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The problem of ensuring high temperature stability of parameters by reason of the characteristic 
features inherent in the integral performance becomes especially urgent for microminiature 
electronic devices. For the mathematical description of the electronic devices’ temperature error 
it is proposed to use the method of experiment’s statistical planning in combination with regression 
analysis. There are classes of electrical circuits in which the output parameter depends mainly on 
one-parameter electrical radio elements. In the article it is shown that the problem of obtaining the 
temperature error equation for such electrical circuits can be reduced to the problem of effective 
finding of the one-parameter electro radio elements’ influence coefficients. A modification of the 
Monte Carlo statistical method with the computational factor experiment’s scenario to find the 
temperature error equation is considered. Approbation of the proposed modification is carried 
out using the example of the electric circuit of the generator with the Wien bridge.
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Численный метод Монте-Карло  
в задаче анализа температурной стабильности  
электронных средств

Д.В. Озеркина, С.А. Русановскийб

аТомский государственный университет систем управления  
и радиоэлектроники 

Россия, 634050, Томск, пр. Ленина, 40 
бАО «НПЦ «Полюс» 

Россия, 634050, Томск, пр. Кирова, 56 в

Для микроминиатюрных электронных средств особенно актуальной становится задача 
обеспечения высокой температурной стабильности параметров в связи с характерными 
особенностями, присущими интегральному исполнению. Для математического описания 
температурной погрешности электронных средств предлагается использование 
метода статистического планирования эксперимента в сочетании с регрессионным 
анализом. Существуют классы электрических схем, в которых выходной параметр 
зависит в основном от однопараметрических электрорадиоизделий. В статье 
показано, что задачу получения уравнения температурной погрешности для таких 
электрических схем можно свести к задаче эффективного нахождения коэффициентов 
влияния ai однопараметрических электрорадиоизделий. Рассмотрена модификация 
статистического метода Монте-Карло по сценарию вычислительного факторного 
эксперимента для нахождения уравнения температурной погрешности. Проведена 
апробация предложенной модификации на примере электрической схемы генератора с 
мостом Вина.

Ключевые слова: электронное средство, электрорадиоизделия, температурная 
стабильность, схемотехнический симулятор, SPICE-модель, факторный эксперимент, 
статистический метод Монте-Карло, регрессионный анализ, уравнение температурной 
погрешности.

Introduction

A significant place in the modern electronic devices’ (ED) design is the task of ensuring the 
temperature stability of ED parameters under both external (environment) and internal (heat generation 
in electrical radio elements) thermal effects. The new element base and constructive material use, 
the new technological operation implementation lead to an essential reduction in the ED mass and 
volume. In general it affects the operational, design, technological and economic indicators positively. 
At the same time, for microminiature ED, the problem of ensuring parameters’ high temperature 
stability becomes especially urgent, due to the characteristic features inherent in the integral design: 
the increase in the specific dissipated power of electrical radio elements (ERE), the mutual parameter 
correlation, the heat transfer complex mechanism, etc.

The earliest domestic publication on the ED thermal stability is work [1]. The book provides 
a detailed error analysis arising in the ED production process. Based on analysis, the book authors 
propose a technique for calculating the radioelectronic equipment tolerances. The technique involves 
a combine use of the electrical tolerance theory, probability theory and mathematical statistics. As an 
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approbation of the proposed methodology, the book authors give estimates of tolerances for several 
typical electrical circuits operating in a continuous and pulsed mode. The direct current electrical 
circuits are considered separately.

In a later paper [2], the calculating tolerance technique proposed in [1] was found to be 
a logical extension. The technique served to form the ED mechanical and electrical tolerance 
theory. The global mathematical model in this theory is the relative error equation of N ED output 
parameter:
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the analytical dependence of N ED output parameter versus the ERE parameters. 

Further development of the ED electric tolerance theory with reference to external and 

internal temperature influences was found in [3]. The author proposed an effective method for 

finding the Bi influence coefficients of the temperature error equation (1). The essence of the 

method is the use of experimental statistical planning in combination with regression analysis. In 

this case the global mathematical model is the regression equation: 
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where n – statistical evaluation of N ED output parameter; b0, bi, bij, bii – are the empirical 

coefficients of the regression equation. 

The regression equation (2) makes it possible to estimate both linear and nonlinear 

interactions, depending on the experimental plan. 

In the same paper [3] it was shown that for multiparameter ERE it is expedient to make a 

variation not by individual parameters but directly affect i-th element by temperature. If during 
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The practical use of the temperature error equation (3) was demonstrated in [4, 5]. In 

particular, a regression analysis of the electronic circuit temperature stability was developed using 

computer circuit simulators, such as Cadence OrCAD and Spectrum Software MicroCAP. 
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ERE operating temperature in the factor experiment is not always justified. There are electrical 

circuit classes in which N ED output parameter depends on one-parameter ERE (resistors, 
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where Δqi = (qi – qi0) – is the variation interval (step) of i-th ERE parameter. 

Applying the differentiation operation to (4) for each qi factor, we obtain the temperature 

error equation according to [2]: 
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The practical use of the temperature error equation (3) was demonstrated in [4, 5]. In particular, a 
regression analysis of the electronic circuit temperature stability was developed using computer circuit 
simulators, such as Cadence OrCAD and Spectrum Software MicroCAP.
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Problem statement

According to the investigation results in [4, 5] it was established that the variation in the ERE 
operating temperature in the factor experiment is not always justified. There are electrical circuit classes 
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each such ERE. There is no need to take into account the temperature dependence of the interrelated 
(correlated) parameter complex within one ERE. Based on this, equation (1) takes the form:
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where ai – is the influence coefficient of i-th ERE thermal dependent parameter; bi – regression 

coefficient; αi – maximum temperature coefficient value of the variable parameter; ΔTi – working 

temperature changing of i-th ERE. 

Thus, the problem of obtaining equation (7) can be reduced to the problem of efficiently 

finding the ai coefficients for electronic devices, at that temperature function of the N output 

parameter depends primarily on one-parameter electro radio elements. 

Research theory part 

The aim of the research is to improve the system design method of the thermostable ED with 

the numerical Monte Carlo method. 

A common  method of electrical circuits’ statistical analysis is the Monte Carlo method (the 

statistical test method) [6]. At the same time, the use of this method as applied to the study of the 

ED temperature stability generates two main problems: 

1. Search or synthesis of ERE mathematical models by criterion of adequacy of parameters’ 

temperature dependences to their real characteristics. 

2. Monte Carlo method realization according to the factor experiment scenario in order to 

justify minimization of the statistical test number. 

The complexity of first problem solving is due to the fact that there are practically no 

adequate ERE mathematical models with parameters’ temperature dependences applied to the 

domestic element base. Separate attempts to create such models have been undertaken in [7, 8]. 

This article focuses on solving the second problem – the implementation of the numerical Monte 

Carlo method in the problem of analyzing the ED’s temperature stability.  

The calculation block diagram using the Monte Carlo method (Fig. 1) includes the basic 

procedures:  

1. Random Q vector realization, i.e. generation of qi component parameters’ random values 

in accordance with their distribution laws. 
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where ai – is the influence coefficient of i-th ERE thermal dependent parameter; bi – regression 
coefficient; αi – maximum temperature coefficient value of the variable parameter; ∆Ti – working 
temperature changing of i-th ERE.

Thus, the problem of obtaining equation (7) can be reduced to the problem of efficiently finding 
the ai coefficients for electronic devices, at that temperature function of the N output parameter depends 
primarily on one-parameter electro radio elements.

Research theory part

The aim of the research is to improve the system design method of the thermostable ED with the 
numerical Monte Carlo method.
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A common method of electrical circuits’ statistical analysis is the Monte Carlo method (the 
statistical test method) [6]. At the same time, the use of this method as applied to the study of the ED 
temperature stability generates two main problems:

1. Search or synthesis of ERE mathematical models by criterion of adequacy of parameters’ 
temperature dependences to their real characteristics.

2. Monte Carlo method realization according to the factor experiment scenario in order to justify 
minimization of the statistical test number.

The complexity of first problem solving is due to the fact that there are practically no adequate 
ERE mathematical models with parameters’ temperature dependences applied to the domestic element 
base. Separate attempts to create such models have been undertaken in [7, 8]. This article focuses on 
solving the second problem – the implementation of the numerical Monte Carlo method in the problem 
of analyzing the ED’s temperature stability. 

The calculation block diagram using the Monte Carlo method (Fig. 1) includes the basic 
procedures: 

1. Random Q vector realization, i.e. generation of qi component parameters’ random values  in 
accordance with their distribution laws.

2. A single-variant analysis of the electrical circuit with the obtained random Q vector 
realization.

3. Calculation of the target V function’s value in order to establish the ED output parameter.
4. Pre-set repetition of procedures No. 1, 2, 3, corresponding to the total test’s number.
5. Statistical processing of the all tests’ results.
Approaches in the implementation of No. 1, 3, 5 procedures are specific for the numerical 

Monte Carlo method in the problem of analyzing the ED’s temperature stability. Let us consider this 
implementation in more detail.

It is known [9] that for single-parameter ERE (resistors, capacitors, inductors), the temperature 
coefficient characterizes reversible changes in the q parameter with a change in temperature. The 
parameter’s temperature coefficient (PTC) αq – is its relative change with temperature change by 
1 °С:

temperature. The parameter’s temperature coefficient  (PTC) αq – is its relative change with 

temperature change by 1 °С: 

dT
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qq
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=α . 

With a parameter’s linear temperature dependence, which is usually observed in a narrow 

range of ambient temperatures, the PTC calculates as: 
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where q(T), q(T0) – is the parameter’s value, respectively, at an increased (decreased) operating 

temperature T and at a normal temperature T0. 

If the q(T) dependence is nonlinear, then the parameter’s temperature stability can be 

characterized by a relative change in the δq parameter: 
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Let i-th ERE of the electrical circuit have a functional qij parameters’ set  (Seti vector): 

Seti = {qi1, qi2, qi3, …}. 

From the position of the temperature stability investigation of i-th ERE, each functional 

parameter is a temperature function. Consequently, Seti is also a vector function versus temperature: 

Seti(T) = {qi1(T), qi2(T), qi3(T), …}. 

In the special case of one-parameter ERE (elements with one pronounced functional 

parameter), the vector function degenerates into a one parameter’s function versus temperature: 

Seti(T) = {qi(T)} ⇒ qi(T).       (8) 

The T temperature, inherent in i-th one-parameter ERE under both external and internal 

thermal effects, is probability value. Suppose that the probability T value for i-th ERE is subject to 

the normal distribution law: 
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where f(T) – is the probability density function of the random T value; T0 – is the normal 

temperature; σ –  is the standard deviation of the random T value. 

Define a certain range of operating temperatures for i-th ERE: [Tmin, Tmax]. According to 

the factor experiment scenario [5], the operating T temperature of  i-th ERE can be equiprobably 

near the point T0min and T0max estimates. Then the sum of the probability density functions of a 

random T value is a bimodal distribution’s density function:  
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where f(T) – is the probability density function of the random T value; T0 – is the normal 

temperature; σ –  is the standard deviation of the random T value. 
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where f(T) – is the probability density function of the random T value; T0 – is the normal 

temperature; σ –  is the standard deviation of the random T value. 

Define a certain range of operating temperatures for i-th ERE: [Tmin, Tmax]. According to 

the factor experiment scenario [5], the operating T temperature of  i-th ERE can be equiprobably 

near the point T0min and T0max estimates. Then the sum of the probability density functions of a 

random T value is a bimodal distribution’s density function:  

 



– 517 –

Denis V. Ozerkin and Sergey A. Rusanovskiy. Monte Carlo Numerical Method in the Problem of Temperature Stability…

Fig. 1. Block diagram of the computational experiment realization for finding the coefficients of the temperature 
error equation 

2. A single-variant analysis of the electrical circuit with the obtained random Q vector 

realization. 

3. Calculation of the target V function’s value in order to establish the ED output parameter. 

4. Pre-set repetition of procedures No. 1, 2, 3, corresponding to the total test’s number. 

5. Statistical processing of the all tests’ results. 

 
Fig. 1. Block diagram of the computational experiment realization for finding the coefficients of the 
temperature error equation  

 

Approaches in the implementation of No. 1, 3, 5 procedures are specific for the numerical 

Monte Carlo method in the problem of analyzing the ED’s temperature stability. Let us consider 

this implementation in more detail. 

It is known [9] that for single-parameter ERE (resistors, capacitors, inductors), the 

temperature coefficient characterizes reversible changes in the q parameter with a change in 

Let i-th ERE of the electrical circuit have a functional qij parameters’ set (Seti vector):

Seti = {qi1, qi2, qi3, …}. 

From the position of the temperature stability investigation of i-th ERE, each functional parameter 
is a temperature function. Consequently, Seti is also a vector function versus temperature:

Seti(T) = {qi1(T), qi2(T), qi3(T), …}. 

In the special case of one-parameter ERE (elements with one pronounced functional parameter), 
the vector function degenerates into a one parameter’s function versus temperature:
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Seti(T) = {qi(T)} → qi(T).  (8)

The T temperature, inherent in i-th one-parameter ERE under both external and internal thermal 
effects, is probability value. Suppose that the probability T value for i-th ERE is subject to the normal 
distribution law:

temperature. The parameter’s temperature coefficient  (PTC) αq – is its relative change with 

temperature change by 1 °С: 
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where f(T) – is the probability density function of the random T value; T0 – is the normal 

temperature; σ –  is the standard deviation of the random T value. 

Define a certain range of operating temperatures for i-th ERE: [Tmin, Tmax]. According to 

the factor experiment scenario [5], the operating T temperature of  i-th ERE can be equiprobably 

near the point T0min and T0max estimates. Then the sum of the probability density functions of a 

random T value is a bimodal distribution’s density function:  
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where norm – is the normalizing coefficient; Tmin and Tmax – random values of operating 

temperatures at the given range’s boundaries; σmin and σmax – are the corresponding Tmin and Tmax 
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where m = 2n. 

Statistical processing of the computational experiment is aimed at finding the coefficients’ 

regression. We introduce an auxiliary K matrix with m × (n+1) dimension containing the code 

values of variable factors’ levels: 

1...11
............
1...11
1...11

−
−−

=K . 

The zero matrix column (leftmost) contains unit values and is intended to calculate the free 

term of the regression equation:  

m
b

><⋅
=

0
0

KVT
.           (9) 

The remaining columns of the K matrix (from 1 to n) serve to calculate the coefficients’ 

regression of the corresponding factor: 

m
b

><⋅
=

1
1

KVT
; …; 

m
b

n
n

><⋅
=

KVT
.           (10) 

The factors’ non-linear interaction in the computational experiment can be taken into 

account by adding columns with the code realization of the qiqj, qiqjqk, … factors. It is obvious that 

the nonlinear interaction study will lead to an increase in the dimension of the K matrix to: 

m × (n+1+p), 

where p – is the number of factors’ nonlinear interactions. 

To find the temperature error equation (7), it is necessary to recalculate the bi coefficients’ 

regression in the ai influence coefficients of the thermally dependent parameter of  i-th ERE: 
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where 0
iq  – the zero level of the variable parameter of i-th ERE; Δqi – the variation interval of the 

0
iq value. 
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value.

Research experiment part

The object of experimental research is the electric circuit of the harmonic oscillations’ generator 
with the Wien bridge (Fig. 4). The generator uses VD1 and VD2 zener diodes to limit the output signal. 
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The circuit is characterized by a harmonic distortion coefficient in the range 1 ... 5 % [10]. To generate 
oscillations in the generator, the Barkhausen criterion must be complied: the phase shift of 180 ° occurs 
in the feedback loop; the total gain in the loop is not less than one.

In the circiut R2 = R4 = R and C1 = C2 = C. Consequently, the theoretical quasi-resonance 
frequency is:
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Table 1. SPICE model list used in the Wien bridge modeling 

No. SPICE model name Origin source 

1 Thin film chip resistor Р1-8МП “SPICE-model development of Russian-made electronic 
component base’s library” report 

2 Chip capacitor for surface mounting  
К10-17В

“SPICE-model development of Russian-made electronic 
component base’s library” report 

3 Silicon zener КС156А r-diod.lib library, part of the Spectrum Sofware 
MicroCAP simulator (Russian localized version) [13] 

4 Medium accuracy operational amplifier 
К153УД6

r-opamp2.lib library part of the Spectrum Sofware 
MicroCAP simulator (Russian localized version) [13]

ОСК10-17В-М47-63пФ±5% В ОЖ0.460.107 ТУ; 

- for R2, R4 apply 

ОСМ Р1-8МП-0,5-10кОм±0,1%-0,5-М-А-ОЖ0.467.164 ТУ. 

According to [11, 12], the resistance temperature coefficient of the resistors’ types is αR = 

±100·10−6 C−1; the capacitance temperature coefficient of the capacitors’ types is αC = −47·10−6 C−1.  
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In the nominal mode (no parameters’ variation), the simulation of the generator's circuit with 

the Wien bridge was carried out in the OrCAD PSpice simulator [14]. The result were harmonic 

oscillations of f = 10 kHz frequency and Um = 3V amplitude (Fig. 5). 
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In the nominal mode (no parameters’ variation), the simulation of the generator’s circuit with the 
Wien bridge was carried out in the OrCAD PSpice simulator [14]. The result were harmonic oscillations 
of f = 10 kHz frequency and Um = 3V amplitude (Fig. 5).

To accurately fix the f and Um numerical values the PSpice Probe graphic postprocessor two target 
functions are formed:

1/Period(V(DA1:OUT));  

Max(V(DA1:OUT)), 

where Period – is the target function template for finding the oscillation period [14]; Max – is the target 
function template for finding the oscillation amplitude [14]; V (DA1: OUT) – is the target functions’ 
argument, denoting the potential at the OUT output of the DA1 operational amplifier (and the whole 
circuit).

The main characteristics of the computational experiment plan are given in Tables 2, 3, 4. Note 
that the capacitor types used have a linear capacitance temperature coefficient (M47) over the entire 
operating temperature range [12]. The resistor type has a non-linear resistance temperature coefficient 
(M) [11], however, due to the small temperature range in the computational experiment (±10 °C), 
it is permissible to use a linear dependence. Thus, during computational experiment planning the 
parameter’s temperature dependence was used for all variable ERE:
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N(T) = N0(1 ± TCN·∆T), 

where N0 – is the nominal parameter value; TCN – is the parameter’s temperature coefficient;  
∆T = ±10 °C – variation interval temperature.

Based on the results of the computational experiment planning, the relative deviation (DEV) of 
the ERE’s scale parameter is found necessary for the Monte Carlo statistical tests (the penultimate 
column): 

.MODEL K10-17 CAP (C=1 DEV=0.047 %); 

.MODEL R1-8 RES (R=1 DEV=0.1 %). 

Table 4. Variation levels for R2, R4 (x4, x5 factor)
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Absolute 
resistance 

value 
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deviation
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Capacitor 
operating 

temperature  
T, °C 

Absolute 
capacity 

value 
СABS, nF 

Temperature 
variation 

interval ΔТ, 
°С 

Capacity 
absolute 
deviation 
ΔС, nF 

Capacity 
relative 

deviation 
%100

ABS
⋅

С
СΔ  

C scale 
factor 

deviation 
 for the 
SPICE 
model  

Top 
level 37 63,02961 +10 +0,02961 +0,047 1,00047 

Zero 
level 27 63 0 0 0 1 

Bottom 
level 17 62,97039 −10 −0,02961 −0,047 0,99953 

 
Table 4. Variation levels for R2, R4 (x4, x5 factor) 

 
Resistor 
operating 

temperature  
T, °C 

Absolute 
resistance 

value 
RABS, Ohm 

Temperature 
variation 

interval ΔТ, 
°С 

Resistance 
absolute 
deviation 
ΔR, Ohm 

Resistance 
relative 

deviation 

%100
АBS

⋅
R

RΔ
 

R scale 
factor 

deviation 
 for the 
SPICE 
model  

C scale factor 
deviation  

for the SPICE 
model 

Top level 37 63,02961 +10 +0,02961 +0,047 1,00047

Zero level 27 63 0 0 0 1

Bottom level 17 62,97039 −10 −0,02961 −0,047 0,99953
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Multivariate analysis of the electrical circuit (Fig. 4) using the Monte Carlo method is carried out 
in the OrCAD PSpice simulator. The circuit simulation parameters (Fig. 6, 7) are: 

- run to time: ∆t = 4 ms;
- start saving data after: tbeg = 3 ms;
- skip the direct current analysis;
- output variable – output voltage of the op-amp: UOUT = V(DA1:OUT);
- test number by the Monte Carlo method: MC = 100;
- name of the random variables’ distribution law: BiModal;
- random number seed: No = 1;
- coordinates of the normalized bimodal distribution law: (–1,1) (–0.99,1) (−1,1) (−0.99,1) (−0.99,0) 

(0.99,0) (0.99,1) (1,1).
The result of the multivariate analysis is the family of harmonic oscillations originally. However, 

such a graphical representation is inconvenient for perception and quantitative analysis. The noted 
deficiency is easily eliminated. The functionality of the PSpice Probe graphical postprocessor makes 
it possible to present the values of the target function (12) in a table form in each of the statistical tests 
(Fig. 8).

a                                                    b                                                    c 

Fig. 6. Modeling parameters: a – time domain analysis parameters, b – Monte Carlo analysis parameters, c – bi-
modal distribution parameters

Top 
level 37 10 010 +10 +10 +0,1 1,001 

Zero 
level 27 10 000 0 0 0 1 

Bottom 
level 17 9 990 −10 −10 −0,1 0,999 

 

Based on the results of the computational experiment planning, the relative deviation (DEV) 

of the ERE’s scale parameter is found necessary for the Monte Carlo statistical tests (the 

penultimate column):  

.MODEL K10-17 CAP (C=1 DEV=0.047%); 

.MODEL R1-8 RES (R=1 DEV=0.1%). 
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parameters, c – bimodal distribution parameters 
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The result of the multivariate analysis is the family of harmonic oscillations originally. 

However, such a graphical representation is inconvenient for perception and quantitative analysis. 

The noted deficiency is easily eliminated. The functionality of the PSpice Probe graphical 

postprocessor makes it possible to present the values of the target function (12) in a table form in 

each of the statistical tests (Fig. 8). 

 
Fig. 8. Table of Monte Carlo test results 

 

Each of the statistical test’s results  (Fig. 8) should be compared with a specific combination 

of variable factors. The essence of the comparison lies in the comparative analysis of the output text 

file (Fig. 9, a) generated by OrCAD PSpice, and the information presented in the implementation 

matrix of the computational experiment (Fig. 9, b, c). 

For example, in a text file, a fragment with test No. 87 was found, with the following 

combination of ERE parameters:  

С1 = 9,9953Е-01; С2 = 9,9953Е-01; С3 = 9,9953Е-01; 

R2 = 9,9900E-01; R4 = 9,9900E-01. 

According to Table 2, 3, 4 it is easy to establish that the code values of the factor 

combination looks like: 

С1 = −1; С2 = −1; С3 = −1; R2 = −1; R4 = −1. 

Therefore, the test  No. 87 and the target function value f = 10,02792 kHz, found from the 

table in Fig. 8, will correspond to the combination (−1 −1 −1 −1 −1) in the computational 

experiment implementation matrix. 

The orthogonality of the implementation matrix’s columns (Figure 9, c) allows us to 

determine the regression coefficients according to (9) and (10): 

b0 = 10,014·103; b1 = 0,00146·103 (С1); b2 = –0,00587·103 (С2);  

b3 = –0,00046·103 (С3); b4 = –0,01248·103 (R2); b5 = 0,00312·103 (R4). 

Consequently, the linear polynomial has the form: 

f = (10,014+0,00146q1– 0,00587q2 –0,00046q3 –0,01248q4 +0,00312q5)·103.      (12) 

Using the obtained linear polynomial (12), we calculate the theoretical value of the output fТ 

parameter in each experiment, and then find the sum of the difference squares between the 

experimental and theoretical values of the output parameter. The total sum of difference squares of 

values for a linear polynomial is Δf 2 = 4,96·10−8·103. Taking into account the small value of Δf 2, 

we can consider (12) to be an adequate regression model. 

Fig. 8. Table of Monte Carlo test results
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Each of the statistical test’s results (Fig. 8) should be compared with a specific combination of 
variable factors. The essence of the comparison lies in the comparative analysis of the output text file 
(Fig. 9, a) generated by OrCAD PSpice, and the information presented in the implementation matrix of 
the computational experiment (Fig. 9, b, c).

For example, in a text file, a fragment with test No. 87 was found, with the following combination 
of ERE parameters: 

С1 = 9,9953Е-01; С2 = 9,9953Е-01; С3 = 9,9953Е-01; 
R2 = 9,9900E-01; R4 = 9,9900E-01.

According to Table 2, 3, 4 it is easy to establish that the code values of the factor combination 
looks like:

С1 = −1; С2 = −1; С3 = −1; R2 = −1; R4 = −1. 

Therefore, the test No. 87 and the target function value f = 10,02792 kHz, found from the table 
in Fig. 8, will correspond to the combination (−1 −1 −1 −1 −1) in the computational experiment 
implementation matrix.

The orthogonality of the implementation matrix’s columns (Fig. 9, c) allows us to determine the 
regression coefficients according to (9) and (10):

b0 = 10,014·103; b1 = 0,00146·103 (С1); b2 = –0,00587·103 (С2);  
b3 = –0,00046·103 (С3); b4 = –0,01248·103 (R2); b5 = 0,00312·103 (R4).

Consequently, the linear polynomial has the form:

f = (10,014+0,00146q1– 0,00587q2 –0,00046q3 –0,01248q4 +0,00312q5)·103. (12)

Using the obtained linear polynomial (12), we calculate the theoretical value of the output fТ 
parameter in each experiment, and then find the sum of the difference squares between the experimental 
and theoretical values of the output parameter. The total sum of difference squares of values for a linear 
polynomial is ∆f 2 = 4,96·10−8·103. Taking into account the small value of ∆f 2, we can consider (12) to 
be an adequate regression model.

According to (11), the coefficients of the temperature error equation are determined:

a1 = 0,311 (С1); a2 = –1,247 (С2);  
a3 = –0,097 (С3); a4 = –1,247 (R2); a5 = 0,312 (R4).

The temperature error equation in accordance with (7) will be:

  
a 

 
b 

 
c 

Fig. 9. The simulation results and the experiment planning matrix comparison: a – fragment of the 
output file with random values of the Monte Carlo factors, b – fragment of the experiment 
implementation matrix in code values, c – fragment of the experiment realization matrix in the 
values of the scale factor deviation 
 

According to (11), the coefficients of the temperature error equation are determined: 

a1 = 0,311 (С1); a2 = –1,247 (С2);  

a3 = –0,097 (С3); a4 = –1,247 (R2); a5 = 0,312 (R4). 

The temperature error equation in accordance with (7) will be: 
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Research results 

Analysis (13) allows us to state: 

- the temperature error of the generation frequency mainly depends on the temperature 

instability of the four ERE: C1 and C2capacitors, R2 and R4 resistors; 

 (13)

Research results

Analysis (13) allows us to state:
– the temperature error of the generation frequency mainly depends on the temperature instability 

of the four ERE: C1 and C2capacitors, R2 and R4 resistors;
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– the linear polynomial (12) is recognized as an adequate regression model of the investigated 
process;

– to ensure a given temperature stability of the generator, three solutions are possible: the use of 
highly stable C1, C2, C3, R2, R4; partial temperature compensation of C1-C2 and R2-R4 pairs; 
thermostating R4.

Conclusions

1. A modification of the numerical Monte Carlo method for analyzing the temperature stability of 
electronic circuits is proposed. 

2. The problem of finding the influence coefficients of the temperature error equation for the one-
parameter ERE’s case was solved.

3. The obtained temperature error equation of the generator with the Wien bridge (13) allows 
quantitatively and qualitatively to formulate the requirements for ensuring a given temperature stability 
of the device both at the stage of circuitry and at the stage of topological design. 
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