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s MUKDOMUHUAMIOPHBIX DJIEKIMPOHHBIX CPEOCME 0COOEHHO AKMYQIbHOU CMAHOSUMCS 3a0aud
obecneyenus 6blCOKOU MeMNePAMypHOU CIMAOUILHOCIU NAPAMEMPO8 8 CE53U C XAPAKMEePHbIMU
ocobeHnoCcmAMU, NPUCYUUMU UHIMESPATbHOMY UCHOIHEHUIO. []Nsl MameMamuyecko2o OnUCaHusl
memMnepamypHot NoZPpewHoOCmuy NeKMPOHHbIX CpedCme npeonazaemcs UCHOAb308aAHUE
Memooa Cmamucmuyecko2o NAAHUPOBAHUSL IKCHEPUMEHMA 8 COYEeMAaHUU C pecpecCUOHHbIM
ananuzom. Cywecmeyiom KIACChl INEKMPUUECKUX CXeM, 8 KOMOPbIX GblXOOHOU napamemp
3aeucum 6 OCHOGHOM OmM OOHONAPAMEMPUYECKUx 3iexmpopaououszdeiui. B cmamve
NOKA3aHO, YMO 3a0ayy NOJNY4eHUs YPAGHeHUs MeMNnepamypHol NocpewHoCmuy O MAaKux
INEKMPULECKUX CXEM MOICHO C8eCmuU K 3a0aue 3 GekmugHoco Haxoxicoenus Kodphuyuenmos
BAUAHUSL 4; OOHONAPAMEMPUYECKUX Inexmpopaououzoeiruti. Paccmompena moougurayus
cmamucmuyuecko2o memooa Moume-Kapro no cyenapuro GulMUCIUMENbHO20 HAKMOPHO20
IKCnepuMenma O HAX0XCOeHUsl YpasHeHus memnepamyphou nozpewrnocmu. IIpogedena
anpobayus npeodroNHCeHHOU MOOUPUKAYUU HA npUMepe INeKMPUYECKOl CXeMbl 2eHepamopa ¢
Mmocmom Buna.

Kawuegvie cnosa: anexkmponHoe  cpedcmeo,  1eKmMpopaouousdenus,  memMnepamypHas
cmabunrvHocms, cxemomexuuueckutli cumyaamop, SPICE-moodens, ¢axmopHbuili 3KCnepumenm,
cmamucmuyeckuii memoo Moume-Kapno, peepeccuonnviii ananus, ypagHerue memnepamypHol
noSpewHOCmu.

Introduction

A significant place in the modern electronic devices’ (ED) design is the task of ensuring the
temperature stability of ED parameters under both external (environment) and internal (heat generation
in electrical radio elements) thermal effects. The new element base and constructive material use,
the new technological operation implementation lead to an essential reduction in the ED mass and
volume. In general it affects the operational, design, technological and economic indicators positively.
At the same time, for microminiature ED, the problem of ensuring parameters’ high temperature
stability becomes especially urgent, due to the characteristic features inherent in the integral design:
the increase in the specific dissipated power of electrical radio elements (ERE), the mutual parameter
correlation, the heat transfer complex mechanism, etc.

The earliest domestic publication on the ED thermal stability is work [1]. The book provides
a detailed error analysis arising in the ED production process. Based on analysis, the book authors
propose a technique for calculating the radioelectronic equipment tolerances. The technique involves

a combine use of the electrical tolerance theory, probability theory and mathematical statistics. As an
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approbation of the proposed methodology, the book authors give estimates of tolerances for several
typical electrical circuits operating in a continuous and pulsed mode. The direct current electrical
circuits are considered separately.

In a later paper [2], the calculating tolerance technique proposed in [1] was found to be
a logical extension. The technique served to form the ED mechanical and electrical tolerance

theory. The global mathematical model in this theory is the relative error equation of N ED output

parameter:

AN & 00;(q1,q25---s ;

AN _ Z[ 0i(q1,925-+4n) gi az} AT o
where 00(91:92 - 4n) 9i = B; — are the influence coefficients; a; — is the temperature

0q 0(41-92 > 9n)

coefficient of i-th ERE parameter; AT — is the difference between the ERE operating temperature
and the ambient temperature; ¢q,, ¢», ..., ¢, — are ERE parameters; ¢(q,, ¢3, ..., ¢,) — is the analytical
dependence of N ED output parameter versus the ERE parameters.

Further development of the ED electric tolerance theory with reference to external and internal
temperature influences was found in [3]. The author proposed an effective method for finding the
B; influence coefficients of the temperature error equation (1). The essence of the method is the use
of experimental statistical planning in combination with regression analysis. In this case the global

mathematical model is the regression equation:

k k k
2
”=b0+zbi61i+Zbij%q]“"zbiiqi +... 2
i=1 i<j i=1

where n — statistical evaluation of N ED output parameter; b,, b;, b;, b; — are the empirical coefficients
of the regression equation.

The regression equation (2) makes it possible to estimate both linear and nonlinear interactions,
depending on the experimental plan.

In the same paper [3] it was shown that for multiparameter ERE it is expedient to make a variation
not by individual parameters but directly affect i-th element by temperature. If during statistical data
processing we additionally normalize the regression coefficients in (2), then we obtain the temperature

error equation:

n non AT; AT;
t
Nou =24 T +ZZ% G T La., (©)
out =] 1 i=lj=1 L

0 _ s the influence coefficient of the i-th ERE; T, — is the nominal temperature (zero

where a; = T b
90

variation level); AT —is the temperature variation interval, AT _ relative change in the ERE operating
temperature. i

The practical use of the temperature error equation (3) was demonstrated in [4, 5]. In particular, a
regression analysis of the electronic circuit temperature stability was developed using computer circuit

simulators, such as Cadence OrCAD and Spectrum Software MicroCAP.
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Problem statement

According to the investigation results in [4, 5] it was established that the variation in the ERE
operating temperature in the factor experiment is not always justified. There are electrical circuit classes
in which N ED output parameter depends on one-parameter ERE (resistors, capacitors, inductors)
mainly. Therefore, when carrying out a factor experiment it is sufficient to vary by one parameter for
each such ERE. There is no need to take into account the temperature dependence of the interrelated

(correlated) parameter complex within one ERE. Based on this, equation (1) takes the form:

AN=H[5<P1'(611‘) gi
N Ol %4 9i(4;)

The difference in the experiment planning course lies in another mechanism for obtaining a

ocl}AT _ @)

normalization factor:
9 — i

QZ = > Qi:ila (5)
‘Qi — i

where Ag; = (¢; — i) — is the variation interval (step) of i-th ERE parameter.
Applying the differentiation operation to (4) for each ¢, factor, we obtain the temperature error

equation according to [2]:

AN k k k
7= ZAiOLqi + ZAZ'J'(Xq[Oqu + ZAH(Oqu.)z + ... |AT, (6)
i=1 i<j i=1
2
oN qjo . . . . 0°N 4i04j0 .
where 4; = FLII0 s the influence coefficient of linear terms; 4;; = 27 s the mixed
dg; No 9909 No
second-order influence factor characterizing the (i-j) pair factor interaction on the output parameter;
2 2
0°N ¢; . .
i = z—ql—o — second-order influence coefficient.
07q; No

In the final form, the temperature error equation for one-parameter ERE is:

ANout n n n
—= ZaiaiATi + Z ZaijaiajATl-ATj + ..., @)
Nout 5 i=1j=1

where a; — is the influence coefficient of i-th ERE thermal dependent parameter; b, — regression
coefficient; a; — maximum temperature coefficient value of the variable parameter; A7, — working
temperature changing of i-th ERE.

Thus, the problem of obtaining equation (7) can be reduced to the problem of efficiently finding
the a; coefficients for electronic devices, at that temperature function of the N output parameter depends

primarily on one-parameter electro radio elements.

Research theory part

The aim of the research is to improve the system design method of the thermostable ED with the

numerical Monte Carlo method.
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A common method of electrical circuits’ statistical analysis is the Monte Carlo method (the
statistical test method) [6]. At the same time, the use of this method as applied to the study of the ED
temperature stability generates two main problems:

1. Search or synthesis of ERE mathematical models by criterion of adequacy of parameters’
temperature dependences to their real characteristics.

2. Monte Carlo method realization according to the factor experiment scenario in order to justify
minimization of the statistical test number.

The complexity of first problem solving is due to the fact that there are practically no adequate
ERE mathematical models with parameters’ temperature dependences applied to the domestic element
base. Separate attempts to create such models have been undertaken in [7, 8]. This article focuses on
solving the second problem — the implementation of the numerical Monte Carlo method in the problem
of analyzing the ED’s temperature stability.

The calculation block diagram using the Monte Carlo method (Fig. 1) includes the basic
procedures:

1. Random Q vector realization, i.e. generation of g; component parameters’ random values in
accordance with their distribution laws.

2. A single-variant analysis of the electrical circuit with the obtained random Q vector
realization.

3. Calculation of the target } function’s value in order to establish the ED output parameter.

4. Pre-set repetition of procedures No. 1, 2, 3, corresponding to the total test’s number.

5. Statistical processing of the all tests’ results.

Approaches in the implementation of No. 1, 3, 5 procedures are specific for the numerical
Monte Carlo method in the problem of analyzing the ED’s temperature stability. Let us consider this
implementation in more detail.

It is known [9] that for single-parameter ERE (resistors, capacitors, inductors), the temperature
coefficient characterizes reversible changes in the g parameter with a change in temperature. The
parameter’s temperature coefficient (PTC) a, — is its relative change with temperature change by
1°C:

1d
oy = ;7;1"'
With a parameter’s linear temperature dependence, which is usually observed in a narrow range

of ambient temperatures, the PTC calculates as:

_ 4(1)-4(10)
T4 Xr-10)°
where ¢(T), q(T;) — is the parameter’s value, respectively, at an increased (decreased) operating
temperature 7 and at a normal temperature 7.
Ifthe g(T') dependence is nonlinear, then the parameter’s temperature stability can be characterized

by a relative change in the 6 parameter:

_dM)=d®) o

%= q(Tp)
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R — specified tests’
number
I:=1 (current
test’s number)

)
L~

Realization of the random value
vector of the ERE parameters
Q={gq1.42. ... 42}

A one-variant computati onal
experiment for a random set Q

Value calculation of the target 7
function according to the test
result [

[-=1+1 (increment of the current
test’s number)

¥
Stati stical processing of
computational experiment results

.

Coefficients’ output of the /
temperature error equation \

Fig. 1. Block diagram of the computational experiment realization for finding the coefficients of the temperature
error equation

Let i-th ERE of the electrical circuit have a functional g, parameters’ set (Set; vector):

Set; = {qi1, 912, @3> ---}-

From the position of the temperature stability investigation of i-th ERE, each functional parameter

is a temperature function. Consequently, Set; is also a vector function versus temperature:

Set(T) = {gu(T), q(T), g(T), ...}

In the special case of one-parameter ERE (elements with one pronounced functional parameter),

the vector function degenerates into a one parameter’s function versus temperature:
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Set(T) = {q(T); — q«T). (©)
The T temperature, inherent in i-th one-parameter ERE under both external and internal thermal
effects, is probability value. Suppose that the probability 7 value for i-th ERE is subject to the normal

distribution law:

2
0=z -2E |

where f(T') — is the probability density function of the random 7 value; T; — is the normal temperature;
o — is the standard deviation of the random 7 value.

Define a certain range of operating temperatures for i-th ERE: [Tmin, Tmax]. According to the
factor experiment scenario [5], the operating 7 temperature of i-th ERE can be equiprobably near the
point Ty, and T, estimates. Then the sum of the probability density functions of a random 7 value

is a bimodal distribution’s density function:

norm normy 27 | Smin 20311 in Omax

bi(T)= S Tinin)+ /(Gnax) 1 1 ex[{_ (Tmin—TOmin)z} . 1 ex[{— (Tmax_TOmax)2:| ’

26max

where norm — is the normalizing coefficient; 7., and T,,, — random values of operating temperatures
at the given range’s boundaries; 6., and 6., — are the corresponding T.;, and T, standard
deviations.

Obviously, the computational factor experiment, in contrast to the real experiment, allows us to
specify the variation levels’ values with high accuracy in each experiment realization. Consequently,
under the conditions of the computational factorial experiment: (G, = Ome) — 0. This effect is
graphically shown in Fig. 2. The bimodal distribution’s density function can be written more
simply:

bi(r)=— exp{_ (Tmm-To)z} + exp{_ (Tmax-To)z}
norm - G~/2m 262 202

The limiting case, when ¢ = 0, allows us to introduce the discrete random T value’s notion, i.e.

operating temperature of i-th ERE, taking only the Tj;, and Tj,., values. The discrete random 7 value

is determined by the Bi(T) distribution function analytically:

—
—

0.5

Distribution density
=
>
——
Distribution density

L
:
g

0]
:l..rr_uiu T T in T
[emperature, °C lemperature, °C

a b
Fig. 2. The bimodal distribution’s density function of the random 7 value: a — (c # 0) case, b — (¢ — 0) case
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Oe(_w;Tmin] ;
Bi(T)= O’Se(Tmin;Tmax] >
1€(Tmax ;+oo).

The graphical form of the Bi(T') distribution function is shown in Fig. 3.

As aresult, for i-th ERE function (8), the definition domain consists of only two values:

qi(T)= qz’{Tmm}-

Tax
The ¢(T) function is, in its turn, one of the parameters for the ED’s relative error equation (4).

Therefore, as applied to equation (4), the admissible parameters for i-th ERE are:

min

_ )4

= max
q

The computational experiment factors’ area is the set of all g;:

-

min

max

qn

N

where 7 — is the factor number, i.e. the one-parameter ERE number are varied in the experiment.
Under the conditions of realization of the computational factor experiment, a V vector will be
obtained. The V vector’s element is represented by the 0; function of the ED’s one-variant test, which

contains a unique (non-repetitive) ¢; value’s combination:

g o
= i
(] I
= i
= I
£05 | s
= 1
E 1
= 1
= I
2 0

Tmiu Tn]ux

Temperature, °C
Fig. 3. The distribution function of a discrete random 7 value
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P

"=01(0.0....05) = 91(q{m“aq§““,--~,q2““) ;

v =12=02(01.0:...0,)= Oz(q?la",qin‘“,---,q,?‘m) ;

Vin = em(leQ2s~-->Qn)= em(qlmax,qglax,m’qznax) >

L

where m = 2".
Statistical processing of the computational experiment is aimed at finding the coefficients’
regression. We introduce an auxiliary K matrix with m % (n+1) dimension containing the code values

of variable factors’ levels:

1 -1 ... -1

1 -1 ... 1
K=

1 1 ... 1

The zero matrix column (leftmost) contains unit values and is intended to calculate the free term

of the regression equation:

_ vT.g<0>

by = ©)

m
The remaining columns of the K matrix (from 1 to #) serve to calculate the coefficients’ regression

of the corresponding factor:

T <> T <n>
V' K V' K
b= b= ————.

m m

(10)

The factors’ non-linear interaction in the computational experiment can be taken into account by
adding columns with the code realization of the g.9;, ¢.q;q:, ... factors. It is obvious that the nonlinear

interaction study will lead to an increase in the dimension of the K matrix to:

m x (n+l+p),

where p — is the number of factors’ nonlinear interactions.
To find the temperature error equation (7), it is necessary to recalculate the b; coefficients’

regression in the a; influence coefficients of the thermally dependent parameter of i-th ERE:

0
b: - q;
ai — 1 ql , (11)
Agj by

where q,Q — the zero level of the variable parameter of i-th ERE; Ag; — the variation interval of the q,O

value.

Research experiment part

The object of experimental research is the electric circuit of the harmonic oscillations’ generator

with the Wien bridge (Fig. 4). The generator uses VD1 and VD2 zener diodes to limit the output signal.
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| Rl R3 RG Vil
10 10x 3w KC156A
Gl
ji =4 V2
15,03 Eeia =
L == KL 56/
FC g B3 KC156A
DAl
{24 T
K153¥]l6 GB2 |
15
C2 B4
1000 10k
cl [|R2

1008 7 10k

Fig. 4. Wien bridge circuit

The circuit is characterized by a harmonic distortion coefficient in the range 1 ... 5 % [10]. To generate
oscillations in the generator, the Barkhausen criterion must be complied: the phase shift of 180 ° occurs
in the feedback loop; the total gain in the loop is not less than one.

In the circiut R2 = R4 = R and Cl = C2 = C. Consequently, the theoretical quasi-resonance

frequency is:

1 1
21RC 2g.10% 1077

=15923 Hz.

Using the frequency correction circuit (DA1, C3), the oscillation frequency is reduced to 10 kHz.

The aim of the research experiment part is to find the temperature error equation (7) for a generator
. . . , . o . Af .
with a Wien bridge. The ED’s output parameter is the relative instability — of the generation frequency.

One-parameter ERE, most influencing the output parameter, are: C1, C2, C3, R2, R4.

The generator element base with the Wien bridge consists of four ERE types and four corresponding
SPICE models (Table 1). For carrying out the computational experiment, the following ERE types are
specified:

- for C1, C2 apply

OCK10-17B-M47-11®+5 % B 0XK0.460.107 TV,
- for C3 apply
OCK10-17B-M47-63nd+5 % B 0X0.460.107 TV;
- for R2, R4 apply
OCM P1-8MII-0,5-10k0Om+0,1 %-0,5-M-A-0X0.467.164 TV.

According to [11, 12], the resistance temperature coefficient of the resistors’ types is

ar =+100-10"° C'; the capacitance temperature coefficient of the capacitors’ types is a.=—471076 C..
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Table 1. SPICE model list used in the Wien bridge modeling

No. SPICE model name Origin source
I | Thin film chip resistor P1-8MTT SPICE-model CEeV.elopmSnt of Russian-made electronic
component base’s library” report
) Chip capacitor for surface mounting “SPICE-model development of Russian-made electronic
K10-17B component base’s library” report
.. r-diod.lib library, part of the Spectrum Sofware
3 |Silicon zener KC156A MicroCAP simulator (Russian localized version) [13]
4 Medium accuracy operational amplifier r-opamp?2.lib library part of the Spectrum Sofware
K153V /16 MicroCAP simulator (Russian localized version) [13]
4
¥
-
é 0
2
-2
-4
3 3.2 id 36 3.8 4,0
I'ime, ms

Fig. 5. Oscillation generation in the nominal mode (f= 10 kHz, U,, = 3V)

In the nominal mode (no parameters’ variation), the simulation of the generator’s circuit with the
Wien bridge was carried out in the OrCAD PSpice simulator [14]. The result were harmonic oscillations
of =10 kHz frequency and U,, = 3V amplitude (Fig. 5).

To accurately fix the fand U,, numerical values the PSpice Probe graphic postprocessor two target
functions are formed:

1/Period(V(DA1:0UT));
Max(V(DA1:0UT)),

where Period — is the target function template for finding the oscillation period [14]; Max — is the target
function template for finding the oscillation amplitude [14]; V (DAL: OUT) — is the target functions’
argument, denoting the potential at the OUT output of the DA1 operational amplifier (and the whole
circuit).

The main characteristics of the computational experiment plan are given in Tables 2, 3, 4. Note
that the capacitor types used have a linear capacitance temperature coefficient (M47) over the entire
operating temperature range [12]. The resistor type has a non-linear resistance temperature coefficient
(M) [11], however, due to the small temperature range in the computational experiment (=10 °C),
it is permissible to use a linear dependence. Thus, during computational experiment planning the

parameter’s temperature dependence was used for all variable ERE:
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N(T) = Ny(1 + TCN'AT),

where N, — is the nominal parameter value; 7CN — is the parameter’s temperature coefficient;

AT = +10 °C — variation interval temperature.

Based on the results of the computational experiment planning, the relative deviation (DEV) of

the ERE’s scale parameter is found necessary for the Monte Carlo statistical tests (the penultimate

column):

.MODEL K10-17 CAP (C=1 DEV=0.047 %);

.MODEL R1-8 RES (R=1 DEV=0.1 %).

Table 2. Variation levels for C1, C2 (x1, x2 factors)

. . Capacity
Capac1.tor Absolute Temp.era'lture Capacity relative C scal'e factor
operating . variation absolute o deviation
capacity value . . deviation
temperature C F interval deviation AC for the SPICE
T,°C Ass 1 AT, °C AC,nF | o 100% | model
ABS
Top level 37 1,00047 +10 +0,00047 +0,047 1,00047
Zero level 27 1 0 0 0 1
Bottom level 17 0,99953 -10 —0,00047 —0,047 0,99953
Table 3. Variation levels for C3 (x3 factor)
. . Capacity
CapaC{tor Absolute Tempergture Capacity relative C scal.e factor
operating . variation absolute deviati deviation
capacity value . . eviation
temperature Cooo nF interval deviation AC for the SPICE
T,°C ABS AT, °C AC, nF -100% model
CaBs
Top level 37 63,02961 +10 +0,02961 +0,047 1,00047
Zero level 27 63 0 0 0 1
Bottom level 17 62,97039 -10 —0,02961 —0,047 0,99953
Table 4. Variation levels for R2, R4 (x4, x5 factor)
] . Resistance
Resistor Absolute Temperature | Resistance relative R scale factor
operating resistance variation absolute deviation deviation
temperature value interval deviation AR for the SPICE
T,°C Rgs, Ohm AT, °C AR, Ohm -100% model
RaBs
Top level 37 10 010 +10 +10 +0,1 1,001
Zero level 27 10 000 0 0 0 1
Bottom level 17 9990 -10 -10 -0,1 0,999
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Multivariate analysis of the electrical circuit (Fig. 4) using the Monte Carlo method is carried out

in the OrCAD PSpice simulator. The circuit simulation parameters (Fig. 6, 7) are:

- run to time: At =4 ms;

- start saving data after: #,., = 3 ms;

- skip the direct current analysis;

- output variable — output voltage of the op-amp: Ugyr = V(DA1:OUT);
- test number by the Monte Carlo method: MC = 100;

- name of the random variables’ distribution law: BiModal,

- random number seed: No = 1,
- coordinates of the normalized bimodal distribution law: (-1,1) (—=0.99,1) (-1,1) (—0.99,1) (=0.99,0)

(0.99,0) (0.99,1) (L,1).

The result of the multivariate analysis is the family of harmonic oscillations originally. However,

such a graphical representation is inconvenient for perception and quantitative analysis. The noted

deficiency is easily eliminated. The functionality of the PSpice Probe graphical postprocessor makes

it possible to present the values of the target function (12) in a table form in each of the statistical tests

(Fig. 8).
Fours 5 b dm secondi [TSTOF)
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Fig. 6. Modeling parameters: a — time domain analysis parameters, b — Monte Carlo analysis parameters, ¢ — bi-
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Each of the statistical test’s results (Fig. 8) should be compared with a specific combination of
variable factors. The essence of the comparison lies in the comparative analysis of the output text file
(Fig. 9, a) generated by OrCAD PSpice, and the information presented in the implementation matrix of
the computational experiment (Fig. 9, b, c).

For example, in a text file, a fragment with test No. 87 was found, with the following combination

of ERE parameters:

Cl =9,9953E-01; C2 = 9,9953E-01; C3 = 9,9953E-01;
R2 =9,9900E-01; R4 = 9,9900E-01.

According to Table 2, 3, 4 it is easy to establish that the code values of the factor combination
looks like:

Cl=-1;C2=-1;C3=-1; R2=-1; R4 =—1.

Therefore, the test No. 87 and the target function value /= 10,02792 kHz, found from the table
in Fig. 8, will correspond to the combination (—1 —1 —1 —1 —1) in the computational experiment
implementation matrix.

The orthogonality of the implementation matrix’s columns (Fig. 9, ¢) allows us to determine the

regression coefficients according to (9) and (10):

by = 10,014'10% b, = 0,00146:10° (C1); b> = —0,00587-10° (C2);
by = —0,00046'10° (C3); by = —0,01248-10° (R2); bs = 0,00312-10° (R4).

Consequently, the linear polynomial has the form:
f=1(10,014+0,00146¢,— 0,00587¢, —0,000464; —0,012484, +0,00312¢5)'10°>.  (12)

Using the obtained linear polynomial (12), we calculate the theoretical value of the output f;
parameter in each experiment, and then find the sum of the difference squares between the experimental
and theoretical values of the output parameter. The total sum of difference squares of values for a linear
polynomial is Af? = 4,96:107%-10°. Taking into account the small value of Af?, we can consider (12) to
be an adequate regression model.

According to (11), the coefficients of the temperature error equation are determined:

a, = 0,311 (Cl); a, = 1,247 (C2);
ay =—-0,097 (C3); a, = ~1,247 (R2); as = 0,312 (R4).

The temperature error equation in accordance with (7) will be:

A 1461075 ATy - 586107 S ATy —4,55-107 O AT -
s (13)
~1,25-107 4ATpy +3,12-107 2 ATgy.

Research results

Analysis (13) allows us to state:
— the temperature error of the generation frequency mainly depends on the temperature instability
of the four ERE: CI and C2capacitors, R2 and R4 resistors;
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— the linear polynomial (12) is recognized as an adequate regression model of the investigated
process;

— to ensure a given temperature stability of the generator, three solutions are possible: the use of
highly stable Cl1, C2, C3, R2, R4; partial temperature compensation of C1-C2 and R2-R4 pairs;
thermostating R4.

Conclusions

1. A modification of the numerical Monte Carlo method for analyzing the temperature stability of
electronic circuits is proposed.

2. The problem of finding the influence coefficients of the temperature error equation for the one-
parameter ERE’s case was solved.

3. The obtained temperature error equation of the generator with the Wien bridge (13) allows
quantitatively and qualitatively to formulate the requirements for ensuring a given temperature stability

of the device both at the stage of circuitry and at the stage of topological design.
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