
Universitat Politècnica de Catalunya
(UPC) – BarcelonaTech

in collaboration with

Universitat Oberta de Catalunya (UOC)

Bachelor’s Degree Thesis

Applications of Metaheuristics to the
Physical Internet

Author:

Quim Arnau Ortega

Supervisors:

Dr. Ángel A. Juan Pérez
Computer Science, Multimedia and
Telecommunication dept. at UOC

Dr. Pau Fonseca i Casas
Statistics and Operations
Research dept. at UPC

A thesis developed in the
Internet Computing & Systems Optimization (ICSO at UOC)

and submitted to the
Facultat d’Informàtica de Barcelona (FIB at UPC)

in fulfillment of the requirements for the
BSc in Informatics Engineering, Majored in Computing

January 23rd, 2018

http://www.upc.edu
http://www.upc.edu
http://www.uoc.edu
https://www.linkedin.com/in/quimarnau/
https://ajuanp.wordpress.com/
http://www-eio.upc.es/~pau/
http://dpcs.uoc.edu/wordpress/
http://fib.upc.edu
https://www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-degree-informatics-engineering
https://www.fib.upc.edu/en/studies/bachelors-degrees/bachelor-degree-informatics-engineering/curriculum/specializations/computing

iii

Abstract

Logistics is one of the backbones sustaining our way of living: the meals we order in a
restaurant, the products we buy in the supermarket just around the corner, the gifts we buy
in online retailers such as Amazon. Transportation is one of the critical processes in logistics,
which is estimated to be a burden between 5 and 15% of most countries’ GDP. Furthermore,
transportation systems have been increasingly growing for the last decades, in terms of the
weight and value of goods they ship. The U.S. case study is a clear example. However,
the transportation and distribution systems we currently pursue and use are inefficient and
unsustainable. The physical internet (PI) initiative was introduced in 2010 to cope with these
problems. It was inspired in the way the digital internet (DI) interconnects its heterogeneous
systems through data packets. Its main idea resides in using the so called π-containers: smart,
traceable, modular and reusable containers interconnected with IoT systems.

This thesis provides a starting point to link modern logistics systems such as the PI
with metaheuristics, a type of approximate algorithms widely used in the field of operational
research (OR). A realistic novel problem within the PI consisting in container transporta-
tion throughout a spoke-hub network is defined, analyzed and solved by different means.
A deterministic heuristic based on discrete-event simulation is proposed as a first approach
to address this problem. Then a biased randomization of the heuristic (BRH) is incorpo-
rated into a multi-start framework (BR-MS) to generate higher-quality solutions. Finally, our
methodology is extended to a metaheuristic, a variable neighborhood search (VNS) is used
to tackle this problem. Several computational experiments are carried out on a set of 20 new
benchmark instances, adapted from real road networks to illustrate the problem and compare
the performance of the solving approaches mentioned.

Keywords: logistics, distribution systems, physical internet, smart containers, IoT systems,
metaheuristics, operational research, container transportation, spoke-hub networks, heuris-
tics, discrete-event simulation, biased randomization, multi-start framework, variable neigh-
borhood.

v

Resum

La logística és un dels pilars que sustenta la nostra manera de viure: els àpats que demanem
en un restaurant, els productes que comprem al supermercat de la vora, els regals que de-
manem a les botigues en línia com Amazon. El transport és un dels processos crítics de la
logística, estimat com una càrrega entre el 5 i el 15% del PIB de molts països. A més, els
sistemes de transport han anat creixent cada vegada més en les últimes dècades pel que fa
al pes i el valor de les mercaderies que envien. El cas d’estudi dels EUA és un clar exemple.
Tanmateix, els sistemes de transport i distribució que perseguim i utilitzen actualment són
ineficients i insostenibles. La iniciativa internet físic (IF) es va introduir l’any 2010 per fer
front a aquests problemes. Es va inspirar en la forma en què l’internet interconnecta els seus
sistemes heterogenis a través de paquets de dades. La seva principal idea resideix a utilitzar
els anomenats π-containers: contenidors intel·ligents, que poden ser rastrejats, modulars i
reutilitzables, interconnectats amb sistemes IoT.

Aquesta tesi proporciona un punt de partida per vincular els sistemes logístics moderns
com l’IF amb les metaheurístiques, un tipus d’algorismes aproximats àmpliament utilitzats
en el camp de la investigació operativa (IO). Un problema original i realista entorn de l’IF,
que consisteix en el transport de contenidors a través d’una xarxa hub-and-spoke, és definit,
analitzat i resolt per mitjà de diferents mètodes. Es proposa una heurística determinista ba-
sada en la simulació d’esdeveniments discrets com a primer enfocament per abordar aquest
problema. A continuació, una aleatorització esbiaixada de l’heurística (BRH) s’incorpora a
un marc multi-start (BR-MS) per generar solucions de major qualitat. Finalment, la nostra
metodologia s’estén a una metaheurística, un variable neighborhood search (VNS) s’utilit-
za per afrontar aquest problema. Diversos experiments computacionals es duen a terme en
un conjunt de 20 noves instàncies de referència, adaptades de xarxes reals de carreteres per
il·lustrar el problema i comparar el rendiment dels diferents mètodes.

Paraules clau: logística, sistemes de distribució, internet físic, contenidors intel·ligents, siste-
mes IoT, metaheurístiques, investigació operativa, transport de contenidors, xarxes hub-and-
spoke, heurística, simulació d’esdeveniments discrets, aleatorització esbiaixada, marc multi-
start, variable neighborhood search.

vii

Resumen

La logística es uno de los pilares que sustenta nuestra manera de vivir: las comidas que pedimos
en un restaurante, los productos que compramos en el supermercado a la vuelta de la esquina,
los regalos que pedimos en tiendas en línea como Amazon. El transporte es uno de los procesos
críticos de la logística, estimado como una carga entre el 5 y el 15% del PIB de muchos países.
Además, los sistemas de transporte han ido creciendo cada vez más en las últimas décadas
en cuanto al peso y el valor de las mercancías que envían. El caso de estudio de EE.UU.
es un claro ejemplo. Sin embargo, los sistemas de transporte y distribución que perseguimos
y utilizamos actualmente son ineficientes e insostenibles. La iniciativa internet físico (IF) se
introdujo en 2010 para hacer frente a estos problemas. Se inspiró en la forma en que internet
interconecta sus sistemas heterogéneos a través de paquetes de datos. Su principal idea reside
en utilizar los llamados π-containers: contenedores inteligentes, que pueden ser rastreados,
modulares y reutilizables, interconectados con sistemas IoT.

Esta tesis proporciona un punto de partida para vincular los sistemas logísticos modernos
como el IF con las metaheurísticas, un tipo de algoritmos aproximados ampliamente utilizados
en el campo de la investigación operativa (IO). Un problema original y realista dentro del IF,
que consiste en el transporte de contenedores a través de una red hub-and-spoke, es definido,
analizado y resuelto por medio de diferentes métodos. Se propone una heurística determinista
basada en la simulación de eventos discretos como primer enfoque para abordar este problema.
A continuación, una aleatorización sesgada de la heurística (BRH) se incorpora a un marco
multi-start (BR-MS) para generar soluciones de mayor calidad. Finalmente, nuestra metodo-
logía se extiende a una metaheurística, un variable neighborhood search (VNS) se utiliza para
afrontar este problema. Varios experimentos computacionales se llevan a cabo en un conjunto
de 20 nuevas instancias de referencia, adaptadas de redes reales de carreteras para ilustrar el
problema y comparar el rendimiento de los diferentes métodos.

Palabras clave: logística, sistemas de distribución, internet físico, contenedores inteligentes,
sistemas IoT, metaheurísticas, investigación operativa, transporte de contenedores, redes hub-
and-spoke, heurística, simulación de eventos discretos, aleatorización sesgada, marco multi-
start, variable neighborhood search.

ix

Acknowledgements
Many thanks and gratitude to my supervisors, Dr. Ángel A. Juan and Dr. Pau Fonseca for
their support, trust and tireless advice. It’s been a pleasure to learn from your novel ideas
while developing this thesis.

I’d like to thank all my colleagues at the Internet Computing & Systems Optimization
(ICSO) research group, which have been incredibly supportive during my whole stay at IN3. I
really appreciate your help and warm reception, as not only you did introduce me to research
but taught me not to lose it when unexpected results went the other way. Special thanks to
Lluc Bové, Dr. Sara Hatami, Dr. Alejandro Estrada, Dr. Javier Panadero and Dr. Laura
Calvet.

Last but not least, I want to thank my family and close friends which kept laughing at
me every time I tried to explain what I’ve been doing these last months. There’s no better
way to find out that you still need to improve the way to communicate your work to others.

xi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Scope . 3
1.3 Goals . 3
1.4 Methodology . 4
1.5 Outline . 4

2 Background 7
2.1 The physical internet . 7

2.1.1 Goals . 7
2.1.2 The grand challenge . 8
2.1.3 Unsustainability symptoms . 8
2.1.4 The solution proposed . 10

2.2 Combinatorial optimization problems . 13
2.3 Optimization methods . 15

2.3.1 Heuristics . 16
2.3.2 Metaheuristics . 16
2.3.3 The variable neighborhood search metaheuristic (VNS) 18
2.3.4 Biased randomization of heuristics (BR) 19
2.3.5 A multi-start framework (MS) . 20
2.3.6 The geometric distribution . 21

3 Literature review 23
3.1 Physical internet . 23
3.2 Container distribution model . 24

4 Problem statement 27

5 Methodology 31
5.1 Solving approaches . 31

5.1.1 Heuristic . 31
5.1.2 Biased-randomized multi-start . 39
5.1.3 Biased-randomized variable neighborhood search 41

5.2 Creation of standardized instances . 43
5.3 Verification and validation (V&V) . 44
5.4 Implementation . 46

xii

5.4.1 Project structure . 46
5.4.2 Shortest paths computation . 50
5.4.3 Solution metrics . 50
5.4.4 Candidate’s selection in BR . 51

6 Computational experiments 53
6.1 Small test instances . 53
6.2 Benchmark standardized instances . 54

7 Results 57

8 Analysis and discussion 61

9 Management 69
9.1 Planning . 69
9.2 Budget estimation . 75
9.3 Modifications and deviations . 80
9.4 Legal aspects and regulations . 80

10 Sustainability and social commitment 81

11 Conclusions 83
11.1 Future work . 84
11.2 Competences justification . 87

A Network visualizations 89
A.1 Small test instances . 89
A.2 Benchmark standardized instances . 95

xiii

List of Figures

2.1 Modularity of π-containers. 10
2.2 Contextualizing the physical internet. 11
2.3 Classification of classical optimization methods. 14
2.4 Classification of global optimization methods. 15
2.5 Genealogy of metaheuristics. 16
2.6 Classification of most known metaheuristics. 17
2.7 Metaheuristics grouped by different criteria. 17
2.8 Variable neighborhoods search using two neighborhoods. 18
2.9 Uniform randomization and biased randomization. 19
2.10 Geometric and triangular STPDs for BRPs. 20

4.1 Representation of the container transportation network. 28
4.2 Representation of a solution for the problem. 28
4.3 Representation of a slightly different solution with timescale. 29

5.1 Scheme of the deterministic heuristic proposed. 34
5.2 Scheme of the container-related events step. 35
5.3 Scheme of the driver-related events step. 36
5.4 PartialSolution, BRHeuristic and VNSPI classes respectively inheriting from

Solution, Heuristic and VNS. 48
5.5 Route’s inheritance structure. 49
5.6 Node’s inheritance structure. 49

6.1 Example of a small hub-and-spoke network. 53
6.2 Network representation of instance pi-07 adapted from TCARP-R2. 55

8.1 Performance comparison showing the gaps of TT. 61
8.2 Performance comparison in terms of the computational time. 62
8.3 Performance comparison showing the gaps of ST. 62
8.4 Performance comparison with a greater number of iterations between small and

large instances. 63
8.5 Performance comparison between initial results and boosted ones. 63
8.6 Convergence of BR-MS and BR-VNS approaches for instance pi-02. 64
8.7 Comparison of six main characteristics between three solutions of instance pi-06. 65
8.8 Visualization of six characteristic from three solutions side by side. 66

9.1 Gantt chart of the final planning. 73

xiv

9.2 Gantt chart of the initial planning. 74

A.1 Network representation of small test instance-01. 89
A.2 Network representation of small test instance-02. 90
A.3 Network representation of small test instance-03. 90
A.4 Network representation of small test instance-04. 91
A.5 Network representation of small test instance-05. 91
A.6 Network representation of small test instance-06. 92
A.7 Network representation of small test instance-07. 92
A.8 Network representation of small test instance-08. 93
A.9 Network representation of small test instance-09. 93
A.10 Network representation of small test instance-10. 94
A.11 Network representation of instance pi-01 adapted from TCARP-R1. 95
A.12 Network representation of instance pi-02 adapted from TCARP-R2. 96
A.13 Network representation of instance pi-03 adapted from TCARP-R3. 97
A.14 Network representation of instance pi-04 adapted from TCARP-R4. 98
A.15 Network representation of instance pi-05 adapted from TCARP-R5. 99

xv

List of Tables

5.1 Networks’ characteristics summary. 43

6.1 Small test instances’ characteristics. 53
6.2 Benchmark instances’ characteristics. 54

7.1 Performance comparison optimizing the total time. 58
7.2 Performance comparison optimizing the shipping time. 59
7.3 Performance comparison of the search with a greater number of iterations. . . 60

8.1 Three solutions and their characteristics for instance pi-06. 65
8.2 Traditional route of a driver. 67

9.1 Groups of tasks with their duration. 70
9.2 Hardware resources budget. 76
9.3 Software resources budget. 76
9.4 Specialist dedication by task. 77
9.5 Human resources budget. 77
9.6 Indirect costs. 78
9.7 Incidental costs. 78
9.8 Cost by task. 79
9.9 Total budget. 79

10.1 Sustainability matrix. 82

xvii

List of Algorithms

1 Basic variable neighborhood search algorithm. 18
2 Basic multi-start algorithm. 20
3 Main procedure of the proposed heuristic. 37
4 Schedule container events step of the heuristic. 37
5 Schedule return events step of the heuristic. 38
6 Main procedure of the proposed BR-MS. 39
7 Schedule container events step of the BRH. 40
8 Main procedure of the proposed BR-VNS algorithm. 42
9 Java method to select next candidate in BRH. 51

xix

List of Abbreviations

BR Biased Randomization
BRP Biased-Randomized Procedure
BRH Biased-Randomized Heuristic
COP Combinatorial Optimization Problem
COPDI COP with Dynamic Inputs
CT Computational Time
DC Distribution Center
DES Discrete-Event Simulation
DI Digital Internet
IOT Internet Of Things
MCND Multi Commodity Network Design problem
MCS Monte-Carlo Simulation
MS Multi-Start
NP Nondeterministic Polynomial time
OOP Object-Oriented Programming
OR Operational Research
PFSP Permutation Flowshop Scheduling Problem
PI Physical Internet
PM Population-based Metaheuristics
RFID Radio-Frequency IDentification
SA Simulated Annealing
SCOP Stochastic COP
SM Solution-based Metaheuristics
ST Shipping Time
STPD Skewed Theoretical Probability Distribution
TCARP Time Capacitated Arc Routing Problem
TSP Traveling Salesman Problem
TT Total Time
VNS Variable Neighborhood Search
VRP Vehicle Routing Problem
WSAN Wireless Sensor and Actor Networks

1

Chapter 1

Introduction

Logistics is one of the pillars that sustain our lifestyle, in other words, it makes possible to
have a store full of fruits right in the corner, it also enables us to purchase almost any product
we can imagine on the Internet and have it at home in less than a couple of days [1].

We are surrounded by a huge offer of goods that had to be manufactured, transported,
stored and supplied. For instance, when we order a side dish in a restaurant all the ingredi-
ents needed had to be taken care in anticipation, that is, from the harvester that grows them,
to the chef that cooks for you, passing through the manufacturer and distributor. One of
the key aspects in that process is transportation. From an economical point of view, freight
transportation has an enormous cost in most developed countries, the U.S. is a clear example.
In 2014 purchases of transportation goods and services accounted for about 9% of U.S. gross
domestic product (GDP), the public and private sectors spent over $125 billion on trans-
portation construction and over 12 million workers were employed on this sector, representing
almost 9% of the nation’s labor force [2].

Furthermore, road transportation is the main way of transporting goods in Europe. In
2014 the share of European inland freight that was transported by road (74.9%) was more
than four times as high as the share transported by rail (18.4%), while the remainder (6.7%)
was carried along inland waterways [3].

Nonetheless, the transportations systems we are currently using are inefficient and unsus-
tainable [4]. Most countries’ worldwide logistics costs grow faster than world trade, represent-
ing a burden between 5 and 15 % of their GDP, as we have mentioned earlier. Greenhouse
gas emissions keep increasing even though drastic reductions are sought by governments in
Europe. For instance, the Paris agreement states to have a 20% cut in greenhouse gas emis-
sions compared with 1990 by 2020 [5]. However, freight transportation is one of the heaviest
greenhouse gas generator, energy consumer, polluter and material waster [1] and it hasn’t
stop growing so far [3]. Another symptom of the unsustainable system we currently have can
be seen from a social perspective: the precarious work conditions that truckers have to face
sometimes and more generally the logistics sector [6].

It seems more clear now the importance of logistics and more specifically the part that
road transportation takes. It is also noticeable the effort needed, in terms of research, inno-
vation, initiative, development and multidisciplinary collaboration among academia, industry
and government to turn around this situation, not with marginal small steps but with a grad-
ual change of paradigm. The margin of improvement — economically, environmentally and

2 Chapter 1. Introduction

socially speaking — is more than ensured if we are able to establish a new sustainable and
efficient transportation system.

The solution proposed by [7] is based on the physical internet (PI), a concept inspired in
the way data packets are transported on the digital internet (DI). To put it in a nutshell, the PI
pursues to address what the author calls the global logistics sustainability grand challenge, that
is, “to enable the global sustainability of physical object mobility, storage, realization, supply
and usage” using the DI as a metaphor and taking into account the differences between both
models.

The PI initiative is explored in this thesis and a specific realistic novel problem concerning
the transportation of containers in a spoke-hub network is tackled. The problem analyzed
consists in optimizing the transportation time of a set of containers, which have different origin
locations, final destinations and a deadline to fulfill. These containers can be temporarily
stored in a type of intermediate nodes called hubs. We dispose of a fleet of trucks that are
able to transport one container at a time, but also to load and unload different containers.
On the other hand, the drivers can only work for a limited number of hours and they need to
drive their trucks back to their original depots. It is already conspicuous that the cost will
need to be unambiguously defined and it is not so clear whether the main interest will be to
minimize the total time, because other criteria might arise as important.

1.1 Motivation

As stated before, the sector of logistics is not only relevant by its size but by its growth. The
U.S. Bureau of Transportation Statistics claims that “by 2040 long-haul freight truck traffic in
the United States is expected to increase dramatically on the National Highway System” [8]. In
[9] it is also claimed a freight transport growth of 37% from 2005 to 2025 in France. And this
trend is not only characteristic of France but of the whole OECD zone: “road freight transport
volume in the European Union is expected to grow 78% between 2000 and 2030 ” according to
[10].

A wide variety of companies, from the medium and small enterprises to the big multina-
tionals around the world need to plan their distribution routes. However all of them do it on
their own with their own resources: “they design, run and optimize independently their private
distribution networks, investing in Distribution Centers (DCs) or engaging in long-term leases
or contracts” [1]. There are 535,000 distribution centers in the U.S. only. However, most of
them are used by a single company and most companies use often a single DC and generally
less than 20. In [11] the potential of an open supply web, that is, an open network of shared
DCs, is studied and its performance improvements are reported. With this research seems
clear that there’s still so much to be done in so many aspects of logistics. This should serve
as motivation to keep supporting the PI initiative so that the grand challenge could be faced
and brought to reality.

So it is more than obvious that with this greater demand for road transportation comes
the need of innovative logistics approaches to make businesses successful reducing economic,
environmental and social negative impacts.

1.2. Scope 3

1.2 Scope

This thesis covers topics such as metaheuristics, logistics, artificial intelligence, operational
research and combinatorial optimization, among others. One of its strengths in the context
of the bachelor’s degree syllabus, and more specifically of our major, is that it is directly
related to some courses and topics taught, e.g., Algorithms, Artificial Intelligence, Numeric
Computation to remark some of the main courses.

It’s also important to specify what is in the scope of the project and what is beyond it.
We have mainly focused in the implementation of different techniques to solve this problem,
precisely three solving approaches are stated in section 1.3. To develop them it’s been nec-
essary to do a previous study on different topics such as the PI, similar routing problems, as
well as to the background theory underneath these techniques. This comprises the core of
the project, however, it’s also been necessary to test our algorithms with a set of instances,
that is, a set of computational experiments and the further analysis of the results. Because
there are not benchmark instances for this problem, as we haven’t found any related literature
solving it, it’s also part of the scope to generate our own ones.

The time spent on some tasks has varied according to the planning and the adjustments
needed. It is not our intention to perform a complex statistical analysis, but to quantify and
measure the performance of our algorithms and to compare them.

1.3 Goals

The purpose of this project is to solve the preceding problem by different means. For that
reason, the PI initiative has also been extensively studied, so that we can adapt its main
ideas, with regard to the transportation layer, in our solving approaches. To sum up, the set
of goals that we want to achieve are the following ones:

• Define a realistic novel container transportation problem in the context of the PI.

• Explore the PI concept through an extensive study of the related literature focusing on
the transportation layer of the whole initiative.

• Give sufficient background on combinatorial optimization problems and their most com-
mon optimization methods.

• Perform an exhaustive literature review on similar routing problems looking for already
given state-of-the-art solutions.

• Design and develop three different solving approaches:

1. A greedy deterministic heuristic algorithm based on discrete-event simulation.

2. A biased-randomized heuristic (BRH) within a multi-start framework (BR-MS).

3. A variable neighborhood search (VNS) metaheuristic with the use of the random-
ized heuristic.

4 Chapter 1. Introduction

• Create a set of standardized benchmark instances with different network and truck fleet
sizes.

• Perform several computational experiments, parameter fine-tuning and statistical anal-
ysis of the results.

1.4 Methodology

Because this work has been developed in the ICSO research group within the Open University
of Catalonia (UOC) we have followed the same methodologies and use most of the same tools
they usually use. Some other management tools and techniques have been suggested by our
tutor and adopted from the beginning, e.g., using an agile methodology, keep a canvas up to
date using Trello or any similar tool.

We decided to use Java as the programming language to develop our algorithms, because
it is their usual first choice and it seemed convenient to adopt an object-oriented programming
(OOP) language to represent the domain related to the problem. We’ve also used Python in
the process of adaptation and creation of the new instances, and R mainly for the analysis
of the results as well as for basic descriptive statistics. We’ve chosen Git as a version control
tool, and we have indistinctly used both OS systems, Windows 10 and Ubuntu 16.04. Notice
that we are uploading our code in 2 different repositories so that both supervisors can have
access to it.

This document has been written in LATEX because is the de facto standard for the commu-
nication and publication of scientific documents [12] and it has been shared with our supervi-
sors. To keep track of all the references we have used Mendeley and Biblatex because of their
easy integration with Overleaf, a collaborative writing and publishing system for academic
papers.

Monitoring tools

With regard to the project management, we have followed an agile approach, as suggested,
with 2-week duration sprints, so that short-term goals can be properly defined and scheduled
in the form of small tasks. This way we can ensure that any deviation on the plan is rapidly
detected and taken care of. In order to do so, we have used Microsoft team foundation server
(TFS) so that the supervisors are able to know at all time what are we working on, and how
is the project going forward. In some bigger projects involving more than one person it is
convenient to use specific agile methodologies, e.g., Scrum, Extreme programming, however,
as this is a solo project it is more than sufficient to make short cycles and make use of a
canvas.

1.5 Outline

The rest of the thesis is structured as follows. Chapter 2 provides the theoretical background
and context to the PI and to combinatorial optimization problems (COP) and it introduces

1.5. Outline 5

the solving methodologies used. The literature review on the PI and the problem defined will
be presented in Chapter 3. Chapter 4 will formally define the problem presenting an example
of instance and a feasible solution to it. The methodology used in our solving approaches,
their validation, implementation and the strategy to create standardized instances will be
explained in Chapter 5. Chapter 6 will describe the computational experiments performed.
The results of the experiments will be shown in Chapter 7. Chapter 8 will present a general
discussion and analysis of the results. Details on the project management will be given in
Chapter 9. Chapter 10 will discuss the sustainability-related issues of this study. Finally,
Chapter 11 will summarize the conclusions of this thesis remarking our contributions and
giving great importance to the opening of new threads and further lines of research.

7

Chapter 2

Background

The following section is dedicated to explain the context and background of the PI. It’ll
be mostly based on the works of B. Montreuil from 2010 until now. We still will make
textual quotations and in text cites when needed. However, we might adapt some texts of his
articles in order to summarize the main ideas. After that, a brief description in combinatorial
optimization problems will be given. Finally, the most common optimization approaches will
be reviewed.

2.1 The physical internet

The term physical internet (PI) appeared for the first time in June 2006 on the front page of
The Economist [13]. The article presented a survey of logistics but apart from the headline,
there was no further mention of the term. It was this set of articles that rose Montreuil’s
attention and curiosity for the term, which would lead to the publication of his first PI article
in 2010 [4].

As stated in [14] ”the PI is an open global logistics system founded on physical, digital and
operational interconnectivity through encapsulation, interfaces and protocols“, in other words,
it aims to enable an efficient, sustainable, adaptable and resilient Logistics web. This term
can be defined as the “set of openly interconnected physical, digital, human, organizational and
social agents and networks aiming to serve efficiently and sustainably the logistics needs of
people, organizations, territories and society” [1]. The Logistics web layer would play the role
of interface between the PI and the users of logistics services [15] and it would be compound
of 5 interconnected substructures: the realization web (production centers), the distribution
web (open warehouses and distribution centers), the mobility web (hubs, transits, movers and
other infrastructure), the supply web (open suppliers and subcontractors) and the service web
(open users and service providers) [1].

2.1.1 Goals

The author presents three perspectives from which the goals of the phisical internet could be
classified in:

• Economical: reduce the global economic burden in global logistics mentioned earlier,
while unlocking highly significant gains in production, transportation, and business
productivity.

8 Chapter 2. Background

• Environmental: reduce by an order of magnitude the direct and indirect logistics-induced
global pollution, including greenhouse gas emission and material waste, as well as energy
consumption.

• Societal: improve the working conditions in the logistic sector, as well as increase the
quality of life of the overall population by making much more accessible the physical
objects across the world.

2.1.2 The grand challenge

But it is necessary to begin with the actual picture of the current logistics system. The
author in [7] starts with the assertion that “the way physical objects are transported, han-
dled, stored, realized, supplied and used throughout the world is not sustainable economically,
environmentally and socially”. He termed this problem as the “global logistics sustainability
grand challenge”, and its goal is to “enable the global sustainability of physical object mobility
(transportation, handling), storage, realization (production, assembly, finishing, refurbishing
and recycling), supply and usage”.

The information and communication technologies community was once stuck due to mil-
lions of unconnected computers. When looking for a way to transform the current paradigm,
at that time they relied on a logistics metaphor: building the information highway. The key
enabler was the transmission of formatted data packets through heterogeneous equipment
following specific standards and protocols, having as a result an open and interconnected dis-
tributed network infrastructure. And it completely reshaped the way communication takes
place in the present.

Now the idea is to do the same in the other direction: the physical world should exploit
the DI metaphor in order to interconnect a distribution network of physical objects. However,
it’s not about copying the same paradigm but to use it as an inspiration. We need to take
into account the differences: a truck has to be driven by a person, it’s not like data transfers
that might happen almost instantly. It will always take time to transport a truck from Paris
to Rome, but there are many ways of doing it.

2.1.3 Unsustainability symptoms

The author summarizes the evidences supporting the unsustainability assertion through a set
of thirteen symptoms, which are described below and sustained by some additional references.

1. We are shipping air and packaging. In the U.S. trailers are approximately 60% full
when traveling loaded [16, 17]. The global transport efficacy has been estimated to be
lower than 10% [18].

2. Empty travel is more usual than expected. In the U.K. 27% of truck kilometers
was reported to be empty travel in 2004 [19]. The U.S. industry average was that 20%
of all miles are driven with a completely empty trailer [18].

3. Truckers are suffering from precarious work conditions. Truckers spend a lot
of hours on the road, often away from home for long periods. [20] found that 58%

2.1. The physical internet 9

of the accidents reported by drivers in the U.S. were deemed to be fatigue and sleep
deprivation related. [21] stated that the shift workers with the lowest mean hours of
daily sleep are truck drivers, at 3.5 hours/24 hours.

4. Products mostly sit idle, stored where unneeded. Manufacturers, distributors
and retailers among others, are continuously storing huge quantities of products through
their networks of warehouses and DCs. The average investment in all U.S. business
inventories was $101 B in 2005 [22], as an indication of the size of inventory.

5. Production and storage facilities are poorly used. Because of the seasonal nature
of some products warehouses are underutilized in some periods of the year, whereas in
others they are full and suffering from inefficiencies to be managed.

6. Many products never sold, never used. In the food industries, those products not
meeting specific sizes, colors or shapes will be automatically discarded. In addition,
many of these products are wasted at an alarming rate: 12% in transit and 25% at
retail.

7. Products do not reach those who need them the most. In less developed coun-
tries the transportation and logistics infrastructures levels significantly decrease making
it difficult to reach those in most need.

8. Fast and reliable intermodal transport is still a dream. In general, synchroniza-
tion is poor and interfaces are so badly designed that intermodal routes are mostly time
and cost inefficient and risky. For instance, trucks are much more used than trains while
the former emit twenty times more CO2 than the latter.

9. Getting products in, through, and out of cities is a nightmare. Most cities are
not designed and equipped for easing freight transportation, handling and storage.

10. Products unnecessarily move. Products commonly travel thousands of kilometers
that could have been avoided by routing them smartly and/or making them much nearer
to their point of use.

11. Networks are neither secure nor robust. There is extreme concentration of op-
erations in a limited number of centralized production and distribution facilities, with
travel along a narrow set of high-traffic routes. This makes the logistic networks and
supply chains of so many businesses, insecure in face of robbery and terrorism acts, and
not robust in face of natural disasters and demand crises.

12. Smart automation and technology are hard to justify. Vehicles, handling sys-
tems, and operational facilities have to deal with so many types of materials, shapes,
and unit loads.

13. Innovation is strangled. Innovation is bottlenecked, notably by lack of generic stan-
dards and protocols, transparency, modularity, and systemic open infrastructure.

10 Chapter 2. Background

2.1.4 The solution proposed

The PI vision can be defined through the following thirteen characteristics.

1. Encapsulate merchandises in world-standard smart green modular contain-
ers. The DI designed standardized packets embedding information to ease the commu-
nication, as well as protocols for their transit and process in different systems across
networks [23]. The PI on the other hand, encapsulates physical objects in π-containers,
standardized, smart, green and modular containers. See [24, 25] for more details on
these smart containers, represented in Figure 2.1.

Figure 2.1: Modularity of π-containers.

2. Aiming toward universal interconnectivity. The operations of unloading, ori-
entation, storage and loading, applied to π-containers in a smart automated and/or
human-assisted way should be generalized and functionally standardized.

3. Evolve from material to π-container handling and storage systems. In the PI
there are only π-container material handling and storage systems to enable their fast,
cheap, easy and reliable input, storage, composing, decomposing, monitoring, protection
and output through smart, sustainable and seamless automation and human handling.
There’s a wide terminology for the sites, facilities and systems within the π-nodes,
locations expressly designed to perform operations on π-containers, which can be found
in [7].

4. Exploit smart networked container embedding smart objects. Each π-container
has a unique worldwide identifier similar to the MAC address in the DI and a smart
tag to insure the identification, integrity, routing, conditioning, monitoring, traceability,
and security. Here is where the Internet of Things (IoT) [26] could be introduced, to
enable the interconnection of physical objects with smart connective technologies such
as RFID and GPS. The schematics of this interrelation are shown in Figure 2.2, which
was extracted from [1].

2.1. The physical internet 11

Figure 2.2: Contextualizing the physical internet.

5. Evolve from point-to-point hub-and-spoke transport to distributed multi-
segment intermodal transport. In the DI data packets do not travel directly from
origin node A to destination node B, but following the path that routing algorithms
tell. Nowadays, if a trailer fully loaded with containers had to be transported a long
distance it would be most likely that the task was assigned to a single driver. He would
have to perform a multi-day trip, driving all the way to the destination, sleeping and
eating in the truck or doing small breaks. Once the load were delivered he would try to
pick up the nearest cargo that had to travel to the origin node, to avoid empty travel.
However, in the PI this trailer would have been assigned to different drivers working
in small shifts, or if possible it would have been transported to the next π-hub so that
intermodal transport could be performed, e.g., using trains, ships or planes alongside
other π-containers heading to similar destinations.

6. Embrace a unified multi-tier conceptual framework. The physical internet is to
be based on the same conceptual framework whatever the scale of the involved networks.
This can be seen with a set of networks being embedded in wider networks, all of them
operating under the PI standards and protocols. An example of two interconnected
intra-state inter-city networks can be found in [7], one in the Québec province of Canada
coupled to another in the northeastern states of the US. Another road network case study
based in Eastern Canada is explored in [27].

7. Activate and exploit an Open Global Supply Web. Shift from private supply
networks to an Open Global Supply Web enabling the physical equivalents of Intranets,
Virtual Private Networks, Cloud Computing and Cloud Storage in the DI. Open supply
webs have their nodes accessible to producers, distributors, logistics providers, retailers
and users.

12 Chapter 2. Background

8. Design products fitting containers with minimal space waste. It is quite obvious
that the objects carried in π-containers have to be designed so as to minimize the space
waste and optimize their fitting in the different containers standards.

Another way of managing space would be to design physical objects in a way that
only their key components and modules had to be shipped so that they could be easily
finished in near points of use.

9. Minimize physical moves and storages by digitally transmitting knowledge
and materializing objects as locally as possible. With open production centers
capable of locally realizing (making, assembling, finishing, personalizing) for clients a
wide variety of products from combinations of digitally transmitted specifications.

10. Deploy open performance monitoring and capability certifications. For in-
stance, a port would openly post on the Internet its live and historical performance,
e.g., ship unloading and loading times, container sojourn times in the port, etc.

11. Prioritize webbed reliability and resilience of networks. The webbing of the
networks should allow the PI to insure its own robustness and resilience to unforeseen
events, just as the DI is able to insure with its protocols and standards.

12. Stimulate business model innovation. The DI has created loads of new business and
their models, from service providers to electronic retailers. The PI has the potential of
attracting new business models and to have a similar impact, for instance with innovative
IoT solutions.

13. Enable open infrastructural innovation. As an example, we could imagine linking
two major cities with a green-energy low-noise very-high-speed container train. The PI
would ease the technical design and engineering of the entire infrastructure.

[7] discussed several means of integrating shippers and π-containers within all the PI
infrastructure, making special remark to the way in which they should be interconnected and
where the decision making should be done:

• “The smart and connected nature of π-containers would enable decisions to be taken on
the spot, given new current information on opportunities and constraints. They would
decide on their routing dynamically, adapting their plans in route. They would call back
to the shipper or his representative human or virtual logistic agent only in cases of out-
of-bound situations where special circumstances make it forecast an improbable arrival
on time and on budget, or when their physical or informational integrity and security
are in danger ”.

• “Another option leaves minimal decision-making to the π-container, which simply relays
information to an agent that takes the decisions in its place, and transmits it to both
the π-container and, when appropriate, the physical internet elements involved in the
route. The agent either takes the routing decisions on a one-by-one basis or considers
a number of π-containers under his/its control. The π-containers and local π-elements

2.2. Combinatorial optimization problems 13

only take initiative in cases of agent unavailability or incapability to respond in time to
urgent decisional need ”.

• “In another option nearer to current ways of doing, the shippers or their logistic agents
are securing complete routes prior to departure. As an alternative way, they may im-
pose a set of key intermediary nodes and/or links, leaving the rest to more autonomous
decision-making”.

The author called for further research on all topics we’ve presented, that is, on every
characteristic of the PI. “There needs to be creative design and engineering projects; analytical
studies; simulation and serious gaming-based projects; pilot, prototyping, and demonstration
projects; as well as optimization studies for decision-making within the new paradigm”. And
he also suggested to focus on “specific application areas such as containers, handling sys-
tems, ports, hubs, and so on”. In our case we have focused on the distribution and mobility
layers/webs of the presented Logistics web, which somehow could be understood as an opti-
mization study on the distribution routing problem related to the PI.

2.2 Combinatorial optimization problems

Optimization problems can naturally be divided into two different groups according to the
type of variables that we are optimizing: i) those with continuous variables; and ii) those with
discrete variables (which are called combinatorial). In continuous problems we are generally
looking for a set of real numbers or a function, whereas in combinatorial problems, we search
for an object from a finite (or countably infinite) set, e.g., an integer set, permutation, graph,
etc. These two types of problems are quite different in essence, thus their solving methods
are truly divergent [28].

Combinatorial optimization problems (COPs) are a specific type of problems consisting
in finding extrema of an objective function on a combinatorial space [29], in other words, it
is aimed to to find the global optimal solution among all of them, i.e., the one that optimizes
the value (global optimum) of the objective function according to a possibly existent set of
constraints. For instance, the traveling salesman problem (TSP), the vehicle routing problem
(VRP), the permutation flowshop scheduling problem (PFSP), they are all COPs. If inter-
ested, [30] gives a formal mathematical definition of COPs that is beyond the scope of this
study.

COPs are usually too complex to be solved using exact methods if the problem is large
enough. These methods can guarantee to obtain the global optimal solution, but they are
impractical in terms of the computational time needed. So generally speaking, approximate
methods are quite the fit in order to solve medium to large-sized problems in a reasonable
computational time.

Furthermore, in the operational research literature (OR) it is quite common to define ar-
tificial scenarios, deterministic in their nature with a fixed number of static inputs, simplified
from reality and modeled to be optimized the usual way. However these scenarios are far from
being an accurate representation of real life problems. Randomness might easily arise in many

14 Chapter 2. Background

parameters of the problem. Therefore, it is necessary to introduce different variants of COPs
such as stochastic COPs (SCOPs), fuzzy COPs (FCOPs), robust COPs (RCOPs) or COPs
with dynamic inputs (COPDIs). For instance, in the stochastic version of the vehicle routing
problem (VRPSD), customers’ demands are stochastic, following a given probability distri-
bution, and cannot be revealed until the vehicle reaches the customer [31]. Other stochastic
behaviors can be seen in several more problems.

There are many ways of classifying algorithms and it is always hard to end up with a single
taxonomy. The classical way to classify algorithms is the way we learn them, i.e., by its design
paradigm. There are many educational and reference books [32, 33, 34, 35] which separate
them in the following way: sorting algorithms, graph-related algorithms, greedy algorithms,
divide and conquer, dynamic programming, linear programming, network flow, approximation
algorithms, parameterization algorithms, local search, randomized algorithms and algorithms
in computational geometry.

[36] summarizes the methodologies and algorithms used to solve the vehicle routing prob-
lem (VRP) [37]. In their survey, exact and approximate methods are discussed with respect
to the class of problems so called rich vehicle routing problems (RVRPs), which are different
variants of complex constrained VRPs. A classification of optimization methods is provided
in this paper, which we have adapted in Figure 2.3.

Figure 2.3: Classification of classical optimization methods.

According to [38], roughly speaking, the methods employed to solve COPs are mainly
divided into two categories: deterministic and probabilistic algorithms. Deterministic algo-
rithms give always the same solution for a given input, i.e., in each execution step it exists
exactly one way to proceed. Whereas, probabilistic algorithms, also called randomized algo-
rithms, have a behavior determined not only by its input but also by values produced by a
random-number generator [33], i.e., they internally behave randomly. As [32] states, “Effi-
cient deterministic algorithms that always yield the correct answer are a special case of efficient
randomized algorithms that only need to yield the correct answer with high probability”.

2.3. Optimization methods 15

A rough taxonomy of global optimization methods, extracted from [38], is shown in Figure
2.4. As mentioned before, the author distinguishes between deterministic and probabilistic
approaches.

Figure 2.4: Classification of global optimization methods.

As [34] states, “Optimization problems have been not classified in a satisfactory way within
the theory of P and NP; it is these problems that motivate the immediate extensions of this
theory beyond NP ”.

2.3 Optimization methods

In this section we are going to explain the optimization methods used for our problem in more
detail. Section 2.2 widely described what COPs are and mentioned some of the most known
techniques to solve them, now we are going to focus in heuristics, metaheuristics and precisely
to the variable neighborhood search (VNS) metaheuristic.

16 Chapter 2. Background

2.3.1 Heuristics

“Heuristics find good solutions on large-size problem instances. They allow to obtain acceptable
performance at acceptable costs in a wide range of problems. In general, heuristics do not have
an approximation guarantee on the obtained solutions.” [39]. Approximation algorithms pro-
vide provable solution costs (or qualities) and computational times bounds, unlike heuristics.
An (approximate) heuristic is ε-approximate if, intuitively, the relative error of the solution
found is at most ε with respect to the optimal [34]. Anyhow, problem-specific heuristics are
widely used to solve COPs, as they are fast simple problem-dependent techniques that lead
to the design of deterministic algorithms. On the contrary, they cannot be seen as a black
box that can solve several problems, as their characteristics are problem-dependent, they are
tailored and designed to solve a specific problem and/or instance. The heuristic concept in
solving optimization problems was first introduced by Polya in 1945 [40].

2.3.2 Metaheuristics

Metaheuristics are one of the most used techniques to reach near-optimal solutions in relatively
short time [36]. They are advanced problem-independent procedures that lead to the design
of randomized algorithms, i.e., algorithms that give different solutions for the same input.
Somehow they can be seen as a black box that can be used to solve many different problems.
Metaheuristics serve three main purposes: solve problems faster, solve larger problems and
obtain robust algorithms. However, there is no guarantee to find global optimal solutions, nor
there’s any bound on the quality of the solution obtained. Nonetheless, near-optimal solutions
are usually obtained, and expected to be found.

Figure 2.5: Genealogy of metaheuristics.

Figure 2.5 shows the genealogy of metaheuristics, extracted from [39]. The most popular
metaheuristics according to the number of Google Scholar indexed articles from 2006 to 2015

2.3. Optimization methods 17

are: ant colony optimization (ACO), artificial immune systems (AIS), greedy randomized
adaptive search procedure (GRASP), iterated local search (ILS), genetic algorithms (GA),
particle swarm optimization (PSO), simulated annealing (SA), scatter search (SS), tabu search
(TS), variable neighborhood search (VNS). Figure 2.6, extracted from [41], classifies them
according to whether they are: i) single solution-based (SMs) or population-based (PMs);
ii) use memory; and iii) are nature-inspired. The bigger the circumference in the figure, the
greater the number of articles found in Google Scholar. A wider classification of metaheuristics
is shown in Figure 2.7.

Figure 2.6: Classification of most known metaheuristics.

Figure 2.7: Metaheuristics grouped by different criteria.

18 Chapter 2. Background

2.3.3 The variable neighborhood search metaheuristic (VNS)

The variable neighborhood search is a single-solution based metaheuristic, memoryless, i.e.,
no information dynamically extracted is used during the search, and not nature-inspired.
It was introduced by P. Hansen and N. Mladenovic in 1997 [42]. The main idea of this
metaheuristic, and the reason why it is widely used still nowadays, is that it lets escape from
local optima exploring successively or at random different neighborhoods structures. This
algorithm exploits the fact that using various neighborhoods in local search may generate
different local optima, as different neighborhoods generate different landscapes, and that the
global optima is a local optima for a given neighborhood (see Figure 2.8).

Figure 2.8: Variable neighborhoods search using two neighborhoods.

The general variable neighborhood search algorithm iterates through a set of neighborhood
structures Nk (k = 1, ..., n). Pseudo-code 1 illustrates its main idea, adapted from [39].

Algorithm 1 Basic variable neighborhood search algorithm.

1: procedure VNS(neighborhoods)
2: % neighborhoods: Nk for k = 1, ..., kmax

3: x← x0 . Initial solution
4: while stopping criteria not met do
5: k ← 1

6: repeat
7: x′ ← shaking(Nk(x)) . Pick random solution from Nk(x)

8: x′′ ← localsearch(x′)

9: if f(x′′) < f(x′) then . Improvement
10: x← x′′

11: k ← 1 . Continue with N1(x)

12: else k ← k + 1 . Continue with Nk+1(x)

13: end if
14: until k = kmax

15: end while
16: return best solution found
17: end procedure

2.3. Optimization methods 19

This algorithm performs three steps at each iteration: i) shaking; ii) local search; and
iii) move from neighborhood. The local search is intended to be a fast small variation from
the previous solution obtained, so that the algorithm doesn’t get stuck there for long compu-
tational times. The stopping criteria might differ depending on the problem we are dealing
with, although a limit in the computational time or number of iterations is widely used.
Many variations from this general scheme of the algorithm can be generated, e.g., considering
intermediate worse solutions than the current we have, modifying the shaking step to pick
good-quality solutions at first.

2.3.4 Biased randomization of heuristics (BR)

Heuristic methods generally follow an iterative process to build a solution for a given problem.
Thus, at each iteration, the next step, decision or constructive movement is made from a list
of different possibilities. This selection from a list of potential candidates can be done in many
ways. A totally uninformed heuristic would randomly choose the next step, hence it wouldn’t
be much of a help. A greedy heuristic would sort the list of candidates in order to choose
the best one, i.e., it would always perform the best step in the sort run. This last kind of
heuristic has a huge disadvantage, which is its implicit determinism, as the same choices will
be made again and again for a given input, thus it will always obtain the same solution. And
also seems quite inconvenient not to look farther than the current iteration, i.e., not taking
into account the subsequent possibilities once a decision is made.

To escape from local optima it is necessary to add a source of randomness in this con-
struction phase of the algorithm. Although, we don’t want to take this decision completely
random (uniform distribution), nor imitate a greedy behavior by giving zero probabilities to
all candidates except for the first one. Instead we will bias the selection giving stronger proba-
bilities to better a priori candidates. This technique is called biased randomization (BR) and
the methods to bias the randomization are called biased-randomized procedures (BRPs) [43].
Figure 2.9 illustrates the main idea of biased randomization techniques, which was extracted
from [44].

Figure 2.9: Uniform randomization and biased randomization.

20 Chapter 2. Background

Randomization can also be included while exploring a neighborhood in a local search
method. However, for the case of our problem, in the context of the PI, we are using a specific
type of procedures called BRPs with skewed theoretical probability distributions (STPDs),
which doesn’t require to empirically build a probability distribution according to an heuristic
or some kind of ranking. Exmaples of such STPDs which are non-symmetric by definition
are the geometric, the triangular or the log-normal. Figure 2.10 shows the difference on the
probabilities for each candidate for the geometric and the triangular distributions, extracted
from [43].

Figure 2.10: Geometric and triangular STPDs for BRPs.

2.3.5 A multi-start framework (MS)

Randomized heuristics, and in general, any type of randomized or stochastic algorithms can
easily be embedded into a multi-start framework (MS) [45]. The basic idea under these
techniques is quite logic in fact, as the main strategy consists in create numerous solutions
with a randomized algorithm until a stopping criteria is met, then the best solution is returned.
Pseudo-code 2 summarizes the main scheme of a multi-start algorithm.

Algorithm 2 Basic multi-start algorithm.

1: procedure MultiStart
2: x← x0 . Initial solution
3: while stopping criteria not met do
4: x′ ← buildSolution() . Randomized heuristic
5: if f(x′) < f(x) then . Improvement
6: x← x′

7: end if
8: end while
9: return x

10: end procedure

2.3. Optimization methods 21

There’s always a trade off between diversification (structural variation) and intensification
(solution improvement) when searching for a near-optimal solution, no matter what kind of
problem we are tackling. In this case, the multi-start algorithm tries to diversify this search,
however it is done in an uninformed way which might seem naive. Despite that fact, these
methods obtain high-quality solutions for some complex problems.

2.3.6 The geometric distribution

The geometric distribution is the probability distribution of the number k of Bernouilli trials
needed to get a success. Given p the probability of success and q, of failure we have the
following two distribution functions:

Probability distribution function (PDF).
Probability that the kth trial (out of k trials) is the first success.

P (X = k) = px(k) = q · q · ...(k−1) · q · p = qk−1p = (1− p)k−1p

Cumulative distribution function (CDF).
Probability that the first success is before or at the kth trial.

P (X ≤ k) = Fx(k) =
∑k

i=1(1− p)i−1p = p(1 + (1− p) + (1− p)2 + ...+ (1− p)k−1)

Now let’s see how to make the candidate’s selection real fast when implemented in Java.

Sk = 1 + (1− p) + (1− p)2 + ...+ (1− p)k−1 = 1
(1− p)k − 1

(1− p)− 1
=

1− (1− p)k

p

Given that Sk = 1
ak+1 − a1
r − 1

=
a1r

k − a1
r − 1

= a1
rk − 1

r − 1
(geometric progression)

Fx(k) = p Sk = 1− (1− p)k, where Fx(k) ∈ [0, 1]

(1− p)k = 1− Fx(k) ∈ [0, 1]

k log(1− p) = log(1− Fx(k))

k =
log(1− Fx(k))

log(1− p)
, where p stands for our β parameter.

With this formula we are able to rapidly select the next candidate by generating one
pseudo-random number and performing one subtraction, two logarithms, one division and a
modulo operation.

23

Chapter 3

Literature review

This chapter is structured as follows: first part will review the idea of interconnected logistics
network supported by the physical internet concept and IoT solutions, whereas the second
part will discuss related articles to the proposed container distribution system.

3.1 Physical internet

[7] claims that the current world-wide logistics processes are inefficient by reviewing thirteen
unsustainability symptoms of the way physical objects are transported, handled, stored, re-
alized, supplied, and used. For instance, the issue of driver shortage where one of the reasons
is low job satisfaction due to long periods of time in which drivers have to be away from
home. Taking into account the current trends, driver shortage in the U.S. may balloon to
almost 175,000 by 2024 [46]. The proposed optimization model aims to solve the problem by
introducing work-life balance friendly working schedules for the drivers.

In order to deal with the logistics sustainability grand challenge, [7] proposed to strive
towards the PI where logistics networks would be interconnected and goods would be encap-
sulated in world-standardized, green, networked, and smart containers that can be distributed
across fast, reliable and eco-friendly transportation systems. Explicit state-of-the-art on PI
has been gathered by [47].

[25] reviews recent research papers on smart containers and explains various projects which
aim to achieve different levels of container intelligence in their communication with supply
chain management systems by using IoT solutions.

IoT comprises many interconnected technologies like radio frequency identification (RFID)
and wireless sensor and actor networks (WSAN) in order to exchange information between
objects, systems and its users. While there is wide range of literature available, [26] provides
essence of the concept, architectural elements and future developments, whereas [48] tackles
challenges of IoT implementation, data storage, analytics and security.

It is clear that RFID and WSAN prevalence in logistics systems is increasing. Using
real-time data acquired from responsive containers is also a future objective of the proposed
optimization model. Dynamic traffic information will affect freight movement, allow better
planning and improved scheduling [26]. Online monitoring of origin-destination routes and
container travel times would enable to make efficient decisions depending on the state of the

24 Chapter 3. Literature review

system, i.e., to calculate routes and assign the available drivers to containers according to
priority as the containers enter and/or progress within the distribution network.

3.2 Container distribution model

Up to now, a tremendous attention has been given to optimization of diverse logistics net-
works. There is a wide range of literature available on optimization in different areas, such as
road logistics, marine networks, or cargo industry in general. Just to point out some recent
examples, [49] builds a model for multi-size inland container transportation problem which
aims to minimize total travel distance and operation time of the trucks. [50] offers modeling
and an optimization model for a multi-echelon container supply chain, whereas [51] optimizes
multi-modal transportation by combining routes.

In the context of hub-and-spoke systems, [52] optimizes a port logistics network of dynamic
hinterland, and [53] studies routing optimization for multi-type containerships with time dead-
line to minimize service, waiting and traveling cost. [54] combine two hub-and-spoke networks
into a regional port cluster. [55] in their work concentrate on decision-making, calculating
cost savings of developing a basic hub-and-spoke or a hybrid version and applying the model
to the Australian parcel service provider, whereas [56] along with routing decisions, considers
inventory levels in pursuit of minimizing shipping and inventory costs.

As this thesis proposes an innovative distribution approach, related literature is very
limited. However, combinatorial problems in transportation and logistics are quite often par-
ticular cases and variations of a network design problem [57], where some sort of discrete
choice with regard to the network structure is involved. Seems relevant to the problem at
issue to consider the multicommodity network design problem (MCND) [58], as it has many
applications in transportation planning. This problem is naturally related to flow routing so
that certain commodity demands are satisfied, but also to network design as several facilities
can be installed in different arcs. With respect to the problem we are dealing with, the simi-
larities reside in the container routing part, without taking into account driver assignments,
as containers can be understood as integer commodities that need to be routed with specific
origin and destination nodes. In essence, there’s an implicit design problem that has a direct
effect on the operations of the transportation network.

This scenario was most likely introduced by [7] in order to switch from the traditional
point A to point B delivery of drivers going on a multi-day journey and possibly returning
empty handed, to a PI enabled model where the driver takes load to a hub two to six hours
away and then returns home with another trailer. A simple case study of the route from
Quebec to Los Angeles suggests that instead of the 240-hour journey made by a single driver,
a load would reach the destination in 120 hours with the help of 17 drivers who would get
home the same day.

While the method speeds up the delivery and facilitates short-haul truck driving, which
makes the system socially responsible, it is important to consider trade-offs. [59] compares the
current logistics process performance of France road network with the PI enabled distribution
introducing hubs and then implementing multi-modal transportation in order to reduce CO2

3.2. Container distribution model 25

emissions. Results claim that the PI concept could substantially improve logistics efficiency
and sustainability, e.g., reducing carbon footprint by 60% without jeopardizing operational
costs or accommodating lead times.

[27] confirms that the PI distribution approach in comparison with conventional methods
reduces driving distance, gas emissions and social burden of traffic using Monte-Carlo simu-
lation (MCS) in an Eastern Canada road network case study. It also verifies that the number
of drivers who return home at the same day stays comparatively high despite traffic intensity.

While the forehand articles mentioned employ some of the PI distribution ideas, the
mechanism of our model is different. Multiple drivers could be assigned to a container for each
edge of the path according to the priority and deadline of the container, and spare working
hours of the available drivers. Re-scheduling would occur at each hub, thus ensuring efficient
real-time decision-making. This model is also flexible in terms of routing optimization as there
are no driver-container pairs assigned which have to start and return at home-base together
as in [27]; paths of containers and drivers are rather calculated independently.

27

Chapter 4

Problem statement

The spoke-hub network problem studied can be defined as a network N = (L ∪H ∪D, E),
where the set of nodes L ∪ H ∪ D respectively represents container origin and destination
locations, also called endpoint nodes, hubs/facilities, and drivers’ settlements/depots; and
the set of edges E represents links connecting these nodes. Each edge e ∈ E is characterized
by a traveling time t. Notice that the graph underneath this networkN is weighted, undirected
and not necessarily complete.

A set of containers C has to be transported through this network. Each container c ∈ C
has an associated origin and destination locations, lo, ld ∈ L and a due time d. Containers
can be dropped temporarily at hubs on their way from origin to destination. Depots and
endpoints are passable by drivers, but only the latter can store containers if they are their
origin or destination.

A limited number of drivers start and end their working shift at their associated depots.
Notice that a driver is only able to drive one single truck and can’t change it during his shift.
Somehow, trucks and drivers are interchangeable concepts in this problem. Also notice that
we are only considering that a driver is able to perform one shift. It is assumed that hubs
are incapacitated. The goal is to minimize the cost of the solution, which from now on will
primarily be the total time required to deliver all containers and to return all drivers to their
depots, subject to: (i) each truck can load one container at a time; (ii) all containers must
reach their destination on or before the corresponding due time; and (iii) there is a maximum
number of working hours per driver.

Figure 4.1 shows a representation for a small network with its weights, figure 4.2 shows a
feasible solution for a problem with 2 containers and 3 drivers and figure 4.3 shows a slightly
different solution for the same problem with a timescale. Different representations have been
used for the last two figures in order to remark the routes in one and the timings in the other.

28 Chapter 4. Problem statement

Figure 4.1: Representation of the container transportation network.

Figure 4.2: Representation of a solution for the problem.

It is easy to see in figure 4.2 that the second driver is anticipating the need to transport
the first container reaching the node number 10. This behavior seems difficult to be simulated
by an algorithm, nevertheless with small instances is easy to be grasped by a human eye while
solving the problem manually with a paper and a pencil.

Chapter 4. Problem statement 29

Figure 4.3: Representation of a slightly different solution with timescale.

Figure 4.3 also shows the end time for containers and drivers as well as the different actions
each driver is doing alongside his route: pickups, transports, stops or returns. In this solution,
though, the second driver is activated once the first has arrived to the node number 10 and
has realized that can’t keep transporting the first container because otherwise he wouldn’t
arrive to his depot on time. Thus, the first container is left at that node with the need of an
idle driver to transport it towards its destination.

31

Chapter 5

Methodology

5.1 Solving approaches

This section describes three approaches to solve the aforementioned problem. First, a heuristic
relying on a discrete-event list is presented, which makes deterministic decisions based on the
best selections in the short run related to containers, drivers and paths. Later, a multi-start
framework is proposed, which is based on the combination of the previous heuristic and biased
randomization techniques. While this last approach is going to take more computational time,
it is expected to provide higher-quality solutions. Finally, a VNS is designed to widely explore
the search space in a more efficient manner.

5.1.1 Heuristic

Because the underlying methodology of the heuristic proposed is based on discrete events it
is important to understand that, as it is the case in simulation, an event is triggered once
a decision taken in a previous moment of time is finished. For instance, we can decide that
certain driver is going to transport a container from his current location to the next node
in the shortest path towards the container’s destination. Then an event would be triggered
right when the transport ends. This event would change the state of the system, thus new
decisions would be made upon it, and more events would be scheduled and appropriately
triggered. However, we need to store all the relevant information related to an event, i.e.,
the driver involved, the origin and end nodes, the time when was triggered and the container
being transported, if any. Even though an event is discrete in the sense that is triggered in
a precise moment and does not continuously happen in time, an starting time is linked to it,
as there was a moment when the decision was taken. So its starting time is implicitly set to
the time when it was scheduled, and its length is defined by the traveling time between the
origin and end nodes. We have distinguished 3 different types of events related to different
decisions and actions: pickups, transports and returns.

• Pickups consist in moving an empty driver towards an unattended container. However,
it is not implied that the driver will transport that container afterwards, but it is likely
to happen. These transports can be multi-hop trips, i.e., more than one node could
be traversed without divesting the container of the driver until the latter arrives to the
container’s location.

32 Chapter 5. Methodology

• Transports are always between hubs and/or endpoints and consist in the transportation
of a container from its current node to the next one towards its destination. They can
also be multi-hop trips if the next node is a depot or an endpoint different from its
destination.

• Returns, on the other hand, are always 1-hop trips (node-to-node) and they are only
scheduled when necessary, i.e., when a driver needs to get back to its depot so that its
working shift isn’t exceeded.

Our heuristic is described in detail below, summarized in Figure 5.1 and outlined in Pseudo-
code 3:

1. Compute the shortest path between any pair of nodes in the network using the Floyd-
Warshall algorithm [60].

2. Make an initial assignment of drivers to containers so that all containers are attended,
or at least, as many as available (feasible) drivers. These assignments are made the
same way we make new decisions and schedule events: iteratively assigning the most
urgent container to its nearest driver. The first set of events generated will be added to
an event list increasingly sorted by the end time of the event, i.e., the time when the
event will be triggered. So far we have only scheduled pickups.

3. The following 4 - 7 steps are iteratively executed until all events have been processed,
i.e., until all drivers have arrived to their depot and a solution is found (feasible or not).

4. At each iteration the first event is triggered and removed from the event list. The
current time is set to the time of this event, as if we were advancing the time from the
last processed event. However, we trigger as many events as actions end at the same
time, because there might be many events to be triggered at the same time, as there
can be collisions. When we process an event the container is divested of the driver and
its related action is finished, whereas when we schedule an event its related action starts
to happen in the current time. Thus, we are not scheduling actions that will start to
happen in the future.

5. Update the system with the arrival of the driver(s) and container(s), if any. Here is where
the distinction of events is needed, as different actions have different consequences.

6. Schedule container-related events, step summarized in Figure 5.2 and detailed in Pseudo-
code 4, following these steps:

6.1. Sort unattended containers by urgency, i.e., by the difference between the actual
traveling time of the container towards its destination and the remaining time of
its deadline.

6.2. For each container in that order, the following steps are taken: i) sort idle drivers
by proximity; ii) select the next node of the container using the shortest path;

5.1. Solving approaches 33

iii) select the nearest feasible driver; and iv) schedule the event, which will be
appropriately added to the event list according to the sorting criteria mentioned.

If the selected driver is in a different node than the container, a pickup event will be
scheduled, instead of a transport, and the destination node will be the one where
the container resides.

A feasible driver will be able to: i) reach the container; ii) transport it to the next
hub in the shortest path to its destination (or directly to its destination, if there wasn’t
any); and iii) return to his depot on time.

Idle drivers remain in the same node until they are assigned to a container or they
need to return to their depot. Notice that a decision could be that the driver that just
arrived leaves a non-urgent container at the current node and goes empty to pickup a
more urgent container.

Also notice that some hops are mandatory, for instance, when a driver transporting a
container passes through a depot or an endpoint that is not the container’s destination,
he has to keep going because he can’t leave the container there. Therefore, all transport
events are hub-to-hub, except for the first and last events of a delivered container, which
involve endpoints.

7. Schedule driver-related return events, step summarized in Figure 5.3 and detailed in
Pseudo-code 5, if necessary. For all idle drivers, if they need to start returning in the
current time because they would not be on time returning on the next event, we schedule
a return event.

This way we ensure that working shift constraints will not ever be violated using this
heuristic, but containers’ might.

Notice that once a driver is returning to his depot it can still transport a container in
his way home, either because it’s in his path, or because has enough margin to deviate
from it.

It is also important to remark that there is no driver finished state until he has reached
his depot and ended his working shift. Once a driver that is returning arrives to his
depot it could still be assigned to a container if he has margin to transport it and return
to his depot on time.

8. Once all events in the list have been triggered and processed, i.e., empty event list, we
have a solution that, by construction, is likely to be feasible. Compute the associated
cost, i.e., the time of the last event, that is, the time when the last driver reached his
depot, and check its feasibility.

This way we are trying to maximize the number of containers being attended at all time,
while trying to minimize the traveling time of all drivers.

34 Chapter 5. Methodology

Figure 5.1: Scheme of the deterministic heuristic proposed.

5.1. Solving approaches 35

Figure 5.2: Scheme of the container-related events step.

36 Chapter 5. Methodology

Figure 5.3: Scheme of the driver-related events step.

5.1. Solving approaches 37

Algorithm 3 Main procedure of the proposed heuristic.

1: procedure Solve(network, containers, drivers)
2:

3: shortestPaths ← Floyd-Warshall(network) . Find shortest path between all nodes
4: solution ← emptySolution
5: eventList ← scheduleContainerEvents(containers, drivers, shortestPaths, solution)
6:

7: while eventList is not empty do
8: event ← get next event from eventList
9: updateSystem(event, network, containers, drivers, solution)

10: scheduleContainerEvents(containers, drivers, shortestPaths, solution)
11: scheduleReturnEvents(drivers, shortestPaths, solution)
12: end while
13: return solution
14: end procedure

Algorithm 4 Schedule container events step of the heuristic.

1: procedure ScheduleContainerEvents(containers, drivers, shortestPaths, solution)
2:

3: unattendedContainers ← getUnattendedContainers(containers)
4: if unattendedContainers is not empty then
5: sort unattendedContainers . By urgency
6: idleDrivers ← getIdleDrivers(drivers)
7:

8: for all container in unattendedContainers do
9: if idleDrivers is empty then exit for

10: else
11: node ← getNextNode(container, shortestPaths) . By shortest path
12: sort idleDrivers . By distance to container
13: found ← false
14: k ← 0
15: while k < size of idleDrivers and not found do
16: if areFeasible(driver, container) then
17: scheduleEvent(driver, container, node) . Add event to eventList
18: update solution
19: remove driver from idleDrivers
20: found ← true
21: end if
22: k ← k + 1
23: end while
24: end if
25: end for
26:

27: end if
28: end procedure

38 Chapter 5. Methodology

Algorithm 5 Schedule return events step of the heuristic.

1: procedure ScheduleReturnEvents(drivers, shortestPaths, solution)
2:
3: idleDrivers ← getIdleDrivers(drivers)
4: if idleDrivers is not empty then
5:
6: if all containers delivered then . Set all drivers to return
7: for all driver in idleDrivers do
8: if driver is not returning then
9: set driver to return

10: end if
11: end for
12: end if
13:
14: for all driver in idleDrivers do
15: if driver is returning then
16: if driver is not at depot then . Schedule next return event
17: scheduleReturnEvent(driver, shortestPaths) . Adds event to eventList
18: update solution
19: end if
20: else if driver has to return then . Can’t be on time in the next event
21: set driver to return
22: scheduleReturnEvent(driver, shortestPaths)
23: update solution
24: end if
25: end for
26:
27: end if
28: end procedure

5.1. Solving approaches 39

5.1.2 Biased-randomized multi-start

As noted before, the decisions of this heuristic are greedy, i.e., the best choice in the short
term is always chosen and the same solution is always obtained for a given instance.

In order to overcome this disadvantage and explore a wider search area, a biased-randomized
heuristic (BRH) is built employing a multi-start framework (BR-MS) [45], detailed in Pseudo-
code 6. In particular, each decision related to the selection of a container, path (or node)
and driver is randomized by using a geometric probability distribution gc, gp, gd with the
respective βc, βp, βd parameters. Numerous solutions are built until a stopping criteria based
on the number of iterations is met and the best solution (feasible or not) is returned.

The scheme of the algorithm is exactly the same as the one for the heuristic. However,
the way to schedule container events, shown in Pseudo-code 7, differ in: i) the order in which
containers are iterated, not always the most urgent is attended first; ii) the next container’s
node in the path towards its destination, not always the shortest path is taken; and iii) the
driver to transport/pickup the container, not always the closest one is chosen.

Algorithm 6 Main procedure of the proposed BR-MS.

1: procedure SolveBRMS(network, containers, drivers, itermax, βmin, βmax)
2:

3: bestSol ← emptySol . Initialize bestSol
4: iter ← 0

5:

6: while iter < itermax do
7: βC ← random(βmin, βmax) . Parameter for container selection
8: βP ← random(βmin, βmax) . Parameter for path selection
9: βD ← random(βmin, βmax) . Parameter for driver selection

10: newSol ← solveBRH(network, containers, drivers, βC , βP , βD)
11: if totalT ime(newSol) < totalT ime(bestSol) then
12: bestSol ← newSol
13: end if
14: iter ← iter + 1

15: end while
16:

17: return bestSol
18: end procedure

The path that each container will follow is not set in the beginning, but decided in each
step of the algorithm choosing the next node they will visit. As mentioned before, transport
events are hub to hub, so in order to select the next node (a hub or the container’s destination)
the following steps are taken:

1. Obtain a list of the adjacent hubs (or its destination) to the current container’s node.

40 Chapter 5. Methodology

2. Sort this list by the traveling time from that hub to the container’s destination following
the shortest path and taking into account the edge from the container’s current node to
the hub.

3. Select the next node from the sorted list according to the geometric distribution.

The idea behind this approach is that the best option on the short run does not necessarily
lead to the best global solution, not even to a feasible one.

Algorithm 7 Schedule container events step of the BRH.

1: procedure ScheduleContainerEventsBRH(βc, βp, βd, containers, drivers, shortestPaths)
2:

3: unattendedContainers ← getUnattendedContainers(containers)
4: if unattendedContainers is not empty then
5: sort unattendedContainers . by urgency
6: idleDrivers ← getIdleDrivers(drivers)
7: k ← 0
8:

9: while k < size of unattendedContainers and idleDrivers is not empty do
10: container ← selectContainerBRH(βc, unattendedContainers)
11: node ← selectPathBRH(βp, container, shortestPaths)
12: driversList ← sort idleDrivers . by distance
13: found ← false
14: while driversList is not empty and not found do
15: driver ← selectDriverBRH(βd, driversList)
16: if areFeasible(driver, container) then
17: scheduleEvent(driver, container, node)
18: remove driver from idleDrivers
19: remove container from unattendedContainers
20: found ← true
21: else
22: remove driver from driversList
23: end if
24: end while
25: k ← k + 1
26: end while
27:

28: end if
29: end procedure

5.1. Solving approaches 41

5.1.3 Biased-randomized variable neighborhood search

The biased-randomized multi-start approach randomizes the heuristic proposed and serves to
explore different routing possibilities during the search for higher-quality solutions. Nonethe-
less, this search is uninformed in the sense that there’s no heuristic being used to address the
direction we should follow, i.e., given a good solution as a starting point there’s no path to-
wards a better solution besides the construction of a new solution from square one. Therefore,
a biased-randomized variable neighborhood search (BR-VNS) [61] is presented as a natural
extension to the BR-MS.

The VNS metaheuristic aims to escape from local optima exploring systematically or at
random different neighborhoods. In this specific problem, the exploration is done randomly
without any predefined set of neighborhood structures. A neighborhood Np(x) is defined as
the set of possible solutions that can be obtained from resolving a partial solution xp, which
is the result of undoing the last p% of decisions taken in the solution x. So the shaking
step consists in destroying by some percentage p a base solution and resolving it once by
using the randomized heuristic, i.e., instead of picking a random solution from the current
neighborhood, as it is usually done, a solution is built by bringing the base solution back
into a past state, like some sort of backtracking, and then the partial solution is resolved.
If the solution obtained is better than the base solution, the former becomes the new base
solution and the percentage of destruction p is reset to a minimum percentage. Otherwise, p
is incremented by a certain step and it goes on again. This algorithm is described in detail
below and summarized in Pseudo-code 8:

1. Initialize the base solution using the deterministic heuristic. The randomized heuristic
could also be used, but an unfeasible solution could be obtained and it wouldn’t be a
good starting base solution.

2. Set the current percentage of destruction p to the minimum.

3. While a stopping criteria based on the number of iterations is not met we proceed to
iteratively try to improve our solution by the following process:

• Shaking or construction/destruction phase: the base solution is rolled back to an
intermediate state where the last p% of decisions are reversed. A partial solution
is obtained with a specific current time and state of drivers and containers. This
solution is then resolved by means of the BR heuristic.

• If the new solution is better than the base solution, i.e., if the cost function of
the new solution is lower than the one of the base solution, the former becomes
the latter and the percentage p is reset to the minimum. However, sometimes
worse solutions become the base solution if an acceptance criterion is met, e.g., the
demon acceptance function [62].

• Otherwise, p is incremented by step.

42 Chapter 5. Methodology

4. In the end, the best solution found is returned, which might vary from the base solution.
The former is only updated if there’s an improvement in the cost, whereas the latter is
updated every time a new solution is accepted (better or worse).

This way we ensure that good intermediate solution states are thoroughly explored and
more routing terminations are built on good base solutions.

Algorithm 8 Main procedure of the proposed BR-VNS algorithm.

1: procedure SolveBRVNS(network, containers, drivers, itermax, pmin, pmax, step)
2: % pmin: minimum percentage of solution destruction
3: % pmax: maximum percentage of solution destruction
4: % step: increment of percentage on each iteration
5:

6: baseSol ← SolveSH(network, containers, drivers) . Using the fast heuristic
7: demon← 0

8: bestSol ← baseSol
9: p← pmin

10: iter ← 0

11: while iter < itermax do
12: newSol ← shaking(p, baseSol) . Destruction/construction phase
13: ∆← totalT ime(newSol)− totalT ime(baseSol)
14: if ∆ < 0 then . Improvement
15: baseSol ← newSol
16: p← pmin − step
17: demon← −∆

18: if totalT ime(newSol) < totalT ime(bestSol) then
19: bestSol ← newSol
20: end if
21: else
22: if ∆ < demon then . Worsening
23: baseSol ← newSol
24: p← pmin − step
25: demon← 0

26: end if
27: end if
28: p← min(p+ step, pmax) . Visiting next neighborhood Np(baseSol)

29: iter ← iter + 1

30: end while
31: return bestSol
32: end procedure

5.2. Creation of standardized instances 43

5.2 Creation of standardized instances

Since there are not standardized benchmark instances in the literature for this problem we are
introducing our own ones. However we are not creating artificially generated networks, but
adapting the ones introduced by [63] for the Time Capacitated Arc Routing Problem that can
be found in the TCARP large rural datasets. In these datasets we can find 5 different networks
that represent a simplified version of Irish roads drawn from a Geographic Information System.
Table 5.1 shows their main characteristics specifying no. of nodes, no. of edges, density (or
sparsity) d ∈ (0, 1), and basic stats on the weights and the degree of the nodes. Notice
that original weights represented distances and ranged from 1 to 1394 meters, but we have
scaled them for each instance to a reasonable range for our problem and will be interpreted
as traveling times in hours.

Network Weights Degree
Instance Nodes Edges Density Mean Min Max Mean Max

TCARP-R1 221 245 0.01 0.87 0.069 1.786 2.22 5
TCARP-R2 382 424 0.006 0.938 0.048 2.125 2.22 4
TCARP-R3 508 550 0.004 0.916 0.062 2.893 2.17 5
TCARP-R4 805 872 0.003 0.788 0.022 3.098 2.17 6
TCARP-R5 599 647 0.004 0.964 0.002 3.062 2.16 5

Table 5.1: Networks’ characteristics summary.

For each network 4 different instances have been created with a different set of containers,
fleet of drivers and structure of the network in terms of the assignment of each kind of node,
i.e, we have specifically considered scenarios with 25, 50, 100 and 200 containers and the
number of drivers per depot ranges in different upper and lower bounds, as well as their
shifts. The set of containers has different origins, destinations and margins in their deadlines.
But also each instance might have a different number of depots, hubs and endpoints, as they
can be located in different nodes, despite the fact that the underlying graph is the same, i.e.,
the same number of nodes, their coordinates and adjacency matrix.

So in order to adapt and create an instance for the PI container transportation problem
the following steps have been taken:

• Make the node’s assignment: each node in the network has been assigned to be a depot,
hub or endpoint following a simple yet reasonable criteria according to its connectivity,
i.e., according to its degree d:

1. If the node is a leaf (d == 1) it can either be an endpoint or a depot, because
a hub wouldn’t normally be useful there. So these nodes are endpoints with 0.5
probability or depots with the same probability.

2. If the node has relatively high connectivity (d >= 4) it must be a hub so that other
endpoints and depots can be connected through them. However we need to avoid
big clusters of close hubs, so these nodes are hubs with 0.75 probability or depots
with 0.25.

44 Chapter 5. Methodology

3. Otherwise, the node has a degree 2 <= d <= 3 and we just try to allocate all types
of nodes with different probabilities. A depot is assigned with 0.3 probability, an
endpoint with 0.2 and a hub, 0.5. In this case we hope not to have isolated depots
or not reachable endpoints by also adding many hubs. However these properties are
hard to be preserved across the whole network for big instances using this simple
assignment.

• Define the set of containers to be delivered: origin and destination endpoints are ran-
domly chosen but taking into account that the shortest path between both nodes can’t
exceed 24h (for instances 1 to 10) and 12h, for the rest. Otherwise the solutions can take
a total time up to 72h if the network is big enough. The due times for the containers
are set to a multiple of the shortest path’s length between their origin and destination
endpoints. For instance, if the length of the shortest path between origin and destina-
tion is l, we normally set a margin of k · l hours, where k usually takes a value between
2 and 3, depending on the instance.

• Assign drivers to depots and set their shifts: there’s no prior number of drivers known
when creating an instance. Instead we assign a random number of drivers per depot
within a lower and upper bound. The working shifts range from 8 to 10 hours, as the
physical internet aims to reduce the maximum working hours per driver in a day shift,
which right now can’t exceed the 11-hour driving period. These shifts are randomly
assigned to each driver. Notice that because the containers aren’t equally distributed
across the whole network, but randomly placed in different endpoints that might serve
as origin and/or destination for more than a container, we definitely need to allocate
many available drivers per depot even though most of them won’t be moved.

As one could imagine, the way in which we are creating our instances doesn’t guarantee
at all to obtain feasible solutions out of them, because scenarios where a container isn’t
reachable during the simulation of the solution are likely to happen. So our approach has
been to generate several hundreds of instances for each original network (1 to 5) and set of
containers (25, 50, 100 and 200), solve them using the deterministic heuristic and choose the
ones in which a feasible solution was obtained.

This manipulation of inputs and creation of new instances has been done using Python
3.6.3 and specific libraries such as NetworkX for graph manipulation or Matplotlib and Pylab
for visualization purposes.

5.3 Verification and validation (V&V)

According to [64] the process of verification aims to test that an algorithm “complies with the
intent of its designers and developers”, that is, that our code does exactly what we expect it
to do in the precise way we designed it to do it. In other words, “the accuracy of transforming
a created model into the computer program is tested in the verification phase” [65]. In order to
assert that this condition is preserved, the usual way of doing in OOP is to perform unit testing
in methods and classes. This testing phase tries to cover the most common scenarios as well as

5.3. Verification and validation (V&V) 45

some known particular and extreme cases to confirm that the algorithm behaves as expected
and outputs the right results. From that point on, it has to be assumed that the algorithm has
been verified, as we can’t exhaustively test all inputs and cases. Complex algorithms are hard
to be mathematically verified, thus they are usually tested using specific software frameworks
such as JUnit, even though there’s a lot of research on formal verification (see [66]). On
the other hand, validation ensures that “the built model is an accurate representation of the
modeled phenomena to simulate” [65], i.e., in our case it would be the same as checking that
the solution given by our algorithms is consistent and coherent with respect to the constraints
we defined in our problem.

With regard to the verification of the algorithms developed, we have tested critical methods
of our classes with JUnit and debugged most parts of the code. However, exhaustive unit
testing hasn’t been possible to be done in a project with this time frame, as more than a total
of 6000 lines were written, despite it being a poor metric.

In respect of the validation process, once a solution has been obtained using any of the
approaches explained in section 5.1, two different types of checks are made: correctness and
consistency assertions (validation) to ensure that the algorithm is returning a valid solution,
but also feasibility assertions in order to determine whether the solution is feasible or not. A
solution will be considered feasible if the following constraints are met:

1. All containers were delivered.

2. All containers arrived to their destination no later than their due itme.

3. All drivers returned and reached their depot within their working shift, i.e., they worked
at most their maximum number of hours, or didn’t work at all.

4. All drivers transported one container at a time (implicit in the algorithm, thus, it is not
checked).

Constraints 1 and 2 could be merged into a single one, but it seems more informative to
distinguish whether a solution was not feasible because a container wasn’t delivered or because
a container violated its due time.
The following correctness and consistency checks are made:

1. Drivers correctness.

i) All drivers returned to their depot.

ii) All driver routes start and end in their correspondent depot.

2. Containers correctness.

i) All container routes start from the container’s origin endpoint and end in the last
hub they were left or its destination endpoint.

3. Routes correctness.

i) All edges for each route exist in the network, i.e., in the undirected weighted graph.

46 Chapter 5. Methodology

ii) All routes are traversable or valid, i.e, consecutive edges have the same node in the
end of the first edge and the beginning of the second edge.

4. Transports consistency.

i) All containers that appear to be transported by a driver in his route are actu-
ally being transported by him and not anyone else, appearing as well in all of the
transported containers routes. And vice versa, all drivers that appear to be trans-
porting a container in its route are actually transporting it, and not a different
one, appearing also in all of the driver routes.

ii) All transports recorded in a driver route happen in the same exact time in the
containers routes and vice versa.

5.4 Implementation

As mentioned earlier, our algorithms have been implemented in Java following standard OOP
practices. For that reason in this section we will discuss the main ideas concerning the
implementation of the solving approaches.

5.4.1 Project structure

First of all, seems relevant to show the project structure with the classes defined and a
short description for each of them. For a detailed description of classes and their methods,
constructors, etc. see the documentation provided in javadoc format, delivered alongside this
thesis. The following classes have been implemented using this packages’ structure:

• Algorithms

– Heuristic: The deterministic greedy heuristic.

– BRHeuristic: The biased-randomized version of the heuristic (BRH), which ex-
tends the Heuristic class.

– MultiStart : The biased-randomized multi-start framework (BR-MS).

– VNS : The variable neighborhood search metaheuristic (abstract class).

– VNSPI : The biased-randomized variable neighborhood search for this PI problem
(BR-VNS), which extens the VNS class.

• Experiments

– Convergence: Convergence experiments to compare the BR-MS with the BR-VNS
approaches.

– Experiments: The results tables are obtained using this class, which executes the
three approaches for a given number of seeds for each input instance.

– ParameterFineTuning : Given an instance this class tries to find the most promising
interval for the beta parameters with a given size.

5.4. Implementation 47

– Radar : Obtains the results to create the radar plots.

• IO

– Inputs: Reads instances from files and saves the inputs in private structures that
will be used by different algorithms. It is also able to read an outputted solution
from a file and rebuild it to be manipulated within the code.

– Outputs: Writes solutions to files and result tables in csv format.

• Parameters

– Bounds: Upper and lower bounds for the beta parameter of each geometric distri-
bution.

– BRParameters: Parameters for the biased-randomized heuristic. Only stores the
three beta parameters.

– MSParameters: Parameters for the multi-start framework such as the seed, no. of
iterations and the bounds for the beta parameters.

– VNSParameters: Parameters for the variable neighborhood search such as the
seed, minimum and maximum percentages of destruction, parameter step, no. of
iterations and the bounds for the beta parameters needed when resolving a partial
solution.

• Problem

– Container : Represents a container to be shipped. Stores information such as id,
origin, destination and current nodes, due time or the start time when it was first
moved.

– ConteinerNode: Abstract class representing nodes that can store containers.

– ContainerRoute: Represents the route of a container. It extends the class Route.

– DepotNode: Represents a depot from where drivers depart in the beginning of the
problem.

– Driver : Represents a driver that transports containers. Stores information such as
id, depot and current nodes, start time and max time.

– DriverRoute: Represents the route of a driver. It extends the class Route.

– Edge: Edge between two nodes in the network. It has a weight related to the
traveling time, and origin and end nodes. A reference to the reversed edge is stored,
so that all edges objects are reused in driver and container routes. The graph is
undirected, but the routes have to be stored in such a way that the direction in
which the edge was traversed is known.

– EndpointNode: Represents an endpoint. Extends the ContainerNode class.

– Event : Represents an event, which stores the driver that was moved, the container
transported (if any), the edge traversed, the start and end times.

48 Chapter 5. Methodology

– HubNode: Represents a hub. Extends the ContainerNode class.

– Metrics: Stores metrics of the solution such as drivers elapsed, traveling, stopped
and empty times and containers elapsed, traveling and not moving time. It also
saves how many containers followed (one of) the shortest path(s).

– Network : Represents the network of an instance. Implements a weighted, undi-
rected graph from the JGraphT library.

– Node: Abstract class that represent a node in the network with id, and x, y
coordinates.

– PartialSolution: Represents a partial solution, that is, a solution in a intermediate
state, which can be resolved. Extends the class Solution.

– Route: Abstract class that represents a generic route. Stores a list of the edges
traversed in the route, its elapsed time, and start time in the solution.

– Solution: Represents a solution in this PI problem. Numerous metrics and struc-
tures are stored in this class that will be discussed in Section 5.4.3.

• Useful

– Time: Time-related methods to measure computational times.

– Manager : Useful methods and constants used throughout the project.

– Pair : A generic pair class used in Experiments class.

Figures 5.4 to 5.6 respectively show the inheritance structure of classes Solution-PartialSolution,
Heuristic-BRHeuristic, VNS-VNSPI, the ContainerRoute and DriverRoute inheriting from
Route and the more complex structure of Node, ContainerNode, DepotNode, EndpointNode
and HubNode. Notice that some of their properties are listed below.

Figure 5.4: PartialSolution, BRHeuristic and VNSPI classes respectively in-
heriting from Solution, Heuristic and VNS.

5.4. Implementation 49

Figure 5.5: Route’s inheritance structure.

Figure 5.6: Node’s inheritance structure.

50 Chapter 5. Methodology

5.4.2 Shortest paths computation

There are two usual choices that we could think of in order to compute the shortest path
between any pair of nodes in a sparse undirected weighted graph. The first approach is to
run the Johnson’s algorithm [67] with worst-case performance O(|V |2 log |V |+ |V ||E|), which
for sparse graphs, |E| = O(|V |), turns out to be O(|V |2 log |V | + |V |2) = O(|V |2 log |V |).
Because this algorithm is used in directed weighted graphs, a small transformation in an
undirected weighted graph would have to be done first, replacing each edge for two directed
opposite edges. A second approach would be to run the Dijkstra’s algorithm [68] with worst-
case performance O(|E| + |V | log |V |) which in our case would be O(|V | log |V |). Now this
algorithm should be executed from each node giving a complexity of O(|V |2 log |V |), the same
performance as the previous. Nevertheless, we opted to use the Floyd-Warshall algorithm
[60] with worst, best-case and average performance O(|V |3). It is slower than the previous
two approaches but way easier to be used and manipulated using the JGraphT library, which
already has it implemented.

5.4.3 Solution metrics

While we solve an instance using the heuristic, no matter if the biased-randomized version or
the deterministic one, the following informational metric fields are stored in the solution:

• Total time: the time of the last event triggered.

• Shipping time: the elapsed time to deliver all containers, if all were delivered, or the
end time of the last transport event, otherwise.

• Computational time: computational time to find the solution (in seconds).

• Elapsed search time: total elapsed computational time to execute the algorithm (in
seconds).

• No. of delivered containers: number of containers delivered.

• No. of containers on time: number of containers delivered on time.

• No. of drivers used : number of drivers mobilized.

• No. of drivers on time: number of drivers that returned on time.

• No. of events: total amount of events triggered

• Container routes: list of container routes by id.

• Driver routes: list of driver routes by id.

• Constraints violated : list of constraint violated.

• Event history : sorted list with all scheduled events in the solution.

5.4. Implementation 51

Information stored in Metrics class, which is referenced by Solution class, thus, the latter
indirectly has stored the former fields, which are:

• Drivers elapsed time: total amount of hours worked by all drivers, that is, the sum of
all driver shift hours, including stops in their routes.

• Drivers traveling time: total amount of hours traveled by all drivers, excluding stops.

• Drivers stopped time: total amount of hours spent in stops by all drivers during their
routes.

• Drivers empty time: total amount of hours in which the trucks were empty during their
routes, including stops.

• Containers elapsed time: the sum of shipping times of all container routes, including
stops.

• Containers traveling time: total amount of hours in which the containers where being
transported, excluding stops.

• Containers not moving time: total amount of hours spent by all containers being
stopped, including the elapsed time to be reached by a driver.

• Use of shortest paths: number of containers that followed the shortest path.

5.4.4 Candidate’s selection in BR

With the formula obtained in Subsection 2.3.6, to select the next candidate out of a sorted
list of potential elements, we only need to generate a pseudo-random number in the (0, 1)
interval, compute its logarithm, divide it by log(1 − β) and perform the modulo with the
number of candidates. The Java Code 9 shows an easy implementation of this method.

Algorithm 9 Java method to select next candidate in BRH.

private int getNextCandidate(double beta, int size, Random rng) {

assert beta > 0;

int index = (int) (Math.log(rng.nextDouble()) / Math.log(1 - beta));

return Math.floorMod(index, size);

}

Notice that is the same, calculating 1− rng.nextDouble() than directly generating a random
number between 0 and 1.

53

Chapter 6

Computational experiments

6.1 Small test instances

In order to test and debug our algorithms we have designed a set of 10 relatively small and
simple instances. The number of containers and drivers that comprise these instances is quite
low. Some of them have been designed to be unfeasible for the deterministic heuristic on
purpose, as our algorithms will give a solution either way. Figure 6.1 shows a clear example of
a highly connected hub-and-spoke network with similar size to the ones in the set of instances.
Table 6.1 summarizes the main characteristics of these instances giving the size of the network,
the no. of depots, hubs and endpoints and no. of containers and drivers.

Figure 6.1: Example of a small hub-and-spoke network.

Network Problem
Instance Size D/H/E #C #D

instance-01 10 3/3/4 2 3
instance-02 9 3/3/3 3 3
instance-03 12 3/4/5 6 6
instance-04 10 4/3/3 2 5
instance-05 13 4/3/6 9 12
instance-06 11 1/6/4 8 6
instance-07 12 4/4/4 24 40
instance-08 10 3/3/4 2 3
instance-09 13 4/3/6 4 8
instance-10 10 2/3/5 14 16

Table 6.1: Small test instances’ characteristics.

54 Chapter 6. Computational experiments

6.2 Benchmark standardized instances

Table 6.2 presents the characteristics of the 20 benchmark instances that we have created,
where we show the size of the network, the no. of depots, hubs and endpoints, the no.
of containers and drivers, the parameters used to create each instance, i.e., minimum and
maximum no. of drivers per depot, margin for container due times and maximum traveling
time of the shortest path between origin and destination, as well as a small summary of the
containers shipments including longest, shortest and average path length taking into account
only shortest paths.

Network Problem Parameters Shipments
Instance Size D/H/E #C #D Dmin Dmax M L Long Short Mean
pi-01 221 82/83/56 25 210 2 5 2 24 19.947 4.131 9.942
pi-02 382 136/167/79 25 605 3 6 2 24 23.241 2.502 12.94
pi-03 508 192/191/125 25 871 3 6 2 24 23.317 3.169 15.858
pi-04 805 281/316/208 25 1159 2 6 2 24 23.006 2.644 16.173
pi-05 599 200/257/142 25 1383 6 8 2.5 24 23.794 7.304 17.013
pi-06 221 82/89/50 50 1228 10 20 2.5 24 21.159 1.435 12.157
pi-07 382 128/168/86 50 1994 10 20 2 24 23.149 1.98 14.452
pi-08 508 182/194/132 50 2795 10 20 2 24 23.757 2.542 14.182
pi-09 805 272/323/210 50 4756 15 20 3 24 23.77 1.835 14.099
pi-10 599 195/267/137 50 3424 15 20 3 24 23.85 2.51 15.731
pi-11 221 85/88/48 100 1258 10 20 2 12 11.948 2.786 8.124
pi-12 382 131/174/77 100 2279 15 20 3 12 11.997 0.593 7.887
pi-13 508 186/198/124 100 3200 15 20 3 12 11.895 0.296 7.618
pi-14 805 252/322/231 100 3818 10 20 2 12 11.974 1.194 8.136
pi-15 599 214/249/136 100 3736 15 20 3 12 11.967 0.782 8.183
pi-16 221 73/86/62 200 1864 20 30 3 12 11.996 0.548 7.928
pi-17 382 133/167/82 200 3322 20 30 3 12 11.993 0.318 8.047
pi-18 508 174/201/133 200 4333 20 30 3 12 11.962 0.58 7.934
pi-19 805 279/327/199 200 7679 25 30 3 12 11.97 0.216 8.206
pi-20 599 190/279/130 200 4830 20 30 3 12 11.963 0.142 7.901

Table 6.2: Benchmark instances’ characteristics.

D: depots. H: hubs. E: endpoints. #C: no. containers; #D: no. drivers.
M: margin for container’s due time.
L: maximum length of the shortest path between origin and destination nodes for all contain-
ers’ shipments (in hours).

Figure 6.2 shows the structure of the network from instance pi-07, where circle blue nodes
represent depots, triangular purple nodes represent hubs and square green nodes represent
endpoints, which is the same convention we used in the example network (Figure 4.1). Rep-
resentation of the networks from instances 1 to 5 can be found in Appendix A (Figures A.11
to A.15).

6.2. Benchmark standardized instances 55

F
ig

u
r
e

6.
2:

N
et
w
or
k
re
pr
es
en
ta
ti
on

of
in
st
an

ce
pi
-0
7
ad

ap
te
d
fr
om

T
C
A
R
P
-R

2.

56 Chapter 6. Computational experiments

With regard to the parameters settings, all beta parameters for the geometric distributions
are taking random values in the (0.95, 1.00) interval, as some trial-and-error tests let us
determine significant better results for higher beta values, as we would normally expect.
Even though they may seem really close to 1.00, thus not diversifying the search as much as
possible, the results obtained this way were better in terms of the cost of the solution (total
time), but also in terms of the computational time taken. For both solving approaches –
BR-MS and BR-VNS – the number of iterations is set to a relatively low value, precisely 100,
as we wanted to see the best solutions obtained in a reasonable computational time. In the
latter approach, the parameters chosen for the BR-VNS are the following ones: pmin = 20,
pmax = 100, step = 1. These parameters were also set by trial-and-error in reasonable ranges
until the best results were obtained. Notice that, when the percentage of destruction of the
BR-VNS reaches 100, we have the particular case of the BR-MS, i.e., new solutions are built
from the beginning. The demon acceptance criterion is used to consider worse solutions and
the initial solution is obtained using the deterministic heuristic.

57

Chapter 7

Results

In order to establish a fair comparison between the proposed algorithms, the deterministic
heuristic has to be considered as the solution that a human expert would give taking the best
(local) choices in each moment, i.e., it is an upper bound for the other two approaches, which
are expected to outperform it in most of the scenarios presented.

Our algorithms have been implemented using Java SE 8.0_151, tested with JUnit 4.12
and all the experiments run in a Dell Workstation Precision Tower Serie 7000, Intel Xeon
E5-2650 v4 with 32GB RAM. All instances have been executed 10 times, each with a different
seed, and the best results are shown in Table 7.1, where we specify the total time (TT), i.e.,
the elapsed time to deliver all containers and return all drivers to their depots, the shipping
time (ST), which doesn’t take into account the time required to make all drivers return, and
the computational time (CT) to find the best solution, for each approach and instance. We
also show the gaps of the total time between the three approaches.

In addition, we also consider the shipping time as the objective function to be optimized.
The results are shown in Table 7.2, but now the gaps correspond to the shipping times of the
solutions obtained by each approach. The results for the heuristic are the same though, as it
is deterministic. And the comparison is done between the three approaches but also between
the results obtained in Table 7.1 to illustrate the differences when optimizing one or the other
(total time or shipping time).

More experiments were done with greater number of iterations for both algorithms in order
to determine whether this parameter could significantly improve the quality of the solutions
obtained. Increasing the number of iterations is the same as giving an extra computational
time to the algorithm, so by doing that we should expect slightly better solutions. The
results are reported in Table 7.3 with 200 and 300 iterations for the BR-MS and BR-VNS,
respectively.

58 Chapter 7. Results

T
a
ble

7.1:
P
erform

ance
com

parison
optim

izing
the

totaltim
e.

H
eu

ristic
(1)

B
R

-M
S

(2)
B

R
-V

N
S

(3)
G

ap
in

T
T

(%
)

In
stan

ce
T
T

(h)
ST

(h)
C
T

(s)
T
T

(h)
ST

(h)
C
T

(s)
T
T

(h)
ST

(h)
C
T

(s)
(1)-(2)

(1)-(3)
(2)-(3)

pi-01
33.433

29.167
0.2

30.175
26.418

6.7
30.175

26.418
2.5

9.74
9.74

0.00
pi-02

37.469
35.684

0.3
36.248

34.463
20.6

34.403
31.558

1.6
3.26

8.18
5.09

pi-03
43.310

39.726
0.7

36.602
33.018

13.2
36.602

33.018
48.1

15.49
15.49

0.00
pi-04

40.207
36.329

3.2
36.189

32.311
192.1

39.165
36.658

162.0
9.99

2.59
-8.22

pi-05
52.394

48.199
1.2

42.575
40.331

108.7
43.048

40.804
85.7

18.74
17.84

-1.11
pi-06

37.963
34.191

0.5
32.801

29.899
33.8

33.088
29.316

12.2
13.60

12.84
-0.87

pi-07
40.558

38.195
0.7

39.856
37.485

20.1
39.856

37.485
35.4

1.73
1.73

0.00
pi-08

39.255
36.345

1.2
36.637

33.727
31.5

36.692
33.727

82.1
6.67

6.53
-0.15

pi-09
38.091

35.238
3.3

35.757
32.904

198.2
35.600

33.165
82.6

6.13
6.54

0.44
pi-10

38.362
35.094

2.6
37.648

34.755
217.6

37.530
34.973

75.9
1.86

2.17
0.31

pi-11
24.452

21.296
0.4

21.677
18.602

24.6
21.492

18.439
33.2

11.35
12.11

0.85
pi-12

25.291
22.515

1.0
25.143

22.453
97.9

25.143
22.453

30.0
0.59

0.59
0.00

pi-13
23.382

19.669
1.2

22.452
19.669

110.1
22.925

21.160
122.2

3.98
1.95

-2.11
pi-14

20.704
17.616

5.0
20.545

17.616
263.4

20.215
17.104

126.5
0.77

2.36
1.61

pi-15
25.792

23.146
1.7

24.099
21.511

241.2
25.123

23.146
74.3

6.56
2.59

-4.25
pi-16

29.708
25.208

0.8
25.231

20.474
6.8

24.857
21.448

37.9
15.07

16.33
1.48

pi-17
22.976

19.884
1.6

22.529
19.622

186.8
22.573

19.587
49.0

1.95
1.75

-0.20
pi-18

27.422
23.020

2.2
25.385

22.038
260.9

25.562
22.177

236.6
7.43

6.78
-0.70

pi-19
23.134

18.642
5.4

22.340
19.091

577.0
22.741

18.642
113.6

3.43
1.70

-1.79
pi-20

27.332
24.750

2.6
25.026

21.706
107.9

24.884
21.886

44.7
8.44

8.96
0.57

A
vg.

1.8
136.0

72.8
7.34

6.94
-0.45

T
T
:totaltim

e;ST
:shipping

tim
e;C

T
:com

putationaltim
e.

Chapter 7. Results 59

T
a
bl

e
7.

2:
P
er
fo
rm

an
ce

co
m
pa

ri
so
n
op

ti
m
iz
in
g
th
e
sh
ip
pi
ng

ti
m
e.

H
eu

ri
st

ic
(1

)
B

R
-M

S
(4

)
B

R
-V

N
S

(5
)

G
ap

in
S
T

(%
)

In
st

an
ce

ST
(h
)

T
T

(h
)

C
T

(s
)

ST
(h
)

T
T

(h
)

C
T

(s
)

ST
(h
)

T
T

(h
)

C
T
(s
)

(1
)-
(4
)

(1
)-
(5
)

(4
)-
(5
)

(2
)-
(4
)

(3
)-
(5
)

pi
-0
1

29
.1
67

33
.4
33

0.
2

26
.9
27

31
.1
93

1.
6

26
.4
18

30
.1
75

2.
2

7.
68

9.
43

1.
89

-1
.9
3

0.
00

pi
-0
2

35
.6
84

37
.4
69

0.
3

30
.7
53
(*
)

34
.4
25

36
.4

31
.5
58

34
.4
86

2.
8

13
.8
2

11
.5
6

-2
.6
2

10
.7
7

0.
00

pi
-0
3

39
.7
26

43
.3
1

0.
7

33
.0
18

36
.6
02

26
.4

33
.0
18

36
.6
02

27
.9

16
.8
9

16
.8
9

0.
00

0.
00

0.
00

pi
-0
4

36
.3
29

40
.2
07

2.
7

33
.6
84

37
.5
62

31
.5

35
.3
05
(†
)

39
.1
83

11
5.
4

7.
28

2.
82

-4
.8
1

-4
.2
5

3.
69

pi
-0
5

48
.1
99

52
.3
94

1.
1

39
.0
86
(*
)

41
.3
95

20
.6

40
.8
32

43
.0
76

87
.7

18
.9
1

15
.2
8

-4
.4
7

3.
09

-0
.0
7

pi
-0
6

34
.1
91

37
.9
63

0.
3

28
.6
46
(*
)

32
.4
18

31
.8

29
.3
42

33
.1
14

4.
4

16
.2
2

14
.1
8

-2
.4
3

4.
19

-0
.0
9

pi
-0
7

38
.1
95

40
.5
58

0.
7

37
.4
85

39
.8
56

44
.6

37
.4
85

39
.8
56

35
.6

1.
86

1.
86

0.
00

0.
00

0.
00

pi
-0
8

36
.3
45

39
.2
55

1.
1

33
.7
27

36
.6
37

15
33
.7
27

36
.6
37

63
.2

7.
20

7.
20

0.
00

0.
00

0.
00

pi
-0
9

35
.2
38

38
.0
91

2.
9

32
.9
04

35
.7
57

18
3.
3

33
.2
09

36
.0
97

16
1.
8

6.
62

5.
76

-0
.9
3

0.
00

-0
.1
3

pi
-1
0

35
.0
94

38
.3
62

1.
7

34
.7
13
(†
)

38
.3
58

29
.2

33
.2
37
(*
)

37
.3
54

13
4.
5

1.
09

5.
29

4.
25

0.
12

4.
96

pi
-1
1

21
.2
96

24
.4
52

0.
3

18
.6
94

21
.8
66

19
.3

18
.9
75

21
.9
68

11
.7

12
.2
2

10
.9
0

-1
.5
0

-0
.4
9

-2
.9
1

pi
-1
2

22
.5
15

25
.2
91

0.
7

21
.1
07
(*
)

24
.4
31

10
.1

22
.4
53

25
.1
43

28
.8

6.
25

0.
28

-6
.3
8

5.
99

0.
00

pi
-1
3

19
.6
69

23
.3
82

1.
2

19
.3
72
(†
)

23
.5
08

18
1.
4

19
.3
86
(†
)

23
.0
99

32
.5

1.
51

1.
44

-0
.0
7

1.
51

8.
38

pi
-1
4

17
.6
16

20
.7
04

3.
2

17
.4
54
(†
)

21
.0
2

16
5.
4

17
.5
09

21
.4
24

12
8.
8

0.
92

0.
61

-0
.3
2

0.
92

-2
.3
7

pi
-1
5

23
.1
46

25
.7
92

1.
7

21
.6
01

25
.6
25

22
1.
6

22
.3
73
(†
)

26
.6
03

6.
8

6.
68

3.
34

-3
.5
7

-0
.4
2

3.
34

pi
-1
6

25
.2
08

29
.7
08

0.
8

20
.3
06
(*
)

24
.8
06

68
.7

21
.8
13

26
.7
56

94
.9

19
.4
5

13
.4
7

-7
.4
2

0.
82

-1
.7
0

pi
-1
7

19
.8
84

22
.9
76

2.
8

19
.5
11
(†
)

23
.1
63

24
8.
3

19
.5
1(
†)

22
.8
23

63
.5

1.
88

1.
88

0.
01

0.
57

0.
39

pi
-1
8

23
.0
2

27
.4
22

2.
4

22
.0
38

25
.4
22

19
3.
1

22
.1
38
(†
)

26
.8
34

28
4.
3

4.
27

3.
83

-0
.4
5

0.
00

0.
18

pi
-1
9

18
.6
42

23
.1
34

5
18
.5
64
(†
)

23
.0
72

57
4.
3

18
.5
64

22
.7
41

28
1.
4

0.
42

0.
42

0.
00

2.
76

0.
42

pi
-2
0

24
.7
5

27
.3
32

2.
7

21
.7
06

25
.0
26

14
6.
3

21
.9
12

24
.9
88

97
.2

12
.3
0

11
.4
7

-0
.9
5

0.
00

-0
.1
2

A
vg

.
1.

6
11

2.
4

83
.3

8.
2

6.
9

-1
.5

1.
2

0.
7

M
ar
ke
d
w
it
h
(†
)
ar
e
th
e
sh
ip
pi
ng

ti
m
es

(S
T
)
th
at

ar
e
lo
w
er

th
an

th
e
on

es
ob

ta
in
ed

in
T
ab

le
7.
1
bu

t
w
it
h
gr
ea
te
r
to
ta
lt
im

es
(T

T
).

R
es
ul
ts

m
ar
ke
d
w
it
h
(*
)
in
di
ca
te

th
at

bo
th

to
ta
la

nd
sh
ip
pi
ng

ti
m
es

ar
e
by

ch
an

ce
lo
w
er

th
an

th
e
on

es
in

th
e
pr
ev
io
us

ta
bl
e.

E
ve
n
th
ou

gh
th
e
m
et
ho

ds
(2
),
(4
)
an

d
(3
),
(5
)
ar
e
re
sp
ec
ti
ve
ly

th
e
sa
m
e,

w
e
ha

ve
di
ffe

re
nt
ia
te
d
th
em

be
ca
us
e
th
e
fo
rm

er
(2
)
an

d
(3
)
w
er
e
op

ti
m
iz
in
g
th
e

to
ta
lt
im

e,
w
he
re
as

th
e
ot
he
rs

w
er
e
op

ti
m
iz
in
g
th
e
sh
ip
pi
ng

ti
m
e.

60 Chapter 7. Results

T
a
ble

7.3:
P
erform

ance
com

parison
of

the
search

w
ith

a
greater

num
ber

of
iterations.

H
eu

ristic
(1)

B
R

-M
S

(2)
B

R
-V

N
S

(3)
G

ap
(%

)
In

stan
ce

T
T

(h)
ST

(h)
C
T

(s)
T
T

(h)
ST

(h)
C
T

(s)
T
T

(h)
ST

(h)
C
T

(s)
(1)-(2)

(1)-(3)
(2)-(3)

pi-01
33.433

29.167
0.2

30.175
26.418

8
30.175

26.418
15.8

9.74
9.74

0.00
pi-02

37.469
35.684

0.3
34.815

33.03
38.1

34.403
31.558

7.1
7.08

8.18
1.18

pi-03
43.31

39.726
0.7

36.602
33.018

111.1
36.602

33.018
91.6

15.49
15.49

0.00
pi-04

40.207
36.329

2.1
35.714

32.86
138.1

38.426
34.548

560.1
11.17

4.43
-7.59

pi-05
52.394

48.199
1.1

42.201
39.957

30.2
42.575

40.331
226.7

19.45
18.74

-0.89
pi-06

37.963
34.191

0.3
31.629

28.727
53

31.451
28.479

8.4
16.68

17.15
0.56

pi-07
40.558

38.195
0.7

38.064
35.665

66.1
39.856

37.485
36.2

6.15
1.73

-4.71
pi-08

39.255
36.345

1.1
36.692

33.727
160

36.637
33.727

62
6.53

6.67
0.15

pi-09
38.091

35.238
2.8

35.302
32.349

274.2
35.082

32.651
776.5

7.32
7.90

0.62
pi-10

38.362
35.094

1.6
37.612

34.755
93.8

36.368
33.55

322.8
1.96

5.20
3.31

pi-11
24.452

21.296
0.3

21.93
18.759

61.1
21.257

18.23
36.4

10.31
13.07

3.07
pi-12

25.291
22.515

0.7
24.397

21.03
122.5

24.917
21.55

127.6
3.53

1.48
-2.13

pi-13
23.382

19.669
1.2

22.367
19.825

153.5
21.768

19.386
281.8

4.34
6.90

2.68
pi-14

20.704
17.616

2.9
20.336

17.225
609.8

20.501
17.616

562.1
1.78

0.98
-0.81

pi-15
25.792

23.146
1.6

24.12
21.93

294.4
24.638

23.146
66.7

6.48
4.47

-2.15
pi-16

29.708
25.208

0.7
25.437

21.123
49

24.006
20.938

255.2
14.38

19.19
5.63

pi-17
22.976

19.884
1.5

22.458
19.622

534.8
22.345

19.51
40.6

2.25
2.75

0.50
pi-18

27.422
23.02

2.1
25.385

22.038
373.9

25.472
22.038

303.2
7.43

7.11
-0.34

pi-19
23.134

18.642
4.7

22.309
18.564

1025.2
21.941

19.204
726.6

3.57
5.16

1.65
pi-20

27.332
24.75

2.5
24.62

21.544
424

24.404
22.121

1122.9
9.92

10.71
0.88

A
vg.

1.5
231.0

281.5
8.28

8.35
0.08

1-10
1.09

97.3
210.7

10.16
9.52

-0.74
11-20

1.8
364.8

352.3
6.40

7.18
0.90

61

Chapter 8

Analysis and discussion

Figure 8.1 shows the results presented in Table 7.1, where we represent the gaps in terms of
the total time between the three different approaches for the 20 instances created.

It is easy to see that both algorithms, BR-MS and BR-VNS, have a similar performance,
with 50% of the gaps between 2-11% (1st and 3rd quartile), but slightly better in average for
the former. When comparing the performance of these two approaches, it really depends on
the instance whether one approach or the other will obtain better results.

Figure 8.1: Performance comparison showing the gaps of TT.

However, if we take a look at Table 8.2, where the computational times are represented for
each solving approach, we can grasp that the metaheuristic is substantially faster than the BR-
MS (46.47%), and that the deterministic heuristic is way faster than both other approaches,
having computational times of less than 6 seconds in the worst case. The difference resides
in the fact that, at each iteration, the BR-VNS takes advantage of the previous one reusing
its partial solution, so that only a small percentage of decisions has to be rolled back, and
resolving it from an advanced system state is faster than solving it from scratch, as the BR-MS
does.

62 Chapter 8. Analysis and discussion

Figure 8.2: Performance comparison in terms of the computational time.

Figure 8.3 represents the gaps in terms of the shipping time, when the objective function
wasn’t the total time (Table 7.2). In this case, better results were reported by the BR-MS,
even though the computational times, which are not represented, were still greater for this
approach.

Figure 8.3: Performance comparison showing the gaps of ST.

Figures 8.4 and 8.5 represent the results of Table 7.3 in which the number of iterations was
increased. However, in the former figure we have distinguished the small instances (25 and
50 containers), from the larger ones (100 and 200 containers). Two differences arise from this
figure: i) greater gaps have been obtained for small instances; and ii) the BR-MS approach
tends to outperform the BR-VNS in small instances, whereas the opposite is also true, i.e.,
the BR-VNS obtains better results than the BR-MS in larger instances.

Chapter 8. Analysis and discussion 63

Figure 8.4: Performance comparison with a greater number of iterations
between small and large instances.

The difference on the results when both approaches were boosted with a greater number
of iterations is shown in Figure 8.5. In this case, the BR-VNS obtains lower or equal total
times than in the initial results of all instances except for the pi-14.

Figure 8.5: Performance comparison between initial results and boosted ones.

As mentioned earlier, the BR-VNS approach tends to find high-quality solutions in less
computational time than BR-MS. Figure 8.6 shows the execution of both algorithms for
instance pi-02 in a 7.5 seconds time frame. The horizontal purple dashed line represents the
cost (upper bound) of the solution obtained by the deterministic heuristic. That’s why the
first solution obtained by the BR-VNS (in blue) starts on a solution with that cost, whereas
the BR-MS (in green) does not in this case. The feasible solutions obtained by the algorithms
are marked with dots, while unfeasible ones are marked with crosses. The best solution of the
BR-VNS is obtained at 0.9 seconds, quite earlier than the BR-MS, which is obtained around
4.8. The BR-VNS approach speeds up the convergence to a high-quality solution in this case.

64 Chapter 8. Analysis and discussion

Figure 8.6: Convergence of BR-MS and BR-VNS approaches for instance
pi-02.

There are many other characteristics that define a solution beyond the total time, the
shipping time and the computational time. For instance, the no. of drivers deployed, the
amount of hours spent by the drivers, the total time that the drivers were actually driving,
among others. Seems interesting to represent solutions in a way that all these features can be
represented and taken into account. Figure 8.7 represents 6 characteristics of three different
solutions of instance pi-06 obtained by a different solving approach. We have represented
the total, shipping and computational time, and as mentioned before, the drivers’ traveling
time, i.e., total amount of hours driven by drivers (without taking into account stops), drivers
total/elapsed time, i.e., total amount of shift working hours, and the no. of drivers moved.

Notice that the data of these radar plots has been reversed, that is, we would normally
want to minimize all six features, which is the same as having a solution with all features
at 0%. However, in order to ease the visualization, we’ve done the opposite, optimizing a
feature means having the greatest value, 100%, e.g., the solution obtained by the deterministic
heuristic (in purple) is the fastest with the minimum computational time, thus, we can see in
Figure 8.8a that this feature is maximized.

Chapter 8. Analysis and discussion 65

Figure 8.7: Comparison of six main characteristics between three solutions
of instance pi-06.

The main features extracted from the three solutions chosen and represented in Figure 8.7
can be seen in Table 8.1, where #D stands for the no. of drivers moved, DET is the drivers
elapsed time (or drivers total time) and DTT, the drivers traveling time. All units are in
hours, except for the number of drivers.

Approach TT ST CT #D DET DTT
Heuristic 37.963 34.191 0.4 186 1648.2 1305.3
BR-MS 32.479 29.378 10.3 186 1646 1279.2
BR-VNS 31.281 27.078 5 211 1863.9 1421.5

Table 8.1: Three solutions and their characteristics for instance pi-06.

Figures 8.8a to 8.8c show each solution separately. In this case, the solution obtained by
the BR-VNS approach is the one with minimum total and shipping times, but it also uses
more resources than the others, that is, 25 more drivers and more traveling hours spent.

With regard to the physical internet paradigm addressed in this thesis, their advantages
seem quite relevant when routing a fleet of trucks. For instance, we can do a simple comparison
between the conventional transportation system, that is, pairing a driver with the whole route
of a container, and the PI approach. Taking as an example the pi-02 instance we can easily
state the differences on the solutions obtained by both models just focusing on the longest
shipment: container no. 3 has a traveling time of 23.241h from origin to destination using the
shortest path in the network, a 46h due time and the closest driver is at 0.425h from it.

The traditional paradigm would activate a truck driver to perform the whole service, which
means that the hours of service regulation (HOS) for property-carrying drivers established
in the U.S. [69], or similar regulations would apply. This regulation can be summarized in 2
main rules: i) the 11/14h driving limit rule, i.e., a worker “may drive a maximum of 11 hours

66 Chapter 8. Analysis and discussion

(a
)
H
euristic

solution
characteristics.

(b)
B
R
-M

S
solution

characteristics.
(c)

B
R
-V

N
S
solution

characteristics.

F
ig

u
r
e

8.8:
V
isualization

of
six

characteristic
from

three
solutions

side
by

side.

Chapter 8. Analysis and discussion 67

after 10 consecutive hours off duty” and also “may not drive beyond the 14th consecutive hour
after coming on duty, following 10 consecutive hours off duty”; and ii) a 30-minute rest break
(at least) is required before the 8th consecutive driving hour by law. The 60/70h limit rule
doesn’t apply in this example, as the shipment doesn’t exceed a 4-day trip and this rule tries
to limit the 14-10h on and off duty cycles so that can’t be abused. So if we don’t consider
the service times – loading, unloading, fueling, etc. – nor the eating breaks as we will already
account the rest breaks, the minimum shipping time estimated for the container no. 3 would
be of 44.666h, and the total time, 88.482h at best. Notice that we are not considering the
0.425h traveling time from the depot to the endpoint in the return. Table 8.2 summarizes the
estimated route that the driver would do following these regulations.

Start End Duration Activity Traveling left
0.000 0.425 0.425 driving 23.241
0.425 8.425 8.000 driving 15.241
8.425 8.925 0.500 break 15.241
8.925 11.50 2.575 driving 12.666
11.50 21.50 10.00 resting 12.666
21.50 29.50 8.000 driving 4.666
29.50 30.00 0.500 break 4.666
30.00 33.00 3.000 driving 1.666
33.00 43.00 10.00 resting 1.666
43.00 44.666 1.666 driving 0.000
44.666 51.00 6.334 driving -6.334
51.00 51.50 0.500 break -6.334
51.50 54.50 3.000 driving -9.334
54.50 64.50 10.00 resting -9.334
64.50 72.50 8.000 driving -17.334
72.50 73.00 0.500 break -17.334
73.00 76.00 3.000 driving -20.334
76.00 86.00 10.00 resting -20.334
86.00 88.482 2.482 driving -22.916

Table 8.2: Traditional route of a driver.

On the other hand, the best results obtained by our algorithms with driver’s working
shifts between 8 and 10 hours report a shipping time of 31.558h for the container no. 3, and
a total time of 34.403h for the 25 containers. Seems clear the benefits that this model would
report, although a deeper comparison on the resources used by one and the other should also
be further addressed, as 8 drivers were needed in the PI model.

69

Chapter 9

Management

9.1 Planning

The length of this project is estimated in 15 weeks, starting from October the 2nd, 2017 until
January the 14th, 2018. The oral defense is scheduled on the week of 22nd - 27th of January,
which means that we aim to have our thesis dissertation written, finished and revised on the
15th of January, having a whole week to prepare the oral defense.

These deadlines as well as the elapsed time to carry on the project cannot be changed
during its development. However, it is important to remark that, as for any project based on
agile methodologies, new tasks might come in with new requirements as well as others might
go away. So we will need to adapt and be flexible enough so that the project can be finished
on the due time mentioned.

Figures 9.1, 9.2 respectively show a final and initial time planning with the use of a Gantt
chart generated on an online platform (teamgantt.com). However, MS Team Foundation
Server will be used to keep track of smaller tasks in 2-week duration sprints.

Tasks description

In this section we will describe the tasks involved in the development of the project. Tasks
significantly related to each other have been aggregated into small groups. These groups have
a workload that ranges from 1 to 4 weeks to be properly finished, but no more than that.
Otherwise seems that they are too big for the appropriate control and monitoring.

First of all, it is necessary to point out that we are taking into account the time required
for documentation in those tasks that are specifically related to content that will be in the
thesis, e.g., literature review, discussion and conclusions. This way we won’t need to write
the whole thesis all at once two weeks before the deadline. However, for technical tasks such
as the development of an algorithm, specific documentation tasks have been defined.

For all tasks, a computer and access to Internet are needed. So from now on we won’t be
mentioning them as material resources. On the other hand, the only human resources needed
will be our dedication as well as the one from our supervisors. We won’t be mentioning them
either.

In table 9.1 the groups of tasks that we aim to finish are listed with the estimated elapsed
time (in weeks and hours). We have sorted them in a logical order of precedence but an
explanation on their dependencies can be found later on. Each week is approximately equal

teamgantt.com

70 Chapter 9. Management

to 40 hours of work at least, that is, 8 hours a day, 5 days a week. So the expected overall
elapsed time of the project will be of 600 hours.

Task Elapsed time

Research extension 2 weeks ≈ 80 hours
Basic approaches validation and testing 3 weeks ≈ 120 hours
Metaheuristics framework 4 weeks ≈ 160 hours
Create benchmark instances 2 weeks ≈ 80 hours
Experiments, analysis and conclusions 3 weeks ≈ 120 hours
Oral defense 1 week ≈ 40 hours

15 weeks ≈ 600 hours

Table 9.1: Groups of tasks with their duration.

Research extension

A wide context and theoretical background for this project was provided in the first GEP
deliverable, however, we consider important to extend it so that the reader can achieve a deep
understanding on logistics topics and the physical internet initiative, but more importantly,
on combinatorial optimization problems, and optimization methods such as heuristics and
metaheuristics.

We also showed the state-of-the-art problems tackled by other researchers through a lit-
erature review on similar problems they are dealing with. But we will try to consider more
authors, and try to find more scientific papers that might help us with our specific problem.

In order to do so, we have defined two tasks: background and context extension, literature
review extension. We will be working on them for two weeks at the same time, because one
can help the other. A printer might be needed as a material resource to ease the process of
reading and summarizing dozens of papers.

Basic approaches validation and optimization

Because this project was started a bit earlier we already have started to implement two solving
approaches: a simple heuristic and a biased randomized heuristic algorithms. We need to finish
their development, verify and validate that they are working fine. In order to do so we will
test some of our code using JUnit and implement another algorithm that, given a solution for
the problem, validates whether is correct and consistent. We will also optimize the parameters
of the code that are significantly big enough to be defined as a task: parameter fine-tuning.
To perform these tasks we will need specific software: Java programming language, IntelliJ
Idea IDE and JUnit testing software.

9.1. Planning 71

Metaheuristics framework

Another solving approach for our problem will be based on the use of a specific metaheuristic.
During this part of the project we will need to decide which metaheuristic use, implement it in
Java and document it. For this reason we have defined two tasks: algorithm development and
documentation. Within the development of an algorithm we will always have two subtasks:
implementation and testing. This bunch of tasks has a 4-week expected time of completion.

Create benchmark instances

A set of benchmark instances will be adapted from a dataset of 5 networks. Different sce-
narios will be generated with different fleet sizes and number of containers to deliver. The
assignments will be randomized so that we can generate hundreds of tryouts and choose those
in which the basic solving approaches are able to obtain feasible solutions. We have estimated
that we will be working on this for 2 weeks.

Experiments, analysis and conclusions

Computational experiments from the generated instances will be done. These experiments will
be executed using all the listed solving approaches. The analysis will be performed according
to different comparison methods between solutions. Three tasks have been defined for this
group. The expected elapsed time of this group of tasks is 3 weeks as it might take quite long
to gather all the results of different executions when the size of the instances is big enough.

Oral defense

The preparation of our oral defense will be done during a week. We will need to decide
and prepare the resources to do it, such as the type of presentation slides we will use (MS
Powerpoint or Beamer). It will be really helpful to practice with our supervisors, family and
friends (human resources), so we will ask for their time.

Rescue week

In addition, we have defined a whole spare week that we can use in case any task takes longer
than estimated. This way the time planning isn’t as tight as it would’ve been if we hadn’t
defined this week as free. With this strategy we gain flexibility on our plan.

Alternatives and action plan

One of the most common obstacles or risks is to underestimate the workload of a task, e.g.,
some programming tasks might have to face bugs or strange behaviors that are really time
consuming. If that happens we have scheduled a free week that can be used anytime for those
important tasks that are needed to keep going forward on the project. The way to go will
be moving the time planning a day or as many as needed. But if we really have to face it
more than once we will need to shorten the scheduled time for one of the frameworks we want
develop or we will even have to omit one of them.

72 Chapter 9. Management

This project is really aimed to be able to develop the metaheuristics framework, that’s
why we have decided to give more time to this group of tasks, as it is also more complex.

We also dispose of the help of two supervisors that will monitor the tasks as well. So it
won’t only be one person paying attention to possible deviations to the time planning. Some
other possible causes of modifications on the plan and delays are listed below.

Access to scientific journals

As a student our access to some scientific papers is restricted to the access granted to the
UPC, or to the open public. In this case if some fundamental papers were needed and we
don’t have access to them the only thing we can do is to ask our supervisors or to ask directly
to the authors, as it is done sometimes in the Research Gate platform.

Dependencies between tasks

We’ve tried to minimize the dependencies between tasks so that we don’t end up stuck in
a bottle neck working on a single big task that enables the rest. However, in the group of
tasks Basic solving approaches validation the validation and verification task is required for
the metaheuristics framework, as it will be implemented on top of the biased-randomized
heuristic. It is obvious though, that the experiments, analysis and conclusions can only be
done once all the algorithms have been developed. Also notice that the experiments can be
started only after adapting and creating our instances. The rest of tasks are independent
and they wouldn’t need to be ordered this way, but we’ve decided to sort them by increasing
potential performance gain.

Resources

This project doesn’t require many material resources apart from a computer and an Internet
connection, but in this subsection the resources needed for the development of the project are
listed distinguishing hardware from software resources. We have also identified four different
roles needed as human resources.

Hardware

– Acer Aspire E 15

– HP Elite Desktop

Human

– Project manager

– Software developer

– Data scientist

– Researcher

Software

– Microsoft Windows 10/Linux Ubuntu 16.04

– Microsoft Office 365

– Microsoft Visio Pro 2016

– Microsoft Team Foundation Server

– IntelliJ IDEA

– Oracle JDK 8

– Sublime Text 3

– Git/GitHub

– Overleaf

F
in

al
p
la

n
n
in

g

F
ig

u
r
e

9.
1:

G
an

tt
ch
ar
t
of

th
e
fin

al
pl
an

ni
ng

.

In
it

ia
l
p
la

n
n
in

g

F
ig

u
r
e

9.
2:

G
an

tt
ch
ar
t
of

th
e
in
it
ia
lp

la
nn

in
g.

9.2. Budget estimation 75

9.2 Budget estimation

In this section a detailed estimation of the budget for this project is done taking into account
direct, indirect and incidental costs. Within the direct costs, we emphasize the differences
between the costs associated to hardware, software and human resources.

Direct costs

Direct costs are strictly related to the costs of the execution of the tasks and activities ex-
plained in our planning, that is, the ones arranged in the Gantt chart. For that reason we
need to list the needed resources, material and human, mentioned in the previous section to
consider their costs or prices and their amortizations.

The amortization Ap for a given product p has been calculated as follows:

Ap = PP · TU

50 UL
where,

PP is the Product Price (in euros)
TU stands for the Time in Use of the product (in weeks)
UL represents its Useful Life (in years)

We are assuming that a year has an average of 52 weeks, 50 of them are workable, the
rest are accounted as holidays. We also assume that the product isn’t used off work and that
generally it could be used 8h a day, as in a full time job, also the premise for the planning
of this project. This way seems easier to do the math in weeks, instead of hours, because we
account the same number of hours per week in TU as in UL.

We’d like to mention that useful life periods for the computers have been extracted from
the current tax depreciation in the U.S., that is, MACRS GDS. Other useful life periods such
as the license of different software are just the development elapsed time of the the project,
that is, 4 months.

Finally, it is also necessary to mention that we only need one unit of each product and for
this reason the number of units isn’t placed in every table.

Hardware resources

In this subsection we have estimated a budget for the hardware resources needed. In our
case we only need the use of two computers: a laptop and a desktop computer. The useful
life of a computer is estimated in 5 years and even though its use is one of the factors of
its depreciation other factors such as the efflux of time, obsolescence or accidents are also
considered in this estimation. table 9.2 shows the hardware resources needed in detail.

76 Chapter 9. Management

Product Price (e) Useful life (years) Amortization (e)

Acer Aspire E 15 390 5 23.4
HP Elite Desktop 400 5 24.0

Total 790 47.4

Table 9.2: Hardware resources budget.

Software resources

In this subsection we have estimated a budget for the software resources needed. We’ve tried
to choose open source software as well as student free packs for specific programs such as
GitHub or IntelliJ IDEA. However, Office pack and Visio Pro seem really adequate for this
project. Table 9.3 shows a detailed list of the software resources needed.

Product
Price Useful life Amortization

e/month months e

Microsoft Windows 10 Included - 0
Microsoft Office 365 7 4 28
Microsoft Visio Pro 2016 11 4 44
IntelliJ IDEA 0 - 0
Oracle JDK 8 0 - 0
Team Foundation Server 0 - 0
Sublime Text 3 0 - 0
GitHub 0 - 0
Overleaf 0 - 0

Total 18 72

Table 9.3: Software resources budget.

Human resources

We have identified four essential roles that will take part in the project:

• Project manager: responsible for planning, executing, monitoring and closing the life
cycles within the project, that is, all its tasks and subtasks. The average gross salary of
an IT Project manager is about e42,0001.

• Software engineer: responsible for the design, development, testing and evaluation
of a software system, as well of its documentation. The average salary of a Software
engineer is about e31,000.

1All wages mentioned are gross and averaged in Spain. They have been extracted from glassdoor.com.

glassdoor.com

9.2. Budget estimation 77

• Data scientist: responsible for data extraction, collection, cleaning, processing in order
to analyze, interpret and obtain knowledge. The average salary of a Data scientist is
about e45,000.

• Computer scientist researcher: it would be the role of a PhD student or a post-doc
in the strict responsibilities of research, review, investigation and documentation. The
average salary of a Research assistant is e21,000.

Tables 9.4 and 9.5 show the dedication of these four specialists in the project and the
salaries and costs associated to their involvement, respectively.

Dedication (hours)

Task
Elapsed Project Software Data CS
(hours) Manager Engineer Scientist Researcher

Research extension 80 0 0 0 80
Basic approaches validation 120 10 80 0 30
Metaheuristics framework 160 20 100 0 40
Create benchmark instances 80 10 30 40 0
Experiments and analysis 120 10 50 40 20
Oral defense 40 10 0 0 30

Total 600 60 260 80 200

Table 9.4: Specialist dedication by task.

Role Elapsed Salary (e/year) Salary (e/h) Cost (e)

Project manager 60 42,000 21.88 1,312.8
Software engineer 260 31,000 16.15 4,199
Data scientist 80 45,000 23.44 1,875.2
CS Researcher 200 21,000 10.94 2,188

Total 600 9,575

Table 9.5: Human resources budget.

Indirect costs

These costs are not directly related to an activity or a specific task. For instance, electricity,
printed paper, office lease, amortizations, etc. Table 9.6 shows the detailed budget for this
kind of costs, including the accumulated amortizations from the hardware budget, not the
software, though, because it’ll be considered as a direct cost.

78 Chapter 9. Management

Product Price Units Cost (e)

Electricity e0.129/kWh 1,000kWh 129.0
Internet connection e25/month 4 months 100.0
Printed paper e0.05/unit 500 units 25.0
Office lease e250/month 4 months 1,000.0
Amortizations - - 47.4

Total 1,373.4

Table 9.6: Indirect costs.

Incidental costs

The main risk in this project is to underestimate its time of development. For this reason
it was already considered an extra free week to compensate delays, but it still could happen
that we need more time to finish the project. Table 9.7 shows the extra time needed of each
role. We have studied to add an extra 10% of the overall time for each specialist, paid with
the same salary, not as extra hours.

Role Extra (h) Salary (e/h) Cost (e)

Project manager 6 21.88 131.28
Software engineer 26 16.15 419.9
Data scientist 8 23.44 187.52
CS Researcher 20 10.94 218.8

Total 60 957.5

Table 9.7: Incidental costs.

Nonetheless, it is important to take in mind that these added costs need to be considered
only in the worst case, thus we estimate the probability of the worst case scenario in 15%. So
the final cost of the incidentals is e143.6.

Budget by task

Table 9.8 shows the estimated cost for each task taking into account the direct costs only.
This way we can distinguish the cost linked to each task.

9.2. Budget estimation 79

Task Hardware (e) Software (e) Human (e) Total (e)

Research extension 105.3 9.6 875.2 990.1
Basic approaches validation 158.7 14.4 1,839 2,012.1
Metaheuristics framework 210.6 19.2 2,490.2 2,720.0
Create benchmark instances 105.3 9.6 1,640.9 1,755.8
Experiments and analysis 158.7 14.4 2,182.7 2,355.8
Oral defense 52.9 4.8 547 604.7

Total 790 72 9,575 10,438.5

Table 9.8: Cost by task.

Total budget

And finally the total budget including all costs and applying a level of contingency of 10% is
shown in table 9.9.

Concept Cost (e)

Direct costs 10,438.5
Hardware 790.0
Software 72.0
Human 9,575

Indirect costs 1,373.4

Subtotal 11,811.9

Contingency (10%) 1,181.2
Incidentals 143.6

Total 13,136.7

Table 9.9: Total budget.

Budget monitoring

The budget isn’t fixed in the sense that needs to be adjusted according to justified deviations
of the planning of this project. For instance, needs of different specialists might arise during
its development. However this would only imply a simple adjustment in the direct costs of the
project (specifically in the human resources costs). Furthermore, if that free week scheduled
in the end of the planning was necessary we would only need to add direct and indirect costs
to this budget. And additionally, we have already established a contingency cushion of 10%

of the overall budget as well as the cost of incidentals, such as extra hours needed beyond the
free week.

It is obvious that if the budget estimation exceeds the actual cost of the project the
difference has to be discounted and that surplus could be used to maintain the project,
however, hardly ever this is the case.

80 Chapter 9. Management

The monitoring of the budget might be easier to be done using a management application,
like Team Foundation Server, where we can keep updated the time spent on each task. This
way we can control the direct costs (human related) just by adjusting the hours worked by
each specialist.

9.3 Modifications and deviations

The simheuristics and learnheuristics frameworks were removed during the late development of
this project. It seemed convenient at that time to focus on the other three solving approaches
and also on performing a rigorous design of experiments with realistic instances. The main
problem we had to face was the lack of standardized benchmark instances in the literature to
test our algorithms, as the exact same problem hasn’t yet been addressed to the best of our
knowledge. So the planning and the budget had to be modified accordingly to these changes.
A part from that the rest of this chapter stays the same.

It is also important to state that, both methodologies would have solved a different more
complex problem than the one we are dealing with now in container transportation. In both
cases we would be considering stochastic traveling times and in the second case, we would
also be implementing techniques that were defined this very last year for a really too complex
problem. Maybe we were a bit naive to think that we would be able to do so much in the
limited time that we dispose, as it is the usual case in this kind of projects.

In addition, we have to remark that we have been writing in parallel a scientific paper to
submit in a journal. So most of that work has been adapted to this format, which made it
incredibly harder, as many aspects are assumed when referenced in a journal article. However,
wider explanations and an explicit chapter dedicated to contextualize and give background
on the physical internet as well as optimization methods was written in this thesis.

9.4 Legal aspects and regulations

While writing this chapter, regulations related to the price of the kWh, average office lease
prices and average wage in Spain of the four professionals mentioned earlier, had to be con-
sulted. But no more legal aspects were relevant in this chapter.

Nevertheless, during the development of this thesis a specific regulation concerning the
hours of service for property-carrying drivers established in the U.S. [69], was taken into
consideration. As explained in Chapter 2, the physical internet aims to improve the working
conditions of the employees in the logistics sector, particularly for truck drivers, who have
incredibly long working shifts. For that reason, we had to understand the main rules under
this usual regulation that not only prevails in the U.S.

81

Chapter 10

Sustainability and social commitment

In this chapter the impact of our project is discussed through the three sustainability dimen-
sions and its development taken into consideration from these three perspectives.

Environmental dimension

From the environmental perspective, the resources needed to develop this project are really
scarce, and they are limited to the resources mentioned above, thus seems to be in line with
a so called sustainable project. The only environmental impact that these activities wouldn’t
had if this TFG hadn’t been done would be the saving of resources such as paper, electricity
and the use of computers and an Internet connection. On the other hand, four people wouldn’t
had a job during its duration. Because this project is not building any specific product, but
instead is doing a study in logistics and trying to propose novel approaches for tackling a
problem related to freight transportation, we will focus on the impact that these solutions
might have instead of focusing on the tiny impact that its development has to the environment.

The Physical Internet has in one of its fundamental goals to reduce by an order of mag-
nitude the direct and indirect logistics-induced global pollution. Hence, if this project tries
to implement algorithms and ways of doing of this paradigm so that they can be adopted by
companies, its impact is direct to the society, environmentally speaking, and beneficial for
everyone as it aims to reduce the environmental footprint. This study will also start a line
of research that can be further studied by the academia, so it can be reused and transformed
somehow.

Economic dimension

As it has been stated in section 9.2, the total budget for this project has been estimated
around e13, 000 and its cost adjustments already assessed and taken into account in the bud-
get monitoring, as well as in the budget itself with incidentals and the contingency cushion.
So we can ensure with high probability the viability of the project from the economic per-
spective. However, because this project is done in the framework of the Physical Internet,
a bigger contribution in these three dimensions could be achieved with the organization and
coordination of different projects on the same topic. It is also relevant to mention that, as
it happens with other projects, once it is finished it is easier to plan it with fewer resources,

82 Chapter 10. Sustainability and social commitment

and more is the case of a final degree project done by a student whose main goal is to learn.
Thus, the budget by task and the temporal planning reflect the difficulty and importance of
certain tasks, for instance, the metaheuristics framework.

One of the goals of the PI is also to reduce the global economic burden in global logistics,
while unlocking highly significant gains in production, transportation, and business productiv-
ity. So the development of this project has a big impact on companies that might implement
a more sustainable and efficient logistics system, from an economic point of view.

Social dimension

Right now the political and social situation of the country isn’t at its best due to the conflict
between Spain and Catalonia. However this shouldn’t affect its proper development. Despite
that fact, there’s a clear need and a big margin of improvement with regard to the logistics
sector, not only in Spain but worldwide. And the clearest scenario from a social perspective is
the poor working conditions in this sector. The PI aims to improve their working conditions,
as well as increase the quality of life of the overall population by making much more accessible
the physical objects across the world. If companies start to gradually adopt this paradigm,
and the routings presented in this project are taken into consideration, truck drivers, for
instance, won’t have to face such long periods away from their families.

Sustainability matrix

Table 10.1 shows the sustainability matrix of this project with an overall punctuation of 70

in the range of -60 to 90. We would only like to remark that the environmental dimension
has high marks due to the reasons mentioned before with respect to the limited number of
resources needed for its development. The rest of marks are justified above on the respective
discussion of each dimension.

PPP Useful life Risks

Environmental
Design

consumption
Ecological
footprint

Environmental
risks

9 in [0:10] 17 in [0:20] -2 in [-20:0]

Economic
Bill Viability plan Economic risks

8 in [0:10] 16 in [0:20] -4 in [-20:0]

Social
Personal impact Social impact Social risks

9 in [0:10] 18 in [0:20] -1 in [-20:0]

Sustainability range
26 in [0:30] 51 in [0:60] -7 in [-60:0]

70 in [-60:90]

Table 10.1: Sustainability matrix.

83

Chapter 11

Conclusions

Real life transportation problems can drastically scale up as needs in logistics arise by in-
creasing customer demands. In these situations a human expert is only able to route a fleet of
trucks with reasonable local choices, that is, taking care of the most urgent shipments, activat-
ing the closest drivers and using the shortest paths. However, these solutions are most likely
far from being near-optimal if they are feasible at all, and they are inadequate for the huge
volumes of shipments that multinational companies are taking care in modal transportation
networks throughout the entire world.

In this thesis, a greedy deterministic heuristic algorithm based on discrete-event simu-
lation tries to imitate a human expert planner to solve this novel problem. This algorithm
is able to find feasible solutions for all instances minimizing a time-related single-objective
function, which is the total time (TT) to deliver all containers and return all drivers. We have
also considered the shipping time (ST), an alternative objective function which only aims to
minimize the elapsed time to ship all containers. Both functions are separately used in dif-
ferent computational experiments. Although the performance of this heuristic is envious, as
it is really fast, 5 seconds at most for large instances (800 nodes, 200 containers), the quality
of the solutions can be easily improved.

As an extension to this approach, we randomize the heuristic by introducing well-known
biased-randomization techniques and embed it into a multi-start framework (BR-MS). We
build numerous solutions until a stopping criterion based on the number of iterations is met
and return the best one. The randomization of the heuristic is done in three main points:
when selecting (i) the next container to be dispatched; (ii) the next driver to be activated;
and (iii) the next node that the container will traverse. With this algorithm, we are able to
find better solutions in reasonable times, gaps of approximately 8% in average taking around
2 minutes of computational time, 30 seconds or less for small instances and up to 4 or 5
minutes for larger ones.

In the end, a variable neighborhood search metaheuristic is built (BR-VNS) to address the
search in an informed way. This approach is usually faster than the BR-MS, as it partially
destroys and resolves solutions without starting from the beginning, but backtracking a certain
amount of decisions. Its main strength resides in the fact that these partial routings from high-
quality solutions can be further exploited, taking advantage of its underlying base routes. The
performance of this algorithm is slightly better than the BR-MS approach for large instances
and also faster, but for some other instances it is outperformed by the BR-MS.

84 Chapter 11. Conclusions

11.1 Future work

Increasing reality of the problem

Several lines of research stem from this work. For instance, stochasticity in traveling times
could be considered, which would require integrating additional simulation techniques into the
metaheuristic-based framework [70], e.g., Monte-Carlo simulation. However, as this problem
is really time-dependent, the usual simheuristic techniques would not be applied the same
way. If a single traveling time changes in the network, the whole solution might radically
change. So innovative approaches would be needed to address stochastic systems as such.
We could consider the policies of common sense deviation, that is, the policies for the beta
parameters’ selection that would minimize the expected cost of a set of different scenarios
derived from the same instance, i.e., with alterations on the traveling times only.

It would also be interesting to introduce further realistic constraints such as service times
for loading and unloading containers in hubs or considering a limited capacity for hubs. We
could also allow delays on the driver’s returns, that is, violating in some cases their constraints
but adding a guarantee on the minimum no. of drivers that would arrive on time. We could
even extend this problem in a wider direction if we consider a continuous system where new
container shipment orders arrive at different times with the same goal: dispatch all orders
as fast as possible so that we are able to deliver all containers as soon as we can. Then it
would make sense to have more than one working shift for drivers, although regulations and
limitations on the number of consecutive driving hours would be needed.

In the context of PI, the vision is to integrate Wireless Sensors and RFID technologies,
thus creating a network of responsive containers, where optimization systems could re-assign
drivers and re-calculate the routes according to real-time data, thus taking efficient decisions
as the containers move within the network.

Improvement in our solving approaches

With regard to the actual way of solving this problem, that is, the underlying base heuristic
in all approaches, different strategies on the first assignments of drivers could be discussed.
As the first decisions are radically decisive to the configuration of the solution and the search
space explored, it seems quite important to diversify this search by using different methods
on the initial assignment, e.g., minimize the total sum of traveling times from driver’s depots
to containers besides the urgency of the containers.

Right now, when scheduling new events we only take into account the available drivers,
i.e., the ones that are idle in the current moment. However, we could also consider all
drivers looking at their estimated times of arrival (ETA). For instance, if a driver currently
transporting a container has an ETA of a couple of minutes to arrive to a hub which is the
closest to another node where a more urgent container resides, we could already schedule an
event so that no other further driver is activated, but this one which is the nearest.

11.1. Future work 85

Analysis of the results and experiments

Taking a closer look to the parameter fine tuning, there’s room for improvement. First of
all, the beta parameters are chosen in the interval (0.95, 1.00), which works more than fine.
Nonetheless, this interval could be separately optimized for each one of the betas, as it is not
the same to deviate from the most urgent container than choosing a slower path. We can
further diversify the search in one direction than in another.

Results from Table 7.3 suggested that the variable neighborhood search is not well pa-
rameterized, or at least, is not performing at its best. We are using a more complex solving
approach (BR-VNS) but not obtaining better results in average for small instances, compared
to the ones obtained by the BR-MS approach. The simplest explanation points to the tuning
of the VNS parameters, that is, the minimum and maximum percentages of destruction, and
in a less relevant manner, the step parameter. Different trial-and-error tests ended up set-
ting them to: 20-100% with an increment of 1%. However, seems reasonable to diversify the
search in the beginning and intensify it as the time passes by, i.e., start with three high values
of pmin, pmax and step and let them settle slowly to lower values, just as the temperature
parameter does in the simulated annealing metaheuristic (SA).

A more complex study on the interrelation between the beta parameters could be per-
formed with a proper design of experiments that would need to go beyond trial-and-error
tests. Although, it was not the aim of this thesis to spend too much time in these experi-
ments. That’s why we consider it important to be addressed as future work.

For all algorithms, we have used the no. of iterations as the stopping criteria when
performing our experiments. This choice was a meditated one, because we wanted to see the
differences in gaps between all instances, knowing that the difficulty to solve them varies, as
we have created scenarios with a no. of containers ranging from 25 to 200. But to compare the
performance of both algorithms (BR-MS and BR-VNS), even though seemed a fair comparison
to experiment with 200 and 300 iterations respectively, a criteria based on the computational
time would be more convenient. Hence, seems necessary to do more experiments changing the
stopping criteria. In addition, a proper comparison between both approaches with statistical
hypothesis testing could be done. An analysis of variance (ANOVA) would be a reasonable
testing to perform on the mean gaps, so that we could statistically prove that one of them
performs better in average. However, in this problem we are more interested in the best results
rather than the average performance, as we are seeking near-optimal solutions. We prefer an
algorithm that gives one really good solution and four other solutions quite horrible, than
another one that gives five average good solutions. This tests could also be used to compare
mean computational times, which then would statistically prove that an algorithm is faster
than the other.

Even though we’ve been able to assess the complexity of single parts of our algorithms,
e.g., the complexity of the shortest paths computation, a complexity analysis could be further
addressed in the future. It was recently studied a methodology to give algorithm’s complexity
bounds for a given family of graphs, as if we were stating that this algorithm would perform
in this range of complexities for these set of structures or scenarios.

86 Chapter 11. Conclusions

So far we’ve only considered single-objective functions, i.e., the total time and the shipping
time, separately. But multi-objective functions could also be built taking into account different
characteristics of the solution (drawn in Figure 8.7), e.g., the total traveling time, the total
elapsed time of drivers or the number of drivers moved. This way more balanced solutions
could be found out and compared to others. Typical multi-objective functions include the
weighted sums or the pareto optimization.

Alternative approaches

Learnheuristics was one of the main techniques that this thesis was pursuing in the beginning:
the hybridization of metaheuristics and machine learning (ML). Excuses notwithstanding,
the complexity of this problem didn’t leave time to develop this framework, and it wasn’t
until the last month that we understood that this methodology should be first applied to a
simpler problem such as the plain VRP. And we are actually doing so in the ICSO research
group. However, once more research is developed in this direction and more case examples are
published it could be considered to generate models for dynamic traveling times that change
according to intrinsic and extrinsic variables, such as traffic, meteorology or driver fatigue.
Online approaches where models were refined during the construction of the solution could
also be considered.

Exact methods were discarded in the first place, but the need to obtain optimal solutions
for small instances only seems possible using algorithms such as Simplex. For this reason a
mathematical model would have to be defined and it hasn’t been an option from the beginning.
Still, tackling this complex task could be addressed in the future. Otherwise we are not able
to compare our solutions with the optimal and all we can do is compare solutions between
them, which in the end we don’t know how far are from the optimal.

Other metaheuristics could be developed for this problem, even though the VNS choice
seems quite the right fit. But of course, having this vast range of great metaheuristics one is
tempted to try another one, if there’s a reasonable explanation behind that choice.

11.2. Competences justification 87

11.2 Competences justification

CCO1.1: To evaluate the computational complexity of a problem, know the algorithmic strate-
gies which can solve it and recommend, develop and implement the solution which guarantees
the best performance according to the established requirements. [In depth]

The problem at issue has been contextualized in the combinatorial optimization field, sim-
ilar routing problems have been reviewed and three different algorithmic strategies were dis-
cussed, analyzed and developed to solve it. Their performances have been compared through
a set of experiments carried out on our own standardized realistic instances, adapted from a
different problem.

CCO2.1: To demonstrate knowledge about the fundamentals, paradigms and the own
techniques of intelligent systems, and analyse, design and build computer systems, services
and applications which use these techniques in any applicable field. [In depth]

A wide background on heuristics and metaheuristics has been given to support the further
development of these techniques. The field of metaheuristics is closely related to artificial in-
telligence, as the former can be seen as an individual agent. In [71] is reported that multi-agent
systems with metaheuristic agents provide effective strategies for solving difficult optimization
problems. Related literature proposed an organizational multi-agent framework to hybridize
metaheuristics algorithms.

CCO2.2: Capacity to acquire, obtain, formalize and represent human knowledge in a
computable way to solve problems through a computer system in any applicable field, in partic-
ular in the fields related to computation, perception and operation in intelligent environments.
[Quite developed]

The greedy deterministic heuristic developed to solve the problem faced in this thesis tries
to imitate how a human would behave and solve it taking the most reasonable choices at each
moment, without foreseeing the subsequent consequences of his choices. [72] states that early
developed metaheuristics “can be characterized under the umbrella term of artificial intelli-
gence because they involve mimicking human problem-solving behavior and learning lessons
from this behavior on a more abstract level ”.

CCO2.4: To demonstrate knowledge and develop techniques about computational learning;
to design and implement applications and system that use them, including these ones dedicated
to the automatic extraction of information and knowledge from large data volumes. [In depth]

The variable neighborhood search metaheuristic takes advantage of underlying good base
structures of solutions to exploit them and learn a way to improve them. However, compu-
tational learning is directly related to machine learning and, in the end, we haven’t added
a learnheuristics framework in this thesis, even though we are now working on that for a
different problem. So this competence should have been changed to quite developed, as we
decided not to include any background and results related to it.

89

Appendix A

Network visualizations

A.1 Small test instances

In this section, the small test instances used for testing and debugging purposes will be pre-
sented with a visualization of the network (including the traveling times/weights), specifying
the no. of drivers, no. of containers, the shipments (origin, destination, due time) and the
working shift limits. The format used for all them is explained below:

• For each driver, we detail his characteristics as di : n (t), where i stands for the driver
id, n is his depot number and t is his working shift.

• For each container, we specify its shipment information as ci : o→ d (t), where i stands
for the container id, o is the origin, d is the destination and t, its due time.

If all drivers working shift or containers due time are the same, they will be separately specified
once. Otherwise the above format will be followed.

Instance 1

Figure A.1: Network representation of small test instance-01.

No. of drivers: 3 Drivers working shift: 8h Drivers d1 : 1, d2 : 3, d3 : 2

No. of containers: 2 Containers due time: 8h Containers c1 : 4→ 6, c2 : 5→ 7

90 Appendix A. Network visualizations

Instance 2

Figure A.2: Network representation of small
test instance-02.

No. of drivers: 3

No. of containers: 3

Drivers
d1 : 1 (6h)

d2 : 2 (12h)

d3 : 3 (4h)

Containers
c1 : 4→ 6 (6h)

c2 : 6→ 8 (8h)

c3 : 8→ 4 (6h)

Instance 3

Figure A.3: Network representation of small
test instance-03.

No. of drivers: 6

No. of containers: 6

Drivers working shift: 9h

Containers due time: 7.5h

Drivers
d1 : 1

d2 : 1

d3 : 7

d4 : 7

d5 : 10

d6 : 10

Containers
c1 : 2→ 8

c2 : 3→ 8

c3 : 6→ 9

c4 : 8→ 2

c5 : 9→ 6

c6 : 9→ 3

A.1. Small test instances 91

Instance 4

Figure A.4: Network representation of small
test instance-04.

No. of drivers: 5

No. of containers: 2

Drivers working shift: 8h

Drivers
d1 : 1

d2 : 9

d3 : 8

d4 : 10

d5 : 10

Containers
c1 : 2→ 6 (16h)

c2 : 7→ 6 (8h)

Instance 5

Figure A.5: Network representation of small
test instance-05.

No. of drivers: 12

No. of containers: 9

Drivers working shift: 8h

Containers due time: 8h

Drivers
d1− d6 : 1

d7− d8 : 10

d9− d10 : 8

d11− d12 : 9

Containers
c1 : 2→ 11

c2 : 3→ 12

c3 : 4→ 13

c4 : 13→ 11

c5 : 11→ 12

c6 : 12→ 13

c7 : 2→ 12

c8 : 3→ 13

c9 : 4→ 11

92 Appendix A. Network visualizations

Instance 6

Figure A.6: Network representation of small
test instance-06.

No. of drivers: 6

No. of containers: 8

Drivers working shift: 8h

Containers due time: 7h

Drivers
d1− d6 : 1

Containers
c1− c3 : 2→ 10

c4− c6 : 3→ 11

c7 : 10→ 2

c8 : 11→ 3

Instance 7

Figure A.7: Network representation of small
test instance-07.

No. of drivers: 40

No. of containers: 24

Drivers working shift: 12h

Containers due time: 10h

Drivers
d1− d10 : 9

d11− d20 : 10

d21− d30 : 11

d31− d40 : 12

Containers
c1− c2 : 1→ 2

c3− c4 : 1→ 3

c5− c6 : 1→ 4

c7− c8 : 2→ 1

c9− c10 : 2→ 3

c11− c12 : 2→ 4

c13− c14 : 3→ 1

c15− c16 : 3→ 2

c17− c18 : 3→ 4

c19− c20 : 4→ 1

c21− c22 : 4→ 2

c23− c24 : 4→ 3

A.1. Small test instances 93

Instance 8

Figure A.8: Network representation of small
test instance-08.

No. of drivers: 3

No. of containers: 2

Drivers working shift: 8h

Drivers
d1 : 9

d2 : 1

d3 : 6

Containers
c1 : 8→ 4 (6h)

c2 : 2→ 7 (9h)

Instance 9

Figure A.9: Network representation of small
test instance-09.

No. of drivers: 8

No. of containers: 4

Drivers working shift: 8h

Drivers
d1 : 1

d2 : 1

d3 : 6

d4 : 6

d5 : 9

d6 : 9

d7 : 11

d8 : 11

Containers
c1 : 2→ 7 (6h)

c2 : 8→ 4 (9h)

c3 : 12→ 4 (7h)

c4 : 13→ 7 (5.5h)

94 Appendix A. Network visualizations

Instance 10

Figure A.10: Network representation of small
test instance-10.

No. of drivers: 16

No. of containers: 14

Drivers working shift: 8h

Containers due time: 6h

Drivers
d1− 8 : 1

d9− 16 : 7

Containers
c1− c2 : 2→ 10

c3 : 2→ 4

c4− c5 : 4→ 6

c6 : 4→ 8

c7 : 6→ 4

c8− c9 : 6→ 2

c10− c11 : 8→ 4

c12 : 8→ 6

c13− c14 : 10→ 8

A.2. Benchmark standardized instances 95

A.2 Benchmark standardized instances

Visual representations of the networks from instances pi-01 to pi-05, respectively adapted from in-
stances TCARP-01 to TCARP-05, are shown below in Figures A.11 to A.15. As instances pi-06 to
pi-20 have the same structure (underlying graph) than these first five, we are not showing them. The
only thing that would visually change would be the different disposition of the three types of nodes
in the network, as the assignment across instances is different.

F
ig

u
r
e

A
.1

1:
N
et
w
or
k
re
pr
es
en
ta
ti
on

of
in
st
an

ce
pi
-0
1
ad

ap
te
d
fr
om

T
C
A
R
P
-R

1.

96 Appendix A. Network visualizations

F
ig

u
r
e

A
.12:

N
etw

ork
representation

of
instance

pi-02
adapted

from
T
C
A
R
P
-R

2.

A.2. Benchmark standardized instances 97

F
ig

u
r
e

A
.1

3:
N
et
w
or
k
re
pr
es
en
ta
ti
on

of
in
st
an

ce
pi
-0
3
ad

ap
te
d
fr
om

T
C
A
R
P
-R

3.

98 Appendix A. Network visualizations

F
ig

u
r
e

A
.14:

N
etw

ork
representation

of
instance

pi-04
adapted

from
T
C
A
R
P
-R

4.

A.2. Benchmark standardized instances 99

F
ig

u
r
e

A
.1

5:
N
et
w
or
k
re
pr
es
en
ta
ti
on

of
in
st
an

ce
pi
-0
5
ad

ap
te
d
fr
om

T
C
A
R
P
-R

5.

101

References

[1] Benoit Montreuil. “The Physical Internet Manifesto”. In: Atlanta, 2012.

[2] Bureau of Transportation Statistics: US Department of Transportation. Transportation
Statistics Annual Report. Tech. rep. 1 - 222. 2015, p. 226. doi: 10.2172/1060772. url:
https://books.google.com/books?id=Xohu_3ooPhEC&pgis=1.

[3] Eurostat. Freight transport statistics - Statistics Explained. url: http://ec.europa.
eu/eurostat/statistics-explained/index.php/Freight_transport_statistics.

[4] Benoit Montreuil, Russ D Meller, and Eric Ballot. “Towards a Physical Internet: the
impact on logistics facilities and material handling systems design and innovation”. In:
Progress in material handling research (2010), pp. 305–327.

[5] UNFCCC. Conference of the Parties (COP). Paris Climate Change Conference-November
2015, COP 21. Tech. rep. December. 2015, p. 32. doi: FCCC/CP/2015/L.9/Rev.1. url:
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.

[6] David Jaffee and David Bensman. “Draying and Picking : Precarious Work and Labor
Action in the Logistics Sector”. In: The Journal of Labor & Society 19.March (2016),
pp. 57–79. issn: 10897011. doi: 10.1111/wusa.12227.

[7] Benoit Montreuil. “Toward a Physical Internet: Meeting the global logistics sustainabil-
ity grand challenge”. In: Logistics Research 3.2-3 (2011), pp. 71–87.

[8] Bureau of Transportation Statistics: US Department of Transportation. “Freight Facts
and Figures”. In: U.S. Department of Transportation/Bureau of Transportation Statistics
(2015), p. 110.

[9] Eric Ballot and Frédéric Fontane. “Reducing greenhouse gas emissions through the col-
laboration of supply chains: lessons from French retail chains”. In: Production, plannig
& control 21 (2010), pp. 640–650.

[10] Huib Van Essen. “The Environmental Impacts of Increased International Road and Rail
Freight Transport”. In: November (2008).

[11] Helia Sohrabi and Benoit Montreuil. “From private supply networks and shared supply
webs to physical internet enabled open supply webs”. In: IFIP Advances in Information
and Communication Technology 362 AICT (2011), pp. 235–244. issn: 18684238. doi:
10.1007/978-3-642-23330-2{_}26.

[12] Mohammad Javad Zomorodian and Saeed Jamali. LaTeX: A Document Preparation
System. 2013. url: https://www.latex-project.org/.

[13] Paul Markillie. The physical internet. 2006.

http://dx.doi.org/10.2172/1060772
https://books.google.com/books?id=Xohu_3ooPhEC&pgis=1
http://ec.europa.eu/eurostat/statistics-explained/index.php/Freight_transport_statistics
http://ec.europa.eu/eurostat/statistics-explained/index.php/Freight_transport_statistics
http://dx.doi.org/FCCC/CP/2015/L.9/Rev.1
http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
http://dx.doi.org/10.1111/wusa.12227
http://dx.doi.org/10.1007/978-3-642-23330-2{_}26
https://www.latex-project.org/

102 REFERENCES

[14] Benoit Montreuil and Russell D Meller. “Physical Internet Foundations”. In: (2012).
doi: 10.1007/978-3-642-35852-4{_}10.

[15] B. Montreuil, E. Ballot, and F. Fontane. “An open logistics interconnection model for
the physical internet”. In: IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 14.
PART 1. IFAC, 2012, pp. 327–332. isbn: 9783902661982. doi: 10.3182/20120523-3-
RO-2023.00385. url: http://dx.doi.org/10.3182/20120523-3-RO-2023.00385.

[16] Bureau of Transportation Statistics: US Department of Transportation. Freight Facts
and Figures. Tech. rep. Washington: Federal Highway Administration, 2009. url: https:
//ops.fhwa.dot.gov/freight/freight_analysis/nat_freight_stats/docs/

09factsfigures/index.htm.

[17] Bureau of Transportation Statistics: US Department of Transportation. FAF2 freight
traffic analysis. Tech. rep. Washington: Federal Highway Administration.

[18] Eric Ballot and Frédéric Fontane. “Rendement et efficience du transport: un nouvel indi-
cateur de performance”. In: Revue française de gestion industrielle 27.2 (2008), pp. 41–
55. url: https://hal-mines-paristech.archives-ouvertes.fr/hal-00878313.

[19] C D J Waters et al. “Global Logistics: New Directions in Supply Chain Management”.
In: Kogan Page Series. Kogan Page, 2010. Chap. 17. isbn: 9780749457037. url: https:
//books.google.es/books?id=Vxx-tgAACAAJ.

[20] Smith L. Johnston. “Consequences of insomnia, sleepiness, and fatigue: health and social
consequences of shift work”. In: Medscape CME (2005). url: https://www.medscape.
org/viewarticle/513572_2.

[21] Merrill M. Mitler et al. “The Sleep of Long-Haul Truck Drivers”. In: New England
Journal of Medicine 337.11 (1997), pp. 755–762. issn: 0028-4793. doi: 10 . 1056 /

NEJM199709113371106. url: http://www.nejm.org/doi/abs/10.1056/NEJM199709113371106.

[22] G. Don Taylor, ed. Economic impact of logistics. CRC Press, 2007, p. 640. isbn: 9781420004588.

[23] T Kale C; Socolofsky. RFC 1180: A TCP/IP Tutorial. 1991.

[24] Benoit Montreuil, Eric Ballot, and William Tremblay. “Modular Design of Physical In-
ternet Transport, Handling and Packaging Containers”. In: International Material Han-
dling Research Colloquium 13 (2015), pp. 978–1. url: https://hal-mines-paristech.
archives-ouvertes.fr/hal-01487239.

[25] Yves Sallez, Benoit Montreuil, and Eric Ballot. “On the activeness of intelligent physical
internet containers”. In: Studies in Computational Intelligence 594 (2015), pp. 259–269.
issn: 1860949X. doi: 10.1007/978-3-319-15159-5{_}24. url: http://dx.doi.org/
10.1016/j.compind.2015.12.006.

[26] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural elements,
and future directions”. In: Future generation computer systems 29.7 (2013), pp. 1645–
1660.

http://dx.doi.org/10.1007/978-3-642-35852-4{_}10
http://dx.doi.org/10.3182/20120523-3-RO-2023.00385
http://dx.doi.org/10.3182/20120523-3-RO-2023.00385
http://dx.doi.org/10.3182/20120523-3-RO-2023.00385
https://ops.fhwa.dot.gov/freight/freight_analysis/nat_freight_stats/docs/09factsfigures/index.htm
https://ops.fhwa.dot.gov/freight/freight_analysis/nat_freight_stats/docs/09factsfigures/index.htm
https://ops.fhwa.dot.gov/freight/freight_analysis/nat_freight_stats/docs/09factsfigures/index.htm
https://hal-mines-paristech.archives-ouvertes.fr/hal-00878313
https://books.google.es/books?id=Vxx-tgAACAAJ
https://books.google.es/books?id=Vxx-tgAACAAJ
https://www.medscape.org/viewarticle/513572_2
https://www.medscape.org/viewarticle/513572_2
http://dx.doi.org/10.1056/NEJM199709113371106
http://dx.doi.org/10.1056/NEJM199709113371106
http://www.nejm.org/doi/abs/10.1056/NEJM199709113371106
https://hal-mines-paristech.archives-ouvertes.fr/hal-01487239
https://hal-mines-paristech.archives-ouvertes.fr/hal-01487239
http://dx.doi.org/10.1007/978-3-319-15159-5{_}24
http://dx.doi.org/10.1016/j.compind.2015.12.006
http://dx.doi.org/10.1016/j.compind.2015.12.006

REFERENCES 103

[27] Mehran Fazili et al. “Physical Internet, conventional and hybrid logistic systems: a
routing optimisation-based comparison using the Eastern Canada road network case
study”. In: International Journal of Production Research 55.9 (2017), pp. 2703–2730.

[28] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1982. isbn:
0-13-152462-3.

[29] Ivan V Sergienko. Topical Directions of Informatics. isbn: 9781493904754.

[30] I. V. Sergienko, L. F. Hulianytskyi, and S. I. Sirenko. “Classification of applied meth-
ods of combinatorial optimization”. In: Cybernetics and Systems Analysis 45.5 (2009),
pp. 732–741. issn: 10600396. doi: 10.1007/s10559-009-9134-0.

[31] Angel A Juan et al. “A simheuristic algorithm for solving the permutation flow shop
problem with stochastic processing times”. In: Simulation Modelling Practice and Theory
46 (2014), pp. 101–117.

[32] M T Goodrich and Tamassia R. Algorithm Design. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002. isbn: 0321295358.

[33] T Cormen, C Leiserson, and R Rivest. Introduction to Algorithms. 2nd. McGraw-Hill
Higher Education, 2000. isbn: 9780262033848.

[34] Christos H Papadimitriou. “Computational Complexity”. In: Encyclopedia of Computer
Science. Chichester, UK: John Wiley and Sons Ltd., pp. 260–265. isbn: 0-470-86412-5.
url: http://dl.acm.org/citation.cfm?id=1074100.1074233.

[35] Herbert S. Wilf. “Algorithms and Complexity Internet Edition , Summer , 1994”. In:
Network (2003), p. 139. issn: 1687-4145. doi: 10.1155/2008/521407.

[36] Jose Caceres-Cruz et al. “Rich Vehicle Routing Problem: Survey”. In: ACM Computing
Surveys 47.2 (2014), pp. 1–28. issn: 03600300. doi: 10.1145/2666003. url: http:
//dl.acm.org/citation.cfm?doid=2658850.2666003.

[37] G. B. Dantzig and J. H. Ramser. “The Truck Dispatching Problem”. In: Management
Science 6.1 (1959), pp. 80–91. issn: 0025-1909. doi: 10.1287/mnsc.6.1.80. url:
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.6.1.80.

[38] Thomas Weise. Global Optimization Algorithms. Theory and Application. Vol. 1. 2009,
p. 820. doi: doi=10.1.1.64.8184. url: http://www.it-weise.de/projects/book.
pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.8184&

rep=rep1&type=pdf.

[39] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley Publishing,
2009. isbn: 0470278587, 9780470278581.

[40] George Pólya. How to Solve It. Princeton University Press, 1945. isbn: 0-691-08097-6.
url: https://books.google.es/books?id=X3xsgXjTGgoC.

[41] Laura Calvet et al. “Learnheuristics: Hybridizing metaheuristics with machine learning
for optimization with dynamic inputs”. In: Open Mathematics 15.1 (2017), pp. 261–280.
issn: 23915455. doi: 10.1515/math-2017-0029.

http://dx.doi.org/10.1007/s10559-009-9134-0
http://dl.acm.org/citation.cfm?id=1074100.1074233
http://dx.doi.org/10.1155/2008/521407
http://dx.doi.org/10.1145/2666003
http://dl.acm.org/citation.cfm?doid=2658850.2666003
http://dl.acm.org/citation.cfm?doid=2658850.2666003
http://dx.doi.org/10.1287/mnsc.6.1.80
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.6.1.80
http://dx.doi.org/doi=10.1.1.64.8184
http://www.it-weise.de/projects/book.pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.8184&rep=rep1&type=pdf
http://www.it-weise.de/projects/book.pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.8184&rep=rep1&type=pdf
http://www.it-weise.de/projects/book.pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.8184&rep=rep1&type=pdf
https://books.google.es/books?id=X3xsgXjTGgoC
http://dx.doi.org/10.1515/math-2017-0029

104 REFERENCES

[42] N Mladenović and P Hansen. “Variable Neighborhood Search”. In: Comput. Oper. Res.
24.11 (1997), pp. 1097–1100. issn: 0305-0548. doi: 10.1016/S0305-0548(97)00031-2.
url: http://dx.doi.org/10.1016/S0305-0548(97)00031-2.

[43] Alex Grasas et al. “Biased randomization of heuristics using skewed probability distri-
butions: A survey and some applications”. In: Computers and Industrial Engineering
110 (2017), pp. 216–228. issn: 03608352. doi: 10.1016/j.cie.2017.06.019. url:
http://dx.doi.org/10.1016/j.cie.2017.06.019.

[44] Ruta Nadeznikova. Internet of Things and Transport Systems: a case study of the con-
tainer networks optimization. Barcelona, 2017.

[45] Rafael Martí, Mauricio G.C. Resende, and Celso C. Ribeiro. “Multi-start methods for
combinatorial optimization”. In: European Journal of Operational Research 226.1 (2013),
pp. 1–8. issn: 03772217. doi: 10.1016/j.ejor.2012.10.012.

[46] Bob Costello and Rod Suarez. “Truck driver shortage analysis 2015”. In: American
Trucking Associations. Retrieved from http://www. trucking. org/ATA% 20Docs/News%
20and% 20Information/Reports% 20Trends% 20and% 20Statistics/10 206 (2015), p. 2015.

[47] Shenle Pan et al. Physical Internet and interconnected logistics services: research and
applications. 2017.

[48] Manuel Díaz, Cristian Martín, and Bartolomé Rubio. “State-of-the-art, challenges, and
open issues in the integration of Internet of things and cloud computing”. In: Journal
of Network and Computer Applications 67 (2016), pp. 99–117. issn: 10958592. doi:
10.1016/j.jnca.2016.01.010. url: http://www.sciencedirect.com/science/
article/pii/S108480451600028X%5Cnhttp://dx.doi.org/10.1016/j.jnca.2016.

01.010.

[49] Julia Funke and Herbert Kopfer. “A model for a multi-size inland container transporta-
tion problem”. In: Transportation Research Part E: Logistics and Transportation Review
89 (2016), pp. 70–85.

[50] Junliang He, Youfang Huang, and Daofang Chang. “Simulation-based heuristic method
for container supply chain network optimization”. In: Advanced Engineering Informatics
29.3 (2015), pp. 339–354.

[51] Congli Hao and Yixiang Yue. “Optimization on Combination of Transport Routes and
Modes on Dynamic Programming for a Container Multimodal Transport System”. In:
Procedia Engineering 137 (2016), pp. 382–390.

[52] Ji Ming-Jun and Chu Yan-Ling. “Optimization for Hub-and-Spoke Port Logistics Net-
work of Dynamic Hinterland”. In: Physics Procedia 33 (2012), pp. 827–832.

[53] Mingjun Ji et al. “Routing optimization for multi-type containerships in a hub-and-spoke
network”. In: Journal of Traffic and Transportation Engineering (English Edition) 2.5
(2015), pp. 362–372.

[54] Chuan-xu Wang. “Optimization of hub-and-spoke two-stage logistics network in regional
port cluster”. In: Systems Engineering-Theory & Practice 28.9 (2008), pp. 152–158.

http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/j.cie.2017.06.019
http://dx.doi.org/10.1016/j.cie.2017.06.019
http://dx.doi.org/10.1016/j.ejor.2012.10.012
http://dx.doi.org/10.1016/j.jnca.2016.01.010
http://www.sciencedirect.com/science/article/pii/S108480451600028X%5Cnhttp://dx.doi.org/10.1016/j.jnca.2016.01.010
http://www.sciencedirect.com/science/article/pii/S108480451600028X%5Cnhttp://dx.doi.org/10.1016/j.jnca.2016.01.010
http://www.sciencedirect.com/science/article/pii/S108480451600028X%5Cnhttp://dx.doi.org/10.1016/j.jnca.2016.01.010

REFERENCES 105

[55] Günther Zäpfel and Michael Wasner. “Planning and optimization of hub-and-spoke
transportation networks of cooperative third-party logistics providers”. In: International
journal of production economics 78.2 (2002), pp. 207–220.

[56] Chaug-Ing Hsu and Yu-Ping Hsieh. “Routing, ship size, and sailing frequency decision-
making for a maritime hub-and-spoke container network”. In: Mathematical and Com-
puter Modelling 45.7 (2007), pp. 899–916.

[57] Thomas L. Magnanti and R. T. Wong. “Network Design and Transportation Planning:
Models and Algorithms”. In: Trans. Sci. 18.January 2016 (1984), pp. 1–55.

[58] Bernard Gendron, Teodor Gabriel Crainic, and Antonio Frangioni. “Multicommod-
ity Capacitated Network Design”. In: Telecommunications Network Planning. Ed. by
Brunilde Sansò and Patrick Soriano. Boston, MA: Springer US, 1999, pp. 1–19. isbn:
978-1-4615-5087-7. doi: 10.1007/978-1-4615-5087-7{_}1. url: https://doi.org/
10.1007/978-1-4615-5087-7_1.

[59] Rochdi Sarraj et al. “Interconnected logistic networks and protocols: simulation-based
efficiency assessment”. In: International Journal of Production Research 52.11 (2014),
pp. 3185–3208.

[60] Robert W Floyd. “Algorithm 97: shortest path”. In: Communications of the ACM 5.6
(1962), p. 345.

[61] Pierre Hansen et al. “Variable Neighborhood Search”. In: Handbook of Metaheuristics
191.3 (2010), pp. 61–86. issn: 978-1-4419-1665-5. doi: 10.1007/978-1-14419-1665-5.
arXiv: 0102188v1 [math].

[62] Michael Creutz. “Microcanonical Monte Carlo Simulation”. In: Phys. Rev. Lett. 50.19
(1983), pp. 1411–1414. doi: 10.1103/PhysRevLett.50.1411. url: https://link.aps.
org/doi/10.1103/PhysRevLett.50.1411.

[63] Peter Keenan. TCARP large rural datasets. 2017. doi: 10.13140/RG.2.2.23723.75043.
url: https : / / www . researchgate . net / publication / 320386608 _ TCARP _ large _
rural_datasets.

[64] Dale K Pace. “Verification, Validation, and Accreditation of Simulation Models”. In: Ap-
plied System Simulation: Methodologies and Applications. Ed. by Mohammad S Obaidat
and Georgios I Papadimitriou. Boston, MA: Springer US, 2003, pp. 487–506. isbn: 978-
1-4419-9218-5. doi: 10.1007/978-1-4419-9218-5{_}21. url: https://doi.org/10.
1007/978-1-4419-9218-5_21.

[65] Omar Baqueiro and Yj Wang. “Integrating data mining and agent based modeling and
simulation”. In: Advances in Data Mining. . . . (2009), pp. 220–231. issn: 03029743. doi:
10.1007/978-3-642-03067-3{_}18. url: http://link.springer.com/chapter/10.
1007/978-3-642-03067-3_18.

[66] Bernhard Beckert, Ferruccio Damiani, and Dilian Gurov, eds. Formal Verification of
Object-Oriented Software. Vol. 7421. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012. isbn: 978-3-642-31761-3. doi: 10.1007/978-
3-642-31762-0. url: http://link.springer.com/10.1007/978-3-642-31762-0.

http://dx.doi.org/10.1007/978-1-4615-5087-7{_}1
https://doi.org/10.1007/978-1-4615-5087-7_1
https://doi.org/10.1007/978-1-4615-5087-7_1
http://dx.doi.org/10.1007/978-1-14419-1665-5
http://arxiv.org/abs/0102188v1
http://dx.doi.org/10.1103/PhysRevLett.50.1411
https://link.aps.org/doi/10.1103/PhysRevLett.50.1411
https://link.aps.org/doi/10.1103/PhysRevLett.50.1411
http://dx.doi.org/10.13140/RG.2.2.23723.75043
https://www.researchgate.net/publication/320386608_TCARP_large_rural_datasets
https://www.researchgate.net/publication/320386608_TCARP_large_rural_datasets
http://dx.doi.org/10.1007/978-1-4419-9218-5{_}21
https://doi.org/10.1007/978-1-4419-9218-5_21
https://doi.org/10.1007/978-1-4419-9218-5_21
http://dx.doi.org/10.1007/978-3-642-03067-3{_}18
http://link.springer.com/chapter/10.1007/978-3-642-03067-3_18
http://link.springer.com/chapter/10.1007/978-3-642-03067-3_18
http://dx.doi.org/10.1007/978-3-642-31762-0
http://dx.doi.org/10.1007/978-3-642-31762-0
http://link.springer.com/10.1007/978-3-642-31762-0

106 REFERENCES

[67] Donald B. Johnson. “Efficient Algorithms for Shortest Paths in Sparse Networks”. In:
Journal of the ACM 24.1 (Jan. 1977), pp. 1–13. issn: 00045411. doi: 10.1145/321992.
321993. url: http://portal.acm.org/citation.cfm?doid=321992.321993.

[68] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1.1 (Dec. 1959), pp. 269–271. issn: 0029-599X. doi: 10.1007/BF01386390.
url: http://link.springer.com/10.1007/BF01386390.

[69] Federal Motor Carrier Safety Administration. Hours of Service of Drivers; Final Rule.
2011.

[70] Angel A. Juan et al. “A review of simheuristics: Extending metaheuristics to deal with
stochastic combinatorial optimization problems”. In: Operations Research Perspectives
2 (2015), pp. 62–72. issn: 22147160. doi: 10.1016/j.orp.2015.03.001. url: http:
//www.sciencedirect.com/science/article/pii/S221471601500007X#!.

[71] Nasser Lotfi and Adnan Acan. “Learning-Based Multi-agent System for Solving Combi-
natorial Optimization Problems: A New Architecture”. In: Hybrid Artificial Intelligent
Systems: 10th International Conference, HAIS 2015, Bilbao, Spain, June 22-24, 2015,
Proceedings. Ed. by Enrique Onieva et al. Cham: Springer International Publishing,
2015, pp. 319–332. isbn: 978-3-319-19644-2. doi: 10.1007/978-3-319-19644-2{_}27.
url: https://doi.org/10.1007/978-3-319-19644-2_27.

[72] Kenneth Sorensen, Marc Sevaux, and Fred Glover. “A History of Metaheuristics”. In:
(Apr. 2017), pp. 1–27. issn: 14602156. doi: 10.1093/brain/122.11.2197-a. url:
http://arxiv.org/abs/1704.00853.

http://dx.doi.org/10.1145/321992.321993
http://dx.doi.org/10.1145/321992.321993
http://portal.acm.org/citation.cfm?doid=321992.321993
http://dx.doi.org/10.1007/BF01386390
http://link.springer.com/10.1007/BF01386390
http://dx.doi.org/10.1016/j.orp.2015.03.001
http://www.sciencedirect.com/science/article/pii/S221471601500007X#!
http://www.sciencedirect.com/science/article/pii/S221471601500007X#!
http://dx.doi.org/10.1007/978-3-319-19644-2{_}27
https://doi.org/10.1007/978-3-319-19644-2_27
http://dx.doi.org/10.1093/brain/122.11.2197-a
http://arxiv.org/abs/1704.00853

	Introduction
	Motivation
	Scope
	Goals
	Methodology
	Outline

	Background
	The physical internet
	Goals
	The grand challenge
	Unsustainability symptoms
	The solution proposed

	Combinatorial optimization problems
	Optimization methods
	Heuristics
	Metaheuristics
	The variable neighborhood search metaheuristic (VNS)
	Biased randomization of heuristics (BR)
	A multi-start framework (MS)
	The geometric distribution

	Literature review
	Physical internet
	Container distribution model

	Problem statement
	Methodology
	Solving approaches
	Heuristic
	Biased-randomized multi-start
	Biased-randomized variable neighborhood search

	Creation of standardized instances
	Verification and validation (V&V)
	Implementation
	Project structure
	Shortest paths computation
	Solution metrics
	Candidate's selection in BR

	Computational experiments
	Small test instances
	Benchmark standardized instances

	Results
	Analysis and discussion
	Management
	Planning
	Budget estimation
	Modifications and deviations
	Legal aspects and regulations

	Sustainability and social commitment
	Conclusions
	Future work
	Competences justification

	Network visualizations
	Small test instances
	Benchmark standardized instances

