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Abstract

A phenomenological mean-field theory is presented to describe the role of external magnetic

field, pressure and chemical substitution on the nature of ferromagnetic (FM) to paramag-

netic (PM) phase transition in manganites. The application of external field (or pressure)

shifts the transition, leading to a field (or pressure) dependent phase boundary along which

a tricritical point is shown to exist where a first-order FM-PM transition becomes second-

order. We show that the effect of chemical substitution on the FM transition is analogous

to that of external perturbations (magnetic field and pressure); this includes the existence

of a tricritical point at which the order of transition changes. Our theoretical predictions

satisfactorily explain the nature of FM-PM transition, observed in several systems. The mod-

eling hypothesis has been critically verified from our experimental data from a wide range of

colossal magnetoresistive manganite single crystals like Sm0.52Sr0.48MnO3. The theoretical

model prediction of a tricritical point has been validated in this experiment which provides

a major ramification of the strength of the model proposed.
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I. INTRODUCTION

The physics of critical phenomena and phase transitions is often a study of pressure-temperature

ambivalence defining the ubiquitous phase plane that characterizes both first- and second-order

phase transitions. A classic example is the tricritical phase point where all three phases simultane-

ously co-exist; while the discontinuous jump of latent energy could drive first order phase transition,

“walking around” the phase boundary could be achieved through continuous transition1,2. In most

ferromagnets, the transition from the high-temperature disordered paramagnetic (PM) phase to the

ferromagnetic (FM) ground state is second-order and characterized by a continuous development of

magnetization below the transition point. But in some systems, FM transition often demonstrates

discontinuous change in magnetization along the hysteresis path. Colossal magnetoresistive man-

ganite is a representative example of this class of systems. In manganites RE1−zAEzMnO3 (RE

for rare earth ions and AE for alkaline earth ions), the nature of phases and transitions strongly

depend on the bandwidth of the system as well as local disorder (also known as quenched disorder),

arising due to the size mismatch between RE and AE cations3–11. Such disorder reduces the carrier

mobility, the formation energy of lattice polarons which effectively truncates the FM phase and

leads the transition towards first-order11. It has been observed that manganite with highest FM-

PM transition temperature (TFM−PM ), La1−zSrzMnO3 with 0.2< z <0.5 undergoes conventional

second-order phase transition, whereas the lower TFM−PM manganites such as Eu1−zSrzMnO3 with

0.38< z <0.47 show evidences of strong first-order FM transition12,13. Although the order of phase

transition is system dependent, it can change under the influence of various parameters. A change

from first- to second-order FM transition under the influence of various external and internal per-

turbations is found in several theoretical14–19 and experimental works20–30. Among the manganite

systems, particularly, which are very susceptible to perturbations, Sm1−zSrzMnO3 (a narrow band

manganite with relatively large disorder) is one of the prime candidate and a lot of analysis on FM-

PM phase transition have been done23–27,31–38. For Sm1−zSrzMnO3 (z=0.45-0.48), FM transition

at ambient condition is first-order and the transition is extremely sensitive to several parameters

such as magnetic field, pressure, chemical substitution or oxygen isotope exchange, etc.23–27,31,34–38.

In presence of external magnetic field (H) and pressure (P ), the FM transition shifts towards the

higher temperature while the width of thermal hysteresis in magnetization decreases gradually and

eventually vanishes at a critical magnetic field-pressure phase point (HC , PC), above which the

transition becomes second-order. Similar to external pressure, the application of chemical/ inter-

nal pressure (which can be modulated by stoichiometric control) also increases the TFM−PM as
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observed in the partial substitution of Nd at Sm-site of Sm1−zSrzMnO3 [(Sm1−xNdx)1−zSrzMnO3]

with z=0.45 and 0.48. The effect of Nd doping on the nature of FM transition is quite similar to

that of external pressure, i.e., there exist a critical concentration (xC) above which the FM-PM

phase boundary changes from first to second order. In other words, using parametric control of key

pressure-temperature values, the first order FM transition in Sm1−zSrzMnO3 (z=0.45 and 0.48)

could be changed over to its second ordered equivalent. Not only in (Sm,Sr)MnO3, the existence

of tricritical points in several other manganite systems have also been observed, which will be

discussed later.

On the theoretical modeling side, few works on FM-PM phase transition of manganites have

been reported16–19 but none of them characterize the nature of such phase transitions under the

presence of all three external parameters - pressure, temperature and magnetic field. This is the

principal focus of the present study, namely to analyze phase transition in the three dimensional

phase volume. Our approach is based on a generalized version of Landau theory, integrating all

three variables/ parameters. We show that both transition temperature and hysteresis width vary

when these parameters change. In a particular cases, there exist tricritical points at which first-

order FM-PM transition changes to second-order. In order to illustrate the presented picture, we

analyze the experimental data of our previous works24,26,35 on Sm0.52Sr0.48MnO3 single crystal, an

extensively studied material showing a first-order FM transition.

II. THEORY

In this section, we model the critical behavior related to the FM-PM phase transition in the

presence of magnetic field, pressure and chemical substitution based on Landau theory. First we

discuss the effect of external magnetic field on the first-order FM phase transition.

A. Effect of external magnetic field on the FM-PM phase transition

The magnetic order is described by the magnetization M = Mm̂ such that M = 0 defines the

PM state and M 6= 0 represents the FM state. Expanding the free energy density around M = 0,

the magnetic free energy density in the presence of external H can be written as

F = F0 +
1

2
A

(
M

MS

)2

− 1

4
B

(
M

MS

)4

+
1

6
C

(
M

MS

)6

−HM, (2.1)

where F0 and MS are free energy density of PM phase and saturation magnetization, respectively.

In Eq.(2.1), the coefficient A can be assumed as A = a(T −T ∗) = aτ , where a is a positive constant



4

and T ∗ is the virtual transition temperature2. The other coefficients B and C are assumed to be

temperature-independent and positive. In the absence of magnetic field (H = 0), the free energy

density describes a first-order FM-PM phase transition for B > 0 while transition is second-order

for B < 0. However, in presence of external field (H 6= 0), the transition may become second-order

even for B > 0. In terms of scaled magnetization m = M
MS

and scaled magnetic field h = HMS ,

the free energy density can be written as

F = F0 +
1

2
Am2 − 1

4
Bm4 +

1

6
Cm6 − hm. (2.2)

The minimization of Eq.(2.2) gives

Am−Bm3 + Cm5 − h = 0, (2.3)

from which one can obtain the differential equation for susceptibility (defined as χ = 1
χ0

∂m
∂h at h =

0) as

(A− 3Bm2 + 5Cm4)χ− 1/χ0 = 0 (2.4)

where m is the spontaneous magnetization, which can be obtained from Eq.(2.3) in the absence of

external magnetic field. Eq.(2.3) infers that m = 0 can never be a solution of h 6= 0 phase, which

means that an induced magnetization is observed in the PM phase.

A key property of Eq. (2.3) is the change from first- to second-order FM phase transition at

the critical point, characterized by hC , τC and mC , where hC , τC and mC are the critical values of

magnetic field, temperature and magnetization, respectively. The critical point is obtained from

the following condition F ′ = F ′′ = F ′′′ = 0; this leads to

hC = HCMS =
6B2

25C

(
3B

10C

)1/2

; τC = TC − T ∗ =
9B2

20aC
; mC =

MC

MS
=

(
3B

10C

)1/2

. (2.5)

The complete solution of Eq. (2.3) shows the variation of m(τ) with the temperature difference

τ = T −T ∗ for different h values is shown in Fig. 1a, for which we have used the parameter values

a = 1.0, B = 3.0, C = 8.0. For h = 0, m drops very sharply (discontinuity in m is around 0.43) at τ

= 0.281. With increasing field strength, the magnitude of the magnetization jump (discontinuity)

starts to decrease and eventually vanishes at the critical magnetic field hC ≈ 0.09 at which zero-

field FM-PM transition changes from first- to second-order. This critical line differentiating the

first and second order phase transition is identified by the dotted plot.

Under the influence of h (h < hC), there is a shift in the first-order FM transition temperature,

which can be calculated from the conditions F − F0 = 0 and ∂F
∂m = 0, as

TFM−PM (h) = T ∗ +
3B2

16aC
+

10h

4a

(
4C

3B

)1/2

. (2.6)
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The evolution of magnetization m [according to Eq.(2.3)] with magnetic field h for different tem-

perature values τ is shown in Fig. 1b. For τFM−PM (0) < τ < τC , magnetization isotherms exhibit

field-induced characteristic jump from low- to high-magnetic states. With increasing temperature,

the sharpness of the jump decreases and no such jump exists above τC ≈ 0.5. The values of hC

and τC as observed from Figures 1a and 1b are consistent with Eq. (2.5). Here we would like to

mention that the chosen values of the parameters a, B and C are not unique, different values of

them will result different hC and τC , but the nature of the phase diagram remains unaltered.
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(a) Scaled magnetization, m plotted against

temperature difference, τ = T − T ∗ for different

scaled magnetic field values h = 0 (extreme left

curve), 0.01, 0.03, 0.05, 0.07, 0.08, 0.09, 0.1, 0.12

and 0.14 (extreme right curve). The dotted line

corresponds to h = 0.09 ≈ hC .
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(b) m(h) isotherms for different τ . From top to

bottom, each curve corresponds to τ = 0.01, 0.1,

0.2, 0.28, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.8, 1.0 and

1.2. The dotted line corresponds to τ = 0.5 ≈ τC .

FIG. 1: (Color online) Variation of scaled magnetization m against scaled magnetic field h and

temperature difference τ from the theoretical model. All the plots have been drawn for the

parameter values a = 1.0, B = 3.0 and C = 8.0.

Now we present our previously studied experimental results analyzed on the basis of the the-

ory discussed in the present article. The studied system was Sm0.52Sr0.48MnO3 (SSMO) single
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crystal24,26, which was prepared by floating zone image furnace in oxygen atmosphere. The qual-

ity of the crystal was carefully checked by various techniques such as x-ray powder diffraction,

Laue diffraction, electron dispersive x-ray analysis, ac susceptibility, scanning electron microscope

etc. The magnetization measurements were performed in a superconducting quantum interference

device magnetometer in fields up to 7T using five-scan averaging.
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(a) M(T ) curves of a SSMO crystal for a range

of H values. The inset shows H-dependence of

ferromagnetic-paramagnetic transition

temperature TFM-PM. The experimental data

points (symbol) are fitted (line) from a solution

of Eq. (2.6).
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(b) M(H) isotherms of an SSMO crystal

demonstrating the dependence of magnetization

(M) on Magnetic field (H) of a

Sm0.52Sr0.48MnO3 (SSMO) single crystal for

different temperatures (T ).

FIG. 2: (Color online) Variation of magnetization (M) against magnetic field (H) and

temperature (T) for a Sm0.52Sr0.48MnO3 (SSMO) single crystal.

Figure 2a shows M(T ) curves of SSMO crystal for a range of values of the magnetic field H.

In the small field regime, the sharp FM-PM transition indicates that the transition is first-order

in nature, which gets weakened with increasing H as clearly reflected by the suppression of the

magnetization change associated with the transition. Fig. 2a also depicts the nature of increase

of the FM-PM transition temperature with increasing external field; here we have fitted the data
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displayed in this figure using Eq. (2.6), specifically using the functional forms
(
T ∗ + 3B2

16aC

)
=

112.7 ± 0.2 K and
(
10MS
4a

)√
4C
3B = 10.74 ± 0.08 K/T as fitting parameters. In a related system

Sm0.55Sr0.45MnO3
25, where Sr concentration differs slightly, FM to PM phase transition is first-

order with TFM−PM (H = 0) ∼135 K. With the application of external field, the transition is

shifted to higher temperatures at an average rate of dTFM−PM/dH = 9 K/T. Simultaneously, the

first-order nature of the transition weakens and above a critical point (HC ≈ 3.75 T, TC ≈ 165.4

K), the transition becomes second-order. The field-induced change in the character of the FM-PM

transition is observed in other manganites also such as Sm0.55(Sr0.5Ca0.5)0.45MnO3 (HC ≈ 11.5 T,

TC ≈ 164 K)28, Eu0.55Sr0.45MnO3 (HC ≈ 7.4 T)25 and La1−xCaxMnO3 with x = 0.25 (HC ≈ 4

T)22 and 0.3 (HC ≈ 6.5 T)30.

The evolution of M with H for different temperatures is shown in Fig. 2b. It is clear that

M(H) isotherms are not conventional Brillouin-like, rather they exhibit field-induced metamag-

netic transition. With increasing T , the sharpness of the jump decreases. From a comparison

with observations detailed in the next section, it is clear that the temperature and field depen-

dence of magnetization observed in SSMO are qualitatively similar to the magnetization behavior,

calculated from free energy density [Eq.(2.3)], as shown in Figures 1a and 1b. For SSMO, the

experimentally observed critical point at which zero-field first-order FM transition becomes second-

order is given by HC ≈ 4 T ; MC ≈ 0.88 µB/Mn-ion; TC ≈ 160 K.

B. Effect of external pressure on the FM-PM phase transition

To study the pressure dependent change in FM-PM transition, we consider a strong coupling

between magnetic order parameter and lattice strain. So the free energy density in the presence of

external pressure can be written as

F = F0 +
1

2
A

(
M

MS

)2

− 1

4
B

(
M

MS

)4

+
1

6
C

(
M

MS

)6

+
1

2
uijklεijεjk

−1

2
η1εii

(
M

MS

)2

+
1

2
δ1ε

2
ii

(
M

MS

)2

− Pijεij (2.7)

The cross-coupling terms η1 and δ1 are assumed to be positive and they characterize the coupling

strength between the magnetic order parameter and strain tensor ε. The positive signs of η1 and δ1

ensure the increase of magnetization and FM transition temperature with the increase of pressure

[see Eq. (2.12)]. The last term of Eq. (2.7) represents the coupling between pressure and elastic
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strain. In terms of scaled magnetization m, F can be rewritten as

F = F0 +
1

2
Am2 − 1

4
Bm4 +

1

6
Cm6 +

1

2
uε2 − 1

2
η1εm

2 +
1

2
δ1ε

2m2 − Pε, (2.8)

Now the minimization of Eq. (2.8) with respect to ε we get

ε =
P + η∗m2 + δ∗m4

u
(2.9)

with η∗ = 1
2η1 −

δ1
u P and δ∗ = − δ1η1

2u . Equation (2.9) shows that strain changes with temperature

and pressure since m changes with temperature. Elimination of ε in Eq. (2.8) yields

F = F ∗0 +
1

2
A∗m2 − 1

4
B∗m4 +

1

6
C∗m6 (2.10)

where F ∗0 = F0 − P 2

2u and the renormalized coefficients are given by

A∗ = A−η1P
u

+O(P 2), B∗ = B+
η21
2u
−2δ1η1

u
P+O(P 2), C∗ = C+

5δ1η
2
1

4u2
−5δ21η1

2u3
P+O(P 2). (2.11)

The value of the magnetization in the ferromagnetic state can be calculated after the minimization

of Eq. (2.10) and can be expressed as

m2 =
B∗

2C∗

[
1 +

[
1− 4C∗

B∗2

(
a(T − T ∗)− η1P

u

)]1/2]
, (2.12)

Eq. (2.12) shows that the magnetization increases with increase of pressure which agrees with

experiments26,27. In the FM phase, T − T ∗ is negative and hence the coupling constant η1 should

be positive to ensure the increase of magnetization with increase of external pressure. Moreover,

the form of the free energy density as shown in Eq. (2.10) clearly shows that the jump of the

order parameter mFM−PM = (3B∗/4C∗)1/2 decreases with increase of pressure. To show more

clearly the variation of the magnetization with temperature as well as pressure in the FM phase,

we have plotted m2 as a function of temperature for different pressure (Fig. 3). This is done

for a set of phenomenological parameters for which the FM-PM transition is possible. From Fig.

3, one can see that with increasing pressure, both magnetization and FM transition temperature

increase, whereas the jump of the order parameter at the transition point diminishes, indicating

the closeness of second order character of the FM-PM transition.

The pressure dependent susceptibility can be calculated by adding a term −HM in the free

energy expansion Eq. (2.10) and then the differential equation for susceptibility can be written as

(A∗ − 3B∗m2 − 5C∗m4)χ− 1/χ0 = 0, (2.13)

where the magnetization m can be obtained from Eq. (2.12) in the absence of the external magnetic

field.
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FIG. 3: (Color online) m2 vs. τ for different pressure. The plots have been evaluated for the

parameter values a = 0.1, B = 0.5, C = 0.8, η1 = 2.0, δ1 = 0.7 and u = 0.5.

The pressure dependent first order FM-PM phase transition can be calculated from the condition

F − F0 = 0 and ∂F
∂m = 0 as

TFM−PM (P ) = T ∗ +
η1P

au
+

3B∗2

16aC∗
(2.14)

After simplification, Eq. (2.14) can be rewritten as

TFM−PM (P ) = T ∗ +
w

16aC
+ v1P +O(P 2) (2.15)

where w =
(
B +

η21
2u

)2 (
1− 5δ1η21

4u2C

)
and v1 = η1

au +
5δ21η1
2u3C

(
1 +

η21
2uB

)2
− 4δ1η1

u

(
1− 5δ1η21

4u2C

) (
1 +

η21
2uB

)
.

The spread of thermal hysteresis around the FM-PM phase transition point can be calculated

from the condition F ′ = F ′′ = 0 and is expressed as

4TFM−PM (P ) = T ∗∗ − T ∗1 =
B∗2

4aC∗
(2.16)
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where the supercooling temperature T ∗1 = T ∗ + η1P
au . T ∗∗ is the temperature of the superheated

ferromagnetic phase. Equation (2.16) can be rewritten as

4TFM−PM (P ) =
w1

4aC
+ v2P (2.17)

where w1 = B2
(
1− 5δ1η21

4u2C

)
and v2 = − 5δ21η1

32u3C

(
B +

η21
2u

)2
+ δ1η1

4u

(
1− 5δ1η21

4u2C

) (
B +

η21
2u

)
.

From Eq. (2.11), it is clear that as pressure changes the renormalized coefficients A∗ and B∗

change and hence order of the FM transition also changes. For weak coupling and the lower value

of pressure, B∗ > 0, i.e., B > 2δ1η1
u P − η21

2u , indicating that the FM-PM phase transition is first

order, where both FM and PM phases coexist, i.e., a thermal hysteresis appears [see Eq. (2.16)].

As pressure increases, B∗ starts to decrease and for strong coupling and high value of P , B∗ < 0

i.e. B < 2δ1η1
u P − η21

2u , then a second order transition occurs. Thus at critical pressure PC , thermal

hysteresis vanishes and the first-order FM-PM transition becomes second-order in nature. For a

particular value of the pressure, B∗ = 0, then the first-order FM transition crosses over to the

second order transition i.e. a tricritical point is obtained. Hence, a tricritical point can be achieved

by varying external pressure P only. The quantitative nature of the pressure/doping dependence

on magnetization explained through Eqs. (2.13-2.17) are structurally reminiscent of Eqs. (2.3-2.6),

and hence will show qualitative similarity with Figs. 1 and 2 discussed earlier.

In order to justify our proposed theory, we present our previous experimental work on SSMO single

crystal23,26. The effect of external pressure (up to 2 GPa) on the nature of FM to PM phase tran-

sition has been studied. With increasing pressure, TFM−PM increases while the width of thermal

hysteresis reduces as shown in Fig. (4). We fit these experimentally measured data points accord-

ing to Eqs. (2.15) and (2.17) which clearly points to the strong agreement of our theoretical model

based results with real experimental data. For this, we have used the fit parameters
(
T ∗ + w

16aC

)
= 110.4 ± 0.7 K, v1 = 17.8 ± 0.5 K/GPa, w1

4aC = 4.39 ± 0.04 K and v2 = -1.62 ± 0.03 K/GPa.

For SSMO, the value of critical pressure where the zero-field transition becomes second-order is

PC ≈ 2.7 GPa. In Sm0.55Sr0.45MnO3
25, the application of pressure increases TFM−PM linearly at

the rate of ∼20 K/GPa, while ∆TFM−PM narrows down. The critical pressure where the transition

changes its character is estimated to be PC ≈ 3.2 GPa.
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FIG. 4: (Color online) Pressure (P ) dependence of FM transition temperature (TFM−PM ) and

thermal hysteresis width (∆TFM−PM ) of SSMO single crystal. The symbols are experimentally

measured data points and the solid and dashed lines are the best fit of Eqs. (2.15) and (2.17),

respectively.

C. Effect of chemical substitution on the FM-PM phase transition

Let us now consider the effect of chemical substitution on the FM-PM phase transition. In

the case of binary mixture of impurity, the free energy must be expressed in terms of the order

parameter and impurity concentration x. The simplest way to take into account the effect of

impurity is to introduce the impurity-magnetization coupling terms in the free energy expression

which becomes

F = F0+
1

2
A

(
M

MS

)2

− 1

4
B

(
M

MS

)4

+
1

6
C

(
M

MS

)6

− 1

2
D

(
M

MS

)2

x+
1

2
E

(
M

MS

)2

x2+
1

2
Gx2. (2.18)

where A = a(T − T ∗). The term 1
2Gx

2 is the free energy density of the impurity solute. D and E

are the coupling constants. All the coefficients B, C, D, G and E are assumed to be positive to

ensure the increase of transition temperature [see Eq.(2.23)] with x. Since the order of FM to PM

phase transition depends on the sign of the coefficient B. We assume B changes with concentration

and we set B = b0(x− x0), where x0 is the equilibrium value of concentration and b0 is a positive
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constant39.

Taking the partial derivate of Eq. (2.18) with respect to x, we get

∂F

∂x
= Gx− 1

2
Dm2 + Em2x ≡ µ, (2.19)

where m = M
MS

and µ is the quantity thermodynamically conjugate to x. Simplifying Eq. (2.19),

we get

x =
1

G

[
µ

(
1− Em2

G

)
+

1

2
Dm2 − 1

2

ED

G
m4

]
. (2.20)

Applying Legendre transformation, we have

F (m,µ, T ) = F (m,x, T )− µx

= F ∗∗0 +
1

2
A∗∗m2 − 1

4
B∗∗m4 +

1

6
C∗∗m6, (2.21)

where F ∗∗0 = F0 − µ2

2G and the renormalized coefficients are given by

A∗∗ = A− µD

G
+
µ2E

G2
; B∗∗ = B +

7D2

2G
− µED

G2
+
µ2E2

G3
; C∗∗ = C +

21ED2

4G2
+

3µ2E3

G4
. (2.22)

It is clear from Eq. (2.22) that the consideration of couplings between magnetization M and

impurity concentration x leads to the renormalization of the coefficients A, B and C. The coefficient

B changes with x, which means that the order of FM-PM transition can also change with impurity

concentration. For weak coupling constants E and D and low value of x, B∗∗ > 0 and C∗∗ > 0,

i.e., FM-PM transition is first-order in nature. Then the concentration dependence of FM-PM

transition temperature can be calculated following the procedure as in Eq. (2.14) to get

TFM−PM (x) = T ∗ +
3B2

16aC
+
Dx

a
− Ex2

a
. (2.23)

Similar to the procedure adapted in Eq. (2.16), the width of thermal hysteresis is given by

4TFM−PM (x) =
3B2

4aC
(2.24)

Equation (2.23) shows that first order FM-PM transition temperatures increases with the increase

of concentration. This shows that the coupling constants E and D should be positive.

Now for strong coupling constants E and D and higher value of concentration x, B∗∗ < 0, the

transition is second order. For a particular value of the concentration x = xtcp, B
∗∗ = 0, the first

order transition goes to a second order transition. So, there is a crossover from first to second

order transition and a tricritical point appears.
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From the condition A∗∗ = 0, the second order transition can be expressed as

TC = T ∗ +
Dx

a
− Ex2

a
(2.25)

In our previous experimental study26, we have observed the doping dependence change in the

order of FM-PM transition. The studied system was (Sm1−xNdx)0.52Sr0.48MnO3 single crystals

with 0 ≤ x ≤ 0.3. The magnetization data of parent compound SSMO (x = 0) shows a first-

order FM to PM phase transition at TFM−PM ≈ 114 K along with thermal hysteresis of width

4TFM−PM ≈ 4.3 K. With the substitution of Nd at Sm site, TFM−PM increases while 4TFM−PM

decreases, which are displayed in Fig. 5. These experimental data (solid symbols) are fitted to

Eqs. (2.23) and (2.24). The best-fit parameters are given by T ∗ = 109.3 ± 0.4 K,
B2

0
16aC = 3.54 ±

0.07 K, x0 = 0.64 ± 0.03, D/a = 129.7 ± 0.6 K, E/a = 38.1 ± 0.6 K; the corresponding curves

(solid lines) are as shown in Fig. 5. The complete phase diagrams of (Sm1−xNdx)0.55Sr0.45MnO3

single crystals have been studied for 0 ≤ x ≤ 0.5 by Demkó et al.25 . For x = 0, FM transition

is first-order with TFM−PM ≈ 135 K and 4TFM−PM ≈ 1.7 K. With increasing Nd concentration,

TFM−PM increases and 4TFM−PM narrows down. Above a critical concentration xC ≈ 0.33, the

hysteresis completely vanishes and the first-order transition becomes second-order. Similar kind

of behavior has also observed in La1−zCazMnO3, where first-order (z <0.4) FM to PM phase

transition changes to second-order (z >0.4) with increasing Ca doping20.

III. CONCLUSIONS

We have discussed the FM-PM phase transition based on a phenomenological Ginzburg-Landau

theory. In the presence of magnetic field, first order FM-PM phase transition can become second

ordered at the critical point. The effect of pressure on the FM-PM phase transition is to increase

the transition temperature. The theory predicts a second order character of the FM-PM phase

transition at high pressure. The formation of two phase regions during the FM-PM phase transition,

prompted by chemical substitution, depends on the small values of the coefficients B and C. The

different values of the Landau coefficients indicate the change of the transition temperatures and

the second order character of the transition. In a mixture, the FM-PM phase transition which is

first order of the pure form becomes a second ordered transition with the change of concentration.

This leads to a crossover from first to second order transition via a tricritical point. This study
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FIG. 5: (Color online) Ferromagnetic-paramagnetic transition temperature (TFM−PM ) and

thermal hysteresis width (∆TFM−PM ) of (Sm1−xNdx)0.52Sr0.48MnO3 single crystals as a function

of Nd concentration (x). The symbols represent experimental data points while the solid and

dotted lines are the best fit of Eqs. (2.23) and (2.24), respectively.

thus presents a theory based confirmation of experimental results both at the qualitative and

quantitative levels.

As shown from comparison with other experimental results on manganites like Sm0.55(Sr0.5Ca0.5)0.45MnO3,

Sm0.55Sr0.45MnO3, Sm0.52Sr0.48MnO3, Sm0.55(Sr0.5Ca0.5)0.45MnO3, Eu0.55Sr0.45MnO3 and La1−xCaxMnO3,

the variation of FM-PM transition temperature and hysteresis width with external/ internal per-

turbations conform to our model results. Changes in the character of FM phase transition under

the influence of external magnetic field, pressure and chemical substitution observed in several

manganite systems20,22–29,35,36 have all been satisfactorily explained within the remit of our theo-

retical model justifying the occurrence of a tricritical point, a hitherto unexplained feature in most

studies.
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