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Abstract

Enteropathogenic Escherichia coli (EPEC) strains are defined as extracellular pathogens which nucleate actin rich pedestal-
like membrane extensions on intestinal enterocytes to which they intimately adhere. EPEC infection is mediated by type III
secretion system effectors, which modulate host cell signaling. Recently we have shown that the WxxxE effector EspT
activates Rac1 and Cdc42 leading to formation of membrane ruffles and lamellipodia. Here we report that EspT-induced
membrane ruffles facilitate EPEC invasion into non-phagocytic cells in a process involving Rac1 and Wave2. Internalized
EPEC resides within a vacuole and Tir is localized to the vacuolar membrane, resulting in actin polymerization and formation
of intracellular pedestals. To the best of our knowledge this is the first time a pathogen has been shown to induce formation
of actin comets across a vacuole membrane. Moreover, our data breaks the dogma of EPEC as an extracellular pathogen and
defines a new category of invasive EPEC.
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Introduction

The human pathogens enteropathogenic Escherichia coli (EPEC)

and enterohemorrhagic E. coli (EHEC) [1] and the mouse pathogen

Citrobacter rodentium [2] are closely related extra-cellular diarrhoeal

agents characterized by their ability to colonize the gut epithelium

via attaching and effacing (A/E) lesion formation (reviewed in [3])

[4]. Similarly to other Gram-negative bacteria EPEC, EHEC and

C. rodentium encode a type III secretion system (T3SS), which is

central to their infection strategy (reviewed in [5]) [6]. This complex

machinery translocate dozens of effector proteins [7,8] directly from

the bacteria to the eukaryotic cell cytoplasm (reviewed in [9]). The

translocated effectors are targeted to various sub-cellular compart-

ments where they subvert a plethora of cell signaling pathways via

interactions with a range of host cell proteins.

The host cell cytoskeleton is a common target of T3SS effectors

[10]. EPEC, EHEC and C. rodentium translocate the effector Tir

into the plasma membrane where it functions as a receptor for the

bacterial outer membrane protein intimin [11]. Intimin:Tir

interaction leads to activation of N-WASP and formation of actin

rich pedestals on which the extracellular bacteria rest [12]. In

addition to Tir, A/E pathogens translocate a variety of other

effectors which also modulate the host cell cytoskeleton including

EspG/EspG2, which induce depolymerization of the microtubule

network [13], Map, which induces formation of transient filopodia

early in infection [14] and EspM which directs formation of actin

stress fibers [15]. Map and EspM are members of the WxxxE

family [15,16,17], which was first grouped together based on

conserved peptide motif consisting of an invariant tryptophan and

glutamic acid residues separated by three variable amino acids and

their shared ability to subvert host cell small GTPase signaling.

Small GTPases cycle between an inactive GDP bound and an

active GTP bound form, allowing them to function as molecular

switches in response to a variety of stimuli. The switch from

inactive to active forms results in a conformational change, which

allows the GTPase to bind downstream mammalian effectors.

Small GTPases are regulated by guanine exchange factors (GEFs),

GTPase activating proteins (GAPs) and guanine dissociation

inhibitor (GDI) proteins (reviewed in [18,19]). The three best

characterized Rho GTPases are RhoA, Rac1 and Cdc42 which

are implicated in formation of stress fibers, lamellipodia and

filopodia respectively (reviewed in [20]).

The WxxxE effectors were originally proposed to be functional

mimics of mammalian small GTPases [16]. However, we have

recently shown that EspM activates RhoA [15] whereas Map induces

filopodia via activation of Cdc42 and RhoA [17]. In addition to Map

and EspM we have recently discovered the novel WxxxE effector

EspT, which is encoded by C. rodentium and a subset of EPEC strains

[21], including EPEC E110019 which caused a sever outbreak in

Finland in 1987 that affected children and adults alike [22]. We have

shown that EspT induces formation of lamellipodia and membrane

ruffles in epithelial cells via activation of Rac1 and Cdc42 [23].

Membrane ruffles are sheet like structures which are induced by

mammalian cells in order to facilitate crawling movement, macro-
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pinocitosis and receptor recycling (reviewed in [24]). These

protrusion are regulated through activity of Rho family GTPases

and their downstream effectors (reviewed in [25]). Importantly, a

subset of invasive bacterial pathogens hijack and subvert mammalian

signal transduction pathways which facilitate formation membrane

ruffles in order to promote bacterial entry into mammalian cells.

Perhaps the best studied of these pathogens are Salmonella and Shigella

which induce extensive membrane ruffles at the site of bacterial

attachment (reviewed in [26,27]). Salmonella invasion is dependent

upon the activity of several T3SS effector proteins including SopE/

E2 which act as GEFs for Rac1 and Cdc42 [28] and SopB which

activates the RhoG GEF SGEF [29]. Shigella has also evolved several

invasive mechanisms. For example the translocator IpaC has been

shown to induce ruffles at the site of Shigella entry via the activation of

Cdc42 [30], recruitment of Src kinase [31] and activation of Abl

kinase [32]. The Shigella WxxxE effector IpgB1 has also been shown

to induce membrane ruffles via interaction with the ELMO

DOCK180 complex which results in activation of Rac1 [33].

EPEC, EHEC and C. rodentium are generally considered

extracellular pathogens and their attachment sites on epithelial

cells are normally characterized by the assembly of an actin rich

pedestal rather than membrane ruffles (reviewed in [3]). However,

in both rabbit and human biopsies EPEC have been visualized

inside enterocytes and detected in the sub mucosa, mesenteric

lymph nodes and spleen [34] (reviewed in [35]). Recently

Hernandes et al has shown that the atypical EPEC strain 1551-2

is capable of invading cultured epithelial cells in an intimin

omicron dependent manner [36]. As EspT induces membrane

ruffles similar to those triggered by IpgB1 [37] the aim of this study

was to investigate if expression of EspT leads to EPEC cell

invasion and to define the underlying mechanism.

Results

EspT-induced membrane ruffles surround adherent
bacteria

A large screen of clinical EPEC isolates for the presence of espT,

a T3SS effector (Fig. S1), has shown that the gene is present in ca.

1.8% of the tested strains [21]. In order to investigate the role of

EspT in cell invasion we selected to use the espT positive strains

E110019 and C. rodentum; the espT negative EPEC, strain JPN15

[38], was used as a control. In addition, we generated a JPN15

clone that expresses EspT from the bacterial expression vector

pSA10 (pICC461).

We infected serum starved HeLa, Swiss 3T3 and Caco2 cells

with E110019, JPN15 and JPN15 expressing EspT; the cells were

then fixed and processed for scanning electron microscopy (SEM).

The JPN15-infected HeLa and Swiss 3T3 cells displayed

characteristic diffuse bacterial adhesion without any noteworthy

surface structures. Caco2 cells infected with JPN15 also show a

diffuse pattern of bacterial adherence and a concordant localized

effacement of microvili (Fig. 1). HeLa cells infected with JPN15

expressing EspT or E110019 displayed extensive membrane

ruffling over the entire cell surface (Fig. 1); in the vicinity of

adherent bacteria the ruffles surrounded and wrapped individual

bacterial cells forming structures which appear permissive for

internalization. Swiss 3T3 cells infected with JPN15 expressing

EspT or E110019 exhibited extensive dorsal ruffles and lamelli-

podia in addition to localized membrane ruffles at the site of

bacterial attachment (Fig. 1). Caco2 cells infected with JPN15

expressing EspT or E110019 displayed prominent membrane

ruffles at the site of bacterial adherence in addition to effacement

of micovili (Fig. 1). These results show that EspT can induce actin

remodeling and surface structures, similar to those associated with

Shigella and Salmonella invasion (reviewed in [26]).

Wave2 and Abi1 are localized to membrane ruffles and
lamellipodia induced by EspT

We have recently shown that remodeling of the host cell actin

cytoskeleton by EspT is dependent on Rac1 and to a lesser extent

Cdc42 [23]. Rac1 and Cdc42 utilize a plethora of downstream

effectors in order to regulate cytoskeletal dynamics (reviewed in

[19] and [25]). Several GTPase effectors including IRSp53, N-

WASP, Pak, Wave2 and Abi1 have been previously been

implicated in formation of membrane ruffles [39,40,41,42]. By

using immuno-fluorescence microscopy we found that both Wave2

and Abi1 were present and co-localized with actin at membrane

ruffles and the leading edge of lamellipodia induced by EspT

(Fig. 2), while N-WASP was not (data not shown). The signaling

protein IRSp53 has been proposed to participate in Abi1-Wave2-

Rac1 complex formation [39,43]. While we did not detect any

significant enrichment of IRSp53 in lamellipodia, IRSp53 was

localized to membrane ruffles nucleated by EspT (Fig. S2). Taken

together these results show that Abi1 and Wave2 are localized to

membrane ruffles and lamellipodia induced by EspT but IRSp53

is only recruited to EspT-induced membrane ruffles.

Wave2 is essential for EspT-induced membrane
remodeling

Wave2 is a ubiquitously expressed member of the WASP super

family of actin regulators which potently activates the Arp2/3

complex [44]. The Wave family of proteins have a modular

structure consisting of a N terminal Wave homology domain

(WHD), a central proline rich region (PRR) and a C terminal

Arp2/3 binding domain (VCA module) (reviewed in [45]). The

WHD domain has been shown to bind Abi1 [42] and the PRR has

been shown to interact with the SH3 domain of IRSp53 [39]. We

utilized siRNA in order to determine if Wave2 is essential for

formation of the EspT-dependent membrane ruffles. Depletion of

endogenous Wave2 from Swiss 3T3 cells, confirmed by Western

blotting (Fig. 3A), resulted in a marked decrease in formation of

Author Summary

Enteropathogenic E. coli (EPEC) is an important diarrheal
pathogen responsible for significant infant mortality in the
developing world and is increasingly associated with
sporadic outbreaks in the developed world. The virulence
strategy of EPEC revolves around a conserved Type 3
secretion system (T3SS) which translocates bacterial
effector proteins directly into host cells. EPEC is considered
to be a non-invasive pathogen which intimately adheres to
host cells and polymerizes actin rich pedestals on which
extracellular bacteria rest. Recently we have identified the
T3SS effector EspT which activates the mammalian Rho
GTPases Rac1 and Cdc42, resulting in the formation of
membrane ruffles and lamellipodia. In this study we
dissect the signaling pathway utilized by EspT to nucleate
membrane ruffles and demonstrate that these ruffles can
promote EPEC invasion of host cells. Furthermore, we
show that internalized EPEC are bound within a vacuole.
We also report for the first time the ability of a bacterial
pathogen to form actin comet tails across a vacuole
membrane. In addition to providing novel insights into the
subversion of cellular signaling by invasive pathogens, our
study also breaks the long held dogma of EPEC as an
extracellular pathogen and will have implications on how
future EPEC infections are diagnosed and treated.
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membrane ruffles and lamellipodia induced by JPN15 expressing

EspT or E110019, compared with cells treated with scrambled

siRNA (Fig. 3B). In order to determine which of the Wave2

domains is required for formation of lamellipodia and membrane

ruffles by EspT, we transfected Swiss 3T3 and HeLa cells with full

length Wave2 or dominant negative forms of Wave2 lacking the

WHD (DBP) or the acidic Arp2/3 interacting domain (DA).

Transfected cell were infected for 1.5 h with JPN15 expressing

EspT and the presence of lamellipodia or membrane ruffles was

assessed. Mock transfected cells or cells transfected with full length

Wave2 had lamellipodia and membrane ruffles on 80 to 90% of

infected cells (Fig. S3). In contrast, transfection with either the

DBP or the DA Wave2 dominant negative constructs resulted in

significant reduction in lamellipodia and membrane ruffle

formation (Fig. S3). This result demonstrates that binding of

Arp2/3 to Wave2 is essential for EspT-mediated formation of

lamellipodia and membrane ruffles. Furthermore, the observation

that the N terminal truncated Wave2 DBP construct has a

dominant negative effect suggests that the WHD motif is also

required for EspT mediated cytoskeletal rearrangements. The fact

that the Wave2 DBP construct, which is capable of binding

IRSp53 but not Abi1, is not sufficient to induce EspT dependent

actin remodeling further indicates that IRSp53 does not play a

prominent role in EspT mediated signaling.

EspT facilitates EPEC invasion
Induction of membrane ruffles is a mechanism employed by a

range of pathogenic bacteria in order to facilitate cell invasion.

This method of bacterial invasion is referred to as the trigger

mechanism and relies upon induction of actin polymerization to

form an entry foci and a macropinocytic pocket (reviewed in [26]).

JPN15 expressing EspT and E110019 induce host cell membrane

remodeling which is reminiscent of entry foci and membrane

ruffles induced by Shigella and Salmonella (reviewed in [26]) (Fig. 1).

We used differential staining to visualize invasion of Swiss 3T3

cells by JPN15, JPN15 expressing EspT, and E110019; Salmonella

enterica serovar Typhimurium strain SL1344 was used as a control.

In addition, we conducted gentamycin protection assays to quantify

Figure 1. Scanning electron microscopy of HeLa, Swiss 3T3 and polarized Caco2 cells infected with JPN15, JPN15 expressing EspT
or E110019 for 2 h. JPN15 displayed a pattern of diffused adherence on HeLa, Swiss 3T3 and Caco2 cells but did not induce any significant
membrane remodeling. JPN15 expressing EspT and E110019 also adhered to HeLa, Swiss 3T3 and Caco2 cells in a diffuse pattern but induced
membrane ruffles at the site of bacterial attachment, which were more pronounced on Caco2 cells. In addition to membrane ruffles JPN15 expressing
EspT and E110019 also induced formation of lamellipodia and dorsal ruffles at locations distal from the site of bacterial attachment on Swiss 3T3 cells.
Magnifications: HeLa cells X5000; Swiss 3T3 X3500; Caco2 X10000 and X6500 (middle).
doi:10.1371/journal.ppat.1000683.g001
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cell invasion of Swiss 3T3, HeLa and Caco2 cells after 3 h infection.

Differential immuno-fluorescence staining and gentamycin protec-

tion assays were also performed in HeLa and Swiss 3T3 cells

infected for 6 h with wild type C. rodentium, C. rodentium DespT and

complemented C. rodentium DespT. For immuno-fluorescence

extracellular bacteria were stained pre cell permeabilzation with

primary anti O127 (JPN15), anti O111 (E110019), anti O152 (C.

rodentium) or anti LPS (S. Typhimurium) antibodies and a secondary

antibody coupled to a Cy3 fluorophore (red). The cells were then

permeabilized and total bacteria were stained with the same

primary antibodies and a secondary antibody coupled to a Cy2

fluorophore (green), Alexafluor 633 phalloidin and Dapi were used

to visualize actin and DNA respectively.

Adherent JPN15 bacteria were homogenously stained by both

the extracellular and total bacterial probes, indicating that this

strain is not significantly invasive (Fig. 4A). In cells infected with

JPN15 expressing EspT or E110019 a significant proportion of the

bacteria were labeled with the total bacterial stain but not by the

extracellular probe (Fig. 4A). S. Typhimurium-infected cells

exhibited characteristic membrane ruffling at the entry foci and

a high proportion of bacteria were labeled only with the total

bacterial probe (Fig. 4A).

The quantitative gentamycin protection assay revealed that

JPN15 does not efficiently invade HeLa, Swiss 3T3 or Caco2 cells,

exhibiting an invasion rate of less than 1.5% (Fig. 4B). JPN15

expressing EspT was significantly more invasive with an invasion

rate of 15.5% in Swiss 3T3, 14.3% in HeLa and 7.2% in Caco2

cells (Fig. 4B). E110019 invaded Swiss 3T3, HeLa and Caco2 cells

at a rate of 9.2%, 11.4% and 5.8% respectively. The invasive

capacity of EPEC was significantly less than S. Typhimuriumin

(Fig. 4B). Infection of HeLa cells with JPN15 expressing EspTW63A

for 3 h confirmed that the WxxxE motif plays a major role in

membrane ruffling and cell invasion (Fig. S4).

E110019 is multi drug resistant, which limits the ability to

genetically modified the isolate. In order to determine if cell invasion

is mediated by EspT, we infected Swiss 3T3 cells for 6 h with wild

type C. rodentium and C. rodentium DespT. Infection with wild type C.

rodentium resulted in membrane ruffles and cell invasion, while the

espT mutant exhibited neither (Fig. 4B). Complementing the mutant

with espT expressed from pACYC184 (pICC489) restored mem-

brane ruffle formation and cell invasion (Fig. 4B and S5).

In order to confirm that EspT can promote EPEC invasion of

non-phagocytic cells independently of other T3SS effectors we

ectopically expressed EspT in HeLa cells prior to infection with

Figure 2. Wave2 and Abi1 are localized to membrane ruffles and lamellipodia induced by ectopically expressed EspT. Actin was
stained with Oregon Green phalloidin (Green), Wave2 was detected with a polyclonal rabbit antibody (Red) and Abi1 was visualized using a mouse
monoclonal antibody (Yellow). Mock transfected cells did not display any significant actin structures and Wave2 and Abi1 were localized diffusely in
the cytoplasm. HeLa cells transfected with pRK5::espT exhibit prominent membrane ruffles on their apical surface which were enriched with Wave2
and Abi1. Ectopic expression of EspT in Swiss 3T3 cells resulted in formation of distinctive lamellipodia to which Wave2 and Abi1 were extensively
recruited and co-localized.
doi:10.1371/journal.ppat.1000683.g002
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EPEC DescN, a T3SS null mutant. Cells ectopically expressing

EspT displayed membrane ruffling which facilitated the uptake of

DescN bacteria (Fig. S6). No membrane ruffles were observed in

cells ectopically expressing EspTW63A (data not shown). These

results show that EspT induces EPEC cell invasion by a trigger

mechanism, analogous to that of Shigella and Salmonella.

Rac1 and Wave2 are essential for EspT mediated bacterial
cell invasion

As actin remodeling by EspT is dependent on activation of

Rac1, Cdc42 [23] and Wave2 (Fig. 3), we utilized dominant

negative constructs of these signaling proteins and Wave2 siRNA

to monitor the effect on invasion of JPN15 expressing EspT and

E110019. Swiss 3T3 cells transfected with dominant negative

Rac1 (Rac1N17), Cdc42 (Cdc42N17), Wave2DA truncated in the

acidic Arp2/3 interacting region and Wave2DBP lacking the

WHD were infected for 3 h. The cells were fixed and stained for

bacterial invasion as described above. Cells transfected with

Cdc42N17 were still permissive of bacterial invasion while cells

transfected with the Rac1N17, Wave2DA or Wave2DBP dominant

negative constructs were not (Fig. 5B). Depletion of Wave2 using

siRNA in Swiss 3T3 cells significantly reduced the invasive

Figure 3. Wave2 is essential for EspT induced membrane remodeling and invasion. (A) Swiss 3T3 cells were treated with Non Targeting
(NT) siRNA or siRNA targeted against Wave2. (A) Western blot with lysates from Swiss 3T3 cells treated with NT and Wave2 siRNA. Wave2 and Tubulin
were detected with monoclonal antibodies. Non Targeting siRNA did not alter Wave2 expression whereas treatment with Wave2 siRNA depleted the
protein. Protein levels in the lysates were normalized using anti tubulin antibodies. (B) Quantification of membrane remodeling induced by E110019
and JPN15 expressing EspT in Swiss 3T3 cells treated with NT and Wave2 siRNA after 3 h of infection. 100 cells were counted in triplicate resulted are
presented as mean6SEM. Treatment with Wave2 siRNA oligos reduced the level of membrane remodeling induced by JPN15 pSA10::espT and
E110019 to 10% and 5% respectively. This is comparable to the 9% of cells which display membrane ruffle and lamellipodia formation in cells infected
with EPEC not expressing EspT. (C) Cells were infected with E110019 for 3 h were fixed and stained prior to permeabilization (extracellular labeling)
(Red). The cells were then washed, permeabilized, re-labeled (Total labeling) (Green) along with Alexaflour 633 Phalloidin (Cyan) and Dapi (Blue). In
cells treated with the NT siRNA E110019 induced formation of membrane ruffles and a large proportion of bacteria were labeled by the total stain
which were absent from the extracellular labeling. Depletion of Wave2 using siRNA inhibited formation of membrane ruffles by E110019 and the
majority of bacteria were detected by both the extracellular and total staining demonstrating that depletion of Wave2 inhibits EPEC invasion.
doi:10.1371/journal.ppat.1000683.g003
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Figure 4. EspT-dependent actin remodeling facilitates bacterial invasion of epithelial cells. (A) Swiss 3T3 cells infected with JPN15, JPN15
expressing EspT, E110019 or S. Typhimurium for 3 h were fixed and stained prior to permeabilization (extracellular labeling) (Red). The cells were then
washed, permeabilized, re-labeled (Total labeling) (Green) along with Alexaflour 633 Phalloidin (Cyan) and Dapi (Blue). In cells infected with JPN15 all
the bacteria labeled by the total staining were also detected with the extracellular probe indicating that there was no significant invasion
(highlighted with arrows). Significant numbers of bacteria labeled with the total stain, which were not represented in the extracellular staining, were
seen in cells infected JPN15 expressing EspT, E110019 and S. Typhimurium indicating that there was a significant degree of bacterial invasion
(highlighted with arrows). (B) Gentamycin protection assay of Swiss 3T3 and HeLa cells infected JPN15, JPN15 expressing EspT, E110019, S.
Typhimurium, C. rodentium, C. rodentium DespT or complemented C. rodentium DespT and polarized Caco2 cells infected with JPN15, JPN15
expressing EspT, E110019 or S. Typhimurium. Results are representative of 3 independent experiments carried out in duplicate and are displayed as
mean6SEM.
doi:10.1371/journal.ppat.1000683.g004
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capacity of both JPN15 expressing EspT and E110019 compared

to cells treated with non-targeting siRNA (Fig. 3A and 5B). Thus,

Rac1, Wave2 and Abi1 are essential mediators of EspT-induced

bacterial invasion.

Internalized EPEC are bound within a vacuole
After the initial invasion of host cells internalized bacteria are

often bound within a vacuole which resembles early endosomes

(reviewed in [46]). Intracellular bacteria either remain within the

vacuole or rapidly escape to the cytoplasm [26]. In order to

determine whether invasive EPEC are bound within a vacuole or

free in the cytoplasm HeLa cells were infected with JPN15, JPN15

over expressing EspT (pICC461) and E110019 for 5 min up to

24 h and stained with various vacuolar markers including Early

Endosome Antigen 1 (EEA1), Vacuolar ATPase (VATPase) and

Lamp1. Internalized JPN15 expressing EspT and E110019 were

labeled with EEA1 while external bacteria and JPN15 lacking

EspT were not (Fig. 6 shows staining at 45 min post infection).

EEA1 staining was apparent after 5 min and persists up to 1 h

post infection (data not shown). At 3 h and up to 12 h post

Figure 5. Rac1 and Wave2 are essential for EspT-mediated bacterial invasion. (A) Swiss 3T3 cells were left untransfected or transfected with
Non Targeting (NT) or Wave2 siRNA olgos, the ectopic expression vector pDSRed encoding Wave2DA, Wave2DBP or pRK5 expressing dominant
negative Rac1 and Cdc42 and infected with JPN15, JPN15 expressing EspT or E110019. Mock transfected cells or cells transfected with dominant
negative Cdc42 were efficiently invaded by both JPN15 expressing EspT and E110019. Cells transfected with dominant negative Rac1 were
significantly more resistant to bacterial invasion. The Wave2DA and Wave2DBP constructs also had a potent dominant negative effect on bacterial
internalization. (B) Quantification of bacterial invasion; cells which had 3 or more internalized bacteria were scored as invaded. 100 cells were counted
in triplicate in three independent experiments. Results are displayed as mean6SEM.
doi:10.1371/journal.ppat.1000683.g005
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infection the EPEC containing vacuole (ECV) was labeled with

VATPase whilst external bacteria were not (Fig. 7B). Similarly to

the Salmonella containing vacuole (SCV), a subset of ECVs became

enriched with the lysosomal glycoprotein Lamp1 after 16 h (Fig.

S7 and S8) and appear to adopt a perinuclear localization (Fig. 6B).

In order to determine if EPEC bacteria can multiply

intracellularly we infected Swiss 3T3 cells with E110019 for

30 min before extracellular bacteria were killed by gentamycin.

Infected cells were fixed for immuno-fluorescence microscopy at 2,

8, 16 and 24 h post infection. We observed a time dependent

increase in the level of intracellular bacteria suggesting that

internalized EPEC can multiply within host cells (Fig. S8).

Internalized EPEC and C. rodentium form intracellular
actin pedestals

After escaping from the vacuole many intracellular pathogens

such as Shigella, Burkholderia and Listeria utilize specialized outer

membrane proteins to recruit actin nucleating factors in order to

produce a propulsive force (reviewed in [26]). EPEC is

synonymous with actin nucleation which leads to formation of

Tir-dependent actin rich pedestals [12]. During the course of this

study we observed that invasive EPEC were associated with

filamentous actin comets reminiscent of pedestals. Confocal X-

stacks confirmed that the intracellular EPEC bacteria were

associated with pedestal-like filamentous actin structures (Fig. 7A).

In order to determine if Tir was localized at the actin nucleation

sites, we infected HeLa cells for 1 h with JPN15, JPN15 expressing

EspT and E110019; following washes the cells were treated with

gentamycin for a further 8 h. The cells were then stained with

anti-VATPase and anti-Tir antisera in conjunction with phalloidin

and Dapi staining. HeLa cells infected with JPN15 exhibited

extracellular, pedestal-associated, bacteria which were associated

with Tir but not with VATPase (Fig. 7B). In contrast, internalized

JPN15 expressing EspT and E110019 bacteria were co-labeled

with anti-VATPase, actin and Tir (Fig. 7B). Similarly, invasive C.

rodentium also formed intracellular pedestals (Fig. S5), while C.

rodentium Dtir was invasive but failed to trigger actin polymerization

(Fig. S8). In addition, the intracellular EPEC DescN, internalized

by ectopically expressing EspT, were not associated with actin

pedestals (Fig. S6). These results suggest that the actin filaments

associated with EPEC contained within the ECV is nucleated in a

Tir-dependent mechanism analogous to pedestal formation by

extracellular bacteria.

In order to confirm this assertion we infected HeLa cells with

E110019 for 2 h and processed the cells for transmission electron

microscopy (TEM). The TEM confirmed that E110019 bacteria

are internalized via ruffle formation (Fig. 7C). E110019 can also be

seen forming multiple pedestals with the membrane on opposing

surfaces during ruffle formation and closure (Fig. 7D). Moreover,

internalized EPEC bacteria contained within the ECV are

associated actin pedestals, which are strikingly similar to those

normally associated with extracellular EPEC (Fig. 7C–E).

Figure 6. Internalized EPEC bacteria are enclosed within a vacuole. HeLa cells were infected with JPN15, JPN15 expressing EspT and E110019
for 45 min. Internalized bacteria bound within a vacuole were detected by anti EEA1 and a secondary antibody coupled to a CY5 (magenta). DNA was
detected using Dapi staining. Extracellular JPN15 bacteria, which were detected by both the total stain and the extra-cellular probe, were not co-
localized with EEA1. Intracellular JPN15 expressing EspT and E110019 which were detected by the total bacterial probe but not by the pre
permeabilization stain were co localized within EEA1 rich structures indicative of early endosome like vacuoles.
doi:10.1371/journal.ppat.1000683.g006
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Figure 7. Internalized EPEC bacteria incorporate Tir into the vacuolar membrane which nucleates intracellular actin pedestals. (A)
Swiss 3T3 cells were infected with E110019 and processed for immuno-fluorescence confocal microscopy. A series of confocal X-stacks were taken
through the infected cells. The cell boundaries were defined based on actin staining and are marked by a yellow line, the coverslip is represented by
the blue bar. The staining shows intracellular E110019 (Green) associated with actin pedestal-like structures (Magenta). (B) HeLa cells were infected
for 60 min with JPN15, JPN15 expressing EspT, and E110019 were processed for immuno-fluorescence microscopy after 8 h gentamycin treatment.
Actin was stained using Oregon Green phalloidin (Green), Tir was detected using polyclonal Tir antisera (Magenta), Vacuolar ATPase (VATPase) was
detected using a monoclonal antibody (Red) and bacteria were detected using Dapi staining. Cells infected JPN15 recruited Tir to the site of bacterial
attachment and form canonical actin rich pedestals but do not display any bacterial co-localization with the VATPase vacuolar marker. In cells
infected with JPN15 expressing EspT or E110019 a proportion of bacteria were co-localized with VATPase, Tir and actin. (C) A TEM micrograph
showing membrane ruffles engulfing E110019. (D) E110019 has the capacity to form multiple pedestals during ruffle formation and closure. (E)
E110019 bacteria bound within a vacuole with intracellular pedestals formed around its circumference.
doi:10.1371/journal.ppat.1000683.g007
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Interestingly, bacteria bound within ECVs can form multiple

pedestals around their circumference (Fig. 7E).

In order to determine if the formation of intracellular pedestals

by A/E pathogens plays a role in bacterial replication and survival

within host cells we infected Swiss cells with wild type C. rodentium

and C. rodentium Dtir for 1.5 h and with E110019 for 30 min.

Extracellular bacteria were then killed by a gentamycin wash and

the cells incubated for a further 6, 12 or 24 h. We observed that

both wild type C. rodentium and E110019 were capable of

intracellular replication whereas the C. rodentium Dtir mutant failed

to replicate and instead exhibited a slow decline in bacterial

numbers over time (Fig. S8). These results demonstrate that

formation of pedestals by invasive A/E pathogens may play a

functional role during intracellular survival.

Discussion

A/E pathogens have been long considered to be extracellular

bacteria which do not invade mammalian cells [47]. However,

sporadic reports have shown that atypical EPEC strains can

invade non-phagocytic cells [36,48]. The invasive ability has been

linked to intimin-Tir mediated tight association of EPEC with the

host cell membrane which is hypothesized to produce immature

phagocytosis cups leading to a passive push effect and inefficient

internalization [35,36]. In this study we demonstrated for the first

time that EPEC can actively invade non-phagocytic cells by

inducing formation of membrane ruffles, defining a new category

of invasive EPEC. Furthermore we demonstrate that this

phenomenon is dependent on the T3SS effector EspT which has

previously shown activate Rac1 and Cdc42 [23]. We also show

that both actin remodeling and invasion is dependent upon a

functional EspT as JPN15 expressing a EspTW63A failed to induce

membrane ruffles or to invade. Importantly, in a previous report

we indicated that expression of EspT might not confer bacterial

invasion of epithelial cells [23]. However, these experiments were

conducted using EPEC E2348/69, which in contrast to JPN15, C.

rodentium and E110019, forms tight microclonies that mask the

invasion phenotype (data not shown).

Intracellular pathogens have evolved a variety of mechanisms to

promote invasion of mammalian cells, including the trigger

(employed by Salmonella and Shigella) and zipper (employed by

Yersinia and Listeria) mechanisms (reviewed in [26]). The trigger

invasion mechanism is characterized by formation of actin rich

membrane ruffles at the site of bacterial attachment, which are

regulated by Rho GTPases, particularly Rac1 and Cdc42 and

other cytoskeletal regulators such as PI3K [49]. Shigella and

Salmonella utilize T3SS effector and translocator proteins such as

IpgB1 and IpaC and SopB and SopE/2 to hijack host cell GTPase

and phospho-inositol signaling to modulate membrane ruffling

and formation of the macropinocytic pocket [28,29,30,37].

Importantly, although both IpgB1 and EspT belong to the WxxxE

family of effectors and play a prominent role in bacterial invasion

by inducing membrane ruffles, we have recently shown that they

activate Rac1 by distinct mechanisms [23].

Downstream of Rho GTPase signaling, membrane ruffle

formation is nucleated by the WASP super family proteins

including N-WASP and Wave2. Salmonella invasion has been

demonstrated to be at least in part dependent upon the Arp2/3

binding activity of Wave2 and also the association of Wave2 with

Abi1 [50]. Wave2 cannot bind Rac1 directly; two different

mechanisms have been proposed to describe how a Wave2-Rac1

complex is formed. Innocenti et al and Steffen et al demonstrate

that Wave2 binds to Abi1 and two accessory proteins PIR121 and

Nap1 which mediate Rac1 binding [42,51]. A report by Miki et al

proposed that IRSp53 is the protein which links Rac1 to Wave2

[39]. In this study we demonstrate that EspT activation of Rac1

leads to a downstream recruitment of Wave2, Abi1 and IRSp53 to

membrane ruffles. Depletion of endogenous Wave2 using siRNA

resulted in a significant reduction in both the level of membrane

ruffles induced by strains expressing EspT and their associated

invasive capacity. We also show that the Arp2/3 and Abi1 binding

regions of Wave2, but not N-WASP, are required for EspT-

induced membrane ruffles and invasion. Furthermore, a construct

of Wave2 which retained the IRSp53 and Arp2/3 binding regions

but lacked the Abi1 interacting domain had a dominant negative

effect on membrane ruffle formation, suggesting that IRSp53 is

not required for, but may play an accessory role in, EspT-

mediated actin rearrangements.

Once internalized Shigella and Listeria quickly escape the vacuole

(reviewed in [52]). In contrast, Salmonella remains vacuole bound

and utilizes different virulence factors to modify the vacuolar

environment, position and interaction with the host endomem-

brane system in order to create an intracellular replicative SCV

(reviewed in [53]). In this study we demonstrated that after

invasion EPEC is bound within a vacuole (ECV) and remains

vacuolated until at least 16 h post infection. We found that the

ECV is EEA1 positive for up to 1 h post infection and progresses

to being VATPase positive from 3 h to 12 h post infection.

Furthermore, 12 h after infection the ECV appears to adopt a

peri-nuclear position, which resembles the properties of the SCV.

Similarly to the SCV (reviewed in [53]) we found that a subset of

ECVs become enriched in the lysosomal glycoprotein Lamp1

(data not shown) indicating lysosomal fusion with the ECV. We

also demonstrate that internalized EPEC bacteria can survive and

replicate within host cells in a time dependent manner.

Importantly and uniquely, we found that the ECV is associated

with filamentous actin tails, which are reminiscent of the

extracellular pedestals normally nucleated by EPEC stains.

Formation of intracellular actin pedestal were essential for

bacterial survival, as the intracellular population of invasive tir

mutant declined over time.

Formation of extracellular pedestals is dependent upon the

T3SS effector Tir [11]. The interaction of Tir with intimin triggers

recruitment of the mammalian adaptor Nck which in turn recruits

and activates N-WASP leading to Arp2/3 recruitment and actin

polymerization [11,54,55,56]. In this study we found that

internalized EPEC can localize Tir to the vacuolar membrane in

a T3SS dependent manner and that the localization of Tir can

promote actin nucleation. Furthermore, we found that a C.

rodentium Dtir mutant is still invasive but does not form intracellular

pedestals, demonstrating that pedestal formation by internalized

bacteria is a Tir-dependent process analogous to that of

extracellular bacteria. Additionally using TEM we found that

invasive EPEC bound within a vacuole are associated with

intracellular pedestals around the circumference of the bacteria.

Interestingly, membrane ruffles seen engulfing invading EPEC

were occasionally associated with pedestals, suggesting the

pedestals can be formed during or after internalization.

Canonically actin is recruited to the surface of intracellular

pathogens which are non-vacuolated and this recruitment is

mediated by outer-membrane proteins which are free to interact

with host cell signaling molecules present in the cytoplasm. For

example following escape from the vacuole Shigella and Listeria

utilize IcsA/VirG and ActA, respectively, to trigger actin

polymerization and motility (reviewed in [57]). The Vaccinia

virus uses the viral membrane protein A36R in order to generate

actin based motility in a similar manner to the extracellular EPEC

pedestals [58]. Importantly, the SCV is also associated with an
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actin nest which is required to maintain the integrity of the vacuole

and support the intracellular replication of Salmonella (reviewed in

[59]).

Due to the positioning of the actin extensions around the entire

circumference of EPEC it is unlikely these intracellular pedestals

are involved in classical actin-based motility. However, there are

reports suggesting that actin polymerization and depolymerization

around the periphery of E-cadherin-coated beads can lead to

directional movement in process referred to as flashing [60]; for

this reason at this stage we cannot rule out the possibility that

intracellular pedestals confer actin based motility. Furthermore,

formation of intracellular pedestals by invasive EPEC may play a

role in maintaining the vacuole integrity in a similar way to that

described for other vacuolated pathogens [59]. To the best of our

knowledge the current study demonstrates for the first time that an

intracellular bacteria is able to recruit filamentous actin comets to

the pathogen cell surface whilst encapsulated in a vacuole.

In order to survive within intracellular niche vacuolated bacteria

must evade host cell lysosome mediated degradation. Interestingly,

during the course of this study we observed that internalized

EPEC, which were enclosed in ECVs, displaying strong actin

staining around their circumference were rarely Lamp1 positive,

whereas ECVs which had little or no actin polymerization

associated with them were homogenously labeled with Lamp1

(data not shown). Furthermore, we observed that a C. rodentium Dtir

mutant was attenuated for intracellular replication. We propose

that formation of actin rich intracellular pedestals around the

circumference of the ECV by invasive EPEC may constitute a

physical barrier to lysosome fusion protecting the enclosed bacteria

from lysosomal degradation; however this hypothesis requires

further testing. A similar phenomenon has been described for the

trafficking of endosomes and lysosomes to wounded sites of plasma

membrane. At sites of plasma membrane disruption lysosomes and

endosomes are recruited to seal the breach, this process is inhibited

if the cortical actin meshwork is stabilized and enhanced when it is

disrupted [61]. Similarly the lysosome dependent internalization of

Trypanosoma cruzi requires a depolymerization of the cortical actin

network to allow lysosome transit to the plasma membrane [62].

Recently, while screen ca. 1000 clinical EPEC and EHEC

isolates we found that none of the EHEC strains and only 1.8% of

the EPEC strains contain espT [21]. Interestingly, espT was found

in EPEC E110019 which was linked to a particularly sever

outbreak of gastroenteritis in Finland [22]. E110019 was found to

be particularly infectious and unusually for EPEC was associated

with person to person spread and adult disease [22]. Although we

have no clinical data of the other espT positive isolates it is

tempting to speculate that the expression of EspT could be at least

in part responsible for the hyper virulence of the E110019 strain.

Further studies of the invasive EPEC category are needed to assess

the risk they pose to human health.

Materials and Methods

Bacteria strains
Bacterial strains used in this study are listed in Table 1. The C.

rodentium DespT were constructed using the using the one-step PCR

l-red-mediated mutation protocol [63] The O111:H2 E110019

strain was isolated from an outbreak in Finland [22]. All the strains

were maintained on Luria–Bertani (LB) broth or agar supple-

mented with ampicilin (100mg/ml) or Kanamycin (50 mg/ml).

Plasmids and molecular techniques
Plasmids used in this study are listed in Table 2; primers are

listed in Table 3. espT was amplified by PCR using E110019

genomic DNA as template and cloned into pSA10 [64] (primer

pair 1 and 2). All constructs were verified by DNA sequencing. Site

directed mutagenesis of EspT was carried out using a Quick-

changeH II kit (Stratagene) and primers 3 and 4 according to the

manufacturers instructions. Plasmids pSA10::espT was used as

template for the mutagenic reactions. The pCX340 vector

encoding EspT-TEM fusion was constructed after amplification

of espT from C. rodentium using primer pair 5 and 6.

The mammalian expression vector pRK5 containing one of

RacN17 or Cdc42N17 dominant negatives used in the transfection

Table 1. List of strains.

Strain Description Source/Reference

E110019 EPEC O111:H9 wild type [22]

E2348/69 EPEC O127:H6 wild type [66]

ICC192 EPEC O127:H6 DescN [67]

JPN15 EPEC O127:H6 lacking the EAF plasmid encoding BFP [38]

Salmonella Typhimurium Strain SL1344 [68]

ICC169 Citrobacter rodentium This study

ICC306 Citrobacter rodentium DespT This study

ICC305 Citrobacter rodentium Dtir R. Mundy

doi:10.1371/journal.ppat.1000683.t001

Table 2. List of plasmids.

Name Description Source/Reference

pSA10 pKK177-3 with Lac [64]

pRK5::myc-rac1N17 Dominant negative Rac1 [69]

pRK5::myc-cdc42N17 Dominant negative Cdc42 [69]

pRK5:myc-:wave2 Wave2 full length Gifted by Laura Machesky

pDSRED::wave2DA Wave2 with truncated VCA Gifted by Laura Machesky

pDSRED::wave2DBP Wave2 with truncated WHD Gifted by Laura Machesky

pICC228 pRK5::espT-Myc [23]

pICC461 pSA10::espT E110019 This Study

pICC489 pACYC184::espt C. rodentium This Study

pICC488 pCX340::espT C. rodentium This Study

pICC490 pRK5::espTW63A This Study

doi:10.1371/journal.ppat.1000683.t002
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assays were a gift from Nathalie Lamarche-Vane. The pRK5

encoding Wave2, and the pDSRED Wave2DA and Wave2DBP

were a kind gift from Laura Machesky via Ray Carabeo.

Infection of Swiss 3T3, HeLa and Caco2 cells
48 h prior to infection cells were seeded onto glass coverslips at

a density of 56105 cells per well and maintained in DMEM

supplemented with 10% FCS at 37uC in 5% CO2. Caco2 cells

were grown in DMEM supplemented with 20% FCS at 37uC in

5% CO2. The cells were washed in PBS and the media changed

every 24 h for 12 days until the cells polarized. 3 h before

infection, the cells were washed 3 times with PBS, the media

replaced with fresh DMEM without FCS supplemented with 1%

mannose and 500 ml of primed bacteria were added to each well,

the plates were then centrifuged at 1000 rpm for 5 min at room

temperature and infections were carried out at 37uC in 5% CO2.

b Lactamase (TEM) T3SS dependent translocation assay
HeLa cells were seeded on to glass coverslips for infection as

previously described above. Wild type EPEC E2348/69 and DescN

T3SS null mutant were transformed with the pCX340 vector

encoding EspT-TEM-1 fusion; an NleD-TEM fusion was used as

a positive control. Translocation assay was performed as described

previously [65].

Immunofluorescence staining and microscopy
Coverslips were washed 3 times in PBS and fixed with 3%

Paraformaldehyde (PFA) for 15 min before washing 3 more times

in PBS. For immuno-staining, the cells were permeabilized for

5 min in PBS 0.5% Triton X100, washed 3 times in PBS and

quenched for 30 min with 50 mM NH4Cl. Pre prermeabilized

samples were not treated with triton X100. The coverslips were

then blocked for 1 h with PBS 0.5% BSA before incubation with

primary and secondary antibodies. The primary antibody mouse

anti EEA1 (BD biosciences) and mouse anti VATPase (Gifted by

Prof. D. Holden) were used at a dilution of 1:100, while rabbit anti

O127, anti O111, anti O152, anti Tir and goat anti CSA-1

(salmonella LPS, gifted by Prof D. Holden) were used at a dilution

of 1:500. Rabbit anti Wave2 (SantaCruz Biotechnology) and

Mouse anti Abi1 (Abcam) were used at 1:200 dilutions. Coverslips

were incubated with the primary antibody for 1 h, washed three

times in PBS and incubated with the secondary antibodies.

Donkey anti-rabbit IgG conjugated to a Cy2 or Cy3 fluorophore,

donkey anti-mouse IgG conjugated to a Cy5 or Cy5 fluorophore,

donkey anti goat IgG conjugated to a Cy2 or Cy3 fluorophore

(Jackson laboratories) were used at a 1:200. Actin was stained

using AlexaFluor 633 phalloidin, Oregon Green phalloidin or

Rhodamine phalliodin (Invitrogen) at a 1:100 dilution. All

dilutions were in PBS/0.5% BSA. Coverslips were mounted on

slides using ProLongH Gold antifade reagent (Invitrogen) and

visualized by Zeiss Axioimager immunofluorescence microscope

using the following excitation wavelengths: Cy3 – 550nm, Cy5 –

650nm and Oregon Green – 488nm. All images were analyzed

using the Axiovision Rel 4.5 software. Confocal X stacks were

taken using a Leica Sp2 microscope. Cell boundaries were

determined using actin staining and Abobe photoshop software.

Transfection
Swiss 3T3 cells or HeLa cells were transfected with pRK5

encoding EspT, RhoAN19, RacN17, Cdc42N17 dominant negatives

fused to a Myc tag, pDSRED encoding Wave2, Wave2DA or

Wave2DBP by lipofectamine 2000 (Invitrogen) according to the

manufacturer’s recommendations. The cells were incubated at

37uC in a humidified incubator with 5% CO2 for 16 h, washed

twice in PBS before having their media replaced with DMEM as

described previously. Transfected cells were infected with the

appropriate strain as described above.

siRNA of Wave2
HeLa cells were seeded at a density of approximatetly 56106

cells per well 24 h prior to transfection of either Wave2 siRNA

pool or a non-targeting pool supplied by Dharmacon using

HiPerFect (Qiagen) according to the manufacturers instructions.

The media was changed 16 h after transfection and the cells were

allowed to recover for 12 h before being trypsinated and seeded at

a density of 56106 cells. The siRNA procedure was repeated for a

total of 3 rounds before the cells were used. Levels of Wave2 and

tubulin were then detected by western blotting using anti wave2

(Santa Cruz) and anti tubulin (Sigma) antibodies. Cells were then

infected with the appropriate strain and processed for immuno-

fluorescence microscopy as previously described.

Gentamycin protection assay
Cells seeded into the wells of a 24 well plate were infected as

described above for 6 h at 37uC in 5% CO2. The pre-

gentamycin plates were washed 5 times in PBS and then

permeabilzed for 15 minutes with 1% saponin in sterile water

before plating in triplicate on LB plates in dilutions ranging from

100 to 1027. The post gentamycin samples were washed 5 times

with PBS after the final wash the PBS was replaced with serum

free DMEM containing 200mg/ml of gentmaycin and the cells

incubated for 1 h at 37uC in 5% CO2. The plates were then

washed a further 5 times in PBS before permeabilization and

plating as described above. The pre and post gentamycin plates

were then incubated for 15 h in a static 37uC incubator and the

colony forming units (cfu) were counted. The percentage of

invasion was calculated based on the ratio of cfu on the pre and

post gentamycin plates.

Table 3. List of primers.

Primer Name Sequence

1 EspT-E110019-F 59-ttgaattcatgccaggaacagtaaactcc-39

2 EspT-E110019-R 59-ccaatgcattggttctgcattaaacatattttaaatttctc-39

3 EspTW63AF 59-gaaaaacgaaggaaaaatgaatgaggcgatgagggaagaatgtatttgcttt-39

4 EspTW63AR 59-aaagcaaatacattcttccctcatcgcctcattcatttttccttcgtttttc-39

5 EspTpCX340F 59-ttcatatgccgggaacaataagctccag-39

6 EspTpCX340R 59-tgaattcggggttctctgcgcctcctgaa-39

doi:10.1371/journal.ppat.1000683.t003
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Scanning electron microscopy
Glass coverslips were seeded and infected for 2 h with the

appropriate strains as described above. The cells were washed 3

times in phosphate buffer pH7.2 and then fixed with 2.5%

Gluteraldehyde (Agar) in phosphate buffer pH7.2 for 15 min. The

coverslips were then washed with phosphate buffer pH7.2 a

further 3 times before being post fixed in 1% Osmium Tetroxide

for 1 h. The cells were then washed 3 times in phosphate buffer

before being washed for 15 min in graded ethanol solutions from

50% to 100% to dehydrate the samples. The cells were then

transferred to an Emitech K850 Critical Point drier and processed

according to the manufacturer’s instructions. The coverslips were

coated in gold/palladium mix using a Emitech Sc7620 minisputter

to a thickness of approximately 370Å. Samples for scanning

electron microscopy (SEM) were then examined blindly at an

accelerating voltage of 25 kV using a Jeol JSM-6390.

Transmission electron microscopy
6 well plates were seeded and infected for 2 h with the

appropriate strains. The cells were washed 3 times in phosphate

buffer pH7.2 and then fixed with 2.5% Gluteraldehyde in

phosphate buffer pH7.2 for 15 min. The plates were then washed

with phosphate buffer pH7.2 a further 3 times before being

removed from the plate using a Teflon scraper and subsequently

harvested into in eppendorf tube. The eppendorfs were then

centrifuged at 10,000 RPM to pellet the cells. The cell pellets were

post fixed in 1% Osmium Tetroxide for 1 h, followed by 1%

buffered tannic acid for 30 min and then a 1% aqueous sodium

sulfate rinse for 10 min. The sample was dehydrated using an

ethanol-propylene oxide series (with 2% uranyl acetate added at

the 30% step) and embedded in Epon-araldite for 24 h at 60uC.

Ultrathin sections (60 nm) were cut with a Leica EMUC6

ultramicrotome, contrasted with uranyl acetate and lead citrate,

and viewed with an FEI 120-kV Spirit Biotwin TEM. Images were

obtained with a Tietz F415 digital TemCam.

Supporting Information

Figure S1 EspT is translocated into host cells in a T3SS

dependent manner. HeLa cells were infected with EPEC E2348/

69 or E2348/69DescN containing the pCX340 b-lactamase fused

to EspT. b-lactamase cleaves the CCF2/AM substrate, which

fluoresces in green when uncleaved and in blue when cleaved,

indicating translocation of the fusion protein. The T3SS effector

NleD was used as a positive control.

Found at: doi:10.1371/journal.ppat.1000683.s001 (0.48 MB PDF)

Figure S2 IRSp53 is enriched in membrane ruffles induced by

EspT. HeLa and Swiss cells were transfected with the ectopic

expression vector pRK5 encoding EspT for 12 h. Actin was

labeled with Oregon Green phalloidin (Green), Wave2 was

detected with polyclonal rabbit antiserum (Red) and IRSp53 was

detected using a monoclonal mouse antibody (Yellow). Transfec-

tion of EspT resulted in formation of membrane ruffles and

lamellipodia in HeLa and Swiss cells respectively. Wave2 was

localized to membrane ruffles and lamellipodia induced by EspT.

IRSp53 was recruited to EspT dependent ruffles in HeLa cells but

was not present in lamellipodia induced on Swiss 3T3 cells.

Found at: doi:10.1371/journal.ppat.1000683.s002 (1.52 MB PDF)

Figure S3 Wave2 WHD and VCA domains are needed for

EspT-induced membrane remodeling. (A) Swiss cells were left

untransfected or transfected with pDSRed encoding wild type

Wave2 and Wave2DA (lacking the acidity Arp2/3 interacting

region) or Wave2DBP (lacking the WHD needed for Abi1

binding). Transfected cells were infected with JPN15 expressing

EspT for 2 h and processed for immuno-fluorescence microscopy.

Actin was stained with Oregon green phalloidin (Green), the Wave

constructs were detected with a polyclonal rabbit Wave2 antibody

(Red) and JPN15 expressing EspT were visualized by Dapi. Mock

transfected cells or cell transfected with wild type Wave2 displayed

lamellipodia in 80–90% of transfected cells. Cells transfected with

Wave2DA or Wave2DBP were severely attenuated in lamellipodia

formation compared to the mock or Wave2 wild type transfected

cells. (B) Quantification of lamellipodia and membrane ruffles on

Swiss and HeLa cells respectively after 2 h infection with JPN15

expressing EspT. 100 cells were counted in triplicate in three

independent experiments. Results are displayed as mean6SEM.

Found at: doi:10.1371/journal.ppat.1000683.s003 (2.59 MB PDF)

Figure S4 EspT mediated membrane remodeling and invasion

is dependent on the conserved WxxxE motif. HeLa cells infected

with JPN15, JPN15 expressing wild type EspT, or JPN15

expressing EspTW63A for 3 h were fixed and stained with

phalliodin (green) to detect actin and Dapi stain to label bacteria

(blue). In cells infected with JPN15 and JPN15 expressing

EspTW63A there was no significant induction of membrane

ruffling. Infection of HeLa cells with JPN15 expressing wild type

EspT resulted in the formation of characteristic membrane ruffles.

(B) Gentamycin protection assay of HeLa cells infected JPN15 and

JPN15 expressing EspT or EspTW63A. Results are representative

of 3 independent experiments carried out in duplicate and are

displayed as mean6SEM.

Found at: doi:10.1371/journal.ppat.1000683.s004 (0.92 MB PDF)

Figure S5 EspT is an essential mediator of C. rodentium invasion

of epithelial cells. HeLa cells infected with C. rodentium, C. rodentium

DespT or complemented C. rodentium DespT were fixed and stained

prior to permeabilization (extracellular labeling) (Red). The cells

were then washed, permeabilized, re-labeled (Total labeling)

(Green) along with Alexaflour 633 Phalloidin (Cyan) and Dapi

(Blue). In cells infected with C. rodentium DespT all bacterial cells

detected by the total stain were also labeled with the extracellular

stain indicating that this strain was not invasive (highlighted with

arrows). In cells infected with C. rodentium or C. rodentium DespT

expressing EspT a significant proportion of bacteria labeled with

the total probe were not strained with the extracellular probe

demonstrating cells invasion (highlighted with arrows).

Found at: doi:10.1371/journal.ppat.1000683.s005 (1.73 MB PDF)

Figure S6 Ectopic expression of EspT can facilitate invasion of

epithelial cells by a T3SS null mutant. HeLa cells were transfected

with pRK5 encoding EspT and subsequently infected with a DescN

T3SS mutant. The cells were then fixed and processed for

immuno-fluorescence microscopy. Actin was stained using Alexa-

fluor 633 phalloidin (Cyan), external and internal bacteria were

labeled in red and green respectively. Ectopic expression of EspT

led to the formation of actin rich membrane ruffles and a

significant proportion of DescN bacteria became internalized

(highlighted with arrows).

Found at: doi:10.1371/journal.ppat.1000683.s006 (0.90 MB PDF)

Figure S7 ECVs become Lamp1 positive at late time points of

infection. HeLa cells were infected with E110019 for 30 min before

the cells were washed with gentamycin to eliminate non invasive-

bacteria. The infected cells were then incubated for a further 16 h.

The cells were fixed and processed for immuno-fluorescence

microscopy Lamp1 was detected with a monoclonal antibody (Cyan),

actin was labelled with phalliodin (Red) and bacteria were detected

with Dapi. There was accumulation of Lamp1 staining on ECVs at

16 h post infection, which was not apparent at earlier time points.
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Found at: doi:10.1371/journal.ppat.1000683.s007 (0.75 MB PDF)

Figure S8 (A) Internalized EPEC survive and replicate in

epithelial cells. HeLa cells were infected with E110019 for

30 min before the cells were washed with gentamycin to eliminate

non invasive-bacteria. The cells were then incubated for 2, 8, 16

and 24 h in the presence of gentamycin. Cells were processed for

immuno-fluorescence microscopy, bacteria were detected with

Dapi (Dlue) and actin was labeled with phalliodin (Red). There

was a time dependent increase in the level of intracellular bacteria.

(B) Quantitative gentamycin protection assay of intracellular

growth. HeLa cells were infected for 3 h with C. rodentium, C.

rodentium Dtir and E110019 before extracellualr bacteria were

eliminated with gentamycin. Cells were then incubated in the

presence of gentamycin for 6, 12 or 24 h before the cells were

lysed and plated for CFU counting. Results are representative of 3

independent experiments and are presents as mean6SEM.

Found at: doi:10.1371/journal.ppat.1000683.s008 (1.92 MB PDF)
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