

In this work, we propose to complete the missing values by replacing them with
the mean estimated by the 2 previous and 2 past observation for the same time range,
this in order to not discard these available information about the pressure tempera-
ture and wind components.

3.4.0.2 Data Transformation

Data Transformation can involve the following tasks:

• Smoothing: remove noise from the data, including binning, regression and
clustering

• Aggregation

• Generalization

• Normalization

• Attribute construction.

In this work we will normalize the data by standardization. Normalization of a
dataset is a common requirement for many machine learning estimators: they might
behave badly if the individual feature do not look like standard normally distributed
data (e.g. Gaussian with 0 mean and unit variance).

For instance many elements used in the objective function of a learning algorithm
(such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers
of linear models) assume that all features are centered around 0 and have variance
in the same order. If a feature has a variance that is orders of magnitude larger that
others, it might dominate the objective function and make the estimator unable to
learn from other features correctly as expected.

3.4.0.3 Data selection

Since the data provided comes from a data reanalysis and knowing that we have
data from the 4 points surrounding one wind farm we will perform some feature
weighting techniques to find our whether there exists some irrelevant variables in
an attempt to reduce computational cost when performing our experiments.
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3.5 Modeling

Starting with the first version of the prepared data set, data scientists use as train-
ing set historical data in which the outcome of interest is known to develop predic-
tive models using the analytic approach already described. The modeling process
is highly iterative. The steps of the modeling phase will be selecting the modeling
techniques, selecting the data types available for analysis, selecting an algorithm or
a model, defining the modeling goals, stating specific modeling requirements and
finally building the model and training the model.

As we explained before in our general idea we plan to explore several methods
used for Wind speed prediction divided in two main groups, global models and
local models.

In the following figure 3.3 we can see the high level diagram of the proposed
methodology, how we plan to define our global models and our local models.

FIGURE 3.3: High Level design of the proposed methodology.

3.5.1 Global models

In the figure 3.4 we can see the proposed Global modeling.
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FIGURE 3.4: Global modeling methodology proposed.

After different tests to select the best global models we decided to work with
specifically Random Forest, K-nearest neighbors, Artificial Neural Networks and
Ensemble of the three mentioned for the numerical prediction of the wind speed.

3.5.1.1 Single Models

As single models we selected to work with ones shown in figure 3.5.

FIGURE 3.5: Single models.

3.5.1.1.1 K Nearest Neighbor model

K Nearest Neighbor is one of those algorithms that are very easy to understand but
works incredibly well in practice. It is also one of the top 10 data mining algorithms.

K nearest neighbors is an algorithm that stores all available cases and predict the
numerical target based on a similarity measure (e.g., distance functions). KNN has
been used in statistical estimation and pattern recognition already in the beginning
of 1970’s as a non-parametric technique.

For the selection of the KNN algorithm for our second global model we thought
about following reasons:

• It’s 100% nonparametric
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• It’s local, so it can pick up on weird systematic but localized features of data
without structural breaks or mixtures

For the same reason, it works on arbitrarily nonlinear data, is a simple model but yet
powerful.

3.5.1.1.2 ANN model

Artificial Neural Networks can model nonlinearities, which one would need to ex-
plicitly model using transformations in linear regression. ANNs are able to model
complex relationships, and thus, it could be a good candidate approach to model the
complex wind speed prediction problem.

3.5.1.2 Combined Models

As combined models we selected to work with ones shown in figure 3.6.

FIGURE 3.6: Combined models.

3.5.1.2.1 Random Forest model

We know decision trees do a great job at capturing the non-linearity in the data by
dividing the space into smaller sub-spaces depending on the problem and in this
case since we have a numeric dataset we find very useful to have the decision trees
capabilities.

• We want to use something more interpretable, something that trains faster and
performs pretty much just as well as the Logistic Regression or even Neural
Networks.

• Much faster to train versus simple neural networks for comparable perfor-
mance.

• Easily interpretable, suitable for variable selection

• Fairly robust on smaller datasets

• Decision Trees and Decision Tree Learning are simple to understand

3.5.1.2.2 Ensemble model

In the following figure 3.7 we can see the proposed methodology for the combined
ensemble modeling.
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FIGURE 3.7: Ensemble methodology proposed.

Ensemble model combines multiple ’individual’ (diverse) models together and
delivers superior prediction power.

Basically, an ensemble is a supervised learning technique for combining multiple
weak learners/ models to produce a strong learner. Ensemble model works better,
when we ensemble models with low correlation.

Bagging (Bootstrap Aggregating) is an ensemble method. First, we create ran-
dom samples of the training data set (sub sets of training data set). Then, we build a
classifier for each sample. Finally, results of these multiple classifiers are combined
using average or majority voting. Bagging helps to reduce the variance error. We
will use a form of bagging ensemble method except for the random samples part
where we will use the whole training set to build and train each of our global mod-
els and then finally average the output.

There are two major benefits of Ensemble models:

• Better prediction

• More stable model

Combining multiple predictions generated by different algorithms would nor-
mally give better predictions. It is due to the diversification or independent nature
as compared to each other. For example, the predictions of a random forest, a KNN,
and a ANN may be combined to create a stronger final prediction. The key to creat-
ing a powerful ensemble is model diversity. In general, we assume equal weight for
all models and taking the average of predictions.

3.5.2 Local models

As it will be detailed in the next chapter, after a clustering analysis of our data, it
was found that the most reasonable number of groups was three. Notwithstanding,
as it will be explained, the separation of the three clusters was not very good.

The intuition behind it is that training a model with more similar elements would
give a more specialized model for those kind of data. As it was shown in [53] the
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results of the experiments showed that the meta-case retrieval with multiple case
libraries approach improved the standard case retrieval with only one library.

In the following figure 3.8 we illustrate this main idea where we have one Local
Model (LM) for each of the cluster of our dataset.

FIGURE 3.8: Methodology intuition.

In this figure 3.9 we can see the local modeling methodology proposed.
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FIGURE 3.9: Local modeling methodology proposed.

After different tests to select the best k for separating the data into different clus-
ters we decided to work with the k=3 specifically because this division would make
sense in terms to the relation between temperature and wind speed, dividing the
data into the ones with low temperatures, the ones with high temperature and the
ones medium temperatures. These also related with the seasons. For example dates
from Winter and Fall were group together and Summer and Spring also grouped to-
gether. And finally, the third would have a little of both for the medium temperature
days.

3.5.2.1 Clustering model

We selected to work with the K-means algorithm for the creation of the clusters for
the building of our local models. We selected the algorithm based on its advantages:

• practically work well even when some assumptions of balanced cluster are
broken such as size within the dataset, joint distribution of features within
each cluster is spherical, clusters have similar density.

• simple and easy to implement,

• easy to interpret the clustering results,

• fast and efficient in terms of computational cost, typically O(K ∗ n ∗ d).
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3.6 Evaluation

In this step of the methodology we proceed to the interpretation of the results, eval-
uation and validation.

Model Evaluation is an integral part of the model development process. It helps
to find the best model that represents our data and how well the chosen model will
work in the future. Evaluating model performance with the data used for training
is not acceptable in data science because it can easily generate overoptimistic and
overfitted models. There are two common methods of evaluating models in data
science: Hold-Out and Cross-Validation. To avoid overfitting, both methods use a
test set (not seen by the model) to evaluate model performance.

During the training we use the cross-validation method to choose among all the
models the best one, and finally we Hold-out 20% of the dataset to use as unseen
observations to perform our final testing.

During the testing we use different evaluation measures to be able to compare
the performance between the different models.

After building a number of different numerical prediction models, there is a
wealth of criteria by which they can be evaluated and compared. The evaluation
metrics used will be RMSE, MAE, R2 and EV which were described in previous
chapters.

Root Mean Squared Error
RMSE is the most used formula to measure the error rate of a numerical predic-

tion model. However, it can only be compared between models whose errors are
measured in the same units.

Mean Absolute Error
The mean absolute error (MAE) has the same unit as the original data, and it can

only be compared between models whose errors are measured in the same units. It
is usually similar in magnitude to RMSE, but slightly smaller.

Coefficient of Determination
The coefficient of determination (R2) summarizes the explanatory power of the

numerical prediction model and is computed from the sums-of-squares terms.
R2 describes the proportion of variance of the dependent variable explained by

the numerical prediction model. If the numerical prediction model is “perfect”, SSE
is zero, and R2 is 1. If the numerical prediction model is a total failure, SSE is equal
to SST, no variance is explained by regression, and R2 is zero.

Explained variance
Explained variation measures the proportion to which a numerical prediction

model accounts for the variation (dispersion) of a given data set. The usual defini-
tion of the coefficient of determination above explained is based on the fundamental
concept of explained variance.
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Chapter 4

Methodology application

In this chapter we present the application of the methodology that we previously
described in order to explore the benefits of several approaches like global models
vs local models and single models vs combined models.

4.1 Data Understanding

In order to test the proposed combined approach, we have carried out a number
of experiments, which use real data from one wind farm in Spain, whose location
is shown in Figure 4.1. The same as used in a previous paper [54] and which was
provided by one of the authors for further research using reanalysis data feasibility
in wind speed prediction.

FIGURE 4.1: The Wind farm considered for the experiments. The
four closest nodes from the Era-Interim reanalysis database (where
predictive variables are calculated) are also displayed in the picture

(Extracted from [55]).

The peculiarity of the predictive variables considered for this problem of wind
power prediction in 4.1 is that these predictors are reanalysis predictive variables as
explained in chapter 2.

That means that these variables come from a reanalysis project, which consists
of combining past observation with a modern meteorological forecast model. In this
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TABLE 4.1: Predictive variables considered at each node from the
ERA-Interim reanalysis (Extracted from [55]).

Variable Name ERA-Interim variable

skt surface temperature
sp surface pressure
u10 zonal wind component (u) at 10m
v10 meridional wind component (v) at 10m
temp1 Temperature at 500hPa
up1 zonal wind component (u) at 500hPa
vp1 meridional wind component (v) 500hPa
wp1 vertical wind component (!) at 500hPa
temp2 Temperature at 850hPa
up2 zonal wind component (u) at 850hPa
vp2 meridional wind component (v) at 850hPa
wp2 vertical wind component (!) at 850hPa

way, the information registered in the past is improved, producing regular gridded
datasets of many atmospheric and oceanic variables, with a temporal resolution of
few hours. The reanalysis projects usually extends over several decades and cover
the entire planet. There are several current reanalysis projects at global scale, but
maybe the most important one is the ERA-Interim reanalysis project, produced by
the European Centre for Medium-Range Weather Forecasts (ECMWF), and which is
used in this work. The main characteristics of the model are that the spatial resolu-
tion of the data set is approximately 15 km, on 60 vertical pressure levels from the
surface up to 0.1 hPa. Moreover, Era-Interim provides 6-hourly atmospheric fields
on model levels, pressure levels, potential temperature and potential vorticity. In
order to tackle the wind power prediction in this work, we consider wind, pres-
sure and temperature variables from ERA-Interim at four points around one specific
wind farm under study.
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FIGURE 4.2: Atmospheric Pressure levels

The predictive variables presented in the table 4.1 are taken at different pressure
levels (surface, 850 hPa, 500 hPa) as we can see in the figure 4.2. As a result, we have
12 predictive variables per four point around the wind farm considered, at time t.
This give a total of 48 predictive variables [55].

Some of the predictive variables also include wind components in order to un-
derstand what wind components are they are shown in figure 4.3
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FIGURE 4.3: Wind Components

Summarizing, the initial dataset matrix has 22.815 rows and 55 variables in the
original data matrix with observations ranging from 23/11/1995 to 17/02/2013. The
variables are the 48 variables coming from the reanalysis, and the hour, date, month,
year, wind power, wind direction and wind speed. The wind speed variables is the
variable of interest, which we try to predict.

4.2 Data Preparation

The data available for this wind farm ranges from 23/11/1995 to 17/02/2013. Note
that we only kept data every 6 hours (00h, 06h, 12h and 18h), to match the predictive
variables from the ERA-Interim to the objective variables.

4.2.1 Data cleaning

During the data analysis we discovered that some values in the original data matrix
for Wind speed, direction and power were missing 4.4 by having the first two -99
value and power value empty.
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FIGURE 4.4: Missing values in the data.

To complete the dataset we proceed to replace this missing values with the mean
estimated by the 2 previous and 2 past observation for the same time range, this in
order to not discard these available information about the pressure temperature and
wind components.

However only the wind speed variable was considered in the study, the other
two variables such as the direction and power were removed from the dataset.

ws(t) = (ws(t− 1) + ws(t− 2) + ws(t + 1) + ws(t + 2))/4 (4.1)

where t is the same time range (i.e.: 00 , 06, 12, 18).
As part of the cleaning process we decided to remove some of the variables that

were not used during the experimentation, as such we decided to discard after some
testing the hour, date, month and year (see Appendix tables A) of the observations
and also the direction and power of the wind. Thus finally, a set of 49 variables were
used.

4.2.2 Data Transformation

Normalization of data is essential as the variables used for the study are of differ-
ent units. Therefore, the data are scaled within the range 0–1 using the Scikit-learn
library for python language, specifically the StandardScarler class.

c l a s s sk learn . preprocess ing . StandardScaler ( copy=True ,
with_mean=True , with_std=True )

The class standardize features by removing the mean and scaling to unit vari-
ance.

Centering and scaling happen independently on each feature by computing the
relevant statistics on the samples in the training set. Mean and standard deviation
are then stored to be used on later data using the transform method.

4.2.3 Data Selection

In this step we applied the Unsupervised Entropy-based algorithm to calculate each
of the 48 variables weights. With this process we expected to learn whether there are
any irrelevant variables among the 48 previously described.

After running the algorithm we obtained the resulting weights in table 4.2. In
it we can see that each cell contains the group of the same variable for the 4 points
surrounding the wind farm. With this results we can see each variable seems to be
equally relevant with the ones from the other points, for example the pressure in sur-
face for the 4 points obtains almost the same weight, going from 9.5 for the 1st point
to 10 to the 4th point. The same happens for the predictive variable temperature at
500 hpa for the 4 points, going from 8.6 for the 1st point to 8.7 for the last point. It
happens the same for each of the 12 predictive variables.
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With this experiment we can hypothesize that running the predictive models
over the 48 predictive variables could give the same results than running the same
model with only a subset of the dataset using just the 12 predictive variables for one
of the 4 points.

TABLE 4.2: Predictive variables weights calculated by UEB-1 algo-
rithm

Name Weight Name Weight Name Weight Name Weight

skt-4 10.00 up1-4 5.12 sp-4 4.45 vp2-1 3.19
skt-3 9.91 up1-3 4.99 sp-2 4.44 vp2-3 3.12
skt-2 9.58 up1-2 4.86 u10-1 4.33 vp2-2 3.10
skt-1 9.51 up1-1 4.75 u10-2 4.31 vp2-4 3.02
temp2-2 8.70 vp1-2 4.68 up2-2 3.91 wp2-2 1.69
temp2-4 8.66 vp1-1 4.65 up2-1 3.90 wp2-1 1.69
temp2-1 8.65 vp1-4 4.60 up2-3 3.81 wp2-3 1.61
temp2-3 8.63 vp1-3 4.57 up2-4 3.80 wp2-4 1.56
temp1-3 7.97 u10-3 4.56 v10-2 3.63 wp1-3 0.03
temp1-1 7.95 u10-4 4.55 v10-1 3.58 wp1-4 0.02
temp1-4 7.93 sp-3 4.48 v10-4 3.45 wp1-1 0.01
temp1-2 7.91 sp-1 4.46 v10-3 3.41 wp1-2 0.00

The further experimentation has confirmed this hypothesis as shown in tables
4.3 and 4.4 where we tested using Random Forest and kNN with their default pa-
rameters using 48 variables vs 12 from one point.

TABLE 4.3: RandomForest feature selection results

N of features Score time RMSE MAE R2 EV

48 0.048 2.73 2.06 0.676 0.679
12 0.027 2.76 2.12 0.63 0.63

TABLE 4.4: KNeighbors selection results

N of features Score time RMSE MAE R2 EV

48 11.28 2.93 2.22 0.62 0.63
12 3.32 2.93 2.23 0.59 0.59

4.3 Modeling

In this step of the work we proceed to train our models for comparing their perfor-
mance.

For all experiments we will use the already preprocessed data, and we split the
dataset into 80% for training and 20% for testing. During the training we also pre-
form 10 cross-validation.
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In the following figure 4.5 we show the methodology to be used. We will first
proceed to train our global models and later the local models to finally compare the
testing performance of both.

FIGURE 4.5: Training process flowchart.

In the following figure 4.6 we can see how the testing will be performed.
For the remaining 20% of unseen observations that we saved for testing, the cor-

responding global model was used (kNN, ANN, RF, ensemble), or the local model,
where we proceed to assign the cluster class by calculating the distance to the pre-
viously calculated centroids and then we select the best model for that cluster either
being the local, global or ensemble to predict the final output.



54 Chapter 4. Methodology application

FIGURE 4.6: Testing process flowchart.

4.4 Global Models

In the following figure 4.7 we can see how the global models are going to be trained.

FIGURE 4.7: Global training process.

4.4.1 Single Models

4.4.1.1 K Nearest Neighbors Model

We use KNeighborsRegressor function from Scikit-learn which is a free software
machine learning library for the Python programming language to verify the effec-
tiveness of this method in this thesis.
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The KNeighborsRegressor function of Scikit-learn target is predicted by local in-
terpolation of the targets associated of the nearest neighbors in the training set.

c l a s s sk learn . neighbors . KNeighborsRegressor ( n_neighbors =5 ,
weights= ’ uniform ’ , algorithm= ’ auto ’ , l e a f _ s i z e =30 , p=2 ,
metr ic= ’ minkowski ’ , metric_params=None , n_jobs =1 , ∗∗kwargs )

Among them, n_neighbors represents the number of neighbors to take into ac-
count when performing the local interpolation.

We performed k=10 fold cross-validation run over 18.252 observations ranging
from 23/11/1995 to 17/02/2013 which represents the 80% of the dataset. For each
kfold 16.426 samples are randomly selected as training set and 1.816 as validation
samples. We HOld-out 20% of the observations to later perform the testing phase on
the unseen observations.

The main approach for the selection of parameters was trial and error and after
some evaluation trial we came up with the best parameters presenting their partic-
ular results in the following table.

We present now the table 4.5 containing the cross-validation mean results of the
training experiments performed in order to select the best kNN model based on the
selection of the k.

TABLE 4.5: KNeighbors CV training results under different ks taking
into account all 12 predictive variables for 1 point.

K Score time RMSE MAE R2 EV

3 2.86 3.08 2.35 0.54 0.55
5 3.32 2.93 2.23 0.59 0.59
8 3.27 2.86 2.18 0.61 0.61
10 2.70 2.84 2.16 0.61 0.62
25 3.45 2.83 2.16 0.62 0.62

In this table 4.5, MAE is short name for Mean Absolute Error and RMSE is the
short name for Root Mean Square Error, R2 is short name for Determination Coef-
ficient and EV short name for Explained Variance as explained in previous chap-
ter. We can see from the results that for 8, 10 and 25 the improvement is minimal
although the computation time tends to increase so for our best k we will choose
k=10.

The model was then verified using a test sample of 20% of unseen observations.
Figure 4.8 shows wind speed prediction of the test set of 20% unseen observations
versus the actual wind speed of those observations.
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FIGURE 4.8: KNN Test Prediction

Figure 4.8 shows the kNN algorithm for wind speed prediction is feasible, and
the table 4.5 also lists the mean absolute error and root mean square error under
different number of selected k neighbors. We only show the results of applying the
standard euclidean distance.

TABLE 4.6: KNN test results for 20% unseen data taking into account
all 12 predictive variables for 1 point

Time RMSE MAE R2 EV

1.71 2.90 2.17 0.62 0.62

4.4.1.2 Artificial Neural Network Model

A feed forward neural network with backpropagation algorithm is implemented us-
ing Class KerasRegressor function from Scikit-learn which is a free software machine
learning library for the Python programming language for the prediction model.
Training is performed in batch mode of 500 with 200 epochs.

The database is constructed with the 18-year data from November 1995 to Febru-
ary 2013 as mentioned before. From this whole set of data 80% is used for training
the neural network with k=10 fold cross-validation and 20% is used for testing the
model.

One of the most vital tasks in constructing the ANNs is the choice of the num-
ber of hidden layers and the number of neurons. In this study, a number of tests are
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performed by varying the number of hidden layers and the number of neurons in the
hidden layer. Finally we decided to only work with one hidden layer and further test-
ing was conducted to choose the number of neurons of that hidden layer obtaining the
following results shown in the table 4.7.

TABLE 4.7: ANN CV training results under different units taking into
account all 12 predictive variables for 1 point.

Units RMSE

1 4.27
2 3.08
3 3.09
4 2.80
5 2.77
6 2.76
7 2.75
8 2.76
9 2.72
10 2.72
11 2.72
12 2.70
13 2.71
14 2.71
15 2.72
16 2.72
17 2.69
18 2.68
19 2.70
20 2.69
21 2.67
22 2.68
23 2.66
24 2.65

The rectifier ReLu function is used in the hidden layer and linear activation function
is used at the output layer. The optimum architecture is taken as 24 units in the hidden
layer by trial and error, when the root mean square error (RMSE) decreased gradually
and became stable, and the training and testing error produced satisfactory results.

The accuracy of the trained network is assessed in two ways: Firstly, the root
mean square error (RMSE) and mean absolute error (MAE) are determined and com-
pared, as well as the determination coefficient R2 and the explained variance EV.

The performance index for training of ANN is given in terms of root mean square
error (RMSE). The obtained values of RMSE, MAE, R2 and EV are given in Table 4.7

Secondly, the predicted wind speed output values are compared with the mea-
sured values. The results are presented in Figure 4.9 which shows the relative accu-
racy of the predicted wind speed output for the optimal model which is one hidden
layer with 24 units. The overall percentage error obtained from the tested results is
shown in table 4.8.
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FIGURE 4.9: ANN Test Prediction

Figure 4.9 shows the training performance curve of neural network. The accu-
racy of the trained network is tested against available wind speed output data for
20% unseen observations.

TABLE 4.8: ANN test results for 20% unseen data taking into account
all 12 predictive variables for 1 point

Time RMSE MAE R2 EV

0.02 2.67 2.04 0.68 0.69

The RMSE of the tested set obtained is 2.67. The RMSE and MAE are used to-
gether to diagnose the variations in the errors in a set of forecasts. The difference
between RMSE and MAE is insignificant indicating the variance in the individual
errors of the testing set is almost of the same magnitude.

Thus good, sufficient, and low values of error are obtained in testing the devel-
oped model for the prediction of wind speed output using neural networks. Figure
4.9 shows the magnitude of predicted wind speed.

4.4.2 Combined Models

4.4.2.1 Random Forest Model

We use RandomForestRegressor function from Scikit-learn which is a free software ma-
chine learning library for the Python programming language to verify the effective-
ness of this method in this work.
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The RandomForestRegressor function of Scikit-learn is used to establish the model
of random forest regression algorithm as follows:

klearn . ensemble . RandomForestRegressor ( n_est imators =10 ,
c r i t e r i o n = ’mse ’ , max_depth=None , min_samples_spl i t =2 ,
min_samples_leaf =1 , min_weight_ f rac t ion_ lea f = 0 . 0 ,
max_features= ’ auto ’ , max_leaf_nodes=None ,
min_impurity_decrease = 0 . 0 , min_impuri ty_spl i t=None ,
boots t rap=True , oob_score=False , n_ jobs =1 ,
random_state=None , verbose =0 , warm_start=Fa l se )

Among them, n_estimators represents the number of decision trees, and max_features
represent the number of features used in each node of the tree for which we selected
to work with the sqrt function. We decided to keep the other parameters as default
since the criterion MSE is already suitable for our problem.

To run these experiments of parameters selection we performed k=10 fold cross-
validation over 18.252 observations ranging from 23/11/1995 to 17/02/2013 that
represents the 80% of the dataset. We Hold-Out 20% of the observation to later
perform the testing phase on the unseen observations.

The main approach for the selection of parameters was trial and error and after
some evaluation trial we came up with the best parameters.

We then present table 4.9 which contains the results for different number of trees
for comparison purposes in order to select the best architecture for this global single
model.

TABLE 4.9: RandomForest training CV results under different deci-
sion trees taking into account all 12 predictive variables for 1 point

N of trees Score time RMSE MAE R2 EV

10 0.027 2.76 2.12 0.63 0.63
50 0.13 2.63 2.01 0.66 0.66
100 0.28 2.62 2.01 0.66 0.67
200 0.56 2.61 2.00 0.66 0.67
500 1.44 2.60 1.99 0.66 0.67

By looking at the previous table we can see that the best performance is achieved
by the model with 500 trees as number of estimators although the computation time
is almost triple than using 200 trees as estimators, and since the difference is only 1
point we chose to work with 200 trees as configuration for our RF global model.

We then proceed to validate the model by performing training/validation with
80% of the dataset and then test with a held out of 20% of unseen observation.

We present a graphic which compares the original output versus the predicted
ones for that specific model for Wind speed prediction.
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FIGURE 4.10: RandomForest Test Prediction

TABLE 4.10: RandomForest test results for 20% unseen data taking
into account all 12 predictive variables for 1 point

Time RMSE MAE R2 EV

0.34 2.66 2.01 0.68 0.69

It can be seen from the figure that the predicted wind speed is close to the actual
wind speed, so this method can be satisfactory applied to predict the Wind speed. As
a whole, the random forest algorithm plays a very important role for this application.
Figure 4.10 shows the random forest algorithm for wind power prediction is feasible,
and the table 4.9 also lists the mean absolute error and root mean square error under
different decision trees. This method has its certain superiority.

In table 4.9 MAE is short name for Mean Absolute Error and RMSE is the short
name for Root Mean Square Error, R2 is short name for Determination Coefficient
and EV is short name for Explained Variance, as presented in previous chapter.

4.4.2.2 Ensemble Model

To produce the results for the ensemble model we proceed to use the 3 previously
trained global models and output for each of the 20% unseen observations the mean
value of the 3 global models.

In the following table 4.11 and figure 4.11 we can check the performance of our
combined ensemble model.
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FIGURE 4.11: Ensemble Test Prediction

TABLE 4.11: Ensemble test results for 20% unseen data taking into
account all 12 predictive variables for 1 point

Time RMSE MAE R2 EV

21.98 2.56 1.95 0.71 0.71

4.5 Local Models

In the following figure 4.12 we can see the proposed training for the local models.
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FIGURE 4.12: Local training process.

In the first step to create the local models we needed to obtain the clusters.

4.5.1 Clusters

In this section we explain how we obtained the clusters with our dataset in order
train the Local Models, with the idea that if we use different clusters to train our local
models these will become more specialized in observations belonging to each cluster.

The KMeans function of Scikit-learn is used to group the data into different clus-
ters.

c l a s s sk learn . c l u s t e r . KMeans ( n _ c l u s t e r s =8 , i n i t = ’k−means++ ’ ,
n _ i n i t =10 , max_iter =300 , t o l =0 .0001 ,
precompute_distances= ’ auto ’ , verbose =0 , random_state=None ,
copy_x=True , n_ jobs =1 , algorithm= ’ auto ’ )

The main approach for the selection of the number of clusters was to test from
2 to 10 clusters and check the data to see if the interpretation of the partition made
some sense comparing the value of the temperature and wind speed for each. Finally
we concluded that for k=3 clusters the division of the data made the most sense
grouping by low, medium and high temperature and having low speed, medium
speed and high speed winds in each cluster. Notwithstanding, there was some over-
lapping among the elements of the three clusters, because they were not well sepa-
rated. Probably this means that the clusters in this dataset were not clearly defined,
and that there were not a radically different group observations from the others ones.

In the following figures 4.13 and 4.14 we can wee how the 3 clusters look like for
the training and testing sets.
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FIGURE 4.13: Train set clusters
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FIGURE 4.14: Test set clusters

In order to maintain the same number of observations from each cluster in the
testing set we proceed to first divide the whole data set into 3 clusters and then
created the test set using 20% of each cluster.

In the following table 4.12 we can check the number of observations belonging
to each cluster.

TABLE 4.12: Cluster partitions

Partition Total Cluster-1 Cluster-2 Cluster-3

Total 22.815 5.844 8.562 8.409
Train 18.252 4.675 6.850 6.727
Test 4.563 1.169 1.712 1.682

By checking manually the data in each cluster we can see that the cluster-1 con-
tains medium wind speed values ranging from 8 to 11 as shown in figure 4.15, then
cluster-3 contains high wind speed values ranging from 9 to 17 as shown in figure
4.17 and finally cluster-2 contains low wind speed values ranging from 2 to 6 approx
as shown in figure 4.16.
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FIGURE 4.15: Sample of Cluster-1 data

FIGURE 4.16: Sample of Cluster-2 data

FIGURE 4.17: Sample of Cluster-3 data

Now that we have our data separated in 3 clusters we can then proceed to train
our local models.

4.5.2 KNN Local models

In this section we show the results of a K nearest neighbor model for numerical pre-
diction using for training and testing each cluster separately.

We maintain the same methodology for the creation of the KNN global model in
creating the local model as well. We will use k=10 as the n of neighbors. We will also
use 80% of each cluster as training set and the remaining 20% of the data as unseen
observations for the final testing.

4.5.3 ANN Local models

In this section we show results of a Artificial neural network model for regression
using for training and testing each cluster separately.
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TABLE 4.13: Local KNN model test results for 20% unseen data taking
into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.17 2.73 2.08 0.62 0.62
Cluster-2 0.35 3.50 2.64 0.59 0.59
Cluster-3 0.32 2.38 1.81 0.56 0.56
Total-1-2-3 0.89 2.93 2.19 0.62 0.62

We maintain the same methodology for the creation of the ANN global model in
creating the local model as well. We will use one hidden layer and 24 units as the
architecture. We will also use 80% of each cluster as training set and the remaining
20% of the data as unseen observations for the final testing.

TABLE 4.14: Local ANN model test results for 20% unseen data tak-
ing into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.04 2.92 2.29 0.56 0.60
Cluster-2 0.01 3.39 2.58 0.61 0.62
Cluster-3 0.00 2.85 2.27 0.36 0.48
Total-1-2-3 0.07 3.08 2.39 0.39 0.57

4.5.4 Random Forest Local models

In this section we show results of a Random Forest model for numerical prediction
using for training and testing each cluster separately.

We maintain the same methodology for the creation of the Random Forest Global
model in creating the Local model as well. We will use 200 as the n of trees estimators
and the sqrt function as the max feature function. We will also use 80% of each cluster
as training set and the remaining 20% of the data as unseen observations for the final
testing.

TABLE 4.15: Local RF model test results for each cluster of 20% un-
seen data taking into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.06 2.50 1.94 0.68 0.70
Cluster-2 0.11 3.22 2.41 0.65 0.66
Cluster-3 0.12 2.16 1.69 0.64 0.64
Total-1-2-3 0.3 2.68 1.42 0.68 0.69

4.5.5 Ensemble Local models

In this section we show results of an Ensemble model for numerical prediction using
for training and testing each cluster separately.
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We maintain the same methodology for the creation of the Ensemble Global model
in creating the Local model as well. We will use the three previously trained local
models using 80% of each cluster as training set and the remaining 20% of the data
as unseen observations for the final testing.

TABLE 4.16: Local Ensemble model test results for each cluster of 20%
unseen data taking into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 1.18 2.45 1.89 0.69 0.69
Cluster-2 1.36 3.19 2.41 0.66 0.66
Cluster-3 1.33 2.18 1.70 0.63 0.63
Total-1-2-3 3.87 2.66 2.01 0.68 0.68
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Chapter 5

Discussion

In this chapter we will proceed to discuss the results obtained during the application
of the defined methodology explained in chapter 3.

First we will discuss the different performance between the Global models by
comparing the Single vs Combined proposed approaches. On a second step we
will compare the proposed Local models approach to the Global models previously
defined. Finally we compare all defined models to select the best one in terms of
computational time and minimal error obtained.

5.1 Comparison of Single vs Combined Models

In this section we compare the defined models for the global Model methodology
proposed, for which we selected two single numerical prediction models, which are
the kNN and ANN ones, and two combined numerical prediction models which are
the Random Forest and the ensemble model.

5.1.1 kNN

In order to be able to select the best k we based our experiments in trial and error
and finally concluded that the best k parameter was 10.

In the first set of experiments we proceed to test a global KNN model, trained
with the complete set of 80% of the data saved for training. In the following table 5.1
we can see that using the global model and testing it on the undivided 20% of unseen
observations will return a RMSE of 3.61 not as good as the other tested predictive
models.

TABLE 5.1: Global KNN model test results for 20% unseen data taking
into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

20% 2.37 3.61 2.77 0.41 0.42

5.1.2 ANN

We pursuit different approaches in order to select the best number of hidden layers
and units and finally concluded to keep a very simple 1 hidden layer network and
number of units using the N*2 approach which consist in multiplying the N number
of variables inputs by 2, with this approach we got the best performance.
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In the first set of experiments we proceed to test a global ANN model, trained
with the complete set of 80% of the data saved for training. In the following table 5.2
we can see that using the global model and testing it on the undivided 20% of unseen
observations will return a RMSE of 2.69 not as good as the other tested predictive
models but better than the kNN model. We have to keep in mind that ANN really
need large datasets to train and learn well the data representation. Maybe for this
case this is a limitation.

TABLE 5.2: Global ANN model test results for 20% unseen data tak-
ing into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

20% 0.02 2.69 2.04 0.68 0.68

5.1.3 Random Forest

In order to select the best parameters we based our testing in trial and error and
finally concluded that the best performance was achieved by using 200 tree estima-
tors.

In the following table 5.3 we can see that using the global model and testing it
on the undivided 20% of unseen observations will return a RMSE of 2.65, which is a
good value for this combined model.

TABLE 5.3: Global RF model test results for 20% unseen data taking
into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

20% 0.38 2.65 2.00 0.69 0.69

5.1.4 Ensemble

To produce the results for the ensemble model we proceed to use the 3 previously
trained global models and output for each of the 20% unseen observations the mean
value of the 3 global models.

In the following table 5.4 we can the see the model superiority achieving the best
results for the selected metrics, but on the downside we can see the large computa-
tion time it take to output the predictive results.

TABLE 5.4: Ensemble test results for 20% unseen data taking into ac-
count all 12 predictive variables for 1 point

Time RMSE MAE R2 EV

21.98 2.56 1.95 0.71 0.71
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5.1.5 Global comparison

Finally we can compare all the global models by side in shown table 5.5.

TABLE 5.5: Single vs Combined Models for 20% unseen data taking
into account all 12 predictive variables for 1 point

Approach Model Time RMSE MAE R2 EV

Single kNN 2.37 3.61 2.77 0.41 0.42
ANN 0.02 2.69 2.04 0.68 0.68

Combined RF 0.38 2.65 2.00 0.69 0.69
Ensemble 21.98 2.56 1.95 0.71 0.71

We can clearly see at table 5.5 that the Ensemble model has its superiority in
terms of minimal RMSE predictive error since it gets 2.56 comparing to the next best
one which is the Random Forest, which is also a combined method which obtains
2.65, but it has its down size when comparing the computation time. We can see
that ensemble model takes much longer than the other methods to obtain the final
output.

5.2 Comparison of Global vs Local Models

Based on the experiments results we can discuss the results separately for each of
the models since they seem to be really dependent on the model.

We explained in the previous chapters that the first set of experiments consisted
in creating global models, which we train with 80% of the data set and then tested
with 20% of unseen observations.

Later we obtained the train data and test data into 3 clusters using the K-means
algorithm and produced for each of the selected algorithms specialized models from
which we performed tests using each cluster.

In following sections we will proceed to compare the results for each of the se-
lected globals vs locals models.

5.2.1 k Nearest Neighbors

During the local modeling phase we tested the same kNN global model but on each
of the clusters and tested with the 20% unseen data, for which we can see the results
in following table 5.6.In there we can see that the cluster with more RMSE error is the
second cluster which is the one with low-medium temperatures, which is also the
same that gave the highest error for the RF global and local model, but accordingly to
what is expected we get the same error running the global model over the complete
20% and running the global model over the 20% but separately in each cluster. The
total RMSE error is 3.61.

Finally we proceed to train 3 different local KNN models each with one cluster
derived from the 80% of data used for training of the global models. We used the
same parameters of the global model for the definition of each of the local models.
This means all use k=10 neighbors for the regression. In the following table 5.7 we
can see the performance on each cluster has improved regarding when using the
global model. In cluster-1 for instance we can see that the RMSE error goes from
2.77 to 2.73 when using the local model, for cluster-2 the RMSE goes from 4.22 to
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TABLE 5.6: Global KNN model test results for each cluster of the 20%
unseen data taking into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.57 3.77 3.01 0.27 0.29
Cluster-2 0.75 4.22 3.23 0.40 0.44
Cluster-3 0.78 2.76 2.15 0.40 0.45
Total-1-2-3 2.10 3.61 2.77 0.41 0.42

3.50 and for cluster-3 the RMSE goes from 2.76 to 2.38 giving a total RMSE for the
complete 20% of 2.93 when using Local models vs the already mentioned 3.61 giving
when using the Global model.

So we can state that for the kNN using the more specialized local models really
improves the performance of the prediction.

This result only applies to the K nearest neighbor model.

TABLE 5.7: Local KNN model test results for 20% unseen data taking
into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.17 2.73 2.08 0.62 0.62
Cluster-2 0.35 3.50 2.64 0.59 0.59
Cluster-3 0.32 2.38 1.81 0.56 0.56
Total-1-2-3 0.89 2.93 2.19 0.62 0.62

5.2.2 ANN

During the local modeling phase we tested the same ANN global model but on each
of the clusters created with the 20% unseen data, for which we can see the results
in following table 5.8.In the table we can see that the cluster with more RMSE error
is the second cluster which is the one with low-medium temperatures, which is also
the same that gave the highest error for the RF and KNN global and local models.
Accordantly to what is expected we get the same error running the global model
over the complete 20% and running the global model over the 20% but separately in
each cluster, the total RMSE error is 2.69.

TABLE 5.8: Global ANN model test results for each cluster of the 20%
unseen data taking into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.00 2.57 2.00 0.66 0.68
Cluster-2 0.00 3.20 2.43 0.66 0.66
Cluster-3 0.00 2.18 1.68 0.63 0.63
Total-1-2-3 0.00 2.69 2.04 0.68 0.68
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Finally we proceed to train 3 different Local ANN models each with one cluster
derived from the 80% of data used for training of the global models. We used the
same parameters of the global model for the definition of each of the local models.
This means the same 1 layer with 24 units architecture for the prediction. In the
following table 5.9 we can see the performance on each cluster has not improved
the ones when using the global model. In cluster-1 for instance we can see that
the RMSE error goes from 2.57 to 2.79 when using the local model, for cluster-2 the
RMSE goes from 3.20 to 3.22 and for cluster-3 the RMSE goes from 2.18 to 2.36 giving
a total RMSE for the complete 20% of 2.81 when using Local models vs the already
mentioned 2.69 giving when using the Global model.

So we can say that for the ANN using the more specialized a.k.a local models
does not improve the performance of the prediction and we can argue that in the
case of using the cluster approach we are using much less data for the training which
is a key when training neural networks.

TABLE 5.9: Local ANN model test results for 20% unseen data taking
into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.04 2.79 2.16 0.60 0.61
Cluster-2 0.01 3.22 2.45 0.65 0.66
Cluster-3 0.00 2.36 1.86 0.57 0.59
Total-1-2-3 0.05 2.81 2.15 0.65 0.66

5.2.3 Random Forest

During the local modeling phase we tested the same RF global model but on each of
the clusters obtained and tested with the 20% unseen data, for which we can see the
results in following table 5.10. In this table 5.10 we can see that the cluster with more
RMSE error is the second cluster which is the one with low-medium temperatures,
but accordingly to what is expected we get the same error running the global model
over the complete 20% and running the global model over the 20% but separately in
each cluster. The total RMSE error is 2.65.

TABLE 5.10: Global RF model test results for each cluster of the 20%
unseen data taking into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.09 2.48 1.93 0.68 0.70
Cluster-2 0.13 3.18 2.40 0.66 0.67
Cluster-3 0.14 2.14 1.67 0.64 0.65
Total-1-2-3 0.36 2.65 2.00 0.69 0.69

Finally we proceed to train 3 different Local RF models each with one cluster
derived from the 80% of data used for training of the global models. We used the
same parameters of the global model for the definition of each of the local models. In
the following table 5.11 we can see the performance on each cluster has not improved
the ones when using the global model. In cluster-1 for instance we can see that the
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RMSE error goes from 2.48 to 2.50 using the local model, for cluster-2 the RMSE
goes from 3.18 to 3.22 and for cluster-3 the RMSE goes from 2.14 to 2.16 obtained
a total RMSE for the complete 20% of 2.68 when using local models vs the already
mentioned 2.65 giving when using the global model.

TABLE 5.11: Local RF model test results for each cluster of 20% un-
seen data taking into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 0.06 2.50 1.94 0.68 0.70
Cluster-2 0.11 3.22 2.41 0.65 0.66
Cluster-3 0.12 2.16 1.69 0.64 0.64
Total-1-2-3 0.3 2.68 1.42 0.68 0.69

5.2.4 Ensemble

During the local modeling phase we tested an ensemble model for which we used
the three previously defined local models (RF, kNN and ANN).We can see the results
in following table 5.13. In this table we can see that the cluster with more RMSE error
is the second cluster which is the one with low-medium temperatures, but contrary
to what is expected we get the more error running the local ensemble model over
the complete 20% than running the global ensemble model over the 20%. The total
RMSE error for the global ensemble model is 2.56 as can be seen in table 5.12 and on
the other hand the local ensemble model RMSE is 2.66 .

TABLE 5.12: Ensemble test results for 20% unseen data taking into
account all 12 predictive variables for 1 point

Time RMSE MAE R2 EV

21.98 2.56 1.95 0.71 0.71

TABLE 5.13: Local Ensemble model test results for each cluster of 20%
unseen data taking into account all 12 predictive variables for 1 point

Partition Time RMSE MAE R2 EV

Cluster-1 1.18 2.45 1.89 0.69 0.69
Cluster-2 1.36 3.19 2.41 0.66 0.66
Cluster-3 1.33 2.18 1.70 0.63 0.63
Total-1-2-3 3.87 2.66 2.01 0.68 0.68

5.3 Comparison among all Models

In this final comparison we want to compare all trained numerical predictive models
previously defined to finally be able to conclude which one achieved the best per-
formance in terms of minimal predictive error obtained and minimal computational
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time used.

TABLE 5.14: Comparison Among all Models for 20% unseen data tak-
ing into account all 12 predictive variables for 1 point

Group Approach Model Time RMSE MAE R2 EV

Single kNN 2.37 3.61 2.77 0.41 0.42
Global ANN 0.02 2.69 2.04 0.68 0.68

Combined RF 0.38 2.65 2.00 0.69 0.69
Ensemble 21.98 2.56 1.95 0.71 0.71
kNN 0.05 2.81 2.15 0.65 0.66
ANN 0.89 2.93 2.19 0.62 0.62

Local RF 0.3 2.68 1.42 0.68 0.69
Ensemble 3.87 2.66 2.01 0.68 0.68

As we can see in table 5.14 we finally put all results together. And besides the
improvement we obtained with the respect to the kNN global model when applied
corresponding local kNN models, still the best predictive performance in terms of
minimal predictive error was achieved by the Combined ensemble model, but in
terms of computational time the best model was the global ANN model.

The combined models global RF model, ensemble of global models, and the RF
local models have shown the best RMSE values (2.65, 2.56, 2.68). In addition, taking
a look to the MAE values, again they show the lowest values, and specifically the
Local RF model has the lowest MAE value. Given its low computational time cost is
one of the best candidates to be used for the wind speed prediction.

Analyzing the local modeling approach, it can be seen as we have outlined that
the three clusters were not clearly well defined, because the cluster-2 was formed
by days which probably, due to its chronological time (season) should belong to the
cluster with high temperatures, but its current temperatures were more similar to
another weather season. This cluster-2 has been more difficult to predict for the
local models. On the contrary, usually the other clusters (cluster-1 and cluster-3)
have been predicted with a lower error by local models. Thus, it can be concluded,
that the approach of using a local model for a well identified and defined group
of observations is a good one, when effectively this group of observations is well
defined.

Concretely, the kNN local models improve the error rates of the global kNN
model. Probably, it is due to the local nature of the kNN method. Regarding the
RF, probably it does not improve as a local models, because the local exploration of
the observations it is inherent to the nature of the several decision trees included in
the random forest combination model. Regarding the ANN local models probably
does not improve the error rates of the global ANN model, because the ANN method
requires a lot of data to be fully effective, and then, the local models, just for one part
of the observations is constraining the predictive power of the ANN approach.

Furthermore, it is worth to outline that a global model could have a RMSE value
lower than a combination of several local models. However, as the RMSE is an
average value, probably is more effective to use the best local model known for each
cluster, because the actual error could be lower in each cluster, and for the clusters
where the local models are not so good (like the cluster-2 in our dataset) to use the
global model.
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5.4 Benchmark comparison

As we stated in previous chapter 2 in section 2.1.4 there exists a relation between
wind speed prediction and generated wind power, so we believe we can compare
our results with the ones obtain in [55] since their results were obtained using the
same reanalysis data from the same wind farm in Spain.

We can see in following table 5.15 were EML (Extreme Machine Learning) and
GPR (Gaussian Process) methods were used for wind power prediction on reanalysis
data using the same 48 features as input, that they obtained 7.87 as RMSE error using
the EML approach and 5.86 as RMSE using GPR approach.

TABLE 5.15: Comparative best results of the wind power estimation
by the ELM and GPR. (Extracted from [55]).

Model RMSE MAE R2

48 features-ELM 7.87 6.49 0.41
48 features-GPR 5.86 4.41 0.67

Comparing the results obtained in [55] as we showed in 5.15 to our results dis-
cussed in previous section in table 5.14 we can see that all our models RMSE are
below half of their best error achieved except for the kNN global model which was
the highest RMSE error obtained of 3.6 and all them were obtained using only a sub-
set of the dataset as explained before 12 predictive variables from 1 point instead of
all 4 points surrounding the wind farm.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this study, we showed that wind speed can be predicted from available reanalysis
atmospheric data with error margin up to 2.6% using only 12 predictive variables of
one point instead of all 48 mentioned inputs with a global model.

We explored several predictive methods and grouped them for further compari-
son in two main groups: Global and Local models.

In this work we have applied a data science methodology to derive several ma-
chine learning methods, and to explore its suitability for wind speed prediction. We
have shown that using data selection techniques, like feature weighting, we can re-
duce the number of explicative variables from 48 to 12, reducing the complexity of
the models, at the same time that nearly maintaining the predictive accuracy.

The local modeling approach has been explored in this application, comparing
its performance against some global models. Moreover, several single models have
been compared against some combined models, like a Random Forest approach or
an ensemble of other models, with very good results.

In addition, it has been shown that the use of data-driven approaches to the
short-term wind speed prediction is suitable, and they provide with good predictive
models. In the literature, all models applied are usually physical models or purely
statistical models. Thus, this work is pioneering the use of machine learning models
for the wind speed prediction.

In the literature, we have found no models predicting the wind speed, but the
wind power. Both variables are positively correlated because as much wind speed
you have, more wind power is generated. Thus, comparing the RMSE error rates
obtained in our work for wins speed prediction, and assuming that the wind power
prediction would maintain the predictive rates, they outperform the RMSE rates
found in the literature, which are around RMSE values of 5-6.

The developed models offers a reliable indication of the wind speed to the spe-
cific selected wind farm by using the input variables such as temperature, pressure
and wind components.

The predicted wind speed output for the specific selected wind farm using the
ensemble combined model shows the best performance among all tested predictive
models. This model would be helpful for energy planners and the wind farm owners
for future planning and execution.

6.2 Future work

For future work, we are planning a further study to verify the usefulness of reanal-
ysis data as input for actual numerical predictions.
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It is possible to propose several ideas of ways in which the models could be
improved:

• Other model combinations, in this case we selected Random Forest and Ensem-
ble as combined approaches, where the Ensemble was a Combination between
RF, kNN and ANN, but other models could also be combined,

• In the feature selection we could also include Month, Hour and other seasonal
information which we discarded during our preprocessing cleaning phase,

• In the cluster approach we could also create clusters for different seasons,

• We could add some genetic algorithm for the selection of the best parameter of
each single model and then try combining these models.
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Appendix A

Complementary Experiment results

A.1 Wind Speed Prediction using all 48F+M+H

In this experiments we were trying to identify the relevance that the variables of
Month and hour had over the results, after several experiments since we noted that
not improve was a result of using that information as input we decided to remove
them form the dataset during the data preprocessing cleaning process.

A.1.1 RandomForest Results

To run this tests we used default parameters. We can see the results in table A.1.

TABLE A.1: RandomForest results using all 48F+M+H

48 F 48 F + M 48 F + H 48 F +M+H

Fit time: 12.354 12.485 12.439 12.921
Train CV RMSE = 1.146 1.142 1.138 1.136
Train CV MAE = 0.815 0.812 0.807 0.806
Train CV R2 = 0.944 0.944 0.944 0.945
Train CV EA = 0.944 0.944 0.944 0.945
score time: 0.044 0.041 0.038 0.040
Test CV RMSE = 2.744 2.743 2.738 2.737
Test CV MAE = 2.077 2.075 2.068 2.069
Test CV R2 = 0.674 0.674 0.675 0.675
Test CV EA = 0.677 0.677 0.678 0.678

A.1.2 kNN Results

To run this tests we used default parameters. We can see the results in table A.2.

A.1.3 ANN Results

For the architecture of the ANN we used a simple one layer neural network with
N*2 hidden units. We can see the results in table A.3.

A.2 Wind Speed Prediction with feature selection

In this experiments we were trying to identify the relevance that the variables based
on the calculated weights had on the final wind speed prediction, after several ex-
periments since we noted that no improve was a result of removing some variables
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TABLE A.2: kNN results using all 48F+M+H

48 F 48 F + M 48 F + H 48 F +M+H

Fit time: 0.165 0.147 0.177 0.156
Train CV RMSE = 3.000 3.003 3.012 3.014
Train CV MAE = 2.284 2.285 2.292 2.294
Train CV R2 = 0.614 0.613 0.611 0.610
Train CV EA = 0.621 0.620 0.618 0.618
score time: 0.919 0.944 1.040 1.050
Test CV RMSE = 3.778 3.783 3.788 3.790
Test CV MAE = 2.881 2.884 2.886 2.883
Test CV R2 = 0.385 0.384 0.382 0.382
Test CV EA = 0.399 0.398 0.397 0.397

TABLE A.3: ANN results using all 48F+M+H

48 F 48 F + M 48 F + H 48 F +M+H

Fit time: 5.669 7.051 3.489 4.795
Train CV RMSE = 2.726 2.713 2.708 2.712
Train CV MAE = 2.067 2.055 2.048 2.052
Train CV R2 = 0.681 0.684 0.686 0.685
Train CV EA = 0.682 0.685 0.686 0.685
score time: 0.177 0.177 0.094 0.102
Test CV RMSE = 2.771 2.757 2.750 2.757
Test CV MAE = 2.101 2.089 2.079 2.085
Test CV R2 = 0.668 0.671 0.673 0.671
Test CV EA = 0.671 0.674 0.675 0.674

from the input we decided to keep the 4 variables of a single point and remove the
other 3 point information form the dataset during the data preprocessing cleaning
process.

In order to select the best 12, 22 and 28 best features out of the total 48 we selected
from this table A.4 the first 12 which weight values are > 7.5, then the first 22 which
weight values are above > 4.5 and finally the first 28 which weight values are above
> 4.0, and combined them also with adding Hour and Month or removing hour and
month.

A.2.1 RandomForest Results

To run this tests we used default parameters. We can see the results in table A.5.

A.2.2 kNN Results

To run this tests we used default parameters. We can see the results in table A.6.
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TABLE A.4: Predictive variables weights calculated by UEB-1 algo-
rithm

Name Weight Name Weight Name Weight Name Weight

skt-4 10.00 up1-4 5.12 sp-4 4.45 vp2-1 3.19
skt-3 9.91 up1-3 4.99 sp-2 4.44 vp2-3 3.12
skt-2 9.58 up1-2 4.86 u10-1 4.33 vp2-2 3.10
skt-1 9.51 up1-1 4.75 u10-2 4.31 vp2-4 3.02
temp2-2 8.70 vp1-2 4.68 up2-2 3.91 wp2-2 1.69
temp2-4 8.66 vp1-1 4.65 up2-1 3.90 wp2-1 1.69
temp2-1 8.65 vp1-4 4.60 up2-3 3.81 wp2-3 1.61
temp2-3 8.63 vp1-3 4.57 up2-4 3.80 wp2-4 1.56
temp1-3 7.97 u10-3 4.56 v10-2 3.63 wp1-3 0.03
temp1-1 7.95 u10-4 4.55 v10-1 3.58 wp1-4 0.02
temp1-4 7.93 sp-3 4.48 v10-4 3.45 wp1-1 0.01
temp1-2 7.91 sp-1 4.46 v10-3 3.41 wp1-2 0.00

TABLE A.5: RandomForest results with feature selection

12F 22F 28F 12F+M+H 22F+M+H 28F+M+H

Fit time: 4.205 7.172 9.794 4.927 9.306 12.557
Train CV RMSE = 1.962 1.715 1.681 1.940 1.682 1.654
Train CV MAE = 1.422 1.230 1.204 1.406 1.205 1.182
Train CV R2 = 0.835 0.874 0.879 0.839 0.879 0.883
Train CV EA = 0.835 0.874 0.879 0.839 0.879 0.883
score time: 0.046 0.048 0.054 0.045 0.070 0.070
Test CV RMSE = 4.680 4.131 4.045 4.675 4.058 3.981
Test CV MAE = 3.652 3.174 3.117 3.647 3.109 3.056
Test CV R2 = 0.057 0.265 0.295 0.060 0.291 0.318
Test CV EA = 0.060 0.268 0.298 0.063 0.293 0.321

A.2.3 ANN Results

For the architecture of the ANN we used a simple one layer neural network with
N*2 hidden units. We can see the results in table A.7.
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TABLE A.6: kNN results with feature selection

12F 22F 28F 12F+M+H 22F+M+H 28F+M+H

Fit time: 0.066 0.071 0.109 0.067 0.116 0.197
Train CV RMSE = 3.972 3.428 3.329 3.928 3.404 3.337
Train CV MAE = 3.080 2.622 2.545 3.046 2.597 2.549
Train CV R2 = 0.323 0.496 0.525 0.338 0.503 0.522
Train CV EA = 0.323 0.496 0.530 0.339 0.503 0.528
score time: 0.260 0.884 0.642 0.441 1.951 1.067
Test CV RMSE = 4.888 4.302 4.181 4.846 4.278 4.178
Test CV MAE = 3.804 3.300 3.201 3.775 3.275 3.193
Test CV R2 = -0.029 0.204 0.247 -0.011 0.212 0.249
Test CV EA = -0.025 0.206 0.258 -0.008 0.214 0.260

TABLE A.7: ANN results with feature selection

12F 22F 28F 12F+M+H 22F+M+H 28F+M+H

Fit time: 16.582 2.629 3.044 2.986 3.765 4.159
Train CV RMSE = 4.632 4.093 4.051 4.589 4.063 4.014
Train CV MAE = 3.640 3.185 3.155 3.606 3.160 3.124
Train CV R2 = 0.080 0.281 0.296 0.097 0.292 0.309
Train CV EA = 0.081 0.282 0.297 0.097 0.293 0.310
score time: 0.094 0.189 0.324 0.440 0.579 0.657
Test CV RMSE = 4.637 4.104 4.071 4.598 4.087 4.042
Test CV MAE = 3.646 3.194 3.174 3.613 3.180 3.148
Test CV R2 = 0.075 0.276 0.287 0.090 0.282 0.297
Test CV EA = 0.078 0.279 0.291 0.094 0.284 0.301
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