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Abstract 
 

Thermal barrier coatings (TBCs) are crucial for increasing the turbine inlet temperature 

(and hence efficiency) of gas turbine engines.  The thesis describes PhD research 

aimed at improving understanding of the thermal cycling failure mechanisms of electron 

beam physical vapour deposited (EB-PVD) yttria stabilised zirconia (YSZ) TBCs on 

single crystal superalloys. 

 

The research consisted of three different stages. The first stage involved designing a 

coupled one-dimensional thermodynamic-kinetic oxidation and diffusion model capable 

of predicting the concentration profiles of alloying elements in a single-phase γ 

nickel-rich Ni-Al-Cr ternary alloy by the finite difference method. The aim of this 

investigation was to improve the understanding of interactions between alloying species 

and developing oxide. The model demonstrated that in the early stages of oxidation, Al 

consumption by oxide scale growth is faster than Al replenishment by diffusion towards 

the scale, resulting in an initial Al depletion in the alloy near the scale. 

 

The second stage involved a systematic study of the life-time of TBC systems on 

different single crystal superalloys. The study aimed at demonstrating that the 

compatibility of modern nickel-based single crystal superalloys with TBC systems is 

influenced strongly by the content of alloying element additions in the superalloy 

substrate. The results can be explained by postulating that the fracture toughness 

parameters controlling decohesion are influenced strongly by small changes in 

composition arising from interdiffusion with the bond coat, which itself inherits 

elemental changes from the substrate. 

 

The final stage of study involved a detailed study of different bond coats (two 

β-structured Pt-Al types and a γ/γ’ Pt-diffusion type) in TBC systems based on an 

EB-PVD YSZ top coat and a substrate material of CMSX-4 superalloy. Generation of 

stress in the thermally grown oxide (TGO) on thermal cycling, and its relief by plastic 

deformation and fracture, were investigated experimentally in detail. 
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Chapter 1 Introduction 

 
 
1.1 Scope and Aims of Research 
 

The objective of the present research is to investigate phenomena specifically related to 

the high temperature degradation of superalloys and coatings. One of the challenges in 

the field of high temperature structural materials will be addressed: that of assuring 

compatibility of the superalloys with the coatings required to protect them. These 

combinations of materials are required for hot section components in the latest 

generation of gas turbine engines, e.g. to power new aeroplanes and for ultra-efficient 

land-based turbines for electricity generation. Traditionally, superalloys and coatings 

have been designed in isolation with very little if any attention being paid to the factors 

which govern whether any given alloy can be coated or not. 

 

The proposed work has the following aims.  

 

First, oxidation behaviours of NiCrAl ternary alloys will be evaluated and assessed 

using a computer model to improve understanding of the oxidation mechanisms of 

high-temperature alloys in the first year of PhD project. In addition, the model will try 

to identify the redistribution of each alloying constituent and characterise the 

composition-dependent oxidation behaviour. Results of the modelling work will then be 

applied to explain aspects of high temperature exposure and oxidation phenomena 

pertinent to single crystal Ni-base superalloys and oxidation resistant bond coats, to 

provide further insight into the future alloy designs. 

 

Second, thermal cycling experiments are carried out to evaluate how the substrate 

influences the spallation lifetime of coated commercial superalloys. Five commercial 

single crystal superalloys (SRR99, TMS-82+, PWA1484, CMSX-4 and TMS-138A) and 

three industry-standard bond coat systems (Pt-diffusion, High Temperature Low 
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Activity Pt-Al, and Low Temperature High Activity Pt-Al) have been selected to 

evaluate the dependence of TBC spallation lifetime on the type of substrate and coating 

applied. 

 
Third, thermal cycling experiments are carried out to provide a detailed comparative 

study of the degradation process and failure mechanisms between these three 

industry-standard bond coats. The progressive evolution of stress in the alumina 

thermally grown oxide (TGO) upon thermal cycling and its relief by plastic deformation 

and fracture will be studied using luminescence spectroscopy and interfacial 

characterisation approach. 
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Chapter 2  

Literature Review 

 

2.1 Background information 
 

The success of the turbine technology can be largely attributed to the development and 

utilization of nickel-base superalloys as the material for hot-section turbine components. 

Following the Kyoto Protocol aiming at mitigating CO2 emission to prevent global 

warming, there is a considerable international effort aimed at improving the efficiency 

of the gas turbines used for jet propulsion and electricity generation, due to the price of 

fossil fuels and widespread environmental concerns about the effects of CO2 emissions. 

As is widely known, high temperature materials are important in this, since fuel 

economy and rate of emissions scale directly with the temperature of the hot gas stream 

exiting the combustor regions; this effect explains the incentive to raise the operating 

temperatures experienced by the turbomachinery in these engines. In fact, a substantial 

enhancement of the engine is based on the increase of the maximum turbine entry 

temperature over the years as shown in Figure 2.1. It is not surprising therefore that all 

the major original equipment manufacturers (OEMs) possess research programmes 

which seek to develop new grades of alloy for use in their engines.  
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Figure 2.1 Evolution of the high-temperature capability of the superalloys over a period 
of 60 years since their emergence in the 1940s [1]. 
 

Nickel-based superalloys [2-5] play a vital role in this, since they have emerged as the 

materials of choice for the turbine blades, nozzle guide vanes and hot-section seals in 

the very hottest parts of these engines. These are amongst the most complex of the 

alloys produced by man, owing to the addition of many different alloying elements such 

as Co, Cr, Mo, W, Al, Ta, Re, Ru, which are added to provide a balance of properties, 
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e.g. creep resistance, tensile strength, fatigue capability, oxidation resistance, corrosion 

resistance and castability. While the alloy designer must consider all of these properties 

to meet simultaneously the turbine design specifications, advanced 4th and 5th 

generation Ni-base single crystal superalloys tend to exhibit improved creep resistance 

at a cost of sacrificing the high temperature oxidation resistance. Thus, advanced 

thermal barrier coatings (TBCs) – most usually based upon yttria-stabilised zirconia 

(YSZ) – must now be applied to the surface of alloy components as a functional 

material to further enhance the temperature capability of the turbine blade aerofoils. 

 

2.2 Single Crystal Nickel-Base Superalloys 
 

The terminology “superalloy” was first introduced after World War II to cover alloys 

designed specifically for aircraft turbine engines. Since then, the superalloys have been 

developed to expand their application to many different areas including aircraft and 

land-based gas turbine engines, rocket engines and petroleum plants. In this research, 

attention is given to nickel-base superalloys as this is the most popular class of superalloy 

being used nowadays. 

 

Nickel, as the base element of Nickel-base superalloy, is the fifth most abundant element 

on earth. Its crystal structure is face-centered cubic (FCC), see Figure 2.2, from ambient 

conditions to its melting point of 1455ºC. Its density at ambient conditions is 8907 kg/m3 

which compared with other metals used for aerospace applications, e.g. Ti (4508 kg/m3) 

and Al (2698 kg/m3), is rather dense. This is due to the small inter-atomic distance, 

arising from the strong cohesion provided by the outer d-electrons, a typical characteristic 

of the transition metals. 
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Figure 2.2 The Unit Cell of the Face-Centred Cubic (FCC) Crystal Structure 
 

The compositions of the superalloys and the phases promoted by the presence of the 

alloying elements have been established over many years, and considerable use of them is 

required when designing new grades of superalloy. In the next section, the 

composition-microstructural relationships in nickel alloys and the method of controlling 

and promoting high temperature strength will be discussed. 

 

2.2.1 Composition-Microstructure Relationships in Nickel Alloys 
 
Most nickel-base superalloys contain ten or more deliberately added elements and can be 

considered one of the most complicated class of alloys ever engineered. The alloys 

generally contain significant amounts of chromium, aluminum, and titanium. Small 

amounts of boron, zirconium and carbon are often included. Other common additions are 

molybdenum, tungsten, tantalum, hafnium and niobium. Recently in the 4th and 5th 

generation of nickel-base superalloys, rhenium and ruthenium have also been introduced 

to improve high temperature phase stability in order to enhance the creep capability 

further [6, 7]. 

 

Broadly speaking, the elemental additions in Ni-base superalloys can be categorized as 

being i) γ formers (elements that preferentially partition to the austenitic γ matrix and 

thus stabilize it, or ii) γ’ formers (elements partition to the γ’ precipitate and promote the 

formation of ordered phases such as the compound Ni3(Al, Ta, Ti). Figure 2.3 illustrates 

the computed Ni-Al binary diagrams determined using thermodynamic software such as 

the Thermo-CalcTM package. Thermo-CalcTM performs standard equilibrium 



 

 17

calculations and calculation of thermodynamic quantities based on thermodynamic 

databases. 

 

 
 

Figure 2.3 Ni-Al phase diagram the Thermo-calcTM (thermodynamic) software. 
 

The major phases present in typical superalloys are as follows [8]: 

 

(i) The Gamma Phase (γ): This is usually the continuous matrix and exhibits the FCC 

structure. It contains significant concentrations of elements such as cobalt, chromium, 

molybdenum, tungsten, ruthenium and rhenium. 

 

(ii) The Gamma Prime Phase (γ’): This forms as a precipitate intermetallic phase, e.g. 

Ni3Al, in nickel-base superalloys which is often coherent with the γ-matrix with an 

ordered L12 crystal structure, as illustrated in Figure 2.4. The precipitate is enriched in 

elements such as titanium and tantalum. 

 

(iii) Carbides. Carbon, present at levels of 0.05-0.2 wt% combines with reactive and 

refractory elements such as titanium, tantalum, and hafnium to form MC carbides. During 
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heat treatment and service, these decompose and form other carbides such as M23C6 and 

M6C which tend to reside on the grain boundaries. These carbides are usually rich in 

chromium and molybdenum. 

 

(iv) Topologically Close-Packed Phases (TCPs - µ, σ, Laves etc): These phases can be 

found in certain superalloys particularly in the service-aged condition. TCPs usually form 

as needle-like structures and are detrimental to the mechanical strength of the alloy. Thus, 

compositions of the superalloys are usually chosen to avoid formation of these 

compounds. 

 

 

Figure 2.4 Arrangement of Ni and Al atoms in (a) the order Ni3Al phase and (b) after 
disordering [5]. 
 

2.3 Oxidation Resistant Coatings and Thermal Barrier Coating 
Systems 
 

Superalloys, although designed for high temperature applications, suffer chemical and 

mechanical degradation upon extended thermal exposure. With the modern jet engine 

operating (turbine entry gas temperature, TET ~ 1750K [9]) beyond the liquidus 

temperature (1600K) of the superalloy to achieve the designed thrust output and 
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maximise the fuel efficiency, hot section components exposed to this environment such 

as turbine blades and nozzle guide vanes are susceptible to creep and oxidation. To 

withstand this environment and to prevent the onset of melting, a reduction of metal 

temperatures is essential and can be achieved by the use of thermal barrier coatings 

(TBCs) in addition to surface thin-film air cooling [10-12]. The drop in the metal 

surface temperature significantly reduces metal oxidation rates and reduces 

susceptibility to creep. As shown in Figure 2.5, the turbine operating temperature is well 

above the melting temperature of the substrate, making it impossible for superalloys to 

survive in this environment without being protected by a thermal barrier coating. 

 

 

Figure 2.5 Temperature reduction by thermal barrier coatings [11] 
 

Thermal barrier coatings (TBCs) are extensively used on advanced turbine components 

for propulsion and power generation applications [6-8]. State-of-the-art TBCs consist of 

a thermally insulating ceramic layer, usually made of zirconia containing about 7 wt% 

of yttria, also known as the yttria stabilized zirconia (YSZ). The second layer is the 

so-called intermetallic bond coat typically of a MCrAlY overlayed or a PtAl/Pt-diffused 

type, with the purpose of offering enhanced oxidation resistance due to its ability to 

form a slow-growing protective oxide scale. These layers are sequentially coated onto 



 

 20

the structural materials of Ni based alloys.  Such an implementation enables an 

increase in the gas temperature of the jet engine and effectively results in an 

improvement of thermodynamic efficiency. YSZ is almost exclusively used as the top 

coat material for current TBC systems due to its low thermal-conductivity, high 

temperature phase stability and relatively good thermal-mechanical compatibility with 

the alloy substrate. Nonetheless, the oxygen transparent property and porosity of 

zirconia at elevated temperatures leads to the formation of a thermally grown oxide 

(TGO) layer between the YSZ top coat and the bond coat. 

 

Deposition of the top coat layer is usually done by either an air plasma spray method 

(APS) or an electron beam physical vapour deposition process (EB-PVD). Coatings 

deposited by the APS method results in splats with inter-lamella gaps parallel to the 

substrate while EB-PVD produces a columnar structure with inter-column interfaces 

across the entire thickness of the coating. Figure 2.6 shows a comparison between the two 

distinct microstructures. It is this porous columnar structure that provides EB-PVD 

coatings with exceptional strain resistance because it gives a low elastic modulus. 

 

 

Figure 2.6 A comparison of TBC deposition techniques [12] 
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2.3.1 Overlay Bond Coats 
 

Commonly used overlay coatings for the superalloys are metallic alloys of general 

composition MCrAlX, where M is usually Ni or a combination of both Ni and Co, and X 

is usually a reactive element added in minor proportions, such as silicon, zirconium, 

hafnium or yttrium. Yttrium is commonly used in modern TBCs as it enhances the 

adherence of the protective TGO alumina scale [13]. 

 

Due to the nature of the overlaid structure, the composition of the coating is largely 

independent of that of the alloy substrate, even though some inter-diffusion inevitably 

takes place during operation. Thus, this type of coating enables the desired surface 

properties to be attained for a given application. In the case of coated superalloys, a 

combination of oxidation and corrosion resistance and creep strength can be attained. 

Table 2.1 lists the composition of some overlay coatings [14]. 

 

Table 2.1 Compositions of some commonly used and prototype MCrAlY overlay bond 
coats [14], in weight % 

 Ni Co Cr Al Y Ti Si Hf Others 

NiCrAlY Bal  25 6 0.4     

NiCrAlY Bal  22 10 1.0     

NiCrAlY Bal  31 11 0.6     

NiCrAlY Bal  35 6 0.5     

CoNiCrAlY 32 Bal 21 8 0.5     

CoCrAlY  Bal 25 14 0.5     

NiCoCrAlTaY Bal 23 20 8.5 0.6    4 Ta 

NiCoCrAlYSi Bal 0-40 12.5-20 2-8 0-0.25 0-10 2-10  0-4 Nb 

         0-4 Nb 

         0-20 Fe

         0-5 Mn

NiCrAlTi Bal  30-40 1-10  1-5    

NiCoCrAlHf Bal 0-40 10-45 6-25    0-10  
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2.3.2 Diffusion Bond Coats 
 

In this study, the most important diffusion coatings are those which increase the surface 

concentration or activity of aluminium and reduce that of nickel. In contrast with the 

overlay coating, bond coat materials are diffused directly into the superalloy surface 

rather than being deposited as a discrete layer. Upon thermal exposure, a protective 

layer of alumina scale then forms readily on such a surface. Diffusion coatings as bond 

coats in the case of TBCs are often formed by electrodeposition of platinum before 

aluminisation. These elements become incorporated into the diffusion layer through the 

formation of a modified β-phase (Ni, Pt)Al. 

 

It should be noted that the thicknesses of bond coats in the case of diffusion coatings is 

usually much thinner than those of overlay bond coats, 30-50 µm compared with 250 

µm for instance [15]. Thus, the diffusion coatings may be more susceptible to depletion 

of aluminium in service. 

 

A variation of this approach, patented by Rolls-Royce and Chromalloy UK [16] is to 

rely on the inward diffusion of platinum alone to improve oxidation resistance without 

undergoing any aluminising process. The theory behind the improved behaviour of this 

particular system is currently not fully understood and further research is necessary. 

However, a possible explanation could be that the aluminium diffuses from within the 

substrate to preferentially associate with the slow-diffusing platinum near the surface. 

Due to this process, the presence of platinum near the surface enhances the aluminium 

concentration so that it is maintained at a level in which preferential formation of a 

protective alumina scale could form. Again, full understanding of the details of this 

mechanism relies on further research.  
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2.4 Failure mechanisms 
 

It is known that under the high-temperature service environment and cyclic operating 

profile typical of modern jet engines, creep and thermal fatigue play key, life-limiting, 

roles for the hot-section engine components in addition to the degradation by hot 

corrosion and oxidation. With the introduction of TBCs onto the surface of the alloy 

substrate being exposed to the hot gas, the composite structure results in a complex 

interplay between the inter-diffusion as well as internal stresses due to the mismatches in 

coefficients of thermal expansion (CTE). Thus, TBC coated components are subjected to 

several and potentially inter-related failure mechanisms due to their structural complexity 

[17-22]. 

 

2.5 Oxidation of Pure Metals 

Oxidation means the loss of electrons. Oxidation of pure metals is a chemical reaction 

in which the metal loses one or more electrons, such that the atom of the metal change 

from the neutral state to a positively charge ion and react with oxygen to form an oxide 

of the metal. In the simplest process, the reaction can be described by the following 

reaction. 

2ba2 OMbOaM =+  

The oxide can form as a protective and adherent scale that slows down further oxidation, 

or may spall off repeatedly, exposing fresh metal surface to react with oxygen. For the 

non-porous and adherent scales, oxidation progresses from direct exposure of the metal 

to oxygen to a solid-state diffusion limited mechanism. The latter involves either the 

diffusion of cations through the oxide scale towards the gas or the diffusion of gas 

through the oxide. In addition to the oxide scale protectiveness, the rate of subsequent 

oxidation also depends on other parameters such as the oxide thickness, the surface area, 

the environmental temperature and the gas composition. 

 

In many situations, especially in the case of alloys, more than one oxidation mechanism 
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may take place at once and thus, complicates the study of oxidation. However, by 

breaking down the overall oxidation process into individual investigations of 

thermodynamics, kinetics and evolving microstructure, it is possible to predict the types 

of oxidation reaction that occur and obtain a quantitative evaluation of how quickly a 

reaction is likely to proceed. 

 

2.6 Thermodynamic Fundamentals 
 

For the oxidation reaction 

ba2 OMO
2
baM =+  

the equilibrium constant can be written as a function of the reactant activity; 

b
O

2ba

2
P aM
OaM

=TK  

 

For pure metal and pure oxide, the activities of both metal and oxide are unity; thus, the 

equation can be simplified accordingly, with the oxygen activity expressed as its partial 

pressure in units of atmospheres (PO2) 

b
O2

P
1

=TK  

 

In addition, the change of the Gibbs free energy per mole of reaction can be expressed 

as 

⎟
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When the above reaction is at equilibrium, the change of the Gibbs free energy, fG∆ , is 

equal to zero. 
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It can thus be seen that the thermodynamic analyses of the oxidation reaction of a 
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simple system can be reduced to a dependence on the temperature and oxygen partial 

pressure. The equilibrium oxygen partial pressure of an oxide is known as the 

dissociation pressure which is a measure of oxide stability. The lower the dissociation 

pressure, the greater the thermodynamic stability of the oxide is and vice versa. 

 

2.7 Wagner Theory of Parabolic Oxidation 
 

The high temperature oxidation kinetics of a metal depends largely on the properties of 

the oxide scale. In the case of an adherent oxide and assuming the reactions taking place 

at the metal/oxide and oxide/gas interfaces are effectively instantaneous, the rate 

controlling process of the overall oxidation reaction depends on transport of reacting 

species through the oxide scale. 

 

Thus, as the oxide scale grows thicker and correspondingly, the diffusion distance 

becomes longer, the oxidation kinetics (i.e. the rate of oxide thickness growth, dx/dt) 

change inversely proportionally to the overall oxide scale thickness. Experimentally, it 

is often observed that the rate of oxidation follows such a parabolic rate law, which can 

be quantitatively defined by a parabolic rate equation, 

 

tkx p
2 =  

Where x is the thickness of the oxide scale and kp is the parabolic rate constant. 

 

Wagner [23] provided a theoretical treatment for this rate constant and derived a 

steady-state oxidation rate-expression as a function of the concentration of metal and 

oxygen species in the oxide lattice, diffusion coefficients of oxygen and metal ions in 

the oxide and thermodynamic equilibria at both the metal/oxide and oxide/gas 

interfaces.  

 

Based on this local equilibrium assumption, thermodynamic activity gradients of either 

the nonmetal or metal can be established across the oxide layer. Since the transport of 

metal cations and oxygen anions are in different directions, an electric field is produced 



 

 26

across the oxide scale. Due to the presence of this electric field, electrons move across 

the oxide from the metal to the atmosphere. The transport of electrons is balanced by the 

charge equivalent migration of ions; thus, overall electric neutrality is maintained. 

 

Wagner’s derivation [23] of the parabolic rate constant, k’, for cationic and anionic 

diffusion controlled oxidation are described in equations below respectively. Note that 

kp = 2k’. 

 

∫=
'
M

''
M

µ

µ MM  dµD
RT
1k'  

∫=
''
X

'
X

µ

µ
XXdµD

RT
1k'  

where DM and DX are the diffusion coefficient of metal M and non-metal X in the oxide 

scale respectively and µM and µX are the chemical potential of metal M and non-metal 

X. 

 

Oxidation morphology and the oxidation rate constants of many metals have been 

published in previous studies [24-35] forming large database related to the oxidation of 

metallic materials. However, it should be indicated here that there are also many 

systems deviate greatly from the Wagner’s model, especially for systems incapable to 

form coherent oxides; thus, the diffusion controlled assumption of the Wagner’s theory 

is not satisfied. 
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2.8 Oxidation of Alloy Systems 
 

High temperature oxidation of engineering alloys is an important field of study. The 

oxidation resistance of an alloy depends on its ability to form a stable, adherent, 

slow-growing oxide layer upon thermal exposure. Oxidation of binary alloys has been 

studied extensively and theoretical understanding is well established. In addition, 

numerical models capable of predicting composition changes in single binary [23, 

36-39] and dual-phase binary [40, 41] systems have been developed. For instance, a 

criterion has been devised to predict the minimum concentration of the less noble solute 

constituent required in a binary alloy to form a single external layer of the most stable 

oxides [42]. However, despite the fact that current engineering structural alloys consist 

almost exclusively of three or more elements to provide adequate mechanical properties 

and corrosion/oxidation resistance, very few theoretical foundations have been 

established to explain the oxidation of ternary alloys due to the difficulty in 

understanding interactions between alloying species and the competition between 

developing oxides. In particular, the competition between formation of oxides of 

different compositions in the early stage of oxidation has not been fully understood and 

thus the bulk chemical composition dependence of oxidation behaviour cannot be 

formulated analytically. Moreover, the oxidation kinetics of a ternary alloy, in contrast 

to a binary system, depend strongly on the interaction between competing oxides and 

are a function of the growth rate of each of the developing oxides. 

 

2.9 Oxidation of Ni-Cr-Al Alloy Systems 
 

Giggins and Pettit, in a series of papers [43-47], classified Ni-Cr-Al alloys based on the 

oxide morphology and oxidation mechanisms at 1000ºC.  With the study of binary 

Ni-Al and Ni-Cr alloys and further experimental examination of the oxidation behaviour 

of ternary Ni-Cr-Al alloys, they provided a general description that classified the 

oxidation behaviour into three groups (i.e. Group I, II, and III) based on the type of 

oxides formed (Figure 2.7). 



 

 28

 

 

Figure 2.7 Ternary phase diagram showing the group I, II and III oxidation behaviour 
[44]. (Note: Points shown are experimental observations used to construct this diagram) 
 

A schematic diagram of the proposed oxidation process of Group I, II and III alloys is 

shown in Figure 2.8 [44]  
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Figure 2.8 Proposed mechanisms of the oxidation process [44] 
 

Group I is composed of alloys which formed a continuous and compact layer of NiO 

accompanied by a complex subscale consisting of Cr2O3, Al2O3 or Ni(Al,Cr)2O4 spinels. 

This group of alloys has relatively low concentration of chromium and aluminium 

which quickly deplete to zero near the oxide-metal interface upon rapid initial oxidation. 

Since the concentrations are not sufficient to form a compact and continuous layer of 

Al2O3 or Cr2O3, the diffusion of nickel to form NiO in these alloys is favoured. 

 

As shown in Figure 2.9 (left), the binary Ni-5wt% Al alloy preferentially formed a 

compact and continuous NiO layer with a thin Ni-enriched layer underneath it and 

internally precipitated Al2O3. The binary Ni-5wt% Cr alloy, similarly, failed to 
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preferentially form a Cr2O3 layer, but instead a spinel of Cr enriched NiO layer, with 

internal precipitation of Cr2O3 subscale. 

 

 

Figure 2.9 From left to right: the oxidation morphology of Ni-5wt% Al and Ni-5wt% Cr 
alloys upon isothermal oxidation at 1100°C for 1 hr [48]. 
 

Group II alloys cover a wide range of chromium concentration, but generally have 

relatively low concentration of aluminium. The chromium concentration is higher than 

that of aluminium in this group of alloys. In terms of the oxide morphology, an external 

layer of Cr2O3 and internal precipitation of Al2O3 are observed upon thermal exposure 

as shown in Figure 2.10. Although the oxide morphology during the initial rapid 

oxidation may be similar to that of Group I, the increased concentration of chromium in 

this group of alloys ensures that there is more chromium present at the oxide-metal 

interface for oxidation of Cr2O3 to take place, and thus, favours the formation of a 

continuous Cr2O3 oxide layer. With the formation of the Cr2O3 layer, diffusion of nickel 

through the layer from the bulk alloy to the oxide-metal interface slows down 

dramatically. As a result, only a very thin outer layer of NiO is usually observed. 
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Figure 2.10 The oxidation morphology of a Ni-35wt% Cr-2.5wt% Al alloy upon 
isothermal oxidation at 1100°C for 1 hr [48]. 
 

The oxidation of group III alloys results in the preferential formation of a compact 

external Al2O3 scale, and differs from Group I & II since no internal subscale is 

observed. Figure 2.11 shows a compact external Al2O3 scale grew on the surface of a 

Ni-2.5wt% Cr-15wt% Al alloy without any internal precipitation of oxides after 

isothermal oxidation at 1100°C for 1 hour. However, external Cr2O3, NiCr2O4 and even 

NiO may be observed depending on the relative concentration of aluminium and 

chromium. The reason is the formation of external Cr2O3, NiCr2O4 and even NiO layers 

above the alumina scale associated with the diffusion of chromium and nickel through 

the initially formed Al2O3 layer, consistent with the thermodynamic description (i.e. 

equilibrium partial pressure of oxygen) of the Ni-Al-Cr-O system. 

 

 

Figure 2.11 The oxidation morphology of a Ni-2.5wt% Cr-15wt% Al alloy upon 
isothermal oxidation at 1100°C for 1 hr [48]. 
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2.10 The Gettering Effect 
 

One of the important conclusions from the work of Giggins and Pettit was the ability for 

chromium to encourage the premature external oxidation of aluminium, known as the 

‘gettering effect’. Due to the presence of chromium, the minimum concentration of 

aluminum to preferentially form external alumina scale decreases from 15 wt% of the 

binary Ni-Al alloy. Upon further alloying addition of chromium, the minimum Al 

concentration necessary to stay in the group III region decreases, until the group II 

behaviour takes over eventually. 

 

Thus, the presence of a third element, in this case chromium promotes the establishment 

of a protective alumina scale in alloys of lower aluminum concentration. The classic 

theory is when Al and Cr compete to form external oxide of either Al2O3 or Cr2O3, the 

unsuccessful Cr then precipitates to form internal oxide and act as a secondary getter for 

oxygen, thereby decreases the inward flux of oxygen diffusion into the alloy. In the case 

of a group III alloy, this allows aluminium ions to diffuse outward to form external 

alumina layer without getting precipitated internally [49-51]. 

 

2.11 High temperature cyclic oxidation of coating systems 
 

Long term durability of coating systems depends on the stability of the interface 

between the protective coating and the substrate materials. In the case of TBC systems, 

one particular degradation mechanism is associated with progressive interfacial 

roughening, or rumpling of the bond coat because such interfacial distortion due to 

biaxial compression can induce tensile stresses perpendicular to the interface [52-56]. 

This nucleates cracks and eventually leads to the spallation failure of TBCs [57-60]. 

Such rumpling instability has been previously reported in aluminide [57, 61-63], 

MCrAlY [62] and Pt-modified [64] coating systems. In the literature, this type of 

degradation has been attributed to the thermal expansion mismatch between the bond 

coat and substrate [61, 62], repeated oxide cracking [57, 63], martensitic transformation 

in aluminides [65] and decomposition of the β-(Ni, Pt)Al phase [66]. 
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The effect of oxidation on the rumpling mechanism of Pt-modified bond coat systems 

has been studied by Tolpygo et al. [64] in which the role of oxidation was evaluated by 

conducting cyclic testing in an inert atmosphere. By comparing specimens thermal 

cycled in vacuum with control specimens thermal cycled in standard atmosphere 

condition, they found that thermal cycling in vacuum is sufficient to cause rumpling. 

Based on this observation, it was suggested that the rumpling mechanism is driven by 

an interaction between the bond coat and the substrate. 

 

In Ni-rich β phase nickel aluminides, cooling from temperatures above 1100°C results 

in a reversible phase transformation, known as the martensitic transformation when the 

Al content is less than about 37 at% [67]. Such kind of phase transformation does not 

involve diffusion of atoms, but occurs by local displacement of coordinated atoms. This 

means the B2 (body-centered cubic) phase changes to an L10 (face-centered tetragonal) 

as illustrated in Figure 2.12. The martensitic transformation is accompanied by a 

characteristic volume change because the molar volume of β is about 2% larger than 

that of the martensitic phase [65].  

 

Similarly, Pt-modified nickel aluminide bond coat systems also experience martensitic 

transformation upon cooling from temperatures above 1000-1050°C [65, 68, 69]. To 

study whether the martensitic transformation induced strain causes rumpling in the bond 

coat, it is possible to compare the surface roughness of bond coats thermal cycled 

entirely above the martensitic transformation temperature with that of the bond coats 

thermal cycled in the transformation range. Such an experiment was carried out using 

Pt-Al bond coats as reported in [64], which showed that with and without the 

transformation, similar bond coat surface roughness was obtained after the same number 

of cycles. 
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Figure 2.12 The Unit Cell of the L10 Face-Centred Tetragonal (FCT) Crystal Structure. 
 

More recently, it has been reported [70] that the rumpling is sensitive to the hafnium and 

carbon content of the substrate alloy. It was found that alloys containing low hafnium 

and high carbon concentrations showed largest rumpling while high hafnium and low 

carbon alloys showed the opposite. It was argued in the literature that hafnium diffuses 

into the bond coat and the growing alumina oxide layer; thus, increasing their creep 

resistance. Carbon, on the other hand, was thought to form tantalum-rich carbides, 

which tie up hafnium, therefore, decrease the amount of hafnium available to diffuse 

into the bond coat and oxide layer.  

 

2.12 Project Objectives 
 

In this project, high temperature oxidation and failure mechanism of Ni-Cr-Al alloy 

systems and EBPVD YSZ TBCs deposited on Pt-diffusion and Pt-Al bond coats on 

different single crystal superalloys are studied. The importance of superalloy 

composition on the TBC life has received considerably less attention in the field of high 

temperature materials while the failure characteristics and mechanism have yet to be 

compared and analysed in details. 

 

The overall objective of this research can be divided into 5 sub objectives which are 

listed below: 
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1. To develop a computer model to characterise the composition-dependent oxidation 

behaviour and to identify the redistribution of each alloying constituent. 

2. To evaluate the compatibility of nickel-based single crystal superalloys with TBC 

system. 

3. To investigate the role of the compositions of these alloys in determining the TBC’s 

spallation resistance. 

4. To compare the degradation process and failure mechanisms of three 

industry-standard bond coats (Pt-diffusion, High Temperature Low Activity Pt-Al, and 

Low Temperature High Activity Pt-Al). 

5. To characterise the progressive evolution of stress in the alumina thermally grown 

oxide (TGO) upon thermal cycling and its relief by plastic deformation and fracture 

using luminescence spectroscopy and other interfacial characterisation approaches. 
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Chapter 3  

A Coupled Thermodynamic-Kinetic Model for the 

Oxidation Kinetics of Ternary Nickel-Rich Alloys 

 

3.1 Introduction 
 

Oxidation of engineering alloys is an important subject of study in the field of high 

temperature materials. Numerical modelling efforts of these alloys tended to be limited 

to single binary [1-5] and dual-phase binary [6, 7] systems due to the difficulty in 

formulating the composition-dependent oxidation behaviour of ternary systems. 

Moreover, the competition between formation of oxides of different compositions also 

present a challenge in deriving numerical procedures. 

 

However, as mentioned previously, since most structural alloys consist almost 

exclusively of three or more elements to achieve the required properties, analytical 

models capable of characterising and predicting diffusion and oxidation processes of 

ternary alloy systems would offer a tremendous benefit to the field of alloy design. 

 

In year 2000, a finite-difference computer program was written by the National 

Aeronautics and Space Administration (NASA) to be a pioneer model dealing with the 

diffusion and high temperature oxidation processes of an overlay type of bond coat 

represented by the Ni-Cr-Al ternary system [8]. The model makes the simplification of 

using an exclusive Al2O3 formation model and assumes a parabolic growth rate. Oxides 

other than alumina were not considered, thus, suggesting that the only surface flux in 

the ternary diffusion calculation is loss of aluminium to form the alumina scale.  

 

A successor model to the NASA program was designed by Nijdam et al. [9], 
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representing an improvement of the oxidation treatment by including formation of 

Cr2O3, and NiO in addition to Al2O3. The amount of each oxide phase developed as a 

function of oxidation time is then coupled with the diffusion equations to calculate the 

composition-depth profiles in the alloys. The model, however, does not consider 

formation of spinel oxides. 

 

In this work, a finite difference computer code has been written to model the assumed 

one-dimensional diffusion and oxidation processes of a ternary alloy (i.e. Ni-Al-Cr) 

upon isothermal oxidation exposure with the aim of predicting the composition profile 

change in the alloy substrate. The calculation is based on coupling thermodynamics of a 

ternary alloy – oxygen system (i.e. Ni-Al-Cr-O) [10] with kinetics of diffusion transport 

[11, 12] of atomic species in the substrate and the rate of the oxidation reactions. The 

output of the model predicts the composition of the oxide scale and the concentration 

depth profile of elements after various oxidation exposure times, by assuming parabolic 

oxide growth kinetics. However, it does not include diffusion of oxygen in the alloy by 

assuming zero solubility of oxygen in this alloy system, and therefore cannot describe 

internal oxidation in the alloy. 

 

The example alloy utilised for this model is a γ-Ni-27Cr-9Al (at %) alloy oxidized at 

1100ºC in air atmosphere. One of the reasons for the selection of this alloy is due to the 

availability of ternary interdiffusion coefficient data in Ni solid solution γ (fcc) phase of 

the Ni-Cr-Al system at 1100 and 1200ºC. In addition, there is no anticipated phase 

transformation in the alloy substrate upon surface oxidation induced composition 

changes as confirmed by the Ni-Cr-Al ternary phase diagram. 

 

The predicted composition depth profiles in the substrate and the growth kinetics of 

oxides are compared with experimental results obtained in [9] to verify the current 

model. 
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3.2 Theoretical Development 
 

The theoretical basis to be used in the current model can be divided into three different 

categories – 1) oxide thermodynamics, 2) oxidation kinetics and 3) solid-state volume 

diffusion. 

 

Oxide Thermodynamics 

Thermodynamic descriptions of most practical engineering ternary alloy – oxygen 

systems have been thoroughly studied and are widely available. The free energy 

changes of oxidation reactions of the Ni-Cr-Al ternary system are available in [10]. 

Oxidation of a single-phase alloy MIMIIMIII can be described by both 
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Where Ma  are the thermodynamic activities of the constituent M at the oxide/metal 

interface. The activity values vary as the oxidation proceeds and can be related to the 

concentration of alloy constituents at the oxidation front.  

 

In the model, activities are retrieved from a thermodynamic software (Thermo-CalcTM) 

every time-step to enable the computation of the oxidation thermodynamics. 

 

Oxidation Kinetics 

The kinetics of oxidation can be experimentally measured and expressed in terms of an 

empirically measured rate expression. Although this may be the simplest way to input 

kinetic parameters into a thermal-kinetic oxidation model, it is also possible and more 

general to derive a rate expression from the Wagner’s parabolic growth theory. 

 

According to Nerst-Einstein relationship, the partial ionic conductivity σi, of an ionic 

solid (such as an oxide) can be defined as: 

Tk
eZDcσ

B

22
iii

i =  

where iii  Zand D ,c denotes the number of ions of type i in the oxide per unit volume, 

self-diffusion coefficient of element i and the valence of element i respectively. The 

total conductivity of an inorganic compound, such as a metal oxide, can be expressed by 

the sum of the conductivities of the electronic and ionic charge carriers, as follows: 

( )ionetotalelectronicionictotal ttσσσσ +=+=  

where te and tion are the transport numbers of electrons and ions respectively. Since most 

oxides formed by oxidation of metals at high temperature are predominately electronic 

semiconductors, it is reasonable to assume te ≈ 1and tion ≈ 0 [13, 14]. 

 

The approach used in the present model is based on Wagner’s parabolic growth theory 

[1] for high temperature oxidation of electronic conducting oxides. The parabolic 

oxidation rate, kt, for an n-type oxide can be expressed as 
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Where x

oCo  is concentration of oxygen atoms in the regular lattice, *
0D  is the 

diffusion coefficient of oxygen at an oxygen partial pressure of 1atm and i
O2P and 

o
O2P are the partial pressure of oxygen at the inner and outer interface respectively. As 

can be seen from this expression, the driving force for the oxygen diffusion is the 

difference in oxygen partial pressure between the outer and inner interfaces of the oxide. 

kt for a p-type oxide can be written as 

 

 

 

where x

MMC  is the concentration of metal atoms in the regular lattice, *
MD  is the 

diffusion coefficient of metal M at an oxygen partial pressure of 1atm.  

 

The values of *
OO

C  and *
MM

C  are the concentration of metal (M) and oxygen (O) in 

the lattice of n-type and p-type oxide respectively. The values of the oxygen partial 

pressure used in these equations can be approximated by the equilibrium partial 

pressure values at the oxide/metal interface and the external atmosphere. 

 

Solid-state Volume Diffusion 

Isothermal solid-state volume diffusion within a ternary alloy can be modelled using the 

ternary diffusion equations of Fick’s second law. In the ternary system, with 

concentration of the third component, MIII, being a dependent variable, the diffusion of 

MI and MII in the alloy is given by [15]:  
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where jjD~  and jkD~  are the ternary main and cross-term concentration dependent 

diffusion coefficients. Using the empirical relationships for the concentration 

dependence of interdiffusion coefficients available in [12], the above equation can be 
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expressed as follows:  
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Three initial boundary conditions were applied for this modeling application.  

1). An initial boundary condition of uniform concentration distribution within the alloy 

is stipulated, i.e. 0
j

0t
j CC == , where 0

jC  is the original bulk concentration of the alloy 

constituent j.  

2). A semi-infinite boundary condition of zero diffusion flux at the end of the 

one-dimensional length L (Figure 3.1) is also assumed, i.e. 0
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Figure 3.1 A semi-infinite boundary condition of zero diffusion flux at the end of the 
end of the one-dimensional length L. 
 

3). The surface flux of diffusion at the oxidation front (oxide-metal interface), i.e. 

supply of reactants for oxidation, must be balanced by the oxidation kinetics set by the 

parabolic growth law assuming that sufficient alloy constituents are present to form the 

oxide of calculated thickness for a particular time step. 

 

Thus, the mass balance can be formulated as: 
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where 
y

J
xOMV is the molar volume of the oxide phase, 

y
J
xOM∆Φ is the amount (i.e. volume 

per unit interface area) of the oxide phases y
J
xOΜ formed per ∆t, xj is the stoichiometric 

ratio of an oxidation reaction as previously defined (i.e. the number of moles of alloy 

constituent MJ per mole of y
J
xOM ) while ∆ξ is the interfacial displacement per time step, 

denoted ∆t. 

  

3.3 Numerical Procedures 
 

At beginning of the calculation, a ternary alloy with uniform concentration profiles and 

a given length L is represented by a grid of nodal spacing ∆z to yield n number of 

equispaced nodes. The value of the nodal spacing ∆z is taken to be the minimum grid 

spacing necessary to provide sufficient flux to match the oxidation kinetics. For instance, 

assuming that at t = 0 and based on the parabolic growth kinetics of oxides, the 

increment of oxide thickness can be calculated for each of the associated grown oxides 

(i.e. Al2O3, Cr2O3, NiO and spinels) for a given time step of ∆t. In order to form oxides 

with the calculated thickness, the nodal spacing is calculated to be the minimum 

thickness capable of delivering sufficient diffusional transport of ionic alloy constituents 

to the oxidation front in order to provide the source of reactants for the oxidation 

reactions. Thus, the nodal spacing is taken to be the minimum value of the three average 

depths among which the three alloy constituents can diffuse from the bulk of the 

substrate towards the oxide/metal interface. The average root mean square diffusion 

distance for each alloy constituent can be obtained by the following equation:  

∆tD~2z max=  

where max
~
D is the corresponding main or cross-term interdiffusion value having the 

largest value. 

 

Oxide Layer Thickness 

Oxide layer thickness can be calculated based on the following equation, utilizing 

Wagner’s parabolic growth constant, kp’ described above.  
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tkd p'ox =  

The thickness growth of oxides in a time step is thus, calculated by  

∆t
2d
k
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The total thickness growth of all oxides is thus, 
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Concentrations at all nodes 

The transient 1-D solid-state volume diffusion equations described above are derived 

from the mass balance on an elemental control volume. Thus, the partial differential 

equations can be solved numerically using the Crank-Nicholson semi-implicit finite 

difference method [16] to yield a system of a tridiagonal matrix (i.e. a matrix has 

non-zero entries only on the diagonal, the super-diagonal and the sub-diagonal. Such 

matrices often arise in the study of numerical differential equations) which can be 

subsequently processed using the Gaussian elimination technique to obtain the 

concentrations through the entire length of an alloy. However, all formulations thus far 

have been for a general interior node. Surface nodes require special treatment to 

incorporate boundary conditions of additional flux occurring at the node 1 and L. Since 

the end node at L is not exposed to any other medium, there will be no external flux 

associated with oxidation or interdiffusion. The surface node at 1, however, is subject to 

oxidation as described earlier; thus, additional mass balance for node number 1 is 

necessary to account for the external oxidation-initiated diffusional flux. 

 

The partial derivatives for the concentration with respect to time and position are 

expressed in terms of first and second order central difference approximations. The 

partial derivatives for concentration with respect to time are solved using forward 

difference to predict the concentration profile of the next time step.  
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Interface composition and thermodynamics of oxide formation 

In order to determine the composition of the interface node at the oxide/alloy interface, 

it is necessary to predict the diffusion flux leaving the alloy to form oxides. As 

mentioned above, based on mass balance, the surface flux (i.e. supply of reactants for 

oxidation by diffusion) should be balanced by the oxidation kinetics; thus, it is possible 

to relate the parabolic growth kinetics to the diffusion flux of each of the alloy 

constituents. Nevertheless, a situation arises when the alloy diffusion flux of a specific 

constituent, calculated from its associated oxidation kinetics, is higher than the flux of 

the constituent available in the interface node. This essentially suggests that the amount 

of a reactant available is insufficient to form the oxide of calculated thickness during 

that particular time step; thus, the diffusional flux is, instead, limited by the amount of 

alloy species available near the oxidation surface for oxidation during that particular 

time step. Thus, the fluxes leaving and entering the interface node are determined from 

both the oxidation kinetics, but limited by the amount of available alloy constituents and 

the interdiffusion mechanism. 

 

Oxide – Metal interface displacement 

Since oxide growth contributes to metal consumption from the alloy substrate, the oxide 

– metal interface will be displaced an amount determined by the number of metal atoms 

oxidised and the change in the lattice parameter in a time step. The resulting 

displacement at time t with respect to the original location of interface at time 0 is 

illustrated in Figure 3.2 and can be determined by  
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where 
y

J
xOMV is again, the molar volume of the oxide phase y

J
x OM , IMΖ  is the 

stoichiometric ratio (i.e. number of moles of KM per mole of zy
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reaction and 
y
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xOMV is the partial molar volume of component JM at the alloy - oxide 
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interface. 

 

 

Figure 3.2 Schematic illustration of the concentration-depth profile and the oxide-metal 
interfacial displacement at oxidation time t. [9] 
 

Grid adjustment 

After advancing through the sequence of calculations for tt ∆+ , it is necessary to adjust 

the grid position to maintain equidistant node spacing due to the oxide – metal interface 

displacement. The new grid spacing ∆z  at time ∆tt +  is thus calculated 

by ( ) ( )1nξ-L∆z ∆ttttt −= +∆+ . The concentrations at the new nodes after grid adjustment are 

determined by linear interpolation. The interpolation errors can be minimized by 

reducing the time step ∆t  and the grid spacing z∆ . 

 

3.4 Application to a γ –NiCrAl Alloy 
 

The finite difference model described above was applied to the oxidation of a single 

phase ternary alloy. The oxidation rate and the compositional change in a γ-Ni-27Cr-9Al 

(at %) alloy isothermally oxidised at 1373 K and ambient partial pressure of oxygen 

were modelled. In order to carry out the computation for the oxidation rate and the 

ternary main and cross-term concentration dependent diffusion coefficients, the 

following parameters [12, 17] and equations were used in the calculations (Table 3.1 
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and Table 3.2). 

 

Table 3.1 Materials properties of oxides [17]. 

Oxide 
Molar Volume 

[cm3 mol-1] 

Conductivity 

[S m-1] 

D*N 

[cm2 s-1] 

D*O 

[cm2 s-1] 

Al2O3 25.6 1.00x10-4 1.23x10-17 1.29x10-16 

Cr2O3 29.2 1.67x10-4 1.53x10-11 

NiAl2O4 44 n/a 1.58x10-13 

NiCr2O4 50.4 2.50x10-2 3.16x10-14 

NiO 11.0 1.08 1.00x10-10 

n/a 

 

Table 3.2 Emperically derived parameters used to obtain the concentration dependent 

diffusion coefficients [12]. Note: CM is the concentration of alloy constituent M in wt%. 

Parameters for Diffusion Coefficients 

A115)]C(A114)C(A113)C(A112)C(A111[A110)C,(CD 2
Cr

2
AlCrAlCrAlAlAl ××+×+×+×+=

A125)]C(A124)C(A123)C(A122)C(A121[A120)C,(CD 2
Cr

2
AlCrAlCrAlAlCr ××+×+×+×+=

A215)]C(A214)C(A213)C(A212)C(A211[A210)C,(CD 2
Cr

2
AlCrAlCrAlCrAl ××+×+×+×+=

A225)]C(A224)C(A223)C(A222)C(A221[A220)C,(CD 2
Cr

2
AlCrAlCrAlCrCr ××+×+×+×+=

A110 1.229 A120 0.0116 A210 0.0766 A220 0.783 

A111 0.0731 A121 0.0923 A211 -0.0153 A221 -0.0123 

A112 -0.0083 A122 -0.001 A212 0.0837 A222 0.0247 

A113 0.0101 A123 0.00016 A213 0.00062 A223 0.00096 

A114 0.00016 A124 0.000017 A214 -0.0015 A224 -0.00057 

A115 1.00E-10 A125 1.00E-10 A215 1.00E-10 A225 1.00E-10 

 

In order to carry out the modelling, it is necessary to calculate the equilibrium oxygen 

partial pressure using the thermodynamic data [10]. Figure 3.3 shows the calculated 

Gibbs free energies of oxidation reactions as a function of the oxygen partial pressure 

(in atm.) using the metal activities of the bulk alloy composition retrieved from 
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Thermo-CalcTM. It can be seen that alumina is the most stable oxide with an equilibrium 

partial pressure of 2.79 x 10-38, while nickel oxide is the least stable oxide with an 

equilibrium partial pressure of 8.99 x 10-11. Nickel based spinel oxides, included in the 

calculation here, are thermodynamically more stable than the pure nickel oxide. Based 

on these equilibrium oxygen partial pressure values, the layering of different oxides can 

be determined, with the most stable oxide (i.e. alumina) exists directly above the 

metal-oxide interface and the least stable one (i.e. nickel oxide) locates on the outer 

most layer as illustrated in Figure 3.4. It should be indicated here that the NiAl2O4 oxide, 

although should be present between the NiCr2O4 and NiO layers according to the 

thermodynamic assessment, the formation of NiAl2O4, which relies on Ni reacting with 

the Al2O3 oxide phase, cannot take place under the current layering structure. This 

implies that NiAl2O4 should be absent in the current ternary alloy system or at least on 

the level of macroscopic consideration of the general oxide morphology and structure. 

 

Table 3.3 Thermodynamic activity of each alloy constituent retrieved from 

Thermo-CalcTM. 

Alloy Constituent Composition (at %) Thermodynamic Activity

Al 9 8.24 x 10-8 

Cr 27 3.38 x 10-3 

Ni 64 7.09 x 10-4 
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Figure 3.3 Gibbs free energies of oxidation reactions as a function of the oxygen partial 
pressure. 
 

 

Figure 3.4 A schematic representation showing the layering of different oxides 
determined from the thermodynamic calculation (Figure 3.3). 
 

Based on the thermodynamic assessment, the model uses the layering structure and 

assumes the presence of very thin and continuous layers of these determined stable 
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oxides from the beginning. The purpose of applying this assumption is to avoid 

modelling the initial oxide morphology and the complex competition mechanisms 

associated with the transition from an internal oxidation to continuous layers of oxides, 

since the aim of the model is to predict the composition profile changes in the alloy 

substrate. Oxidation kinetics are determined for each of the stable oxides using the 

above materials properties and the parabolic growth equations explained previously. It 

should be noted that due to the difficulty in determining the solubilities of cationic 

species in oxides (i.e. Cr3+ and Ni+ in Al2O3) and their transport properties, a theoretical 

treatment of the ionic diffusion processes in the oxide layers is not numerically 

established in the model. However, in order to recognise the fact that the presence of a 

continuous alumina layer underneath Cr2O3 and NiO layers inhibits the diffusion of Cr3+ 

and Ni+ from reaching above, the combined thickness of Al2O3 and Cr2O3 layers is used 

in the parabolic growth equation to calculate the growth rate of Cr2O3. In the case of 

calculating the growth rate of NiO, the total oxide thickness in the system is used. In 

addition, the above assumption also has its qualitative significance since in reality, the 

thicker the alumina layer, the less likelihood for short-circuit diffusion of Ni and Cr 

species in alumina to be the predominant transport mechanisms. Therefore in real 

systems, the growth rates of Cr2O3 and NiO layers are very much dependent on the 

thickness of the alumina scale. 

 

By coupling this with the ternary diffusion equations, the composition profile in the 

alloy and the thickness of each oxide phase developed as a function of oxidation time 

can be modelled. Based on the calculated results, the initial rapid oxidation (i.e. 

transient oxidation) and the more stable quasi-equilibrium oxidation stages have been 

plotted along with the experimentally measured oxide thickness [9] as shown in Figure 

3.5. 
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Figure 3.5 a) Top, oxidation kinetics at 1373K in the early stage b) bottom, overall 
oxidation kinetics at 1373K for the first 16 hours. 
 
The cross-section microstructural morphology of the γ-Ni-27Cr-9Al (at %) ternary alloy 
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isothermally oxidised for 16 hours at 1373 K is also included here for comparison as 

shown in Figure 3.6. [18]. It can be seen here that the layering order of oxides 

previously proposed based on the thermodynamic assessment agrees with the actual 

oxide composition distribution. In particular, NiAl2O4 layer is absent in the actual 

oxidised specimen because NiAl2O4 is not thermodynamically stable to be formed 

below Cr2O3 in this ternary alloy system. 

 

 

Figure 3.6 The cross-section microstructural morphology of the γ-Ni-27Cr-9Al (at %) 
ternary alloy isothermally oxidised for 16 hours at 1373 K [18]. 
  
 

The modelled results of the compositional changes in the alloy are compared against the 

experimental Al and Cr concentration-depth profiles of γ-Ni-27Cr-9Al measured by 

Auger electron spectroscopy (AES) after oxidation for 1, 4, 16, 64 hours at 1373 K and 

2OP = 2x104 Pa as shown in Figure 3.7 [9]. It can be seen in Figure 3.5 that the oxidation 

kinetics of alumina- and chromia- formation reactions are significantly higher than that 

of nickel oxide or spinels in the early stage of oxidation due to the enhanced 

thermodynamic stability of alumina over other oxides (Figure 3.3). Thus, preferential 

oxidation of aluminium to form alumina takes place in the initial stage of the oxidation.  
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Figure 3.7 Top-left: diffusion profile of aluminium after 1 hour oxidation. Top-right: 
diffusion profile of chromium after 1 hour oxidation. Bottom-left: diffusion profile of 
aluminium after 4 hour oxidation. Bottom-right:, diffusion profile of chromium after 4 
hours oxidation [9]. 
 

However, as the rate of aluminium depletion at this stage is significantly higher than the 

diffusion of aluminium from the bulk alloy towards the oxidation interface, the 

concentration of aluminium at the metal/oxide interface quickly approaches zero. The 

experimental concentration profiles shown in Figure 3.7 (Top-left) confirm this 

phenomenon.  As the interfacial aluminium concentration decreases, the activities of 

other alloy constituents increase, thus, thermodynamically favouring formation of 

oxides other than alumina; thus, a drop of the chromium concentration at the interface is 

also observed, Figure 3.7 (Top-right).  
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As oxidation proceeds, its rate drops significantly, and a quasi-steady-state condition is 

established. During this stage, the supply of aluminium from the bulk substrate to the 

metal-oxide interface through the inter-diffusion process, exceeds the aluminium 

depletion by oxidation. As a result, there is a recovery of the aluminium concentration at 

the oxidation interface, (Figure 3.7 Bottom-left). The chromium concentration near the 

interface, on the other hand, increases quite rapidly, forming a U-shape concentration 

profile as shown in Figure 3.7 (Bottom-right) right which is seen experimentally. This 

observation cannot be explained by the interdiffusion process alone, since the 

inter-diffusion should give monotonic concentration profiles. Explanation of this 

U-shape concentration phenomenon could be related to the nickel oxide and spinel 

oxidation kinetics as shown in Figure 3.5, b). Since kinetics of oxidation of nickel to 

form nickel oxide and spinels are considerably faster than those of aluminium and 

chromium at the steady-state oxidation stage, it is proposed that the local depletion of 

nickel at the metal-oxide interface results in an increase of both aluminium and 

chromium concentration. 

 

3.5 Summary and Conclusions 
 

A coupled thermodynamic-kinetic oxidation and diffusion model capable of predicting 

the concentration profiles of a single-phase ternary alloy has been developed. The 

model relies on the simultaneous thermodynamic assessment of oxidation reactions and 

calculation of the oxide growth kinetics. By coupling this with the ternary diffusion 

equations, the composition profile in the alloy and the thickness of each oxide phase 

developed as a function of oxidation time can be modelled. 

 

Application of the model to the oxidation of a Ni-27Cr-9Al (at %) ternary alloy shows 

that formation of a NiAl2O4 oxide layer is not possible due to the thermodynamic 

constraint. The model also shows that a rapid depletion in the aluminium concentration 

occurs at the oxide-metal interface during the initial transient oxidation stage. Moreover, 

it has been demonstrated that the rate of aluminium supply from the bulk alloy towards 
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the oxide reaction interface by inter-diffusion is considerably slower than the rate of 

aluminium consumption to form oxide during the initial transient oxidation stage. This 

is in fact, responsible for the aluminium depletion near the interface and its local 

concentration being essentially very close to zero. When such situation arises, the 

oxygen partial pressure in the oxide metal interface tends to increase and consequently, 

favouring the formation of other less stable oxides such as chromia and nickel based 

oxides. 

 

In addition, since kinetics of oxidation of nickel to form nickel oxide and spinels are 

considerably faster than those of the oxidation of aluminium and chromium at the 

steady-state oxidation stage, the local concentration drop of nickel at the metal-oxide 

interface results in a local increase of both aluminium and chromium concentrations 

near this interface.  
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Chapter 4  

Experimental Details 

 
 

4.1 Initial Preparation of Specimens 
 

Fully heat-treated (solution and primary-aged) single crystal alloys of SRR99, CMSX-4, 

TMS-82+, PWA-1484 and TMS-138A processed using conventional investment casting 

methods into cylindrical rods (10 mm in diameter), with the long axis of each aligned 

close (±5°) to the <001> axis, were used as substrate materials for this research. The 

chemical compositions of the alloys considered are given in Table 4.1 (major elemental 

additions) and Table 4.2 (trace elements). These chemical analyses were conducted by 

Cannon Muskegon Corporation using LECOTM Carbon & Sulfur Determinator, X-ray 

fluorescence (XRF), and inductively coupled plasma mass spectrometry (ICPMS) 

methods, to industry leading levels of precision (i.e. ppm levels). These alloy rods were 

cut to disc-shape (10 mm diameter and 4 mm thickness) and spot welded onto 

rectangular Nimonic sticks. The surfaces of the welded specimens were grit-blasted 

with 200-mesh Al2O3 grit before the deposition of coatings. Three different bond coats, 

a high temperature low activity Pt-Al (HT Pt-Al) -, a low temperature high activity 

Pt-Al (LT Pt-Al) - and a Pt diffusion - bond coat, were subsequently deposited onto the 

flat surfaces of the button-shaped discs. 
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Table 4.1 Nominal chemical composition, wt%, of the nickel-based superalloys 
considered. (Note: - means that the element is not included in the chemical analysis)  

Element Co Cr Mo W Al Ti Ta Hf Re Ru C Ni

SRR99 5.0 8.0 - 9.5 5.5 2.2 2.8 - - - 0.011 Bal.

TMS-82+ 7.8 4.9 1.9 8.7 5.3 0.5 6.0 0.1 2.4 - - Bal.

PWA1484 10.0 5.0 2.0 6.0 5.6 - 8.7 0.1 3.0 - - Bal.

CMSX-4 9.6 6.5 0.6 6.4 5.6 1.0 6.5 0.1 3.0 - - Bal.

TMS-138A 5.8 3.2 2.8 5.6 5.7 - 5.6 0.1 5.8 3.6 - Bal.

 

Table 4.2 Levels of trace elements in the superalloy substrates examined, as determined 
by XRF, LECO and ICPMS methods (in ppm by weight). 

Element S B O N P Zr 

SRR99 2 2 2 4 2 4 

TMS-82+ 2 1 2 2 11 13 

PWA1484 3 2 2 1 6 19 

CMSX-4 2 8 2 2 4 7 

TMS-138A 2 3 2 1 18 3 

 

The HT Pt-Al and the LT Pt-Al bond coat specimens were prepared by first 

electrodepositing a thin layer of platinum of 5 and 7 µm respectively, followed by a 

vacuum heat treatment applied at 1100°C for 1 hour. Next, 5 hr vapour phase - and 20 

hr pack- aluminisation processes were applied at 1080°C and 870°C respectively. Both 

the vapour phase and pack processes involve the generation of vapours containing 

aluminium, which are usually halides due to their high vapour pressures. The vapours 

flow and react with the substrate surface upon contact forming the aluminide coating. In 

the aluminisation process, specimens are either embedded in a pack mix (i.e. LT Pt-Al) 

or hanged in vapour-filled environment (i.e. HT Pt-Al) in a heated chamber. 

 

The Pt-diffusion bond coat specimen was first electroplated with a 10 µm layer of 

platinum and then a vacuum heat treatment at 1150°C for 1 hour was subsequently 

carried out. No aluminisation process was applied in this case. All specimens were 

further heat-treated for 1 hour at 1100°C in argon atmosphere and a ZrO2 /7wt% Y2O3 



 

 65

(YSZ) top coat 175µm in thickness was then deposited by EB-PVD. A further vacuum 

heat treatment (1100°C, 1 hr) and aging (870°C, 16 hrs) were applied to all specimens 

before testing.  

 

4.2 Conditions for Thermal Cycling Test 
 

The TBC coated disc-shape specimens were then subjected to cyclic oxidation testing in 

a purpose-built rig (See Figure 4.1). Each thermal cycle involved 1 hour at a furnace 

temperature of 1135°C (approximately 10 mins to reach the peak temperature); after 

which, the specimens were removed automatically from the rig and fan-cooled by 

laboratory air for 1 hour. Five individual specimens of each TBC system were cycled to 

failure to determine the average TBC spallation lifetime, to evaluate the scatter in the 

experimental results. In addition to the cycled to failure test, additional specimens were 

removed from the rig at specific intervals for the luminescence measurements (see 

below) and then returned for further thermal cycling. Some specimens were withdrawn 

from cycling, mounted in epoxy, cut through by an abrasive alumina blade to reveal the 

cross section and polished to mirror-finish for microstructural characterisation. An 

additional 3 coated disc-shape specimens were isothermally heated at 1135°C in the 

same rig for 150 hours. 

 

 

Figure 4.1 Pictures showing the use of the thermal cycling furnace (left), the placement 
of specimens on the sample stage (centre) and the heating/cooling conditions (right). 
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Microstructure characterisation was carried out in a field emission gun scanning 

electron microscope (FEG-SEM) equipped with EDX using the secondary electron 

detection mode at a working distance of 15mm and an accelerating voltage of 20kV. For 

high resolution quantitative elemental analysis, a prototype field emission electron 

probe microprobe analyser (FE-EPMA) was used for analysis by wavelength dispersive 

X-ray spectrometry (WDS). A probe current of 5.0 x 10-8 A was applied within a probe 

diameter of about 0.25 µm, at an accelerating voltage of 20 kV. 

 

Residual stress in the thermally grown aluminium oxide (TGO) can be measured by 

piezospectroscopy, which acquiring Cr3+ luminescence spectra [1-3] emitted from 

α-Al2O3 as a result of excitation by a laser beam. The details for luminescence 

experiments are given in [4]. Luminescence spectra were acquired using a Renishaw 

Raman optical microprobe (model 2000) fitted with a motorised mapping stage. The 

luminescence from the TGO is due to the photo stimulation of trace Cr3+
 impurities 

present within the alumina. The spectrum has a featured intense doublet, the R1 and R2 

lines, where R2 represents the peak with the higher wave number and lower integral 

peak area [5]. The characteristic R line luminescence is a phenomenon resulted by the 

non phonon radiative decay from the Cr3+
 first excited state to the ground state within 

the d orbital [6]. The laser source was a green Ar+ laser with a wavelength of 514.5 nm, 

which is focused on the specimen surface through an objective lens. The focused spot 

size can be adjusted by using different objective lens, with a minimum spot size of 

approximately 2 µm. However, upon incident on the specimen surface, the laser beam 

scatters within the YSZ top coat and consequently, results in an effective spot size at the 

TGO of approximately 20 µm [7, 8]. The light scattered back from the specimen was 

then collected by the objective lens, dispersed by a 1800 lines/mm grating and then 

received by a CCD detector. 

 

An air conditioning unit was used to maintain a stable room temperature at 22±0.3°C. 

An acquisition time of one second was used for each spectrum. Measurements (121 per 

specimen) were taken on a square grid of 200 × 200 µm with a pitch of 20 µm located in 
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the centre of the flat face of the disk specimen. Before and after each measurement, the 

spectrometer was calibrated by taking a spectrum from a strain-free single crystal 

sapphire sample. The residual stress in the TGO was estimated from the R2 peak shift 

assuming a planar equi biaxial stress: σ(GPa)=5.07∆ν (cm-1). Transition phases of 

alumina (eg., θ-Al2O3) produce luminescence lines at 14260 cm-1, 14330cm-1, 14546 

cm-1 and 14626 cm-1, which are distinguishable from the R1 and R2 lines of α-Al2O3 

[19]. However, no significant transition phases were seen in the TGO for all the cases in 

this study. Five individual specimens of each TBC system were used for the above 

analyses to ensure consistency of the experimental results. 

 

4.3 Characterisation of Coating Cross-Sections – As Received 
Condition 
 

Scanning electron micrographs illustrating the microstructures of the three coatings in 

the as-received condition are given in Figure 4.2. In all cases, the YSZ top coat layer 

had almost the same thickness. Discernible differences can be seen between the 

microstructures and the thicknesses of the bond coats. Pt-Al bond coat systems produce 

a single phase β-(Pt,Ni)Al microstructure (i.e. NiAl with Pt in solid solution) next to the 

YSZ. Below the grit-line (residual Al2O3 particles remaining from the grit-blasting 

process prior to Pt plating) is the inner multi-phase layer of the coating consisting of 

precipitates rich in refractory metals (Ta, W, Mo) in the β phase matrix. The Pt-diffusion 

bond coat consists of a two phase γ and γ’ microstructure both above and below the 

grit-line; the β-NiAl phase is completely absent since the aluminisation step was absent. 

Al and Pt EDX concentration line-profiles of these coatings are shown in Figure 4.3. As 

can be seen, the aluminisation process significantly increases both the Al concentration 

and the bond coat thickness in the Pt-Al systems. The main difference between the LT 

Pt-Al and HT Pt-Al bond coats is in the Pt profile. The LT Pt-Al has a higher Pt 

concentration within the first 20 µm, whereas the HT Pt-Al bond coat has higher Pt 

concentration at 30-60 µm. The Pt-diffusion bond coat, on the other hand, inherits the 

original Al content from the superalloy substrate and has higher Pt concentration than 

the Pt-Al systems due to the thicker electroplated Pt prior to the diffusion-heat treatment 
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process. In all cases, the post-processing heat treatment resulted in the formation of a 

thin thermally-grown oxide (TGO) layer, which shows as a thin dark line between the 

bond coat and YSZ, even before any thermal cycling had taken place. 

 

 

Figure 4.2 The cross-section microstructures of the bond coats (LT Pt-Al, HT Pt-Al, and 
Pt-diffusion) in the as-received coatings on CMSX-4. (Note: grit-lines are marked by 
arrows) 
 

 

Figure 4.3 EDX concentration line-profile of Pt and Al in the as-received bond coats. 
 

The microstructures of Pt-diffusion coatings on superalloy substrates are also shown in 

Figure 4.4. In all cases, the TBC top coats were prepared to similar thickness. It can be 

seen that the only differences are between the microstructures and the thicknesses of the 

bond coats. Pt-Al bond coat systems produce an outer layer with a single phase 
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microstructure of β-NiAl with Pt in solid solution (i.e. (Pt, Ni)Al). Below the grit-line of 

residual Al2O3 particles from the grit blasting process is the inner multi-phase layer of 

the coating consisting of precipitates (bright features) rich in refractory metals (Ta, W, 

Mo) in the β phase matrix. The Pt-diffusion bond coat consists of a two phase γ and γ’ 

microstructure both above and below the grit-line; the β-NiAl phase is completely 

absent since the aluminisation process was not performed. Al and Pt EDX concentration 

line-profiles of these coatings are shown in Figure 4.3. In all cases, the post-processing 

heat treatment has resulted in the formation of a very thin thermally-grown oxide (TGO) 

layer even prior to any thermal cycling taking place. 

 

 

Figure 4.4 The microstructures of Pt-diffusion coatings on the superalloy substrates in 
the as-received condition. 
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Chapter 5  

An Investigation of the Compatibility of Nickel-based 

Single Crystal Superalloys with Thermal Barrier Coating 

Systems 

 
 

5.1 Introduction 
 

Single crystal (SC) superalloys [1] have traditionally been designed with the priority to 

optimise the creep, fatigue, oxidation and corrosion-resistant properties. However, as 

the demand for better fuel efficient turbine systems continues, it is required that the 

substrate materials must now be coated with thermal barrier coatings (TBCs) [2,3] to 

enhance the high temperature capability of critical turbine components such as turbine 

blades and guide vanes. Yet, it is known that TBC coated nickel-base superalloys are 

prone to spallation [4]; for this reason, several bond coat technologies have been 

developed as a means to enhance the mutual compatibility of the two by improving the 

oxidation resistance of the coated specimens. 

 

Unfortunately, little work [5,6] has been reported to elucidate the compatibility issues of 

superalloys with the TBCs. More importantly, the influence of the substrate composition 

on the TBC spallation life is not well understood. This is despite much progress which 

has been made to determine the micromechanics of the failure mode of TBCs [7,8]. In 

particular, the approach in modeling TBC failure [9-13] generally relies on the treatment 

of the oxidation-induced stresses that drive TBC spallation despite the fact that it might 

reasonably be assumed that the TBC life and the modes of failure (i.e. location of 

interfacial failure) are also influenced significantly by the inherited chemistry of the 
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underlying superalloys. 

 

In this study, the compatibility of a number of nickel-based single crystal superalloys 

with thermal barrier coating systems has been investigated. It has been demonstrated 

conclusively that the compositions of these alloys play an important role in determining 

TBC spallation resistance.  

 

5.2 Results 
 

5.2.1 Thermal Cyclic Oxidation Testing 
 

Based on the results of the thermal cycling experiment, it was found that coating life 

varied significantly with the composition of the superalloy substrate as illustrated in 

Figure 5.1 with the error bars indicate ± one standard deviation in the lifetimes of each 

set of five specimens. For instance, TBC coated PWA1484 exhibited spallation lifetimes 

at least three times superior to those of first generation superalloy SRR99 regardless of 

the type of bond coat being applied, suggesting that strong chemical effects were 

inherited from the substrate. In addition, the spallation resistance of TBC coated 4th 

generation TMS-138A behaved significantly better than that of SRR99 and comparable 

to that the second generation superalloy CMSX-4, suggesting that no detrimental effect 

is inherited from ruthenium addition to the substrate, at least for the Pt-diffusion coating. 

It should be noted here that the thermal exposure of PWA-1484 specimens coated with 

Pt-diffusion bond coat was interrupted at the 1000th cycle as the purpose of 

demonstrating TBC spallation resistance had been fulfilled. These findings confirm a 

dependence of the TBC spallation life on the superalloy composition, and can be 

explained only by the different degradation mechanisms taking place in the bond coat or 

near the TGO interfaces (since the bond coat and the ceramic top coat were prepared in 

the same way on all different substrates).  

 

In terms of the bond coat technology, it was demonstrated in general that the type of 
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bond coat being applied had less influence on the TBC spallation life than did the 

substrate. It was shown as well that platinum-diffusion bond coats outperformed both 

platinum aluminide systems. 

 

 

Figure 5.1 TBC spallation life for cyclic oxidation testing (1 hour thermal cycling to 
peak temperature) of TBC coated superalloys. The error bars indicate ± one standard 
deviation in the lifetimes of each set of five specimens. 
 

5.2.2 Mechanism of TBC Failure 
 

As previously demonstrated, the composition of the superalloy substrates has a larger 

influence on the TBC spallation life than that of the bond coat materials. For this reason, 

attention is focused in this section on how the substrate affects the mechanism of TBC 

failure, at a fixed TBC preparation condition. Pt-diffuson bond coat was chosen for this 

investigation as it showed the largest substrate effect on the coating spallation life. 

 

SEM images of the fracture interface for each of the five substrates are shown in Figure 

5.2. It was found that decohesion occurred at a position which depended on the 

substrate composition. In particular, it was observed that specimens with shorter TBC 



 

 74

spallation life tended to fail at the TGO / bond coat interface; while more 

spallation-resistant coatings failed within the TGO. In addition, by importing higher 

magnification files of these SEM images into imaging software, the thickness of the 

TGO at failure for each of the specimens could be quantised by making boundary 

selections (i.e. defining the top and bottom TGO interfaces) and calculated with 

reference to the scale bar of these images. These TGO thicknesses were plotted along 

with the TBC life for comparison as illustrated in Figure 5.3. 

 

Based on these results, it can be seen that the TGO thickness at failure in TMS-138A is 

considerably thicker than that of the TMS-82+, even though TBC coated TMS-138A 

offered slightly longer TBC spallation life than TMS-82+. Moreover, despite the fact 

that the TBC lifetimes of CMSX-4, TMS-138A and TMS-82+ were within a few cycles 

to each other, their TGO growth kinetics are very different. Thus, it seems that there is 

little correlation between the oxide growth kinetics and the TBC spallation life. 

 

 

Figure 5.2 SEM micrographs illustrating the location of interfacial spallation failure of 
TBC (Pt-diffusion bond coat) coated superalloys. 
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Figure 5.3 TBC spallation life vs the thickness of TGO upon failure; illustrating no clear 
correlation between the two. 
 

5.2.3 High Resolution Analysis and Mapping by EPMA/WDX 
 

Elemental compositions of the TGO layers on the three bond coats were characterized 

using WDS analysis, see Table 5.1. The results are quoted only for specimens with TGO 

thickness greater than the spatial resolution of the FE-EPMA/WDX technique (~ 1µm). 

Chemical mapping of the bond coat near the TGO interfaces was also carried out to 

determine the elemental chemical distributions on specimens after 100-cycles thermal 

exposure as shown in Figures 5.4 – 5.8. The results suggest that for all specimens, the 

oxide layers are primarily of Al2O3. However, it has also been observed for some 

specimens that either islands or continuous layers of Ni, Cr and, or Co –rich oxides are 

present above the primarily Al2O3 layer. For example, CMSX-4, TMS82+, TMS-138A 

and PWA1484 all contain islands which are rich in Cr; while TMS82+, TMS138A and 

PWA1484 further contain islands rich in Ni. In addition, the presence of Co rich regions 

has also been noticed on TMS-82+ and TMS-138A. For SRR99 specimens, fairly 

continuous Ni, Cr and Co –rich oxides are present. However, it should be recognised 

that the amount of spinel phases in the TGO is very small in any of the TBC coated 
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systems; the TGO thickness upon failure varies between different alloys and is 

essentially a measure of the amount of alumina. 

 

At the TGO / bond coat interface, an enriched layer (i.e. a bright line) of Ni, Cr, Al and 

Ti was observed in the SRR99 specimen. TMS-82+ and CMSX-4 also have enriched 

layers of Ni and Cr near the interface. Both TMS-138A and PWA1484, in contrast, had 

no noticeable enrichment of alloying constituents. 

 

Table 5.1 Elemental compositions (wt%) of the TGO layers measured by WDS 
FE-EPMA analysis. 

Element Pt Zr Y Co Re Ta Mo Al Ni Ru W Ti Cr O 

SRR99 0.3 0.8 0.1 0.1 - 0.0 - 51.6 0.5 - 0.1 0.0 0.2 46.2

TMS-82+ 0.5 0.7 0.1 0.1 0.1 0.1 0.0 51.6 0.6 - 0.1 0.0 0.1 45.9

PWA1484 0.5 0.9 0.1 0.1 0.1 0.1 0.0 51.6 0.7 - 0.1 - 0.1 45.6

CMSX-4 0.3 0.9 0.1 0.1 0.1 0.1 0.0 48.8 0.7 - 0.0 0.0 0.1 48.7

TMS-138A 0.4 0.8 0.1 0.1 0.1 0.0 0.0 51.7 0.6 0.0 0.1 - 0.0 46.0
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Figure 5.4 Quantitative WDX maps of the TBC coated SRR99 – Pt-diffusion system 
following 100 cycle exposure at 1135°C. 
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Figure 5.5 Quantitative WDX maps of the TBC coated TMS-82+ - Pt-diffusion system 
following 100 cycle exposure at 1135°C. 
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Figure 5.6 Quantitative WDX maps of the TBC coated PWA1484 – Pt-diffusion system 
following 100 cycle exposure at 1135°C. 
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Figure 5.7 Quantitative WDX maps of the TBC coated CMSX-4 – Pt-diffusion system 
following 100 cycle exposure at 1135°C. 
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Figure 5.8 Quantitative WDX maps of the TBC coated TMS138A – Pt-diffusion system 
following 100 cycle exposure at 1135°C. 
 

5.3 Discussion 

 

The results presented here provide new insights into the current understanding of 

thermal barrier coating systems (TBCs). Traditionally, it is considered that TBC 

spallation occurs by the accumulation of local damage to form a weakly bonded area 

that can be susceptible to buckling [14-16]. Choi et al. [14] have studied the competing 

failure processes of TBCs, such as edge delamination, and small/large –scale buckling. 
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Their results show that the failure mechanism depends strongly on both the thickness 

and in-plane modulus of the YSZ top coat. Assuming the in-plane elastic modulus for 

the EB-PVD top coat is in the range 0.05 to 0.25 times the bulk modulus of dense YSZ 

[16] and taking the top coat to be approximately 175 µm in thickness as in the case of 

the current study, substantial suppression of TGO buckling is believed to be present. 

Therefore, the final failure mode is more likely to be associated with edge delamination 

or wedging [17] irrespective of the initiation process. 

 

Consider that TBC spallation occurs as the stored elastic energy of the TGO and top 

coat, which stiffens with time due to sintering, exceeding the interfacial adhesion 

between the TGO and bond coat. In the case of the steady state energy release rate, a 

driving force G exists for the delamination of the multilayer TBC as [16]: 
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where Ei, hi and νi are the elastic modulus, thickness and Poisson’s ratio of each layer i 

respectively. σo is the equi-biaxial residual plane stress. The general argument is that the 

driving force for spallation (G) increases as the TGO thickens; delamination occurs 

when G reaches the critical interfacial fracture toughness Gc. In fact, as the EPMA 

mapping has revealed, the segregation of Ni, Cr and Co –rich oxides above the Al2O3 

increases the overall TGO thickness and thus, further increased this misfit strain energy.  

 

However, the current findings have conclusively confirmed that the resistance of TBC 

to spallation during thermal cycling is strongly dependent upon the composition of the 

superalloy substrate upon which the TBC system is placed. Since there is little 

correlation between the oxide growth kinetics and the TBC spallation life and the levels 

of trace elements present (e.g. sulphur) do not vary substantially from alloy to alloy, any 

differences in TBC lives will be attributable to differences in major elemental additions 

rather than trace elements.  
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The presence of Ti as an alloying element in SRR99, TMS-82+, CMSX-4 is suggested 

to have shortened the TBC life. EPMA mapping of Ti shows a concentration-enriched 

layer (i.e. a bright layer) near the TGO / bond coat interface in the coated SRR99 system. 

In fact, previous studies [18, 19] have suggested that fast diffusion of Ti to the surface 

leads to the formation of titanium rich oxides, potentially weakening the adhesive 

strength at TGO / bond coat interface. In addition, Ti4+ ions, reported [20] to substitute 

for Al3+ ones to create aluminium vacancies within the alumina scale may also degrade 

the properties of TGO / bond coat interface. Thus, it is not difficult to rationalise the 

reason why SRR99, among the alloys considered, exhibits the fastest oxidation rate and 

the shortest TBC life. TMS-138A and PWA1484, in contrast, have no detected 

enrichment of alloy constituents at the TGO / bond coat interface and represent the two 

most spallation resistant systems. 

 

Regarding the spallation mechanisms as mentioned previously, it appears that the more 

spallation-resistant coatings failed at the top coat / TGO interface or tended to fail 

within the TGO; while specimens with shorter TBC spallation life preferentially failed 

at the TGO / bond coat interface, which again is the interface most likely to be affected 

by diffusion of harmful elements from the superalloys. 

 

This leads to a proposed argument that the TGO / bond coat interfacial adhesive 

strength of TBCs, which controls the TBC lifetime, is a dynamic materials property 

dependent on and influenced considerably by the composition of the substrate materials 

(i.e. superalloys). This situation can be qualitatively represented by a schematic drawing 

(Figure 5.9) which illustrates the possible variation of the driving force G and the 

interfacial fracture toughness Gc with the time of thermal exposure.  

 

Based upon the steady state energy release rate equation for the delamination of the 

multilayer TBC, the driving force G increases with TGO thickness, which is assumed to 

grow parabolically with time t, then thermal cycling at higher temperatures will 

accelerate the kinetics. The possible variation of Gc is also shown. At the beginning, for 

any choice of bond coat, Gc is assumed to be roughly the same for all alloy systems 
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consistent with the identical processing conditions employed. However, upon thermal 

exposure as the harmful elements, such as Ti, diffuse to the TGO interface, the value of 

Gc is believed to decrease – rapidly for a substrate system such as the SRR99 and 

modestly for PWA1484 with other alloys of consideration falling somewhere between 

the two. 

 

 

Figure 5.9 Schematic illustration of the proposed variation of driving force G and 
interfacial fracture toughness Gc during thermal cycling. 
 

It should be recognised that studies published so far have tended to consider just a 

single substrate composition with a TBC placed upon it; thus, any influence of the 

substrate chemistry is then factored out from the experiment. It would appear that the 

superalloy composition has a major influence on the lifetime of the systems, potentially 

due to the sensitivity of the interfacial fracture toughness to substitutional elements 

diffusing through the bond coat system from the superalloy substrate beneath it. These 

findings have implications for the design of TBC systems for the protection of the 

turbine blade aerofoils used for high temperature applications. Traditionally, nickel-base 

single crystal superalloys have been designed with their mechanical properties – 

particularly in creep and fatigue – in mind. However, as the operating conditions of 
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modern gas turbines continue to become more aggressive and thermal barrier coatings 

(TBCs) for the provision of thermal insulation are being used increasingly, a further 

property of the superalloy substrate is then required: that of compatibility with the TBC 

system which it is required to support. In particular, the influence of different alloying 

elements present in the superalloy on the TBC’s interfacial fracture toughness needs to 

be better understood. 

 

5.4 Conclusions 
 

The following conclusions can be drawn from this work: 

 

1. It is demonstrated conclusively that the compatibility of modern nickel-based single 

crystal superalloys with thermal barrier coating (TBC) systems depends acutely upon 

the superalloy chemical composition.  

 

2. In the experiments reported here, TBC spallation life was found to depend 

significantly on the chemical composition of the superalloy substrate; this effect implies 

that considerable chemical effects are at play. 

 

3. An improvement of about 10% in spallation life was nonetheless displayed by the 

so-called Pt-diffusion bond coat system. This was observed consistently for the different 

substrate compositions considered.  

 

4. These results can be presumably explained by the fracture toughness parameters 

controlling decohesion – for example the fracture toughness of the thermally grown 

oxide (TGO) and the fracture toughnesses of the interfaces bounding it – are influenced 

strongly by small changes in composition arising from interdiffusion with the bond coat, 

which itself inherits elemental changes from the substrate.  

 

5. Single crystal superalloys have traditionally been designed primarily with mechanical 

performance in creep and fatigue in mind. The results reported here show that the 
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compatibility with the thermal barrier coating systems placed upon them is also an 

important design parameter.  

 

6. For optimum turbine blade aerofoil characteristics in service, it may now be 

necessary to balance the mechanical behaviour of the substrate and its compatibility 

with the TBC systems in order to improve the performance of the system as a whole. 
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Chapter 6  

Comparison of failure mechanisms in TBCs with 

different Pt-modified bond coats 

 
 

6.1 INTRODUCTION 
 

Traditionally, the study of TBCs has been focused on the investigation of individual 

bond coat systems [1-4]. However, as the operating temperature of advanced gas 

turbines increases, new bond coats based on existing ones, are required to meet this 

demand and suit different applications [5, 6]. Thus, it becomes necessary to not only 

understand how a coating system performs; but also to know how and why existing 

coating systems behave differently. 

 

However, little work [7] has been reported in which the modes of degradation 

responsible for TBC spallation are compared for different bond coats. This is despite 

much progress that has been made on the micromechanics of the failure of aluminide 

bond coat systems [2, 3]. In particular, the usual approach in modelling of TBC failure 

[8-13] concentrates on the treatment of the oxidation-induced stresses that drive TBC 

spallation despite the fact that it is likely that the modes of failure [5, 14, 15] and 

evolution of the residual stress are influenced considerably by the bond coat systems. 

 

The work reported here was carried out with these factors in mind. Three different 

representative bond coat systems were deposited on single crystal CMSX-4 substrates 

and then subjected to identical (industry standard) EB-PVD YSZ coating processes. It is 

shown that both the evolution of the residual stress in the TGO and the mode of TBC 

failure depend on the bond coat composition. Field emission gun scanning electron 
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microscopy (FEG-SEM) and energy dispersive x-ray (EDX) analysis were used to study 

the composition and microstructure changes occurring near the TGO/bond coat 

interface.  

 

6.2 RESULTS 
 

6.2.1 Cyclic Oxidation Testing  
 

The TBC spallation life (defined as detachment of top coat by approximately 20 percent 

in area) in thermal cycling conditions was found to be slightly dependent on the type of 

bond coat system used, see Figure 6.1. Pt-diffusion bond coat specimens achieved a 

mean TBC life of 384 cycles; 15% and 23% longer than for LT and HT Pt-Al bond coats. 

It should be pointed out that although the three bond coats differed significantly in 

composition and were prepared by different coating manufacturing processes, all three 

systems showed remarkably similar spallation life. However, it was found that 

depending on the type of bond coat, decohesion of the TBC occurred at different 

interfaces. Since the substrate and the ceramic top coat were prepared to be identical, 

this can only be explained by the different behaviours of the bond coats, as will be 

discussed later.  
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Figure 6.1 TBC spallation life for cyclic oxidation testing (1 hour at 1135°C) of TBC 
systems. The error bars indicate ± one standard deviation in the lifetimes of each set of 
five specimens. 

 

6.2.2 Residual Stress Measurement by Luminescence Spectroscopy  
 

Luminescence measurements illustrating the evolution of residual stress in the TGO 

layer are given in Figure 6.2. It was found that that the evolution of this stress was 

substantially different between the Pt-diffusion and the Pt-Al bond coat systems, despite 

the fact that they all had similar initial stress level in the as-coated condition. The 

Pt-diffusion bond coat systems began with a compressive stress of 2.8 GPa that 

gradually increased to 3.5 GPa over the coating lifetime, while those of the Pt-Al 

coatings decreased from an initial compressive stress of about 2.3 GPa to between 1 and 

1.5 GPa during the first 75 - 100 thermal cycles, before maintaining at a steady level to 

the end of life. The error bars in Figure 4 represent ± one standard deviation of the 121 
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measurements made at each time step. It is therefore notable that the standard deviation 

increases significantly for the Pt-diffusion bond coats just before failure. 

 

 

Figure 6.2 Compressive residual stress in the TGO shift vs number of cyclic oxidation 
testing of the bond coat systems. 
 

6.2.3 Microstructure Imaging of Thermal Cycled Specimens by 
FE-SEM/EDX 
 

Cross-section scanning electron micrographs illustrating the microstructures of the three 

coatings after 10, 30, 100, 200, and 280 thermal cycles are shown in Figure 6.3. Based 

on these SEM images, the oxidation kinetic (TGO thickness vs. time) curve is plotted in 

Figure 6.4. A few observations can be made with regard to the thermal-cycling induced 

degradation. First, it can be seen that the TGO morphology evolved quite differently for 

the three bond coats. For example, the TGO interfaces in the Pt-diffusion system 

remained intact on thermal cycling for most of its spallation life. In contrast, local 

interfacial separation of the TGO in the Pt-Al systems occurred at less than 30% of their 

lifetimes. Furthermore, final spallation occurred at the TGO / YSZ interface for the LT 

Pt-Al bond coat, but at the TGO / bond coat interface for the Pt-diffusion system. The 

HT Pt-Al bond coat system showed a mixture of the two failure modes. Finally, the 
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waviness of the TGO layer in Pt-Al systems appears to amplify significantly upon 

thermal cycling.  

 

 

Figure 6.3 A series of SEM micrographs illustrating the near-TGO microstructure of the 
coatings after 10, 30, 100, 200 and 280 thermal cycles. 
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Figure 6.4 TGO thickness vs number of thermal cycles (1hr at 1135°C) for the three 
bond coat systems. 
 

6.2.4 Quantification of Rumpling at the TGO/Bond Coat Interface. 
 

Measurement of the interfacial waviness was carried out by tracking the normal 

displacement along the TGO/bond coat interface in a cross-section SEM image over a 

distance of approximately 640 µm with a step size of 1 µm. Each position on the 

interface was represented by a pair of X (distance parallel to the specimen surface) and 

Y (distance normal to the specimen surface) co-ordinates. Figure 6.5 shows the 

evolution of the TGO/bond coat interface morphology for each of the three bond coat 

systems. The amplitude of waviness was quantified by determining the standard 

deviation (STD) of each profile. Figure 6.6 shows the standard deviation from the mean 

for each profile as a function of the number of thermal cycles. Results of isothermal 

tests were also plotted for reference. As can be seen in both Figures 6.5 and 6.6, the LT 

Pt-Al system exhibited a marked increase in TGO/bond coat interfacial waviness with 
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thermal cycling. The HT Pt-Al bond coat also demonstrated a tendency to roughen with 

thermal cycling, but at a considerably slower rate. In contrast to the two Pt-Al systems, 

the Pt-diffusion bond coat showed no detectable roughening. 
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Figure 6.5 TGO/bond coat interface Profiles of top) LT Pt-Al, middle) HT Pt-Al and 
bottom) Pt-diffusion bond coat at stages of the thermal cycling history. 
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Figure 6.6 Standard deviation of interface amplitude profile (i.e. magnitude of 
rumpling) as a function of the number of thermal cycles for the 3 different bond coat 
systems. 
 

6.2.5 Chemical Analyses of TGO layers and Interfaces 
 

Elemental compositions of the TGO layers on the three bond coats were characterised 

using WDS analysis after 200 thermal cycles, see Table 6.1. The results are quoted only 

for locations having TGO thickness greater than the spatial resolution of the 

FE-EPMA/WDS technique. The results show that for all specimens, the oxide layers 

consisted of more than 99 at% Al2O3. Less than a total of 1 at% of other elements 

originated from the top coat, bond coat and substrate was detected in the oxide layer, 

possible due to solid solution and particle segregation within the alumina scale. In 

addition, high resolution Al – mapping (Figure 6.7) of the bond coat near the TGO 

interfaces using FE-SEM/EDX revealed how the different bond coats respond to the Al 

loss resulting from TGO growth and interdiffusion with the substrate. Both Pt-Al bond 

coats showed a progressive phase transformation from the as-deposited single phase 

β-(Pt,Ni)Al to a two phase β-(Pt,Ni)Al and γ’-(Pt,Ni)3Al microstructure. These images 

reveal that the phase transformation in the Pt-Al systems was detectable within the first 



 

 98

30 thermal cycles and the rate of transformation in the HT Pt-Al bond coat appeared to 

be faster. The Pt-diffusion bond coat, on the other hand, showed a distinct γ’ to γ phase 

transformation near the TGO/bond coat interface. Upon thermal cycling, a continuous γ 

layer was eventually formed directly below the Al2O3 layer and thickened as the Al 

depletion continued. 

 

Table 6.1 Elemental compositions (at %) taken using WSD FE-EPMA analysis of the 
TGO layer from specimens at 200 thermal cycles. 
Bond Coat Pt Zr Y Co Re Ta Al Ni Ti Cr O 

LT Pt-Al 0.04 0.21 0.01 0.04 0.01 0.01 37.05 0.23 0.01 0.04 62.35

HT Pt-Al 0.02 0.20 0.02 0.04 0.00 0.02 38.60 0.29 0.02 0.04 60.75

Pt-diffusion 0.04 0.23 0.02 0.02 0.01 0.01 37.75 0.21 0.01 0.02 61.68

 

 

Figure 6.7 A series of Al EDX maps illustrating the microstructural evolution of the 
bond coat systems after 30, 100, 200 and 280 thermal cycles. 
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6.3 DISCUSSION 
 

The results presented here provide a detailed comparison of the progressive degradation 

of TBCs with three different bond coat systems upon thermal exposure. The results 

show that the three TBC coated bond coat systems failed with quite different 

characteristics, despite having similar lifetimes. In particular, the location of the TBC 

spallation interface varied strongly with type of bond coat employed. In addition, both 

the bond coat rumpling and the TGO residual stress measurements showed significantly 

different behaviour for the different bond coats. Since the substrate and the ceramic top 

coat were identical for all three systems, these differences can only be explained by the 

different processes taking place in the bond coats. 

 

Quantification of the bond coat/TGO interfacial roughness indicated that rumpling was 

detectable within the first 30 cycles of thermal exposure in the Pt-Al systems. Upon 

further thermal cycling, the undulation in the TGO amplified in the LT Pt-Al system and 

resulted in localised vertical separation between the YSZ (which remained at its initial 

roughness) and the TGO as can be clearly seen in Figures 6.3 g) and k). TGO rumpling 

is capable of relieving the residual stress in the TGO by increasing its waviness [16], 

which explains the reduction of the TGO residual stress in the Pt-Al coatings. In 

contrast, the absence of rumpling in the Pt-diffusion bond coat system helped in 

ensuring the YSZ/TGO and the TGO/bond coat interfaces remained intact over the 

majority of the coating lifetime. Consequently, when there was significant rumpling (i.e. 

the LT Pt-Al system), coating decohesion took place primarily in the YSZ/TGO 

interface. In the absence of rumpling as in the case of the Pt-diffusion system, spallation 

eventually occurred at the bond coat/TGO interface. The HT Pt-Al bond coat system 

showed a mixture of these two failure modes, presumably due to the fact that its rate of 

rumpling was considerably less than that of the LT Pt-Al system.   

 

In addition to the observed consequences of rumpling, the mechanism by which 

rumpling occurs is also of importance. In particular, the dependence of rumpling on the 
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properties of the bond coat materials must be considered. Upon depletion of Al, a phase 

transformation from the as-deposited single phase β-(Pt,Ni)Al to a two phase 

β-(Pt,Ni)Al and γ’-(Pt,Ni)3Al microstructure takes place in Pt-Al bond coats. It has been 

proposed [17] that this phase transformation induces non-uniform volume changes of 

the bond coat and thus leads to rumpling [2, 4, 18-21].  However, this mechanism does 

not appear to play a major role in inducing bond coat rumpling, at least in our current 

study, for two reasons. First, according to the proposed mechanism, the LT Pt-Al bond 

coat, which exhibited strongest rumpling behaviour in our study, should 

correspondingly have the fastest oxidation kinetics (i.e. fastest Al-depletion rate). 

However, our results showed that it had the slowest oxidation rate among the three 

systems studied. Second, the lower-Al containing Pt-Al bond coat (HT PtAl), according 

to the proposed mechanism, should be more sensitive to Al depletion and thus, prone to 

the phase transformation induced rumpling than its high-Al Pt-Al counterpart (LT PtAl). 

However, our results showed the opposite, in that the rate of rumpling in the HT PtAl 

system was considerably lower than that of the LT PtAl system.  

 

Based on these considerations, it is suggested that rumpling is not primarily induced by 

the phase transformation associated with the Al-depletion, but depends on the high 

temperature mechanical properties of the bond coats. Thus, it is hypothesised that the 

rumpling behaviour observed in this study may be controlled by the high temperature 

resistance to plastic deformation of these bond coat materials. The fact that the 

magnitude of rumpling was lower in the isothermal conditions suggested that the 

rumpling mechanism may be mainly due to micro-mechanical interactions of the TBC 

systems and strongly related to the resistance of the bond coat materials to plastic 

deformation at elevated temperatures; but not the temperature and time dependent phase 

transformation process. The Pt-diffusion bond coat, which inherited the two phase γ and 

γ’ microstructure of the superalloy, should be more resistant to plastic deformation at 

elevated temperatures than the single phase β-(Pt,Ni)Al Pt-Al bond coats. Similarly in 

the Pt-Al system, a previous study [22] has suggested that a strengthening effect (i.e. 

high value creep index and activation energy) can be attributed to the precipitation of 

finely dispersed γ’ within the β matrix. The extent of γ’ phase precipitation depends not 

only on the aluminium depletion by interdiffusion or oxidation, but primarily on how 



 

 101

close the composition is to the β/ β+γ’ phase boundary (Figure 6.8) [22] at elevated 

temperatures. The HT PtAl system, leaner in both Pt and Al near its rumpling interface, 

is situated closer to the β/ β+γ’ phase boundary than the LT PtAl system. Thus, one 

would expect the HT PtAl system to be stronger in creep than that of the LT PtAl 

system, due to a higher volume fraction of precipitated γ’. This explanation is consistent 

with the observation that the Al-rich Pt-Al (LT Pt-Al) bond coat exhibited a 

considerably faster rumpling rate than the low Al-containing one (HT Pt-Al). Clearly, 

further studies need to be done to clarify the role of high temperature plasticity in the 

rumpling phenomenon. These are described in the next chapter. 

 

 

Figure 6.8 Ternary Ni-Al-Pt phase diagram at 1100 and 1150°C [22] showing the two 
Pt-Al bond coat systems considered in the current study. 
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6.4 CONCLUSIONS 
 

The following conclusions can be drawn from this work: 

 

1. Spallation occurred at the TGO / YSZ interface for the LT Pt-Al bond coat system, 

but at the TGO / bond coat interface for the Pt-diffusion system. The HT Pt-Al bond 

coat system showed a mixed mode failure of the two.  

 

2. The TGO compressive residual stress in the Pt-diffusion bond coat systems began at 

2.8 GPa and gradually increased to 3.5 GPa near the end of the coating life. However, 

for the Pt-Al systems, the stress decreased from 2.3 GPa to between 1 and 1.5 GPa 

during the first 75 - 100 thermal cycles, before maintaining a steady level to the end of 

life, with the LT Pt-Al system showing the lower TGO stress. 

 

3. Both Pt-Al systems exhibited rumpling behaviour, but the LT Pt-Al bond coat system 

showed a significantly faster rumpling rate than the HT Pt-Al bond coat system. The 

Pt-diffusion system, in contrast, showed no tendency to rumple. 

 

4. The fact that the magnitude of rumpling was lower in the isothermal conditions 

suggested that the rumpling mechanism is not due to the phase transformation 

associated with Al-depletion, but related to the high temperature mechanical properties 

of the bond coat materials. 

 

5. The rumpling results can be explained only if the two phase γ and γ’ microstructure of 

the Pt-diffusion bond coat is more resistant to plastic deformation at elevated 

temperatures than the single phase β-(Pt,Ni)Al Pt-Al bond coats. 

 

6. The HT PtAl system is considered to be stronger in creep than that of the LT PtAl 

system, due to a higher volume fraction of precipitated γ’ (i.e. the HT PtAl system, 

leaner in both Pt and Al near its rumpling interface, is situated closer to the β/ β+γ’ 

phase boundary than the LT PtAl system.).  



 

 103

References for Chapter 6 

 

1. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier and F.S. Pettit, “Mechanisms 

controlling the durability of thermal barrier coatings,” Progress in Materials Science, 

Volume 46, 2001, Pages 505-553 

2. V.K. Tolpygo and D.R. Clarke, “On the rumpling mechanism in nickel-aluminide 

coatings, part I: and experimental assessment,” Acta Materialia, Volume 52, 2004, Pages 

5115-5127. 

3. V.K. Tolpygo and D.R. Clarke, “On the rumpling mechanism in nickel-aluminide 

coatings, part II: characterisation of surface undulations and bond coat swelling,” Acta 

Materialia, Volume 52, 2004, Pages 5129-5141. 

4. M. Gell, K. Vaidyanathan, B. Barber, J. Cheng and E. Jordan, "Mechanism of 

spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier 

coatings,” Metallurgical and Materials Transactions A, Volume 30A, 1999, Pages 

427-435 

5. C.G. Levi, “Emerging materials and processes for thermal barrier systems,” Current 

Opinion in Solid State and Materials Science, Volume 8, 2004, Pages 77-91. 

6. N.P. Padture, M. Gell and E.H. Jordan, “Thermal barrier coatings for gas-turbine 

applications,” Science, Volume 296, 2002, Pages 280-284. 

7. R.C. Pennefather, and D.H. Boone, “Mechanical degradation of coating systems in 

high-temperature cyclic oxidation,” Surface and Coatings Technology, Volume 47, 1995, 

Pages 76-77 

8. E.P. Busso, J.Lin and S. Sakurai, “A mechanistic study of oxidation-induced 

degradation in a plasma-sprayed thermal barrier coating system: Part II: Life prediction 

model,” Acta Materialia, Volume 49, 2001, Pages 1529-1536.  

9. F. Traeger, M. Ahrens, R. Vaβen and D. Stover, “A life time model for ceramic 

thermal barrier coatings,” Materials Science and Engineering A, Volume 358, 2003, 

Pages 255-265.  

10. E.P. Busso, L. Wright, H.E. Evans, L.N. McCartney, S.R.J. Saunders, S. Osgerby 

and J. Nunn, “A physics-based life prediction methodology for thermal barrier coating 

systems,” Acta Materialia, Volume 55, 2007, Pages 1491-1503. 



 

 104

11. M. Baker, J. Rosler and G. Heinze, “A parametric study of the stress state of thermal 

barrier coatings Part II: cooling stresses,” Acta Materialia, Volume 53, 2005, Pages 

469-476. 

12. M. Jinnestrand and S. Sjostrom, “Investigation by 3D FE simulations of 

delamination crack initiation in TBC caused by alumina growth,” Surface and Coatings 

Technology, Volume 135, 2001, Pages 188-195.  

13. A.M. Karlsson and A.G. Evans, “A numerical model for the cyclic instability of 

thermally grown oxides in thermal barrier systems,” Acta Materialia, Volume 49, 2001, 

Pages 1793-1804. 

14. A.G. Evans, M.Y. He and J.W. Hutchinson, “Mechanics-based scaling laws for the 

durability of thermal barrier coatings,” Progress in Materials Science, Volume 46, 2001, 

Pages 249-271 

15. J.S. Wang and A.G. Evans, “Measurement and analysis of buckling and buckle 

propagation in compressed oxide layers on superalloy substrates,” Acta Materialia, 

Volume 46, 1998, Pages 4993-5005 

16. G. Lee, A. Atkinson and A. Selcuk, “Development of residual stress and damage in 

thermal barrier coatings,” Surface and Coatings Technology, Volume 201, Proceedings 

of the 33rd International Conference on Metallurgical Coatings and Thin Films - 

ICMCTF 2006, The 33rd International Conference on Metallurgical Coatings and Thin 

Films, 2006, Pages 3931-3936.  

17. V.K. Tolpygo and D.R. Clarke, “Surface rumpling of a (Ni, Pt)Al bond coat induced 

by cyclic oxidation,” Acta Materialia, Volume 48, 2000, Pages 3283-3293.  

18. D.R. Mumm, A.G. Evans and I.T. Spitsberg, “Characterisation of a cyclic 

displacement instability for a thermally grown oxide in a thermal barrier coating 

system,” Acta Materialia, Volume 49, 2001, Pages 2329-2340 

19. D.R. Mumm and A.G. Evans, “On the role of imperfections in the failure of a 

thermal barrier coating made by electron beam deposition,” Acta Materialia, Volume 48, 

2000, Pages 1815-1827 

20. V.K. Tolpygo and D.R. Clarke, “Morphological evolution of thermal barrier coatings 

induced by cyclic oxidation,” Surface and Coatings Technology, Volumes 163-164, 

2003, Pages 81-86. 

21. B. Gleeson, W. Wang, S. Hayashi, D. Sordelet, “Effects of platinum on the 



 

 105

Interdiffusion and Oxidation Behavior,” Materials Science Forum, Volume 213, 2004, 

Pages 461-464 

22. M.P. Taylor, H.E. Evans, E.P. Busso, and Z.Q. Qian, “Creep properties of a 

Pt-aluminide coating,” Acta Materialia, Volume 54, 2006, Pages 3241-3252. 

 

 



 

 106

Chapter 7  

An Investigation of the high temperature plasticity of 

TBCs with different Pt-modified bond coats 

 

7.1 INTRODUCTION 
 

Thermal barrier coating (TBC) systems based on an electron beam physical vapour 

deposited (EB-PVD) yttria-stabilised zirconia (YSZ) top coat and a substrate material of 

CMSX-4 superalloy were identically prepared to systematically study the behaviour of 

different bond coats (two beta-structured Pt-Al types and a gamma-gamma prime type), 

as presented in the previous chapter. The reported results showed that the three TBC 

coated bond coat systems failed with quite different characteristics, despite having 

similar lifetimes. In addition, both the bond coat rumpling and the TGO residual stress 

measurements showed significantly different behaviours for the different bond coats. 

For instance, the LT Pt-Al bond coat system showed a significantly faster rumpling rate 

than the HT Pt-Al bond coat system; while, the Pt-diffusion system, in contrast, showed 

no tendency to rumple. The fact that the magnitude of rumpling was lower in the 

isothermal conditions suggested that the rumpling mechanism is not due to the phase 

transformation associated with Al-depletion, but related to the high temperature 

mechanical properties of the bond coat materials. With this in mind, the rumpling results 

might be explained if the two phase γ and γ’ microstructure of the Pt-diffusion bond coat 

is more resistant to plastic deformation at elevated temperatures than the single phase 

β-(Pt,Ni)Al Pt-Al bond coats. Thus, the experiment described in this chapter was carried 

out to investigate whether the differences in high temperature mechanical properties of 

the bond coats are indeed responsible for the previously mentioned rumpling 

phenomena.  
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7.2 EXPERIMENTAL DETAILS 
 

In order to verify if the high temperature plasticity is indeed the mechanism driving the 

interfacial rumpling observed in the Pt-Al bond coat systems, measurement of plastic 

deformation of specimens’ free edge was carried out for all the bond coat systems.  

 

Coated disc-shape samples, identical to the ones mentioned in the previous chapter were 

used for this experiment. These samples were further cut into square specimens of 4 mm 

side. A total of six specimens (i.e. two specimens for each bond coat type) having the 

same dimensions as previously were used for the investigation. The two free edge 

surfaces perpendicular to the observation face and the the oxide interface were polished 

to #400-grit finish for all the specimens. Three of the six polished specimens were then 

subjected to cyclic thermal exposure in a purpose-built rig. The thermal profile involved 

1 hour at a furnace temperature of 1135°C (approximately 10 mins to reach the peak 

temperature); after which, the specimens were removed automatically from the rig and 

fan-cooled by laboratory air for 1 hour, identical to the conditions employed in the 

previous chapter. Specimens were removed from the rig at specific intervals for optical 

measurements of any mechanical deformation at the free edge and then returned for 

further thermal cycling. The remaining three specimens were isothermally heated at 

1135°C in the same rig for 150 hours (equivalent to approximately 180 cycles in terms 

of the time at peak temperature). 

 

Measurement of the edge displacement was carried out by using a high magnification 

optical microscope and its integrated CCD system to take high resolution images. These 

images were then imported into imaging software, which then quantised the edge 

displacement by making boundary selections (i.e. defining the original edge position 

and the displaced position). With reference to the known top coat thickness, the edge 

displacement can be calculated. 
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7.3 RESULTS 
 

Optical micrographs illustrating the layered structures of the three coatings after 

polishing are given in Figure 7.1. The polished surface showed optical contrast between 

the ceramic top coat and the bright metallic bond coat and substrate for specimens. 

 

 

Figure 7.1 Coating cross-sections and polished free edge of as-coated specimens. 
 

Upon thermal cycling, the brightness of the cross-sectional surface was reduced due to 

surface oxidation. However, the bond coat interfaces became clearly visible, thus, 

making the measurement of bond coat plastic deformation near the free edge 

considerably easier, as shown in Figure 7.2. It was found that the elongation of the bond 

coat was substantially different between the Pt-diffusion and the Pt-Al bond coat 

systems. Pt-Al bond coats showed significant lateral extension of the bond coat and top 

coat with reference to the initial edge position. In addition, the extensions of the Pt-Al 

bond coats were not uniform, meaning that the maximum elongation occurred at the 

TGO – bond coat interface. This indicates that the driving force for extension comes 

from the TGO and / or YSZ layers. The Pt-diffusion bond coat systems, in contrast, 

exhibited much less significant deformation even after 270 cycles. 
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Figure 7.2 Deformation of the coating's free edge after 270 cycles of thermal exposure. 
 

Optical micrographs of the three coatings taken after 10, 30, 50, 70, 100, 130, 160, 200, 

240 and 270 thermal cycles were used to construct a plastic deformation curve, showing 

the percent nominal strain of the bond coat as a function of thermal cycling, as shown in 

Figure 7.3. The gauge length was taken as half the specimen dimension (i.e. 2 mm). It 

should be noted that the plotted results were measured for the maximum elongation, i.e. 

at the TGO – Bond Coat interface. Based on these results, it can be seen that both the 

Pt-Al bond coats showed very similar deformation behaviours, being the fastest at the 

beginning and settling to a more steady-state deformation rate after approximately 30 

cycles. In contrast to the Pt-Al bond coats, the Pt-diffusion system showed no rapid 

elongation initially, although the rate of plastic deformation did increase with further 

thermal cycling, and much lower strains. 
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Figure 7.3 Plasticity curve showing the percent strain of the bond coat as a function of 
thermal cycling. 
 

In order to further investigate whether the observed bond coat plasticity was a thermal 

cycling induced effect (i.e. thermal mismatch induced stress conditions) or a time at the 

peak temperature phenomenon (i.e. the time and temperature dependent diffusion 

processes), an equivalent isothermal version of the experiment was carried out for 150 

hours. 

 

Optical micrographs of the three isothermally exposed specimens are shown in Figure 

7.4. The results, which are plotted at 180 cycles (i.e. equivalent to 150 hours at peak 

temperature) in Figure 7.3, show that edge deformation of isothermally exposed Pt-Al 

bond coats was considerably lower than under thermal cycling conditions; while both 

isothermally and cyclically exposed Pt-diffusion bond coat specimens had almost 

identical degrees of edge elongation. 
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Figure 7.4 Optical micrographs showing the coating's free edge after 150 hours of 
isothermal exposure. 
 

Observation of the plastically deformed edge showed two geometrically different 

regions in each of the two Pt-Al bond coats (Figure 7.5). In the case of low temperature 

Pt-Al bond coat, the transition between the two geometrically different regions of the 

bond coat took place at about 37 µm away from the TGO/bond coat interface, and at 52 

µm in the case of high temperature Pt-Al bond coat. From the aluminium composition 

profiles (Figure 7.6) of the two as coated Pt-Al bond coats, it is seen that the transition 

points in the edge deformation lie near locations (LT Pt-Al: 39 µm and HT Pt-Al: 51 

µm) where sharp variation in the slope of the as-coated aluminium concentration profile 

occurred. 

 

It is also evident that a good correlation exists between the local deformation magnitude 

and the local aluminium concentration for both Pt-Al bond coats. Moreover, LT Pt-Al 

being the bond coat system with the highest aluminium concentration exhibited the 

most severe rumpling behaviour and edge plasticity while, the lowest aluminium 

containing Pt-diffusion bond coat showed very little tendency to rumpling and edge 

deformation. 

 

It should be noted here that although the as-coated aluminium composition profile no 

longer represents the profile after 270 cycles, Figure 7.6 is considered appropriate for 

the purpose of comparing with Figure 7.5 since the edge deformation process did   

occur from the start of thermal cycling. 
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Figure 7.5 Two geometrically different regions in the plastically deformed edge in 
coated CMSX-4 with LT and HT Pt-Al bond coats. 
 

 

 

Figure 7.6 Aluminium concentration profiles in as-coated CMSX-4 with LT and HT 
Pt-Al bond coats. 
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7.4 DISCUSSION 
 

As discussed in the previous chapter, in addition to the observed consequences of 

rumpling, the mechanism by which rumpling occurs is also of importance. In particular, 

the dependence of rumpling on the properties of the bond coat materials must be 

considered. 

 

The results presented here provide a detailed comparison of the progressive deformation 

of three different bond coat systems upon thermal exposure. The results show that the 

Pt-Al bond coats suffered significant plastic deformation of the bond coat on thermal 

cycling. Pt-diffusion bond coats, on the other hand, deformed plastically by a 

considerably lower degree under both isothermal and cyclic conditions. In addition, all 

three bond coats exhibited a quite similar magnitude of bond coat deformation under 

isothermal conditions. 

 

The fact that the magnitude of bond coat deformation was less in the isothermal 

conditions for the Pt-Al bond coats suggests that the rumpling mechanism may be 

mainly due to micro-mechanical interactions of the TBC systems and strongly related to 

the resistance of the bond coat materials to plastic deformation at elevated temperatures. 

A temperature and time dependent phase transformation process cannot account for the 

observation. The lower CTEs of the TGO and YSZ in comparison with CMSX-4 will 

generate a tensile in plane stress in the bond coat on cooling. This can be relaxed by 

in-plane plastic deformation in the bond coat until at some lower temperatures the bond 

coat becomes elastic. The elastic deformation is reversible upon heating, while plastic 

deformation is non-reversible (rachetting [1]). This leads to an incremental plastic 

elongation per cycle. 

 

As mentioned in the previous chapter, the Pt-diffusion bond coat, which inherited the 

two phase γ and γ’ microstructure of the superalloy, should be more resistant to such 

plastic deformation at elevated temperatures than the single phase β-(Pt,Ni)Al Pt-Al 

bond coats. In addition, it was discussed at that time that in the case of Pt-Al system, a 
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gradual strengthening effect can be attributed to the precipitation of finely dispersed γ’ 

within the β matrix. Since the extent of phase precipitation depends not only on the 

aluminium depletion by interdiffusion or oxidation, but primarily on how close the 

composition is to the β/ β+ γ’ phase boundary at elevated temperatures, one would 

expect the different composition profiles (i.e. composition gradient of Ni, Al, Pt, etc) of 

the Pt-Al diffusion bond coat results in different extents of local strengthening effects.  

 

In particular, based on the consideration of the β/ β+ γ’ phase boundary, it is known that 

the composition dependent phase transformation is mostly sensitive to the aluminium 

concentration gradient. This is, in fact, confirmed by Figures 7.5 and 7.6, which shows 

that the transition points in the edge deformation lie near locations where sharp 

variation in the slope of the as-coated aluminium concentration profile occurred. In 

Pt-Al coating systems, it appears that the magnitude of the local edge-deformation is 

related to the local aluminium concentration; while, the slope of the geometrically 

different regions of the deformed edge is related to the gradients of the aluminium 

concentration profiles. 

 

7.5 CONCLUSIONS 
 

Based on the comparative study presented in chapters 5 and 6, it is concluded that the 

high temperature mechanical properties of the bond coat play a critical role in 

controlling the degradation mechanism of the TBC system. The differences in the TGO 

residual stress evolution, magnitudes of bond coat rumpling and the degree of plastic 

deformation of the bond coat at free edges are very much inter-dependent and will 

eventually determine the failure mechanisms of the TBC system. 

 

In particular, the following specific conclusions can be drawn from this work: 

 

1. Pt-Al bond coats were extremely sensitive to thermal cycling, which resulted in 

significant plastic deformation of the bond coat. In contrast, Pt-diffusion bond coat 

showed much smaller plastic deformation. 
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2. All three bond coats (LT Pt-Al, HT Pt-Al, Pt-diffusion) exhibited quite similar 

magnitudes of bond coat deformation under isothermal conditions. 

 

3. It is proposed that the plastic elongation of the Pt-Al bond coats at free edges was due 

to micro-mechanical interactions within the TBC systems and is strongly related to the 

high temperature strength of the bond coat. 

 

4. Since all three bond coats showed much less bond coat deformation under isothermal 

conditions, it is argued that the large plastic deformation in the Pt-Al bond coats was not 

induced by the volume change associated with the temperature and time dependent 

phase transformation process. Rather, it is consistent with a ratcheting process in these 

bond coats during thermal cycling. This is absent in the Pt-diffusion bond coats. 

 

5. In Pt-Al coating systems, it appears that the magnitude of the local edge-deformation 

is related to the local aluminium concentration; while, the slope of the geometrically 

different regions of the deformed edge is related to the gradients of the aluminium 

concentration profiles. 
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Chapter 8  

Conclusions and suggestions for future work 

 

8.1 Summary of Conclusions 
 
The research reported here presents an investigation into the effects of high temperature 

oxidation and exposure on nickel-base alloys and TBC coated nickel-base superalloys.  

 

In Chapter 3 of this thesis, a one-dimensional coupled thermodynamic-kinetic oxidation 

and diffusion model capable of predicting the concentration profiles of alloying 

elements and oxide composition during the transient stage of oxidation of a single-phase 

ternary alloy has been developed using the finite difference method. Application of the 

model to the oxidation of a Ni-27Cr-9Al (at%) ternary alloy predicted a rapid depletion 

in the aluminium concentration at the oxide-metal interface during the early-stage of 

oxidation. This is because in the early stages of oxidation, Al consumption by oxide 

scale growth is faster than Al replenishment by diffusion towards the scale. Preferential 

oxidation of chromium then occurs as the aluminium concentration at the oxide-metal 

interface drops to near zero. Once a continuous oxide scale has formed, oxidation of 

nickel to form nickel oxide and spinels with the result that local depletion of nickel at 

the metal-oxide interface leads eventually to an increase of both aluminium and 

chromium concentrations as a pseudo steady state is approached. These predictions of 

the model are in agreement with experiments reported in the literature. It is emphasised 

that the ability of the alloy to maintain a non-zero concentration of aluminium at the 

oxide-metal interface during transient oxidation is a key requirement in the design of 

oxidation-resistant alumina-forming alloys.  

 

The importance of superalloy substrate composition in determining the oxidation 

kinetics and the cycling life of thermal barrier coating systems was demonstrated in 
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Chapter 5. The TBC spallation life was found to vary by a factor of up to three, 

depending upon the chemical composition of the superalloy substrate even though the 

bond coat and top coat were nominally the same. This effect implies that considerable 

chemical effects are at play. By comparison, the choice of bond coat among common 

types has a smaller effect in determining TBC spallation life. The experimental results 

can be explained only if the fracture toughness parameters controlling decohesion (i.e. 

the fracture toughness of the TGO and the fracture toughness of the interfaces bounding 

it) are influenced strongly by small changes in composition arising from interdiffusion 

with the bond coat, such that they are degraded during thermal cycling. Chemical 

analysis indicates that trace elements such as sulphur (on the basis of bulk chemical 

analysis) in the superalloy substrate are not responsible for the effects reported, 

indicating that major elemental additions are the cause, such as Ti in particular. 

 

In Chapter 6, a detailed study was described of TBC systems, based on an EB-PVD 

YSZ top coat and a substrate material of CMSX-4 superalloy, with different bond coats. 

The three bond coat materials investigated include two beta-structured Pt-Al types 

(differing in their aluminising temperature, LT and HT) and a gamma-gamma prime 

structure produced by Pt diffusion without aluminising. It was found that the TGO 

compressive residual stress in the Pt-diffusion bond coat system began at 2.8 GPa and 

gradually increased to 3.5 GPa near the end of the coating life. In comparison, the stress 

in the Pt-Al systems decreased from 2.3 GPa to between 1 and 1.5 GPa during the first 

75 - 100 thermal cycles, before maintaining a steady level to the end of life, with the LT 

Pt-Al system showing the lower TGO stress. It was also found that the TBCs with the 

LT Pt-Al bond coat fail by a rumpling mechanism that generates isolated cracks at the 

interface between the TGO and the YSZ. In fact, both Pt-Al systems exhibited rumpling 

behaviour, but the LT Pt-Al bond coat system showed a significantly faster rumpling 

rate than the HT Pt-Al bond coat system. By contrast, the TBCs with Pt diffusion bond 

coats do not rumple, and the adhesion at the TGO/YSZ interface does not obviously 

degrade. In addition, the fact that for the Pt-Al bond coats, the magnitude of rumpling 

was lower in isothermal conditions suggested that the rumpling mechanism is not due to 

the phase transformation associated with Al-depletion, but related to the high 

temperature mechanical properties of the bond coat materials. Thus, it was proposed 
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that the two phase γ and γ’ microstructure of the Pt-diffusion bond coat is more resistant 

to plastic deformation at elevated temperatures than the single phase β-(Pt,Ni)Al Pt-Al 

bond coats. Moreover, the HT PtAl system is considered to be stronger in creep than 

that of the LT PtAl system, due to a higher volume fraction of precipitated γ’ (i.e. the 

HT PtAl system, leaner in both Pt and Al near its rumpling interface, is situated closer to 

the β/ β+ γ’ phase boundary than the LT PtAl system.). 

 

In order to verify if the high temperature bond coat plasticity is indeed responsible for 

the interfacial rumpling observed in the Pt-Al bond coat systems, measurement of 

plastic deformation of specimens’ free edges was carried out for all the bond coat 

systems, as presented in Chapter 7. It was found that Pt-Al bond coats were extremely 

susceptible to bond coat elongation during thermal cycling. In contrast, Pt-diffusion 

bond coat showed much lower plastic edge deformation. Since all three bond coats 

(LT-PtAl, HT-PtAl, Pt-diffusion) were found to exhibit quite similar magnitude of bond 

coat deformation under isothermal conditions, it is proposed that the plastic elongation 

of the Pt-Al bond coats was due to micro-mechanical interactions of the TBC systems 

and strongly related to the high temperature strength of the bond coat, rather than the 

volume change associated with the temperature and time dependent phase 

transformation processes. 

 

8.2 Suggestions for Future Work 
 

Although results obtained here provide some insight to assist the design of advanced 

superalloys or oxidation resistant coatings, further work needs to be carried out to 

elucidate more detailed mechanisms associated with the degradation of thermal barrier 

coatings.  

 

The coupled thermodynamic-kinetic oxidation and diffusion numerical model 

developed in the current PhD study presents an initial step in predicting surface 

oxidation induced composition depth profile changes in a single-phase ternary alloy. 

However, the presented oxidation treatment does not consider the detailed initial 
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oxidation morphology (i.e. internal precipitation) and the transition mechanism from the 

initial internal precipitation of oxides to continuous oxide layers. Moreover, in order to 

further develop the model to accurately predict the effects of alloying elements on the 

oxidation of complex alloys without engaging in extensive experimental testing, a more 

complex multi phase 2-D numerical model needs to be developed to account for the 

microstructural degradation mechanisms occurring during service exposure, specifically 

(i) the formation of thermal grown oxides (alumina and spinel phases) by oxidation on 

the bond coat and (ii) interdiffusion of the bond coat with the superalloy substrate (iii) 

phase transformation and possible formation of detrimental phases induced by oxidation 

and inter-diffusion processes. These phase transformations have the common features of 

reactions occurring in high temperature systems, in that they occur at rates which are 

diffusion-controlled. The solutions of the underlying coupled diffusion equations (one 

for each element) are easily arrived at either by analytical or numerical means. 

 

The importance of substrate composition on the lifetime of thermal barrier coatings was 

highlighted in Chapter 5. The relationship between substrate composition and the 

composition of the platinum-diffused layer is central to the beneficial effect of 

platinum-modification in the context of diffusion coating technology. The Pt-diffusion 

bond coat is resistant to rumpling and results in an enhanced TBC life, but this effect is 

diminished in alloys containing elements that have an adverse effect on adhesion at the 

BC/YSZ interface. In view of this, future use of the Pt-diffusion bond coat requires a 

more considered approach towards the chemistry of the underlying superalloy and the 

composition of the platinum-diffused substrate prior to top coat application. For 

optimum turbine blade aerofoil characteristics in service, it may now be necessary to 

balance the mechanical behaviour of the substrate and its compatibility with the TBC 

systems in order to improve the performance of the system as a whole. 
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It is believed that with the development of more sophisticated models, the important 

phase transformations and oxidation behaviour which govern the degradation of coated 

superalloys will be modeled, with the goal of developing a predictive capability which 

is presently lacking; this activity will require the identification of the physical factors 

which dictate substrate/coating interactions – it will also provide the basis for a 

chemistry-based approach to coating life prediction. 

 

In terms of the work on the study of bond coat rumpling, the current PhD study showed 

the different rumpling behaviours between the Pt-diffusion and Pt-Al bond coats. Both 

Pt-Al systems exhibited rumpling behaviour, but the LT Pt-Al bond coat system showed 

a significantly faster rumpling rate than the HT Pt-Al bond coat system. The 

Pt-diffusion system, in contrast, showed no tendency to rumple. It would be of interest 

as a continuation of the current work, to study the effect of the substrate composition on 

bond coat rumpling. If such an effect is apparent, it would be interesting to correlate the 

TBC spallation life with the magnitude of rumpling. 

 

Additionally, the high temperature plasticity of the bond coat should be further 

investigated. More specifically, the entire experiment demonstrated in Chapter 7 can be 

repeated on identical specimens without the top coat and in an inert atmosphere to 

minimise the formation TGO. This will provide additional clarifications of any possible 

role of the CTE difference between the bond coat and the substrates. 
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