
ACT: a Tool for Performance Driven Evolution of Distributed Applications
(Position Paper)

Aled Sage, Graham Kirby and Ron Morrison
School of Computer Science, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland

email: {aled,graham,ron}@dcs.st-and.ac.uk

Abstract
There are two main stages to evolving distributed

applications in the manner desired by application
builders: first deciding which changes are required and
when, and second making the changes. Understanding the
performance characteristics of distributed applications is
essential for the first stage, while structural reflection
over the source code may be used to achieve the latter.
Here we present an automated configuring tool, ACT, that
may be used to explore the need for change by empirically
measuring application performance. We aim to use the
data generated by ACT as input to the evolution process,
informing the system how to evolve to new and improved
architectural configurations.

ACT is designed to be generic in that it may aid
performance-driven evolution for a wide range of
applications. As a case study we use DC-Mailbox, a back-
end mail server from Data Connection Limited (DCL)
that stores, retrieves and manages e-mail messages for a
potentially large number of users.

1. Introduction

Understanding the performance of distributed
applications is essential for achieving the evolutionary
properties desired by application builders. The choice of
platforms, network configurations and communication
policies has increased markedly over the years leading to
a wide variety of operating environments with ever more
complex performance characteristics. This makes the
problem of performance-driven evolution more complex
and time consuming and therefore more costly, often
requiring advanced knowledge of the application.

Here we present a tool for measuring the performance
(in terms of quality of service criteria) of distributed
applications. We aim to use the data generated by the
Automated Configuring Tool, ACT, as input to the
evolution process, informing the system how to improve
the quality of service (QoS) by evolving to new and
improved architectural configurations.

There are varying levels and complexities of evolution.
The simplest is to reconfigure the application using pre-

defined tuning knobs, or configurable parameters. This
requires understanding of the application’s behaviour, for
example by empirical measurement of performance, in
order to make beneficial changes. When good
configurations are found, the application may be evolved
(by some process) so that it can dynamically adapt in a
given situation. As understanding is gained, unexpected or
interesting behaviour such as phase changes may be
investigated and exploited to suggest improvements to the
structure of the application.

We are concerned with the task of configuring and
evolving applications, the target systems, to perform well
in customers’ environments. Each customer may use
different platforms and workloads requiring different
configurations of the target system for optimal
performance. Examples of configurable parameters
explored to date include cache size, tracing policies and
number of processors. The problem space in a given
environment therefore consists of the configurable
parameters, forming the multi-dimensional input space of
configurations. Choosing a good configuration (that is,
one that satisfies the evolution goals such as optimising
performance) out of the large number of possibilities is a
non-trivial task; empirical testing of different
configurations to search this space will help. Good
configurations may be used to drive the system’s
evolution including embedding adaptive control into the
evolved application.

The tool, ACT, aims to ease the problem of running
performance tests, or trials, many times in a consistent
manner. ACT does this before the target system goes into
use by repeatedly running it, recording performance for
specified workload(s) and evolving the system by
reconfiguration between trials. Initially, we concentrate
on applications that already have performance metrics
built-in, or for which it is realistic in terms of time and
effort to add suitable measuring facilities. Eventually we
aim to use the results of the measurement stage to drive
higher levels of evolution in the system.

ACT is designed to be generic in that it may aid
performance-driven evolution for a wide range of
applications. This is achieved by restricting ACT’s use to
all target systems that meet certain requirements. It

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/1586441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

requires that hooks, or plug-ins, be made available to run,
measure and (re)-configure the target system. For
automation, the plug-ins must run without human
intervention. Details of how to access these hooks, and
information about the configurable aspects of the
application are encoded in an XML file as input to the
tool.

The novel aspect of the work is the range and type of
reconfiguration. We are particularly interested in
applications with many configurable parameters and
therefore a large number of possible configurations. These
are difficult to analyse because the number of possible
configurations increases exponentially with the number of
parameters. One must be careful of interference between
parameters, ensuring that they can each be changed
individually. For some applications, parameters may
require a non-trivial length of time to reconfigure (e.g.
requiring reinstallation of the application) and each trial
may take a significant amount of time. For example, an
application with 5 parameters, each with 10 possible
values and requiring 30 minutes per measurement would
take over 5 years to test exhaustively. This makes
automation important and searching the space a key issue,
performing tests in parallel where possible and carefully
selecting configurations. ACT may be beneficial when the
behaviour of the application is not understood, since
explorative changes can be made during analysis. Indeed,
it may never be possible to fully understand the behaviour
of some complex distributed applications operating in
many environments. Lastly, each test-run can be started
from the same initial state and under the same conditions
allowing all relevant variables to be controlled, the only
parameters to change being those explicitly set between
trials by ACT.

As a case study we use DC-Mailbox [3] a product from
Data Connection Limited (DCL). DC-Mailbox is a back-
end mail server that stores, retrieves and manages e-mail
messages for a potentially large number of users.

2. Dynamic and static configuration

Related work on performance-driven configuration, or
tuning, ranges from ad hoc manual techniques using tools
for investigating performance bottlenecks to generic
automated performance-tuning tools. Configuration can
be performed dynamically while the application is in use
or statically as is currently the case with ACT.

Dynamic configuration involves on-the-fly steering of
an application to cope with new circumstances and to
meet new demands. Most use a predictive model of the
application’s behaviour, examples including [1] and [6].
ACT, because of its experimental approach to finding
good configurations, can perform analyses and suggest
changes even before a predictive model is developed. This
is particularly useful due to the complexity of developing
and maintaining such models for large distributed

applications with many parameters. One must deal with
discrete events (e.g. message arrival) and non-linearities
(e.g. optimal cache size as message size fluctuates), while
different releases of the application may have radically
different performance. The problem is compounded if the
cost of taking a measurement or reconfiguring the target
system is high.

When analysing configurations statically, care must be
taken in choosing workloads to ensure they are
representative of the customer’s usage. It could be done,
for example, by logging the usage of the actual system to
generate a set of inputs for the trials, or to guide the
production of synthetic workloads.

3. The ACT tool

In a given environment and for a particular workload,
ACT may be used to aid performance-driven evolution of
a (distributed) application. The application is run
repeatedly for different configurations and those giving
the best results may be used when evolving the system.
The process is automated: running and reconfiguring the
application for repeated tests requires no human
intervention.

3.1. Tool architecture

The system can be divided into two disjoint sets of
concerns. The first is application-specific and the
responsibility of the tester. It involves determining how to
run the application, how to measure the performance and
evaluate the result, which configurable parameters are
available and how to change them. The second set of
concerns constitute the tool itself and relate to how to
repeatedly run performance trials and which
configurations to test when searching the input space. It is
also concerned with which configurations to recommend
and time limits for testing.

For an application to be compatible with ACT it must
be configurable; a third party must be able to access
hooks to run, measure and change the target system. Some
hooks may be reused for different applications and others
dynamically generated using structural reflection [5], also
called linguistic reflection, over the source code. The
hooks are provided in a plugger, a dynamically linked
library (DLL), each instance of which is specific to a
target system and contains functions to perform the above
operations. Figure 1 shows the main components required
and how they interact.

Configuration
information

ACT Plugger Target
system

<<parse>> <<dynamically link>> <<drive>>

<<use>>

PerfStats
nterface

Result

Figure 1. Component diagram of the
configuration measurement stage

The configuration information, in the form of an XML
file written by the tester, describes the legal
configurations for a particular application and the
information required by ACT to dynamically link in the
plugger. For each configurable parameter, a name is given
(for meaningful output) along with its type and the set of
legal values, specified as an enumeration or a range. To
allow dynamic binding of the plugger’s application-
specific code, the location of each function is given by
specifying its name and the path of the DLL. Additional
information includes time and machines available during
testing.

ACT is responsible for repeatedly running performance
trials and searching the input space by selecting new
configurations of the application to test. It dynamically
loads the plugger and uses it to interact with the
application.

The plugger provides the hooks to configure and drive
the application. It contains a run function to run and
gather performance measurements for a single trial. This
prepares and starts the application (setting it to a
consistent starting state). It then monitors the
application’s performance to obtain appropriate
performance statistics. The measurement technique used
depends on the particular application but, where possible,
existing techniques are utilised such as in-house tools or
profilers. The results are represented by a class that
implements the IPerfStats interface in figure 1 to provide
display and comparison methods, allowing ACT to
process the results independently of the application
concerned. Additionally, a set of change functions is used
to set the values of the configurable parameters, thus
configuring the application. Finally, a recovery function is
responsible for recovering from failure during a test by
restoring the application to a stable state so that testing
can continue.

3.2. Configuring an application

The activity diagram in figure 2 shows the steps in

configuring and evolving a target system, here generalised
to any configurable process. It has much in common with
both process modelling and control systems. Indeed, the
process may be viewed as a disturbance-compensated
closed-loop control system with command compensation
[4], where one or more components may be idle.

During initialisation, the configuration information is
parsed to determine the configurable aspects of the
application and the locations of the plugger’s functions,
which are then dynamically bound into ACT.

The control search activity is a meta-strategy that
determines an appropriate search strategy to look for
good configurations in the input space. That is, it is a
meta-process responsible for controlling the choice of
strategy along with any configurable aspects of the search.
The simplest example involves using a statically
determined search strategy and simply passing it the
configuration and performance information. Alternatively
the search strategy may be tuned or dynamically switched
according to the problem space, resources available and
performance measured to date. Indeed, an instance of
ACT itself may be used as a meta-strategy. At present the
implementation is limited to statically determining the
search strategy, dynamic switching still being under
development.

The get configuration activity, performed by the active
search strategy, generates a configuration to be used in the
next trial. It is therefore responsible for choosing from the
input space the configurations to test during analysis. The
target system is then configured and run. Failure is
detected by catching runtime errors and also by a timeout
mechanism that puts an upper bound on the length of time
per trial, the limit being defined in the configuration
information. Additionally, a disturbance compensator
may be used to monitor the trial and could, for example,
observe network or CPU usage to detect when the
external load exceeds an acceptable threshold level.

If the run fails, the recovery function is invoked to
restore the system to a stable state. A maximum number

initialise control
search

get
config

finished
analysis?

success?

run
process

timing

disturbance
compensator

try
again?

recover

record

stats

workload and
environment

sensing
(feedforward)

Process configuration &
search configuration

configuration

stats

stats

yes no

fail

no

no

yes yes

repeat for next trial

repeat run of process

give up,
record
failure

feedback

set
config

recommend
changes

make
changes

Re-analyse to validate changes and suggest further evolution

Figure 2. Activity diagram of the configuration and evolution process

of recoveries per configuration are permitted (specified in
the configuration information) after which a failure is
recorded. If the trial succeeds, the statistics obtained are
recorded. The result is fed back to the search controller
and the search strategy queried to check if analysis is
finished. This cycle repeats until analysis is complete.

The last steps shown in figure 2 involve recommending
and making architectural changes to the target system.
This high level of evolution has not yet been incorporated,
the techniques proposed being described in section 3.4.

3.3. Searching the input space

Analysis involves running trials for different
configurations in the multi-dimensional input space in an
attempt to find good configurations. This is a search
problem in a space that may contain many choices of
configuration and with a time constraint limiting the
number of points that can be investigated. There are
several possible search strategies that may be chosen by
the meta-strategy.

The simplest strategy is grid sampling, where the input
space is overlaid with a grid and each point on the grid is
tested in turn. Even such a basic search may find a
configuration that is better than the tester’s best guesses
and therefore be considered a success. It also provides a
control with which to compare other strategies.
Alternatives include gradient descent with simulated
annealing and genetic algorithms. Both grid sampling and
gradient descent are currently being tested.

3.4. Driving evolution

The performance information and good configurations
found may be used to drive evolution. The initial
implementation of ACT is limited to the simplest level of
evolution: reconfiguring specified parameters. This work
will lead, as part of the ArchWare project, to the task of
recommending architectural changes for the target system.
The π-SPACE architecture description language [2] will
be used to describe the evolution. Structural reflection [5]
over the application source code will be used to perform
evolution.

4. A case study

The motivating example for the automated configuring
tool is the Data Connection application DC-Mailbox. This
back-end mail server is designed to run on a large
distributed system and has a broad customer base leading
to a wide variety of potential environments in which it
must perform well. The experimental base at St Andrews
is a 64 node Beowulf running RedHat 7.1 and connected
through a fast Ethernet switch. Each node is a Pentium II
450MHz machine with 384MB of RAM and a 6.4GB
hard disk.

To be adaptable for different environments, DC-
Mailbox exposes a large number of parameters by storing
its configuration information in an X500 directory, DC-
Directory [3], that is read at startup. Measurements are
taken by configuring DC-Mailbox to write to DC-
Directory at regular intervals (e.g. every five minutes) the
number of deliveries and fetches performed. A synthetic
workload is applied by simulating simultaneous access of
many users sending and retrieving mail. To test DC-
Mailbox in a new customer's environment takes thirty
minutes per trial, starting it on each machine, letting
performance stabilise and then taking a measurement.
Analysis and tuning by hand is therefore time-consuming
and relies upon (costly) expertise.

The use of ACT is currently being tested for DC-
Mailbox and the above process has already been
automated for a selection of configurable parameters. The
configuration is set and the performance measured using
in-house scripts to read and modify the data stored in DC-
Directory. DC-Mailbox itself is started and stopped using
a remote shell and a consistent state obtained each time by
replacing the database of messages with a clean set of
files while also clearing any queues of messages awaiting
processing. In the event of recovery, appropriate
diagnostics are collected and the application’s processes
are terminated, ready to be restarted again.

To automatically run, configure and measure DC-
Mailbox, the plugger consists of 500 lines of shell scripts
and a further 260 lines of C++ code. This is less than one
percent of the total application code.

5. Conclusions and further work

In this paper we have described the architecture of a
generic automated configuring tool, ACT. The motivation
for ACT is to configure an application's performance for a
given environment and workload(s), and to use the
information obtained to drive evolution. Of particular
interest are applications with many configurable
parameters installed on a wide variety of platforms, each
potentially requiring different configurations to obtain
good performance.

At present, ACT's design assumes that the target
system has hooks to modify the configurable parameters
and that it can be run, measured and the performance
evaluated automatically with no human intervention. This
has been shown to be an achievable set of criteria for DC-
Mailbox. By repeatedly running performance trials and
speculatively varying the configuration each time,
reconfiguration may be beneficial even before a predictive
model of the application is known. We contend that such
empirical testing of a number of configurations will aid
understanding of the target system for simple
reconfiguration and eventually for higher levels of
evolution, and hope this will be shown in the results of the
case study.

In the mean time, further work is required to test
search strategies and visualisation of the results, as well as
using the results to drive evolution. We also hope to show
the genericity of the tool by its use with other applications
currently under investigation, particularly examples with
reflective capabilities. More information can be found at
[7].

6. Acknowledgements

This work was supported by the EPSRC grant
GR/L13780 “Distributed Software Systems” and a grant
from Data Connection Limited (DCL). The EPSRC
CASE studentship 99802449 also helps fund this project.
Useful discussions were held with Richard Stamp,
Edward Hibbert, Al Dearle and Francis Vaughan.

References

[1] J.P. Bigus, J.L. Hellerstein, T.S. Jayram and M.S. Squillante,
“AutoTune: A Generic Agent for Automated Performance
Tuning”, Practical Application of Intelligent Agents and Multi
Agent Technology (2000)

[2] C. Chaudet, R.M. Greenwood, F. Oquendo and B.C.
Warboys, “Architecture-driven software engineering:
Specifying, generating, and evolving component-based software
systems”, IEE Proceedings – Software Engineering, Vol. 147,
No. 6 (2000)
[3] DCL. “Data Connection Limited (DCL)”. URL:
http://www.dataconnection.com
[4] E.O. Doebelin, Control System Principles and Design, Wiley
& Sons, New York (1985)
[5] G.N.C. Kirby, Reflection and Hyper-Programming in
Persistent Programming Systems, Ph.D. Thesis, University of St
Andrews, (1992)
[6] D.J. Kerbyson, E. Papaefstathiou and , E. G.R. Nudd,
“Application Execution Steering Using On-the-fly Performance
Prediction”, Proc. High Performance Computing and
Networking 98, Amsterdam, Holland (1998).
[7] A. Sage, “ACT: An Automated Configuring Tool”, URL:
http://www.dcs.st-and.ac.uk/~aled/ACT/index.html

