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Abstract 
We present the results of Molecular Dynamics simulations of a viral capsid with the aim to analyse ion 

distribution on the capsid’s surface that defines its stability.  Two systems were modelled, a stable capsid with 

neutralising number of ions and an unstable capsid with low number of ions. For the ion distribution analysis 

the capsid’s structure was identical and fixed in both simulations. It was then released for the stability 

analysis. The ion distribution demonstrated two types of the local regions on the inner surface of the capsid’s 

wall: highly occupied with chloride ions in both systems despite a largely uniform electrostatic potential 

everywhere on the surface, and the regions that loose almost all chloride ions in the unstable capsid.  The 

latter regions are located close to the cracks that are formed when the capsid is destabilised and thus could 

initiate the collapse of the capsid. 

Introduction 

Recent advances in cryo-EM and X-ray crystallography allow experimental determination of atomistic 

structure of very large and complex molecular systems such as complete cellular organelles or viruses.  As it 

is only possible to obtain the structure of immobilised molecular objects (embedded in a crystal or frozen), 

research on the details of their liquid environment at the same molecular scale becomes critically important 

for utilising the experimental results for more realistic situations resembling the cellular environment.   

Whole viruses are particularly attractive from this point of view as they are examples of self-contained 

complex biological objects spending parts of their lifecycle in isolation from the host cell without any 

interaction with other biological entities.  Aqueous solution is the only external environment required for their 

existence at these stages of the lifecycle. On one hand, solution with some specific properties (thermodynamic 

parameters, ion composition, etc.) is needed for a stable virus particle, on the other hand, virus alters the 

surrounding water in a very specific way that may define the mechanism of the virus stability.  Therefore, 

understanding the details of the molecular properties of the solution is important not only from the academic 

point of view, but also as a potential route for destabilising the virus (by changing its environment) and, thus, 

killing the virus. 

As the experimental approaches to establishing the structure and dynamics of the solution are much more 

limited, especially at physiological temperature, Molecular Dynamics (MD) simulations become a valuable 

tool for studying the aqueous environment of viruses.  Recently MD simulations are effectively used for 

studying the structure, dynamics and properties of whole viruses, in particular viral capsids, which protect the 

viral genome. These investigations provided details of virus and solution properties that are currently 

impossible to obtain experimentally, such as permeability of water molecules and ions through the capsid wall 

[1-4], water molecule diffusion [4-5], capsid’s stability [1-2, 6], the structure of viral fragments which are 

missed from experimental data [6-8], the mechanical properties of the virus particle [9], the swelling of viral 

capsids [10-12], and others.  
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To date, one of the most challenging problems experimentally and computationally is the localisation of the 

genome inside the capsid and its interaction with the capsid.  Experimentally, asymmetric packing of the DNA 

or RNA chain does not allow crystallography to obtain its structure, while the resolution of single-particle 

cryo-EM is not enough to resolve the atomistic structure of the genome. The lack of reliable experimental 

information makes it practically impossible to build a reasonable initial structure for MD simulations.   

Interesting correlation between the locations of the chloride ions from the solution and the genome molecule 

has been found by the authors of [13]. They observed that in the absence of the genome the chloride ions 

occupy the same places next to the inner wall of the capsid as the phosphate groups of the genome.  Our 

previous all-atom MD simulation [6] of an empty porcine circovirus (PCV2) capsid revealed that the number 

of ions inside the capsid is critical for its stability in the absence of the genome inside. It is known 

experimentally that the PCV2 capsid can be stable without the genome [14-15] and its atomistic structure was 

measured with an X-ray assay [14].  Our results demonstrate that the deficit of the chloride ions next to the 

inner surface of the capsid destabilises its structure.   

The aim of the work reported here is to investigate the molecular details of the ion distribution and to identify 

which regions of the inner surface should be covered with chloride ions to maintain the integrity of the capsid 

structure.  The main idea is to compare the MD results of the stable capsid and the one with an unstable 

capsid.  The systems are prepared in such a way that the only difference between them is the number of ions; 

all other properties, including the structure of the capsid itself are kept identical.  We perform a detailed 

analysis of the ion distribution and reveal critical locations that cause the capsid’s destabilisation. 

Materials and methods 

The preparation of the system and the protocols of the MD simulation are given in our previous publications 

[1,6]. A protein subunit of PCV2 capsid has been taken from Protein Data Bank (PDB) [16] and reconstructed 

into full empty capsid with the program VIPERdb [17].   

MD simulations were performed using GROMACS [18-19], VMD program [20] was used for visualisation. 

The simulations and analysis were carried out in AMBER force field with TIP3P water model.  

The capsid has the positive charge of +360 e and the charge is distributed disproportionally between the inner 

and the outer surfaces [6]. With the aim to neutralize this charge we performed two separate procedures of 

adding the chloride ions inside the capsid and sodium ions outside of it. The quantities were 606 Cl- and 246 

Na+, because a charge of -606 has been found needed for the complete neutralization of the positive charge of 

the inner surface. Finally, on the third stage we added 1720 Na+ and 1720 Cl– ions randomly scattered across 

the cell to mimic physiological solution of 0.15M concentration. This system will be called the natural system 

(NS). For the preparation of the artificial system (AS), we added one half of the necessary number of the 

chloride ions inside the capsid, i.e. 300 Cl-. Because the capsid charge is +360 e, 60 Cl- were placed to the 

outer solution instead of Na+. The same sodium chloride buffer was added as well. Both systems were 

electroneutral as a whole.  

We performed energy minimisation, after that we executed 1ns MD simulation of the systems with positions 

of all atoms of the capsid being restrained. During the preparation for the productive run the temperature was 

gradually increased from 200K to 300K [1, 6]. Finally, productive MD simulation was carried out for 10ns at 

300K. PME method was employed for computing electrostatic interactions, and cut-off with radius 1nm for 

van der Waals interactions.  

The native structure of the capsid has pores that connect the inside and the outside of the virus.  In our 

previous paper [1] we have found that sodium and chloride ions cannot pass through the pores. However, 

water molecules could diffuse in both directions. That allowed us to conclude that the PCV2 capsid wall 

functions as a semipermeable membrane, similar to what was shown for a poliovirus capsid [4].   
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We have performed the analysis of the radial distribution function (RDF) of the ions in the solution as a 

function of the distance from the centre of the capsid for the natural and artificial systems. The analysis was 

done using the last 200 ps interval of the 1ns restrained run. We did not use the productive run when the 

restrains were removed because we were analysing the reasons that later caused the capsid’s deformation 

occurred when the capsid was unrestrained. During 800 ps of the restrained MD run the ions were able to 

move freely and achieve the equilibrium distribution.  

Results and discussion 

Fig. 1 shows a typical deformation of the capsid in the artificial system with suboptimal number of ions in the 

interior.  We have demonstrated quantitatively that this deformation does not have a tendency to stop and it 

eventually leads to the formation of large cracks in the capsid’s wall that compromise the overall integrity of 

the virus [6].  We have also shown that this is caused by the lack of negative charge in the layer of the solution 

adjacent to the inner surface of the capsid that compensates the positive charge of the surface. 

 
Figure 1. Stable (left) and deformed (right) capsids; the deformation is progressive leading to the capsid’s 

collapse 

A snapshot of the ion distribution in the stable system demonstrates rather dense accumulation of chloride 

ions next to the inner surface, Fig. 2.  This is, of course, expected; however, the quantitative details reveal 

interesting features of this distribution, in particular when compared to the unstable system.  The RDFs of ions 

as functions of the distance from the capsid’s centre of mass (COM) are shown in Fig. 3. 
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Figure 2. Schematic illustration of the distribution of Cl- (green) and Na+ (orange) ions in the system and 

RDF quantifying their concentration as a function of the distance from the capsid’s centre of mass 

 
Figure 3. Radial distribution functions for Na+ (top) and Cl– (bottom) ions relative to the capsid’s centre of 

mass; black lines are for the stable capsid, red lines are for the deformed capsid 
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It can be seen that in the capsid with the neutralising number of ions, there is a split peak at ~7 nm, while in 

the capsid with the low number of ions, this peak is absent. Fig. 2 also gives a hint for explaining this feature: 

even though the shape of the capsid is close to spherical, it has pronounced internal ‘cavities’ in the vicinities 

of the pores.  They are formed by the icosahedral shape of the capsid, clearly visible when the atoms beyond 

the 7.5nm distance from COM are highlighted (yellow areas in Fig. 5). The number of Cl– in these ‘corners’ 

reach 190 and they are almost completely absent in the unstable system.  The peak at ~6 nm is also lower for 

the unstable capsid, lacking approximately 100 ions. 

Sodium ions in both cases are distributed similarly inside the capsid. However, for the natural system, an 

additional layer of Na+ ions exists around the outer surface. This could be a consequence of the difference in 

the total number of Na+ in the bulk solution (in NS it is higher by 226 than in AS) and their initial distribution, 

but we believe this is not the case. The total number of Na+ outside is high for both cases (~1600 in AS), that 

should be enough to form a layer if needed. Moreover, if necessary at least a small, thin layer should have 

been appeared in AS, but there is no evidence of that.   

The RDFs quantify the distribution of the ions between spherical layers, they do not show how the ions are 

distributed within each layer, in particular in the important layers adjacent to the inner surface of the capsid.  

To analyse the details of the ion accumulation at particular locations of the inner surface, for each amino acid 

we calculated the average number of residues of this amino acid that have at least one Cl– ion in its vicinity 

(within the distance of 5A). Evidently, this number changes from 0 (e.g., the amino acid is negatively charged 

and repulse Cl–) to 60 (this residue in each of the 60 proteins is in contact with a Cl– ion). The distributions for 

both systems (natural and artificial) are shown in Fig. 4, 1S.  

 

 
Figure 4. Number of residues having a Cl– ion closer than 5A; only amino acids having more than 20 

residues contacting with Cl– in the stable capsid are shown; red – natural system, green – artificial 

system 

For the stable capsid, several amino acids have strikingly high values of this Cl– occupation: for residues 

172(Asn), 174(Lys), and 175(Arg) almost all proteins have Cl– around this amino acid (≥55 out of 60). 

Residues 94(Arg), 95(Lys), 173(Asn), and 176(Asn) followed, with the occupation values ≥47 out of 60. 

Importantly, the occupations of 174(Lys) and 175(Arg) are almost the same in both NS and AS systems. 

These observations indicate that the described regions are extremely attractive for anions. Therefore they can 

readily serve as attaching places for the viral genome packed inside the capsid.   
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The proteins of the capsid form trimers as geometrical units, the capsid is built from them. One of such trimers 

is indicated in Fig. 5. Interestingly, the ‘Cl– rich’ amino acids from the three protein monomers forming a 

trimer are located very close to each other despite the high positive charge of these amino acids.  They are not 

distributed uniformly on the inner surface of the capsid as it could be expected in order to minimise the mutual 

electrostatic repulsion. Thus, the presence of the negative charge close to this group of residues is likely to be 

essential when the trimer is formed. This allows to suggest that the formation of trimers from monomers 

would be strongly facilitated by the presence of DNA in solution serving as a support by providing the 

necessary negative charge. We have visualised these chloride-rich areas of the inner surface in Fig. 5. 

Another observation from Fig. 4 is that there is a number of residues that loose significantly more chloride 

ions than others in AS compared to NS.  These are residues 43(Arg), 97(Lys), 118(Val), 142(Arg), 156(Phe), 

213(Tyr) that also have high occupations in NS but lose almost all chloride ions when going from the stable 

capsid to the unstable. They are separated in two groups (highlighted in green and blue in Fig. 5) and located 

on the ‘rim’ of the cavities containing the pores. 

 

 
Figure 5. Half of the capsid revealing the location of the chloride-rich amino acids 172(Asn), 174(Lys), 

175(Arg) (red) and 94(Arg), 95(Lys), 173(Asn), 176 (Asn) (pink)  and chloride-losing amino acids 

43(Arg), 97(Lys), 142(Arg), 213(Tyr) (green) and 118(Val), 156(Phe) (blue); the residues at the 

distance more than 75A from the capsid’s centre of mass are shown in yellow; one trimer is 

indicated by the dashed line 

 

It is difficult to identify one particular area of the capsid where the deformation starts and which triggers its 

collapse. It seems that a large part of the shell consisting of several proteins folds inwards at some moment. 

However, there are cases when an obvious crack is formed next to the pore.  We have checked the relative 

location of the crack and the residues that we identified as mostly affected in the unstable system.  The result 

is shown in Fig. 6. Amino acids 43(Arg), 97(Lys), 142(Arg), 213(Tyr) (highlighted in green in Fig. 5) are 
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located in the crack region, that means that the absence of Cl- close to them could be the critical factor 

initiating the destabilisation of the whole capsid.  

 
Figure 6. The half of the deforming capsid after 10ns of MD simulation.  Amino acids 43(Arg), 97(Lys), 

142(Arg), and 213(Tyr) are highlighted green, red, pink, and yellow, respectively.  

 

Finally, we computed the map of the electrostatic potential distribution inside the non-deformed capsid using 

APBS software [21]. The default settings were used, no mobile ions were added. Water molecules and ions 

were excluded from computation because their presence would screen the capsid’s potential. The obtained 

map is shown in Fig. 7 in several versions. Because the bare capsid is charged highly positively, the values of 

the potential range from –2 V to +25 V. The map was plotted using several scales, and only the scale, which 

was very strongly shifted towards the upper limit allowed to vaguely recognize the locations that are chloride-

rich. We analysed two surfaces: the first is of the default thickness (determined by atomic radii of protein 

atoms), and the second is at the distance of approximately 5A from the atoms and thus roughly corresponds to 

the surface where the ions are located. The insignificant variation of the electrostatic potential means that the 

distribution of the ions that we observe is hard to explain by the charges on the residues alone.  A complicated 

interplay between the attraction by the charges on the amino acids and steric effects involving water and 

counter-ions plays the role. 
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Figure 7. Electrostatic potential maps of the capsid interior; top row: the capsid surface, bottom row: the 

surface at approximately 5A from the capsid; the scale ranges 13.7 – 23 V (a, d); 17 – 23 V (b, e); 

20 – 23 V (c, f) with blue corresponding to the lower limit and red corresponding to the upper limit 

of the scale 

Conclusions 

The distribution of the chloride ions could mimic the localisation of the phosphate groups of the DNA/RNA as 

it was shown in [13] for a different virus. That could also have biological consequences that the stability of the 

capsid could be defined by a specific placement of the DNA chain.  

In this work we have performed the comparison of two systems which were different only in the number of 

the ions inside the capsid, and the detailed analysis of the local ion distribution on the inner surface of the 

capsid’s wall with the aim to identify how the ions distribution influences the capsid’s stability.  

We have found several amino acids that are highly attractive for the chloride ions in the capsid and they are 

the same for both systems. Interestingly, the distribution of the electrostatic potential created by the capsid 

atoms across the capsid inner surface does not explicitly indicate the preferential binding places for the Cl- 

ions. 

We have found the amino acids which are occupied with chloride ions in NS, however, they have much less 

(almost zero) chloride ions in AS. As these amino acids are placed at the cracks in AS, we hypothesise that the 

deficit of the chloride ions close to these amino acids could cause the appearance of the cracks in the capsid 

and further deformation of the capsid structure that could lead to its collapse. Therefore, we suggest a 

hypothesis that these amino acids should interact with the negative charge of the chloride ions or the 

phosphate groups of the genome. In future research we will verify this hypothesis. 
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Highlights  
 

 Analysis of all-atom Molecular Dynamics simulation of a whole viral capsid  

 

 Local distribution of ions on the inner surface of capsid defines its stability  

 

 Chloride ions prefer to be located near small groups of amino acid residues  

 

 Lack of chloride ions near other groups of residues could trigger capsid deformation  

ACCEPTED MANUSCRIPT


