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Abstract

One key feature for the understanding and control of turbulent flows is the relation between

Eulerian and Lagrangian statistics. This letter investigates such a relation for a laminar quasi-two

dimensional multi-scale flow generated by a multi-scale (fractal) forcing which reproduces some

aspects of turbulent flows in the laboratory, e.g. broad band power law energy spectrum and

Richardson’s diffusion. We show that these multi-scale flows abide with Corrsin’s estimation of the

Lagrangian integral time scale, TL, as proportional to the Eulerian (integral) time scale, LE/urms,

even though Corrsin’approach was originally constructed for high Reynolds number turbulence.

We check and explain why this relation is verified in our flows. The Lagrangian energy spectrum,

Φ(w), presents a plateau at low frequencies followed by a power law energy spectrum Φ(w) ∼ w−α

at higher ones, similarly to turbulent flows. Furthermore Φ(ω) scales with LE and urms with

α > 1. These are the key elements to obtain such a relation (Φ(w) ∼ ǫw−2 is not necessary) as in

our flows the dissipation rate varies as ǫ ∼
u3

rms

LE
Re−1

λ . To complete our analysis, we investigate a

recently proposed relation [1] between Eulerian and Lagrangian structure functions which uses pair-

diffusion statistics and the implications of this relation on Φ(ω). Our results support this relation,
〈

[uL(t) − uL(t + τ)]2
〉

=

〈

[uE(x) − uE(x +

√

∆2(τ)e)]2
〉

, which leads to α = γ
2 (p− 1) + 1. This

Eulerian-Lagrangian relation is striking as in the present flows it is imposed by the multi-scale

distribution of stagnation points which are an Eulerian property.

PACS numbers: Valid PACS appear here

∗Department of Aeronautics; Electronic address: l.rossi@imperial.ac.uk
†Department of Aeronautics; Electronic address: j.c.vassilicos@imperial.ac.uk
‡Department of Mechanical Engineering; Electronic address: y.hardalupas@imperial.ac.uk

1



Introduction. The relations between Eulerian and Lagrangian statistics of turbulent

flows are of central importance since they hold the key to the understanding of many phe-

nomena such as turbulent diffusion and pair separation. Since Taylor’s contribution [2] it has

been known that the turbulent diffusion is proportional to the time-integral of the velocity

Lagrangian autocorrelation function. Corrsin [3] introduced the proportionality of Eulerian,

LE/urms, and Lagrangian, TL, integral time scales for high Reynolds number turbulence

(LE being the Eulerian integral length-scale and urms the turbulent intensity). Corrsin’s

estimation relies on two properties of homogeneous turbulence. Firstly, a kinetic energy dis-

sipation rate per unit of mass, ǫ, varying according to ǫ ∼ u3
rms/LE. Secondly, a Lagrangian

energy spectrum,Φ(ω), possessing a plateau for ω < ωL and Φ(ω) ∼ ǫω−2 for ω > ωL. From

u2
rms ∼

∫

Φ(ω)dω, one then obtains ωL ∼ ǫ
u2

rms
. And from TL ∼

Φ(ωL)
u2

rms
, which follows from

integrating the Lagrangian autocorrelation function expressed as the Fourier transform of

Φ(ω), it then follows that TL ∼ LE

urms
.

If they exist, it is important to know which key features of the Eulerian fields are respon-

sible for such close relations between Eulerian and Lagrangian statistics. Rossi et al. [4] have

generated a steady laminar multi-scale flow with turbulent-like properties such as a broad

band power law energy spectrum and Richardson diffusion [5, 6]. Following the work of

[7, 8] these turbulent properties are controlled by the multi-scale distribution of stagnation

points generated by a multi-scale (fractal) forcing. If such flows are really turbulent-like and

withhold some key properties of the multi-scale structure of turbulent flows, it is interesting

to analyse the Eulerian-Lagrangian relations of such flows.

Does TL ∼ LE/urms hold in our turbulent-like laminar multi-scale flow?

A recent approach complementary to Corrsin’s estimation for Eulerian-Lagrangian rela-

tion has been given by Khan and Vassilicos [1]. They compare Lagrangian and Eulerian

second order structure functions. We use this approach to complete our analysis of our

turbulent-like flow by studying the relation between the Eulerian energy wavenumber spec-

trum, the Lagrangian energy frequency spectrum and two-particle dispersion.

Experimental set-up and flow. A horizontal shallow layer of brine (NaCl,158g/l,

thickness H=5mm) is forced by a fractal distribution of opposite pairs of Lorentz forces.

These electromagnetic (EM) forces are generated by an electric current through the brine

and permanent magnets of various horizontal sizes (10mm, 40mm, 160mm) placed under

the bottom wall which supports the brine.
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The two-component velocity field u(x, t) at the free surface of the brine layer generated

by these fractal EM forces has been measured by Particle Image Velocimetry (PIV), using a

15Hz, 12bit, 2048x2048 pixel2 camera. The flow is measured in a large square frame (which

covers all magnets) of size LPIV = 813.4mm which is small compared to the size of the tank

(1700 × 1700mm2). The physical length of one pixel is about 0.3972mm. The correlation

windows have 16×16 pixels (search window 42×42 pixels), and the overlap in each direction

is of 9 pixels. This leads to a measurement grid containing 287x287 velocity vectors. For

full details on the rig and experiments, see [4] which also shows that the flow at the free

surface of the brine is Q2D.

With steady EM forcing the flows are stationary after an initial transient following the

sudden switch-on of the forces. A Reynolds number Re2D = urmsLPIV /ν can be defined

based on LPIV , the root mean square of the PIV velocity field, urms, (which is controlled by

varying the intensity of the electric current), and the kinematic viscosity of the brine, ν. In

this letter we present results obtained for eleven different values of Re2D from 600 to 9900.

Despite the large values of these Reynolds number, the flows are laminar as they present no

instabilities and the fluid velocity values are never larger than a few cm/s.

Integral length scales, LE, are obtained from the spatial auto-correlation of the velocity

fields and their values slowly increase from about 16cm to about 20cm as Re2D increases

from 600 to 9900. This increase of LE reflects the slight increase of the multi-scale flow’s

larger eddies as a result of the EM forcing overcoming the bottom wall’s friction over a larger

portion of space.

One fluid element dispersion. The Lagrangian trajectories d
dt
x(t,x0) = uL(t,x0) =

u(x(t,x0), t) and their statistics are calculated starting from random initial positions x0 at

a time t = 0 well after the initial transient caused by the sudden switch-on of the electric

field. These trajectories are integrated until t = 6LE/urms. Fluid elements are tracked in

highly resolved PIV fields. We export positions every ∆t = 6
1023

(LE/urms) to obtain 1024

positions tracked during 6LE/urms. The integration time is 11 times smaller than ∆t and is

much smaller than the time resolution of the PIV measurements.

Figure 1a shows the statistic of one-particle dispersion normalised by the integral

length scale, (x − x0)2/LE. A first ballistic motion regime where t < 0.1(LE/urms) and

(x − x0)2/LE ∼ t2 is later on followed by a Taylor regime, [2] where t > 2(LE/urms) and

(x − x0)2/LE ∼ t1. Furthermore, it can be noticed that all these curves are superimposed
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over the entire range of Reynolds number considered in this letter.

Figure 1b gives the Lagrangian correlation function, R(t) =< uL(0) · uL(t) >, where

uL(t) is the Lagrangian velocity of the fluid element at time t. The Lagrangian correlation

functions are very similar over the entire range of Reynolds numbers until t ≃ LE/urms. For

longer times, the Lagrangian correlation functions present different harmonics. Figure 1c is

very similar to the results obtained in turbulent flows (e.g. [9]) with a logarithmic decrease

of R(t) followed by a sudden drop-off. The main differences with turbulent flows appear

for long times with the oscillations regime. These oscillations are induced by the steadiness

(constant forcing) of the present quasi-two-dimensional flows, leading to closed trajectories

(fitting streamlines) of various lengths. We would expect these oscillations to disappear

for time dependent forcing. Nevertheless, it is interesting to see that these oscillations

have no significant effect on the Brownian (uncorrelated) time dependence of single particle

dispersion, see figure 1a.

From the Lagrangian correlation function we estimate the Lagrangian correlation time by

TL(t) = 1
R(0)

∫ t

0
R(t)dt. Figure 1b illustrates the evolution of R(t)/R(0) with time, turms/LE.

As shown in figure 2a, when t > (LE/urms), TL(t) has reached a regime where it oscillates

(due to oscillations of R(t)) around an average value, TL = TL(t) which is defined by aver-

aging over the time range LE/urms ≤ t ≤ 6LE/urms. These values of TL are illustrated by

straight (red) lines in figure 2a. Later on, TL is called TL and TL(t = 6LE/urms) is called

T̂L.

Eulerian-Lagrangian and Corrsin-like relations. Corrsin, [3], states that a turbu-

lent flow with a broad power law energy spectrum should exhibit a constant ratio between

the Eulerian integral time scale, LE/urms, and the Lagrangian correlation time, TL. As this

family of multi-scales flows possesses a broad band power law energy spectrum, see [4], we

test Corrsin’s statement on these flows. To do that we plot the ratio TL/(LE/urms) in figure

2b . This ratio is found to be close to a constant over the considered range of Reynolds

number, Re2D, i.e. more than one decade, in agreement with Corrsin’s estimation.

Why do these steady multi-scale laminar flows abide with Corrsin’s estimation which has

been obtained for high Reynolds number turbulence? The power law shape of the Eulerian

energy spectrum being already demonstrated [4], we now investigate (for these flows) the

validity of the main hypotheses behind Corrsin’s approach which concern Lagrangian energy

spectra and dissipation.
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The energy spectra related to the Lagrangian correlation function, 2πφ(ω)/(u2
rmsT̂L), are

plotted in figure 2c for various Reynolds numbers, Re2D. For each Reynolds number, the

Lagrangian energy spectrum presents a plateau over one decade in frequency for ωTL < 0.1.

This plateau is important as it adds one new element of similarity between our steady

multi-scale flows and turbulent flows. For example, [9–11] find such a plateau in their

respective turbulent flows: laboratory experiment, direct numerical simulation and high

Reynolds number oceanic environment. For higher frequencies, the energy spectra can be

approximated as power law functions for about one decade with φ(ω) ∼ (ωTL)−α where α

varies with the Reynolds number. We should mention that for energy values lower than 10−4

the noise of the PIV measurement is dominant (accuracy at 1%, see [4]) leading to spikes

and a w−2 power law for large values of ωTL.

Corrsin’s estimation assumes that the dissipation varies like ǫ ∼ u3
rms/LE. We compute

the dissipation using the PIV velocity fields and considering: ǫ = 2ν < SijSij > with

Sij = 1
2
( ∂ui

∂xj
+

∂uj

∂xi
) and λ =

√

νu2
rms

ǫ
. Figure 3a gives the rescaled dissipation of these multi-

scale flows, ǫ∗ = ǫ/ (u3
rms/LE) versus the Reynolds number based on Taylor’s micro-scale,

λ, Reλ = urmsλ/ν. ǫ∗ evolves like 1/Reλ over more than one decade, 22 ≤ Reλ ≤ 555.

This relation in 1/Reλ could be expected for laminar flows where ǫ ∼ u2
rms. Nevertheless,

the present case is not trivial. When Reλ < 100 (Re2D < 3000), ǫ∗ ∼ Re
−(1+0.02±0.02)
λ , the

streamlines remain effectively unchanged with changing Reynolds number because the flow

is dominated by the bottom friction, ǫ ∼ u1.81±0.1
rms , LE ∼ u0.056±0.02

rms and λ ∼ u0.093±0.02
rms . When

Reλ > 100, ǫ∗ ∼ Re
−(1+0.096±0.02)
λ , the strain rates have a clear multi-scale structure evolving

with Reλ as explained in [6], ǫ ∼ u1.51±0.1
rms , LE ∼ u0.13±0.02

rms and λ ∼ u0.24±0.02
rms .

These multi-scale laminar flows have a prescribed power law Eulerian energy wavenumber

spectrum but ǫ∗ ∼ Re−1
λ 6= cte, over more than one decade. Nevertheless, TL ∼ LE/urms.

The reason for this is that Φ(ω) scales with urms and LE, and that it has a plateau at small

ω followed by Φ(ω) ∼ urmsLE

(

ωLE

urms

)−α

at higher ω with α > 1, see figure 2.

How can we estimate α in our flow? To complete our description of the considered

laminar multi-scale flows and give an estimation for α, we use a relation between Eulerian

and Lagrangian statistics proposed by [1]. They introduced relation (1) between Eulerian

and Lagrangian structure functions of order 2, where uL is the Lagrangian velocity of a fluid

element, u is the Eulerian velocity, e represents normalised spatial vectors and ∆2(t) is the

mean-square separation, at time t, between two fluid elements starting at time t = 0 with
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an initial displacement smaller than the smallest length scale of the flow:

〈

[uL(t) − uL(t + τ)]2
〉

=

〈

[u(x) − u(x +

√

∆2(τ)e)]2
〉

(1)

This leads to the relation given in equation 2 where γ is the exponent of the Richardson-

like power law function of time for two-particle dispersion (∆2 ∼ tγ) and p is the exponent

of the power law Eulerian energy wavenumber spectrum, E(k) ∼ k−p.

α =
γ

2
(p − 1) + 1 (2)

Pair statistics are initialised with initial separations ∆0 = 1 pixel which is about 25

times smaller than the size of the smallest magnet and therefore smaller than all the length
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scales of the flow by the size of the smallest magnets. Statistics such as mean square pair

separations are sensitive to the choice of ∆0 but the turbulent diffusivity d
dt

∆2 is much less

sensitive as shown recently in [12]. In addition, d
dt

∆2 allows us to clearly identify different

dispersion regimes such as the expected initial ballistic dispersion ∆2 ∼ t2, the final Brownian

dispersion ∆2 ∼ t and a non-trivial Richardson-like regime in an intermediate range of times

between the ballistic and the Brownian regimes, see [4, 6]. Rossi et al. [6] have shown the

sensitivity to γ to the Reynolds number Re2D and the multi-scale distribution of stagnation

points as well as their scale rate distribution. It should be noticed that the values of α and

γ are estimated over the same decade in time. As the energy spectra of this family of flow

can be approximated by power law function E(k) ∼ k−2.5, see [4], we take p=2.5.

The values of α extracted from the best power law fit of the Lagrangian energy spectra

are clearly interlaced with the values of α estimated using relation (2) as shown in figure 3b.

The small increase in differences with the increase of the Reynolds number are well under

an uncertainty of ±5% for the measurement of each values of α, γ and p.

It is extremely interesting and encouraging to find such a relation between Eulerian

and Lagrangian structure functions of order 2 in these steady multi-scale laminar flows, as

until now this relation has only been tested in Kinematic Simulation with a strong time

dependency, [1].
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List of figure captions:

Figure 1: (a) One-particle dispersion for various Reynolds numbers, Re2D from 600 to

9900; (b,c) Lagrangian correlation function for various Reynolds numbers, Re2D. (b) linear-

linear plot (c) semi-log plot.

Figure 2: (a) Plot of the Lagrangian integral time scale, TL according to the duration

of fluid element tracking turms/LE; (b) TL/(LE/urms) versus Reynolds numbers Re2D; (c)

Lagrangian energy spectra, 2πφ(ω)

u2
rmsT̂L

versus ωTL.

Figure 3: (a) ǫ∗ = ǫ/ (u3
rms/LE) as function of the Reynolds number, Reλ = urmsλ

ν
. The

line corresponds to the best power law fit ǫ∗ ∼ Re−1.063
λ ; (b) • are the values of α extracted

from the best power law fit of the Lagrangian energy spectra, � are the values of α estimated

using relation (2).
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