University of Wollongong

Research Online

Faculty of Engineering and Information

SMART Infrastructure Facility - Papers Sciences

2017

Smart infrastructure: an emerging frontier for multidisciplinary research

Robert Ighodaro Ogie
University of Wollongong, rogie@uow.edu.au

Pascal Perez
University of Wollongong, pascal@uow.edu.au

Virginia Dignum
Delft University of Technology, M.V.Dignum@tudelft.nl

Follow this and additional works at: https://ro.uow.edu.au/smartpapers

6‘ Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation

Ogie, Robert Ighodaro; Perez, Pascal; and Dignum, Virginia, "Smart infrastructure: an emerging frontier for
multidisciplinary research" (2017). SMART Infrastructure Facility - Papers. 221.
https://ro.uow.edu.au/smartpapers/221

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au


https://ro.uow.edu.au/
https://ro.uow.edu.au/smartpapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/smartpapers?utm_source=ro.uow.edu.au%2Fsmartpapers%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Fsmartpapers%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Fsmartpapers%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/smartpapers/221?utm_source=ro.uow.edu.au%2Fsmartpapers%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages

Smart infrastructure: an emerging frontier for multidisciplinary research

Abstract

The irreversible marriage between digital technology and physical urban infrastructure has given rise to
the concept of smart infrastructure. The potential benefits of smart infrastructure are significant;
however, their realisation will depend on society's ability to address pressing issues, such as the need to
develop a common language to describe terms and processes. This paper aims to lay out the foundations
of such a common language. First, the authors review academic literature in order to outline key
characteristics of so-called smart infrastructure systems. Importantly, the authors define and differentiate
between smart and intelligent infrastructure systems. Then, the authors use an LVP framework to
describe the levels (L), values (V) and principles (P) of inherently smart infrastructure systems. Finally, the
authors argue that the study of smart infrastructure is a multidisciplinary field of research that reaches
beyond traditional engineering and information technology disciplines. The authors expect that
eliminating ambiguity and fragmentation in the definition of smart infrastructure systems will enhance
research on and practice of these systems.
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The irreversible marriage between digital technology and physical urban infrastructure has given rise to the concept of
smart infrastructure. The potential benefits of smart infrastructure are significant; however, their realisation wiill
depend on society’s ability to address pressing issues, such as the need to develop a common language to describe
terms and processes. This paper aims to lay out the foundations of such a common language. First, the authors review
academic literature in order to outline key characteristics of so-called smart infrastructure systems. Importantly, the
authors define and differentiate between smart and intelligent infrastructure systems. Then, the authors use an LVP
framework to describe the levels (L), values (V) and principles (P) of inherently smart infrastructure systems. Finally, the
authors argue that the study of smart infrastructure is a multidisciplinary field of research that reaches beyond
traditional engineering and information technology disciplines. The authors expect that eliminating ambiguity and
fragmentation in the definition of smart infrastructure systems will enhance research on and practice of these systems.

1. Introduction

Infrastructure systems such as water distribution networks,
electricity grids, communication webs and transport infrastructure
constitute the foundation of modern societies. They provide the
basis for everyday life and enable the flow of goods, information
and services within urban and regional settings (Rice et al., 2010).
As society moves deeper into the twenty-first century, the societal
demand on infrastructure assets is growing rapidly, with high
expectations in terms of productivity and service delivery
(Annaswamy et al., 2016; Fang et al., 2012). This quest for more
efficient infrastructure associated with the rise of information
technology (IT) has led to the concept of ‘smart infrastructure’,
wherein enabling technologies such as connected sensors and big
data analytics are integrated with physical infrastructure in order
to achieve real-time monitoring, efficient decision-making and
enhanced service delivery (Weiss, 2009). The potential benefits of
smart infrastructure include decreased maintenance costs, reduced
damage and disruption costs (traffic congestion or power
blackout), increased quality and value of service (on-demand use
and flexible tariffs), as well as protecting human life (less road
accidents or better response to disasters); all these benefits
contribute to sustainable urban growth (Morimoto, 2010). Over
the years, the concept of smart infrastructure has been applied in
several areas, including electricity distribution, water and waste
water services, automatic toll collection, intelligent transport

systems, emergency services and the monitoring of critical
infrastructure assets such as tunnels, bridges and dams (Hoult er
al., 2009; Li, 2010; Venkatasubramanian et al., 2014).

Although the benefits of smart infrastructure are potentially
significant, their realisation will depend on society’s ability to
address pressing issues, such as the need to develop a common
language of terms and processes (CSIC, 2016a). In fact, the very
term ‘smart infrastructure’ is being used in various contexts to
describe different sociotechnical settings. According to Hagen
(2011), there is no common definition to describe a smart
infrastructure, let alone to design or build it. This lack of
standardisation makes room for ambiguity, loose interpretations and
loss of meaning, as was previously the case with concepts such as
‘sustainable development’ (Buckman et al., 2014). Case-based
fragmentation and semantic ambiguity are reinforced by a strong
marketing drive imposed by the IT industry for which everything
has to be smart, from sensors to cities. This lack of clarity has
already started impacting smart infrastructure projects as expectations
from asset owners or operators are dashed by technology-driven
implementation of so-called smart solutions (Buckman et al., 2014).

To address this issue, the authors have reviewed academic and
grey literature between 1990 and 2016 and attempted to present a
comprehensive definition of the term ‘smart infrastructure’.
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Importantly, the authors sought to differentiate between ‘smart’
and ‘intelligent’ infrastructure. Then, the authors use an LVP
framework to describe the levels (L), values (V) and principles
(P) of smart infrastructure systems. Finally, the authors advocate
for a multidisciplinary approach to studies on and design of smart
infrastructure systems, reaching beyond traditional engineering
and IT disciplines.

2. What is a smart infrastructure?

2.1 Self-monitoring against self-awareness

According to Weiss (2009), a smart infrastructure is a lens
through which the future is seen. It is about self-driving cars that
recognise one another, bridges that detect their own weaknesses,
power grids that exchange data with home appliances, in short, all
cyberphysical infrastructure systems that make cities smart
(Weiss, 2009). From the perspective of smart cities, Alkandari et
al. (2012) describe smart infrastructure as the backbone of a city,
driven by a wireless sensor network. Similarly, studies on
electricity grids describe smart infrastructure as the backbone of
the distribution grid made of a smart energy subsystem, a smart
information subsystem and a smart communication subsystem that
all work together to deliver desirable outcomes such as improved
adaptability, longevity and efficiency of services provided to
consumers and businesses (Guizani and Anan, 2014).

In the context of a global, knowledge-driven economy, the term
‘smart infrastructure’ is often used to represent three strategic
elements, namely, individual knowledge, intellectual property and
social networking; the mixture of which determines the competitive
advantage for becoming the leader in an organisation or an industry
(Raluca, 2013). Similarly, Lee and Gibson (2002) relate smart
infrastructure to talent, technology, capital and know-how that
combine to strongly influence the development and sustainability of
the world’s leading technopoles (see also Gibson and Stiles (2000)).

In addition, there is a trend in the literature to define smart
infrastructure as a transitioning process
‘dumbness’ to a state of ‘intelligence’. In this context, a dumb
infrastructure is not able to communicate, adapt to changing needs
and connect to a larger network, whereas a smart infrastructure
can improve performance by responding purposefully to changes
in its environment, including demands from users as well as from
other assets (Royal Academy of Engineering, 2012; Weiss, 2009).
According to Kadam (2013), a smart infrastructure is an existing
infrastructure that has been transitioned to a regime of major,
positive changes in infrastructure service delivery due to the
adoption of technological innovations.

from a state of

From that perspective, the key issue is to link a degree of innovation
with a level of smartness. Without this relationship, there is a risk to
define loosely smart infrastructure as any association of technology
with physical infrastructure. For example, using information and
communication technologies (ICTs) to help with the management of
power distribution assets or the maintenance of bridges and tunnels is

often tagged as a ‘smart’ deployment without more scrutiny (Alusi et
al., 2011; Fujii et al., 2013). More recently, Liu et al. (2014) specify
that ICT solutions have to be ubiquitous in nature (e.g. cloud
computing and the Internet of things) in order to qualify as smart
infrastructure. Other technologies associated with smart infrastructure
include building information modelling, geographic information
systems, artificial intelligence (Al) (including machine learning) and
enabling technologies such as optic fibre, wireless sensor networks or
low-power microelectromechanical systems (Memss) that facilitate
real-time data acquisition and processing (Liu and Tomizuka, 2003).
According to Engineers Australia (2015), a specific feature of smart
infrastructure systems is the continuous collection of a large volume
of information to be analysed and fed back into the system’s
operation to improve performance.

At the most basic level, a smart infrastructure can be defined as an
interconnected sensing network that provides real-time digital
information about the state of the system (Morimoto, 2010). This
definition of smart infrastructure focuses on the self-monitoring
ability of the system through the combination of physical assets and
digital technology (Balakrishna, 2012; Shahzadi et al., 2013;
Stefansson and Lumsden, 2008). In this context, digital technologies
are used to acquire data that are then processed, stored and delivered
in the form of reliable and actionable information to aid
infrastructure providers in making informed decisions about the
management of their infrastructure assets (Hagen, 2011). Cambridge
Centre for Smart Infrastructure and Construction (CSIC, 2016a: p. 2)
defines smart infrastructure as ‘the result of combining physical
infrastructure  with digital infrastructure, providing improved
information to enable better decision making, faster and cheaper’.
Some authors use the word ‘digital’ interchangeably with the word
‘cyber’; hence, it is common to represent smart infrastructures as
cyberphysical systems (Annaswamy et al., 2016; Dillon et al., 2011).

Self-awareness constitutes the next level of smartness, whereby an
infrastructure system uses monitoring information in order to
respond to changing conditions (El-Diraby, 2003; El-Diraby and
Rasic, 2004) or report back on its internal structural and material
health (Burgy and Garrett, 2002). More recently, Annaswamy et
al. (2016) proposed a bolder definition wherein a smart
infrastructure has the ability to self-govern or to make decisions
without human interventions. More precisely, the authors define a
smart infrastructure as one that is able to monitor itself,
communicate and, most importantly, self-govern. In practice, this
infrastructure initiates its own condition-based maintenance in
order to limit time and reduce operational overheads. Similarly,
CSIC (2016b: p. 9) describes a smart infrastructure as one that
‘has the ability to influence and direct its own use, maintenance
and support by responding intelligently to changes in its
environment’. But how much control should be given to an
infrastructure in order to satisfy the smartness criteria?

2.2 Intelligent against smart infrastructure
There is a lot of confusion as to how the term ‘smart’ is different
from ‘intelligent’ when used to describe physical assets such as
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buildings or utility networks (Buckman et al., 2014). The authors’
literature review indicates that intelligent infrastructure (Aktan et
al., 1998; Gershenfeld et al., 2010; Le et al., 2015; Wu and
Fujino, 2005) and smart infrastructure (Feng et al., 1995; Hoult et
al., 2009; Klar et al., 2016) have both been actively researched
for many decades. While Negrete-Martinez (2008) arbitrarily
argues that intelligent systems are those with the greatest degree
of smartness, as it is the case for smart infrastructure, there is no
consensual definition of an intelligent infrastructure either (Aktan
et al., 1998).

According to Dadashi et al. (2011), intelligence in the context of
physical assets refers to timely decision support that helps human
operators to achieve safer, more reliable, relevant and efficient
outcomes; an intelligent infrastructure is the architecture that enables
the emergence of such intelligence. Similarly, Prasad and Ruggieri
(2014) note that intelligent infrastructure is all about capturing and
analysing data in order to drive efficiency through autonomic
responses. One of the oldest and yet most comprehensive definitions
of intelligent infrastructure was proposed by Aktan et al. (1998:
p. 675): an integrated package of physical infrastructure and a
sensor-based monitoring system (with control and communication
functions) that has the ability to ‘(a) sense its loading environment,
as well as its own responses and any ongoing deterioration and
damage; (b) reason by assessing its condition, health, capacity and
performance needs and the actual performance that is being
delivered; (c) communicate through proper interfaces with other
components and systems, including human managers; (d) learn from
experience as well as by interfacing with humans for heuristic and

mechanistic knowledge; (e) decide and take action for alerting
officials, diverting users, structural control, self-repair, closure’.

Comparing these definitions with those presented in Section 2.1,
the distinction between intelligent and smart infrastructure has not
become clearer. For this reason, some authors maintain that in the
context of describing physical assets, the terms ‘smart’ and
‘intelligent’ connote the same meaning and can therefore be used
interchangeably (Fang et al., 2012; Kadam, 2013). A Google
Scholar search on the academic usage of the terms ‘intelligent
infrastructure’ and ‘smart infrastructure’ has produced the results
shown in Table 1 and Figure 1. Results indicate that both terms

Table 1. Academic usage of the terms ‘smart infrastructure’ and
‘intelligent infrastructure’ from Google Scholar search engine

Number of articles Number of articles

Period using ‘intelligent using ‘smart
infrastructure’ infrastructure’
Prior to 2000 157 77
2000-2001 119 23
2002-2003 325 64
2004-2005 440 78
2006-2007 651 115
2008-2009 706 180
2010-2011 889 379
2012-2013 1070 617
2014-2015 1070 1020
2016-2017* 456 642
Total 5883 3195

* Still within first quarter of the year.

—&—Intelligent infrastructure
—fl- Smart infrastructure

90

80
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Figure 1. Academic usage of the terms ‘smart infrastructure’ and ‘intelligent infrastructure’ (in %). * Still within first quarter of the year.
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have been used over the last few decades, with intelligent
infrastructure used more frequently (5883 instances against 3195
for smart infrastructure). However, Figure 1 clearly shows a sharp
increase in the use of ‘smart infrastructure’ from 2008 to 2009,
overtaking the term ‘intelligent infrastructure’ in 2014-2015. One
obvious reason for this shift is the frequent association of recent
technological innovation with the word ‘smart’ during that period
(e.g. smart metering, smartphone, smart television, smart home
and — naturally — smart city). This confusing mix between
technological innovation, marketing strategies and vernacular
language had already reached paroxysmal heights with the release
of the first iMac 10 years earlier (1998) and its endless list of
derivatives, clones and emulators (iPhone, iPod, iSee or even i30).
The ‘1’ in iMac never meant ‘intelligent’; it stood for ‘Internet,
individual, inform, instruct and inspire’. Ironically, Hyundai’s ‘1’
now stands for ‘inspiration, intelligence and innovation’.

In the context of the building industry, Buckman ez al. (2014)
attempt to differentiate between terminologies by arguing that built
structures have progressed from being primitive to simple, then
automated, then intelligent and finally smart. According to this
typology, primitive structures are ordinary physical constructions
without any controls; simple structures have controls that are
operated manually; automated structures have controls that are
operated automatically from a central location; intelligent
structures have controls that are operated automatically, with
additional sensor-enhanced capability to adjust operations to suit
user needs in real time; while smart structures are simply
intelligent structures that provide a broader range of automated
services that can scale gracefully to better adapt to both user and
environmental conditions (Hoy, 2016). In other words, the main
distinction is that, unlike intelligent structures that are reactive in
exercising their control functions, smart structures are more

adaptive, better able to handle issues of fragmentation and
interoperability in the use of information and robust enough to
dynamically adjust its built form to accommodate changes in use
as well as environmental conditions (Buckman et al, 2014).
Henceforth, developing intelligent buildings will focus on
increasing their self-monitoring and data acquisition capacity, as
well as their ability to transform the acquired data into timely,
accurate and relevant information for human operators. Developing
smart buildings will aim at increasing their autonomous ability to
apply acquired and processed data to adaptive improvement of
their (energy) efficiency, safety and reliability even as their usage
and environmental conditions change. Obviously, an intelligent
building can be retrofitted and upgraded to become a smart one.

2.3 LVP framework for smart infrastructure

The proposed LVP framework refers to levels (L), values (V) and
principles (P). The LVP framework aims to provide a formal and
replicable typology to classify, compare and benchmark smart
infrastructure initiatives. This is particularly important considering
that the technologies on which smart infrastructures are built are
constantly changing and what was accepted as a smart system a
decade ago may no longer satisfy the conditions of today’s
standards (Buckman er al., 2014). Hence, as technological
innovations and societal demands keep pushing the limits of what
is acceptable as a smart system, the LVP framework will provide
a common reference point for gauging stakeholders’ expectations
in smart infrastructure initiatives and how that may be changing
over time (Buckman et al., 2014). In other words, significant
changes to LVPs of smart infrastructure will provide an indication
of how stakeholders’ expectations are initially shaped and how
they evolve with technological innovations and societal demands.
A diagrammatic representation of the LVP framework is shown
in Figure 2.

and service quality

1 | ! |
I - - | | |
| Deaswon—makm_g based I | |Acquire data
| |on sensor data is I I Analyse data (real time) |
| |autonomous and near | ; Smart | Maintain feedback loop| |
| real time | infrastructure | Design for adaptability | |
Fo——————— t——————— == Ff———- F———————— |
| |Decision-making based | | | )
| |on sensor data can be I el I |
| |autonomous or | ntelligent or I [ Acquire data |
I facilitated by human . sfem\smart Argl se data (real time) |
| operator, often in near : infrastructure : y |
real time |
e I I [T
| | | i
. Semi-intelligent ) |
| Decision-making based | infrastruct%re | | Acquire data |
: on sensor data is often | | | | Analyse data (delayed) | -,
delayed until future | |
| applictations by human || | I
| |operators | | |
I— ———————— 4 - - -
|
| . Values m |
| ° Self-monitoring and accuracy in decision-making; efficiency and cost savings; 2
| § reliability; security, safety and resilience; user interaction and empowerment; g |
| sustainability; redundancy minimisation; response time; low carbon footprint; £ |
| |
|

Figure 2. Diagrammatic representation of the LVP framework
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2.3.1 Levels of smart infrastructure

The Royal Academy of Engineering (2012) noted that smart
infrastructure can be defined according to the level of control
given to the smart infrastructure (or, conversely, the degree of
human involvement in the decision-making process).

(a) Semi-intelligent infrastructure: This is an infrastructure that
collects and logs data about its own usage, structural
performance, environmental conditions and so on without any
ability to make decisions based on the acquired data (Royal
Academy of Engineering, 2012). Often, the acquired data are
used in the future to improve efficiency and other desirable
infrastructure outcomes (Royal Academy of Engineering, 2012).
Intelligent or semismart infrastructure: This is an
infrastructure that collects and processes the data into real-
time actionable information, which is then used by itself or a

b

~

human operator in making optimal decisions (Royal Academy
of Engineering, 2012). An example of a semismart or
intelligent infrastructure is the traffic system that detects road
congestion and consequently informs drivers, who may then
take appropriate decisions accordingly (Royal Academy of
Engineering, 2012).

(¢) Smart infrastructure: This is an infrastructure that collects
data; processes the data; and takes appropriate actions in a
manner that is completely autonomous, dynamic and most
importantly adaptive to changing conditions. It is common to
find smart grids, smart buildings and smart civil infrastructure
falling into this category (Elmenreich and Egarter, 2012).

2.3.2 Values of smart infrastructure

Based on relevant references from the authors’ literature review
(e.g. Annaswamy et al. (2016), Fang et al. (2012), Hagen (2011),
Morimoto (2010)), the values that drive a smart infrastructure
initiative are synthesised as follows.

(a) Self-monitoring and accuracy in decision making: This
involves the ability to self-monitor internal structural and
material health as well as environmental and usage conditions
in order to improve the accuracy and timeliness of decision
making (e.g. predictive maintenance, self-initiation of
condition-based maintenance and autodetection of specific
faulty parts, thereby avoiding unnecessary ground digging).

(b) Efficiency and cost savings: This entails reducing operational
overhead and saving costs by accomplishing more with less.

(c) Reliability: This involves minimising down-time, service
failure or disruption.

(d) Security, safety and resilience: This involves maintaining
adaptive processes and designs that keep infrastructure and its
users safe, secure and resilient to both manmade and natural
hazards.

(e) User interaction and empowerment: This involves improving
user experience and providing services that are adaptive to the
changing needs of consumers.

(f) Sustainability: This involves optimising decision making to
ensure sustainable use of resources.

(g) Redundancy minimisation: This involves minimising redundant
components in the system, thereby saving energy cost and
making more resources available for other important purposes.

(h) Response time: This involves early detection and response to
time-critical events such as failures, external threats and
urgent preventative maintenance.

(i) Low carbon dioxide footprint (‘carbon footprint’): This entails
minimising greenhouse gas (GHG) emissions and energy
consumption.

(/) Service quality: This entails improving the quality and range of
services provided by an infrastructure in order to attain better
quality of life, social outcomes and economic productivity.

2.3.3 Principles of smart infrastructure

Certain basic principles nourish the design and construction of
smart infrastructure (Royal Academy of Engineering, 2012).
Without following these principles, which are outlined in the
following, it is difficult to implement a smart infrastructure project.

(a) Acquire data: According to the Royal Academy of Engineering
(2012), data are at the heart of all smart technology. To
implement a smart infrastructure initiative, a process for
acquiring data must be put in place, often times through the use
of sensors. It is the acquired data that eventually form the basis
for improved decision making (Fang ef al., 2012).

(b) Analyse data: Once acquired, data must be processed,
interpreted and transformed into an actionable format for
optimised decision making with machine learning algorithms
(Royal Academy of Engineering, 2012).

(c) Maintain feedback loop: A distinguishing characteristic of a
smart infrastructure is its adaptive feature, which must be
preserved by maintaining a feedback loop wherein acquired
information about the infrastructure usage, performance and
environmental conditions are constantly being used to
optimise operational efficiency (Fang et al., 2012; Royal
Academy of Engineering, 2012).

(d) Design for adaptability: In designing a smart infrastructure,
adaptive capabilities must be built into the physical and digital
components of the system in order to allow for real-time
reconfiguration and adjustment to varying demands and
environmental conditions (Annaswamy et al., 2016; Royal
Academy of Engineering, 2012).

Extending from the discussions so far, a comprehensive definition
of smart infrastructure is presented in the following.

Smart infrastructure can be defined as an infrastructure that integrates
digital technology and (@) delivers the values of self-monitoring and
accuracy in decision making; efficiency and cost savings; reliability;
security, safety and resilience; user interaction and empowerment;
sustainability; redundancy minimisation; fast response time; low
carbon footprint; and service quality; () functions based on the
principles of data acquisition, data analysis, maintenance of feedback
loop and design for adaptability; and (c) operates at higher levels from
semi-intelligent infrastructures and intelligent/semismart infrastructure.
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3. Multidisciplinary approach to smart
infrastructure

Smart infrastructure is a fast-burgeoning industry, and its many
dimensions as synthesised from literature indicate that a
multidisciplinary approach will be required going forward. Since
the last decade, the industry has gained significantly from academic
research mainly focusing on installation of monitoring sensor
networks in large-scale infrastructure systems such as bridges, rail
tunnels, highways and water-supply pipelines (Bennett er al.,
2010a; 2010b; Cheung et al., 2010; Hoult et al., 2009; Kim et al.,
2007; Stajano et al., 2010; Stoianov et al., 2007). While these
high-performing digital retrofit solutions have been mainly
accomplished by teams of (civil and structural) engineers, broad-
ranging impacts and accelerated progress in the smart infrastructure
industry will depend on the adoption of multidisciplinary
perspectives in future work. For example, data fusion researchers
will play a crucial role in providing the techniques and designs that
are most appropriate for integrating disparate data from multiple
sensor nodes in order to present infrastructure operators with
consistent, accurate and useful information for improving decision
making (El-Diraby, 2003). Urban planning experts and researchers
can contribute to the design of smart infrastructure, often
considered a key component of smart city, in such a manner as to
complement fully other elements of a smart city, such as smart
operation, smart service and smart industry (Hao et al., 2012).

This multidisciplinary nature of smart infrastructure research is
becoming more evident (Chu et al., 2012). Researchers outside the
field of civil and structural engineering have begun to make
interesting contributions by proposing ontologies, generic models and
technical requirements for designing smart infrastructures (Chu ef al.,
2012; SpieB et al., 2007). Discussing from a technical viewpoint, Liu
and Tomizuka (2003) noted that collaborative research focusing on
smart infrastructure will require expert inputs from a wide range of
disciplines, including Al, structural engineering,
communication, computer science, manufacturing, network systems,
automation and control engineering, power electronics and Memss.
More specifically, this multidisciplinary technical team would need to
work closely together to put forward cost-effective designs that
address several constraints militating against the realisation of the
values and principles of smart infrastructure, discussed in Section 2.3.
These constraints include network connectivity issues, fault tolerance,
mismatch between the lifetime of embedded sensors and those of the
actual physical infrastructure, scalability, accessibility, hardware
limitations, optimal network topology or configuration, signal-to-
noise enhancement, self-recalibration and reconfiguration of sensors,
short-term and long-term monitoring needs, durable packaging and
fabrication, timely and comprehensive presentation of data to
decision makers and the maximisation of the time between battery
replacements as specified by industry standards (Hosni and Hamdi,
2016; Hoult ef al., 2009; Liu and Tomizuka, 2003; Royal Academy
of Engineering, 2012).

wireless

Moreover, at the intersection of smart infrastructure and energy,
there are strong grounds for multidisciplinary research. For example,

economists could contribute to understand the degree to which the
use of smart infrastructure (e.g. smart grids) can elasticise
consumers’ demand to better match the supply of electrical energy
(Weiss, 2009). With countries now putting smart
infrastructure at the core of their energy policies, multidisciplinary
research is needed to understand how the investment and
construction of smart infrastructure such as smart grids impacts
national policies and vice versa (Budde, 2014). Similarly, in an era
where smart infrastructure is fast becoming a keystone for achieving
energy efficiency, there is a greater need to work with
environmental researchers in an effort to attain cleaner and greener
environment, while also maximising opportunities for countries to
meet their emission reduction goals (Clements et al., 2010). Clearly,
the importance of achieving a low carbon footprint, being one of
values of smart infrastructure, cannot be overemphasised. According
to Smarr (2010), a worldwide effort in replacing traditional urban
infrastructure with smart infrastructure can potentially achieve a
reduction in global GHG emissions of up to 15% by 2020.

several

Furthermore, with the world getting increasingly instrumented and
interconnected, and smart infrastructure becoming the basis for
nations, regions and cities to compete for economic activities, there
is a need for greater participation from the business community in
the co-development of business models to take full advantage of
the global opportunities in this burgeoning industry that is worth
£2-4-8 trillion (CSIC, 2016a; Jackson, 2009; Xu, 2012). One
pressing issue, though, that is limiting commercial investment in
smart infrastructure is the challenge of putting forward a strong
business case with robust cost-benefit analysis covering the entire
asset life cycle and justifiable with financial data from real-world
case studies (CSIC, 2016a). In any case, the issue remains that the
payback for investing in smart infrastructure is not always clear-
cut (Royal Academy of Engineering, 2012). Accurately monetising
the benefits that smart infrastructure provides to citizens and the
society at large, in terms of improving quality of life, social
outcomes, economic productivity, environmental outcomes, cost
savings and government services is an increasingly complex task
(Sanseverino et al., 2015). Unfortunately, traditional methods of
proving return on investment fail to adequately account for the
complexity of infrastructure systems, particularly over the asset
lifetime, which could be as long as 50-100 years (Royal Academy
of Engineering, 2012). To address this issue, the Royal Academy
of Engineering (2012) emphasised the need to work together and
integrate ideas from multidisciplinary perspectives in order to
develop new ways of measuring value in smart infrastructure,
possibly triggering changes to industry structure. The task of
measuring the values of smart infrastructure, discussed in Section
2.3.2, can be daunting. Fresh insights could build on existing
contributions such as the analysis put forward by Morimoto (2013)
that involves the use of Monte Carlo simulation to understand the
socio-economic impact of applying smart infrastructure sensor
technology to the British rail tunnel industry. The study found that
the estimated average value of the cumulative net present value for
embarking on such investment is US$40 million until the year
2056 (Morimoto, 2013).
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Also, with growing concerns and reports about cyberattacks on smart
grids, there is never a better time to maximise the skills of security
experts when designing smart infrastructures (Weiss, 2009). These
smart infrastructures are increasingly becoming digitally sophisticated
and highly reliant on computerised controls that are exploitable by
hackers who want to cause service disruption or system compromise
(Weiss, 2009). The huge cost, political influence and bureaucratic
processes often associated with state investment in smart
infrastructure also means that these infrastructures are built-in phases
over a long period of time, even as technology is rapidly changing
(Weiss, 2009). The direct result is the emergence of a heterogeneous
patchwork of interconnected and interdependent infrastructure
systems, with many local- and regional-level utility providers (Weiss,
2009). This situation complicates the task of securing smart urban
infrastructure because of the need to satisty interoperable technologies
and to ensure all infrastructure providers meet the same minimum set
of security standards (Weiss, 2009). Cybersecurity practitioners and
researchers can contribute to understand these issues better.

In addition, these security specialists can provide the needed
expertise to understand the unique and constantly evolving
vulnerabilities in smart infrastructure networks (e.g. Stuxnet, Flame
and other malware) so that security and resilience can be built into
systems in a manner that allows for future upgrades (Royal Academy
of Engineering, 2012). Security, safety and resilience together form
one of the values of smart infrastructure, previously discussed in
Section 2.3.2. Annaswamy et al. (2016) emphasised the need for
more effort in achieving this value, stating that the cyberphysical
security of smart infrastructures is still very much at an early stage of
research. CSIC (2016a) added that improved security is one of the
pressing issues that need to be addressed to enable the smart
infrastructure industry to forge ahead. Importantly, control systems in
smart infrastructure require specific cybersecurity technologies
(Amin, 2010). According to Amin (2010: p. 2), ‘the cyber security
technologies developed for internet applications such as firewalls and
intrusion detection systems may not perform as expected for control
systems’. Cybersecurity should therefore be properly tailored and
captured as functional rather than as non-functional requirements
when designing such cyber-dependent smart infrastructures (Bayuk
and Mostashari, 2011). In furtherance to the work of Bayuk and
Mostashari (2011) on customising security metrics for smart
infrastructure, there is a need to establish consistent and replicable
industry guidelines for comparatively assessing different aspects of
the security of smart urban infrastructure. The aforementioned tasks
will require the expertise of cybersecurity professionals and
researchers, further adding a new dimension to the multidisciplinary
nature of constructing and maintaining smart infrastructure.

Smart infrastructure and associated safety issues form another reason
to advocate for a multidisciplinary approach in designing such
autonomous machines. No doubt, smart infrastructure is great in
delivering desirable societal outcomes, but past events have shown
that there is often a safety risk that may materialise down the track
when human intelligence, often subject to mistakes, is offloaded into
circuitry and when machines are allowed to take control of decision

making (Weiss, 2009). According to Weiss (2009), the Washington,
DC, metro train crash that killed nine commuters on 23 June 2009
and the Air France commercial jet crash that claimed all 228 lives
on-board are two high-profile examples of safety issues associated
with heavy reliance on computerised control. But who should be
blamed for such errors in decisions made by so-called smart
machines? What level of autonomy or control should be given to
smart infrastructures that are used by humans and in what
circumstances? These issues are of immense concern to society and
transcend the technical boundaries of engineers responsible for
designing and constructing smart infrastructures. The design of
autonomous infrastructure systems should therefore be subjected to
multidisciplinary scrutiny, having several dimensions including
safety, privacy, legal, ethical and moral views.

Importantly, smart infrastructures have unique and profound ethics
concerns. Smart infrastructures provide important services and
goods to many different stakeholders and users, all of which hold
different value perspectives (Aldewereld ez al., 2015). At the same
time, the design and construction of these infrastructures is an
exercise that is relatively invisible to those affected by them;
therefore, the values built into the systems are often not explicitly
formulated nor evaluated (Manders-Huits and van den Hoven,
2009). Smart infrastructures aim to integrate solutions that
simultaneously integrate values such as privacy, sustainability,
efficiency and safety. However, in the not-so-ideal world people
live in, there are many instances in which these value commitments
can simply not all be satisfied at the same time, leading to ‘moral
overload” (Van den Hoven et al., 2012). This means that thinking in
an early stage of smart infrastructure design about relevant social
and moral values, and the weaving of those into the intelligence
fabrics or self-awareness of smart infrastructures, is an important
step in satisfying the growing expectations of infrastructure
stakeholders as well as regulatory requirements. Just recently, the
EU adopted the General Data Protection Regulation, which might
possibly include a ‘right to an explanation’ for algorithmic
decisions made by machines when the regulation eventually takes
effect as law across the EU in 2018 (Goodman and Flaxman,
2016). This demand for efficient, transparent and fair algorithm
designs will potentially force engineers responsible for constructing
smart urban infrastructure systems to treat their products not just as
mere technical artefacts, but as ethical, moral machines that require
multidisciplinary coordination between technical and philosophical
resources of the highest calibre (Goodman and Flaxman, 2016).

4. Conclusion

The term ‘smart infrastructure’ has been used severally within
different contexts in the literature, in many cases without a proper
definition. This creates ambiguity, fragmentation and confusion that
is unhealthy for research progress. Drawing primarily from
academic and grey literature, this study has provided a
comprehensive account of what it means for an infrastructure to be
smart and how that is different from an intelligent infrastructure.
Importantly, the paper introduces the LVPs of smart infrastructure
to help create shared meaning and expectation from smart
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infrastructure initiatives. Finally, the multidisciplinary dimensions
of smart infrastructure were discussed, with a clear direction on
areas in which other professions can contribute. It is hoped that by
eliminating ambiguity, fragmentation and the lack of clarity in the
definition of smart infrastructure, this paper will facilitate
accelerated progress in research and practice.
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