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Abstract
The adsorption of biologically active molecules, such as the DNA bases, amino acids,

on solid surfaces has been the subject of a number of experimental and theoretical

studies in the past years. The understanding of the self-assembly mechanism of

bioactive molecules on surfaces not only is fundamentally important in the

preparation of bioactive surfaces, but also provides us insight into the origins of life

and homo-chirality in nature.

In this thesis, the adsorption behaviour of adenine and phenylglycine molecules on

the Cu(110) surface has been investigated in order to understand the effect of

experimental parameters like coverage, annealing temperature etc. on the molecular

orientation and the ordering of the adlayer structures.

The thesis is organised in six parts:

 Chapter I gives an introduction to the relevance of surface sciences studies,

describing the phenomena of surface chirality and molecular adsorption

behaviours on surfaces.

 Chapter II gives an overview of the experimental techniques and introduces

basic concepts of theoretical calculation.

 Chapter III investigates the effect of experimental parameters, e.g. surface

coverage, annealing temperature and substrate temperature on molecular

diffusion, molecular orientation and ordering of the adlayer structures. LT-

STM examination of the contrast variations of adenine chains and isolated

adsorbate as a function of the tip-sample bias voltage is also presented with

the aim to understand the tunnelling mechanism.

 Chapter IV shows RAIR spectra studies of the evolution of phenylglycine

molecular orientation as a function of surface coverage at room temperature.

The adsorption geometry and binding nature of phenylglycine is discussed.

 Chapter V concerns with the adsorption behaviours of phenylglycine and

adenine on Cu(110) surface pre-covered with oxygen.

 Chapter VI summarises the conclusions and describes the outlook of some

future work.
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CHAPTER I

Introduction

1.1 Background

Studies of the behaviour of organic molecules in terms of their chemical structure,

molecular orientation and bonding upon adsorption on solid surfaces, have been a

subject of great interest in recent decades. It is believed that a good knowledge of the

interactions between bioactive molecules, such as amino acids [1, 2] or nucleic acids

[3-6], and solid surfaces is not only relevant to the preparation of biocompatible

materials and biosensors [7-9], but also may contribute to explain the possible

mechanism of prebiotic evolution before sophisticated organic molecules were

formed [10-11]. In addition, adsorption of organic molecules with multifunctional

groups is also one of the promising approaches to modifying surface properties by

introducing additional functionalities, which gives rise to a wide range of applications

in catalysis, molecular sensing and recognition, etc. [12-17].

Surface functionalization has been a very interesting and challenging aspect of the

future development of new nanotechnological devices [12-17]. One promising

approach to achieve this goal is through the adsorption of chemically reactive organic

molecules, especially those containing multifunctional groups, such as carboxylic

acids, amino acids, anhydrides and aromatic rings on target surfaces. After interacting

with the surfaces, adsorbates can assemble into ordered two-dimensional

superstructures where the molecular properties are preserved or slightly changed. At

the same time the primary functionalities of the molecule can remain unchanged; by

means of this method, therefore, surface functionalities can be tailored.

One well-known example of surface functionalization is the introduction of chirality

onto an achiral surface through adsorption of chiral molecules. In heterogeneous

catalysis [18-20], the creation of such surfaces with specific chirality offers the

opportunity for the ultimate control over a chemical reaction by directing its

enantioselectivity. Surface chirality is particularly attractive due to its potential

applications in the pharmaceutical production, for an efficient separation of large
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quantities of pure chiral product from its racemic mixture.

In order to obtain a well-functionalized surface using multifunctional organic

molecules, the underlying driving force and mechanism responsible for the formation

of ordered superstructures has to be well understood. Self-assembly of organic

molecules on surfaces is defined as a spontaneous and reversible process in which

molecules, mediated by a subtle interplay of various interactions existing between

them, and that between adsorbates and substrates, assemble into ordered, stable,

typically non-covalently bonded superstructures when an equilibrium state is reached

[21]. In other words, the resulting superstructure observed on a surface, as regards the

local molecular orientation, bonding and conformation, is an outcome of the delicate

balance of varied complex intermolecular interactions, such as hydrogen bonding, van

de Waals forces, π-π and other electrostatic interactions. 

The behaviour of organic molecules on surfaces is not only influenced by the

properties of the substrate, but also in large degree by the molecular chemical

properties. The characteristics of the new system are a reflection of changes occuring

in the molecular geometric and electronic structure upon adsorption, along with

correlated alterations occurring in the substrate electronic properties. The

understanding of the various substrate and lateral interactions that govern the ultimate

orientation and two dimensional organization of an adsorbate at metal surfaces is the

fundamental step toward controlling surface functional modification, in order to

achieve the goal of developing new biomaterials or microelectronics.

Among the number of surface techniques widely used to study organic ultrathin

films, scanning tunneling microscopy (STM) is the most popular and powerful tool

due to its capability of providing us with a real space image of the adsorbed structure

at a molecular level. Through a detailed analysis of the recorded images, information

concerning the unit cell dimensions and geometries can be obtained. However, in

practice STM cannot be used as a stand-alone technique able to give us sufficient

information for a convincing structural determination. Hence, other surface sensitive

spectroscopic techniques, such as reflection absorption infrared spectroscopy

(RAIRS) and electron energy loss spectroscopy (EELS) are also employed, because of

their unique capabilities in giving information on the molecular orientation, bonding

natures and surface superstructure periodicity. These experimental techniques, in

combination with the data simulations and theoretical calculations, allow us to model
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the adsorbed species with respect to the chemical nature, bonding, and orientation

more effectively.

In this thesis, the study of adenine on metal surfaces and its interactions with other

adsorbates have been studied in detail, to improve an understanding of thin

prototypical biomonolayer molecular adsorbates. Self-assembly of adenine (one of the

DNA bases) on various surfaces under either liquid or ultra-high vacuum condition

has been studied, using STM, low electron energy diffraction (LEED), and RAIRS.

Previous research revealed that adenine formed a commensurate rectangular unit cell

with two glide planes, containing four adenine molecules, on the graphite surface [22-

26], which indicated a relatively strong molecule-substrate interaction. On the

Cu(111) [27-32] adenine molecules assembled into one-dimensional chains and two-

dimensional hexagonal networks at low temperature (70 K) [29], as a result of the

intermolecular interactions, mainly originating from inter-molecular double hydrogen

bonding. Recently, low temperature STM investigations (150 K) of the adsorption of

adenine on the Au(111) surface [33, 34] under ultra-high vacuum conditions have

been reported. Adenine was found to form two different honeycomb networks, upon

deposition onto the surface at room temperature. One structure showed a hexagonal

unit cell containing four adenine molecules, consistent with the hexagonal networks

previously reported on a Ag-terminated Si(111) [35] surface; the other was a new

superstructure which contains two molecules per primitive unit cell. Both structures

were non-chiral and coexisted as neighboring domains on the same island. Increasing

the annealing temperature led to the growth of one structure at the expense of the

other.

In all these structures, adenine molecules are considered to be flat lying (or slightly

tilted) with their molecular planes parallel to the surface at a considerable distance;

the intermolecular hydrogen bonding is the dominating interaction responsible for the

formation of the 2D networks. The common aspect of these experiments is that all

STM measurements needed to be carried out at low temperature. This might be due to

the low corrugation of the (111) surface which make the molecules highly diffusible

over the surface, thus low temperature deposition is employed with the aim of

reducing molecular diffusion upon scanning.

Room temperature STM investigations of the adsorption of adenine on Cu(110)

surfaces have been conducted by Chen et al. [36], revealing that adenine could form
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two reflection related domains after annealing the sample to 440 K. Each domain is

composed of ordered and short adenine molecular dimer chains aligning along the (1,

2) and (-1, 2) directions, respectively. This serves as a model system for studying the

molecular enantiomeric interactions on a solid surface. However, the problem with

these chiral-related adenine dimer chains is that the domain sizes are very small,

consisting of short chains with an average length distribution of 38 Å, which

corresponds to five unit cells along the chain growing direction. One of the aims of

this thesis is to determine how experimental parameters, such as temperature and

coverage, affect the domain size, hoping to increase the length of these dimer chains.

Bias dependent images of single adenine molecules adsorbed on the Cu(110) surface

have also been collected in order to investigate the adenine molecular orbital

contribution to the image as a function of the scanning bias applied.

Co-deposition of phenylglycine onto the adenine dimer chain pre-covered Cu(110)

surface led to the formation of phenylglycine molecules of single chirality decorated

chains [37]. This means (S)-phenylglycine molecules only interact with the chains

aligning along the (1, 2) direction, while (R)-phenylglycine molecules connect only

with the chains growing along the (-1, 2) direction. This finding is a particularly

important example of chiral recognition at molecular level in adsorbed species. In

addition, interactions of (R, S)-phenylglycine with Cu(110) in the absence of adenine

have been investigated using LEED, EELS [38, 39]. In this case (R, S)- refers to a

racemic mixture of (R)- and (S)- enantiomers. They showed the presence of ordered

enantiomeric separated chiral overlayer structures, exhibiting commensurate unit cells

with 








14

3-5
and 









1-4

35
periodicities, at saturation coverage upon annealing to 450

K. Another structure was formed upon annealing to 420 K, showing (3 × 2)

periodicity. In this research, I will present vibrational spectroscopy studies of

adsorbed phenylglycine on Cu(110) using RAIRS, in combination with DFT

calculations of the vibrational frequencies of the free zwitterionic and anionic

phenylglycine species, in order to probe the evolution of the molecular orientation as

a function of coverage.

In addition, co-deposition of phenylglycine and adenine onto the Cu(110) surface

pre-covered with (2 × 1) oxygen copper added rows was studied using STM; this

revealed a different surface behaviour for these bio-active molecules even though
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both contain the NH2 group which was reported to show strong tendency to react with

the oxygen rows formed on Cu(110) surface.

1. 2 Molecular and Surface Chirality

1.2.1 Molecular chirality

Chirality, meaning handedness in Greek, is simply a geometric property, and

originally refers to any object the image of which is not superimposable on itself by

any translation and rotation. In chemistry, the resulting two distinguishable mirror

images are called enantiomers or optical isomers, and the absolute configuration of

each enantiomer is labelled (R) or (S) as determined by the Cahn-Ingold-Prelog rules

[40, 41]. According to the rules, each of the four different side substitutents

surrounding the chiral center, often a carbon atom, is assigned a priority based on its

atomic number. If the substitutent having the lowest priority group, based on the

atomic number of the allocated atoms, is placed away from the viewer, then the

priority of the remaining groups can decrease either clockwise or counter-clockwise:

they are labelled (R) or (S), respectively, Figure 1.1. Chirality is an inherent property

of many biologically active molecules, especially amino acids and sugars. It is found

that all of these compounds in their naturally occuring form are of the same chirality:

amino acids are (L) and sugars are (D), where (D) and (L) is the nomenclature system

commonly used in biochemistry to express the chirality of the biologically active

molecules.
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Fig. 1.1: Schematic representation of S (L) and R (D)-chirality of simple amino acid molecule, where R
is the side chain referring to any functional group [42].

Beyond chemistry, a more popular and complete alternative, which could be applied

widely in the determination of chirality existing generally in any object, is to

determine whether an inversion centre or symmetry plane can be identified in the

system. A chiral object always lacks these symmetry elements. This is also used to

identify chirality at two-dimensional and inherent chiral surfaces.

Normally, enantiomers, regardless of being (R) or (S), behave identically,

considering most of the chemical and spectroscopic properties, such as chemical

reactivity, IR, NMR spectroscopy. A chiral molecule may smell differently to its

enantiomer. A good example is the (S)-form of carvone, Figure 1.2, which smells like

caraway, while its enantiomer has smell of spearmint [43]. The difference in smell is

because the olefactory receptor of human beings has chirality that may respond

differently to each of the enantiomers. One typical characteristic of enantiomers is

their optical activities. It is discovered that enantiomers rotate the plane of the

polarised light in opposite directions, either clockwise or counter-clockwise.
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Fig. 1.2: Carvone is a molecule where the (R)-enantiomer (left) smells of spearmint, while its
counterpart, (S)-form (right) has smell of caraway [43]. The olefactory receptor responds more strongly
to one enantiomer than the other.

Purification of one specific enantiomer from its racemic mixture has attracted

extensive attention, following realisation that each enantiomer displays a unique

function in biological systems. It was found that in many cases, molecules of one

enantiomeric form are helpful to the body while their enantiomeric counterparts might

have side effects, even worse, show harmful effects [44]. Therefore, finding an

effective synthesis of single enantiomer method to separate molecules of single

chirality purposely from their naturally occurring racemic mixture has become a great

challenge in pharmaceutical industry, because in the past almost all bio-active

molecules are synthesized as a racemic mixture.

1.2.2 Surface chirality

A chiral surface is formed if there is no inversion or mirror plane symmetry present

on the surface. Generally, there are two approaches widely used to bestow chirality on

the surface. One way is via the adsorption of complex organic molecules, which

provides a more sophisticated selectivity and asymmetrisation function to be

introduced [45]. The alternative is via carefully cutting the crystal in such a way that

chiral kinks and steps are exposed [46-48]; the Cahn-Ingold-Prelog analogy is used in
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a similar way to determine the absolute stereochemistry of the kink site as (R) or (S)

[47], Figure 1.3.

Fig. 1.3: Hard-sphere model of the chiral surfaces of Pt(6,4,3)R and (6,4,3)S . The three different facets,
(110), (111), (100), composing the kink are indicated. The kink edges are highlighted. On the bottom,
the Cahn-Ingold-Prelog analogy used to determine the absolute stereochemistry of the kink site as
either (S) or (R) [46, 47].

As far as the former method is concerned, the creation of surface chirality includes

two processes: the creation of local chiral motifs by single molecular adsorption onto

a given substrate and the creation of chiral domains arising from the chiral

arrangements of the individual motifs (i.e. organisational chirality or space group

chirality) [49]. Chiral motifs can be created by adsorption of molecules of either

inherent chirality or pro-chirality. Adsorption of inherently chiral molecules as the

basic chiral building blocks onto the surface leads to the formation of a global chiral

surface, because no mirror chiral motif can be conceived due to the inhibition of the

formation of its mirror image. However, for the latter case, surface chirality is merely
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limited to domains appearing at a local level over a restricted surface area, while

chirality disappears at global level over the entire surface. No matter in which case,

the creation of chirality requires the annihilation of the reflection symmetry that is

originally perpendicular to the achiral surface of a given substrate via adsorption of

organic molecules [49-51].

1.2.3 Chiral motifs created via adsorption of prochiral molecules

Prochiral molecules are a class of molecule widely employed to create chiral

adsorbed motifs by means of adsorption. A prochiral molecule is an achiral molecule

that becomes chiral due to the break of the symmetric elements in the single de-

symmetrising step, which could arise from a physical interaction, or chemical reaction

to a rigid adsorption [52]. In all these processes, the presence of molecules on surfaces

leads to the removal of both molecular and surface reflection planes. Here, one

example is the adsorption of a planar molecule onto the surface in such a way that

breaks the molecular mirror plane symmetry. This is always the case for the molecular

plane lying parallel to the substratre surface. The adsorption consequently leads to the

formation of two enantiomers, which are not superimposable onto each other by any

translation or rotation in the surface plane [49]. This phenomenon was well illustrated

by 4-trans-2-(pyrid-4-yl-vinyl) benzoic acid (PVBA) adsorbing on Pd(110) [53, 54],

where the two planar rings of PVBA could adsorb in either of the two orientations,

Figure 1.4a. As a result, equal amounts of enantiomeric features were created due to

the direct loss of the molecular mirror plane.

Another case is the adsorption of achiral molecules onto chemically active surfaces,

where the strong interactions between more than one functional group and the

substrate atoms can lead to the generation of highly defined adsorption geometry that

causes the molecular mirror symmetry to be lost. This phenomenon was demonstrated

by the adsorption of glycine, the simplest achiral amino acid, on a Cu(110) surface

[55-58], Figure 1.4b, in which both the anionic carboxylate group and -NH2 group

interacted strongly with the copper atoms forcing its skeleton to align along the

copper short bridge direction in two ways, either left-handed or right handed.
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Fig. 1.4: Examples of local chiral motifs created via adsorption of prochiral molecules. a) STM image
and model of the adsorption of PVBA on Pd(110) surface, showing the creation of mirror related chiral
motifs through adsorption of planar prochiral molecules [54]. b) Schematic model of glycine adsorbed
onto Cu(110), giving an example of chiral motifs created via rigid adsorption [49]. c) STM image and
schematic showing the reaction of trans-butene on Si(100), which leads to the formation of (S,S) and
(R,R) structures arising from the reaction of the silicon face with either faces of planar trans-2-butene
molecule [59].

The last example is reaction induced chiral motifs. One example of this kind is the

active adsorption of the trans-2-butene molecule at a Si(100) surface [59], leading to

the production of (R, R) and (S, S) adsorption motifs in equal amounts, which were

directly imaged by STM from the registry of the methyl groups with the underlying

substrate, Figure 1.4c. In this adsorption system, the Si-Si dimers, which have σ and π 

bonds, i.e. some double bond character, are capable of interacting with the unsaturated

double bonds of the butene molecule through the [2+2] cycloaddition reaction [60-
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62]. This can re-hybridise the carbon atom from sp2 to sp3, leading to the creation of

two chiral carbon centres upon adsorption.

The common characteristic of the chiral motifs created through adsorption of a

prochiral molecule on surfaces is the production of enantiomeric motifs in equal

amounts because they are energetically equivalent, and motifs with opposite chirality

always have the same probability to be found on the surface. Chirality created in this

way is limited to a local level. The organisation of these chiral motifs can lead to the

formation of many forms of chiral ordering, ranging from chiral clusters to chiral

chains to highly organized chiral domains. However, 2D chirality disappears over the

entire surface area, making the overall surface achiral.

1.2.4 Chiral surface created via adsorption of chiral molecules

A truly chiral surface refers to a system possessing chirality in both a local and a

global sense; this can only be achieved on an achiral substrate via the adsorption of an

inherently chiral molecule. The phenomenon of globally organisational chirality was

well determined by the adsorption of (R, R)- tartaric acid on Cu(110) surfaces [45,

59], Figure 1.5. This periodic chiral adlayer was composed entirely of the doubly

dehydrogenated bitartrate species, bonded strongly to the surface via the four oxygen

atoms of the carboxylate groups. The structural model determined from RAIRS, STM

and LEED data showed that the individual motifs aggregate along the  411 direction,

thus breaking the mirror symmetry of the Cu(110) surface. This organisational surface

chirality was sustained at global level, and the switching of the surface chirality was

achieved via the adsorption of the opposite enantiomer, the (S, S)-tartaric acid, where

the mirror chiral adlayer consisted of long chains growing along the mirror

 141 direction. Similar phenomena of organisational chirality and chiral switching

upon changing of enantiomer were also observed when (S)- and (R)-alanine were

adsorbed on Cu(110) surfaces [60, 61]. The self-assembly of each original chiral

species generates a truly globally handed organisation which is not superimposable on

the mirror image created by its enantiomer. Coexistence of chiral separated domains

occurs when the racemic mixture of chiral molecules are put on the surfaces. One
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example that has been well-illustrated was the adsorption of phenylglycine on the

Cu(110) surface [38]; the LEED patterns associated with each individual enantiomer

were observed to coexist.

Fig. 1.5: a) Schematic of the dehydrogenated bitartrate species; b) STM images showing mirror chiral
surfaces created by (R, R)- and (S, S)-tartaric acids on Cu(110); c) Structural models of the chiral
domains constructed from RAIRS, STM and LEED data [adapted from Refs. [45, 59].

Self-assembly of chiral motifs, arising from either pro-chiral or chiral molecule,

can yield highly organized and periodical arrays extended over large areas on the

surface. Normally, several rotational and translational domains are formed over the

entire surface because the driving forces, e.g. intermolecular hydrogen bond and van

de Waals, contributing to the 2D ordering are short-range interactions. The symmetry

of the unit cell in each chiral domain is assigned to one of the five surface space

groups allowed at a chiral surface. Out of the 230 space groups existing in the three-
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dimensional structures, only 17 are allowed for a two-dimensional structure at a

surface because only those symmetry elements that are perpendicular to the surface

can exist. The creation of chiral surfaces further requires the elimination of symmetry

elements such as mirror planes and glide planes perpendicular to the surface, thus,

only 5 space groups are left, described as C1, C2, C3, C4, and C6 [62-65].

With a chiral surface, to ensure chirality extended at a global level, all the chiral

domains formed must be equivalent and possess the same ‘handedness’. Generally,

only translational and rotational domains can be found on a global chiral surface [66].

Translational symmetry operations do not change the handedness of chiral

organisations, thus, they are always allowed. For rotational domains, to ensure the

preservation of the rotational symmetry of the original clean substrate, the number of

rotational domains and the symmetry of the adlayer unit cell are constrained by the

rule of surface symmetry conservation [46]. Take the chiral organisation formed on an

fcc (110) surface for example: the presence of chiral adsorbates leads the surface

symmetry to reduce from the original C2v to C2. If the adlayer unit cell has only C1

symmetry, e.g. the 1D chiral chains, two rotational domains will be found on the same

surface in order to recover the original surface C2 symmetry. Only one domain is

observed if the unit cell shows C2 symmetry. Thus, the number of rotational domains

decreases as the symmetry of the unit cell increases.

Reflectional domains are formed only on a local organisational chiral surface

because this would lead to the coexistence of mirror-imaged domains, being

necessarily not allowed on chiral surfaces extended at a global level. This

phenomenon is observed on a chiral surface created via the adsorption of prochiral

molecules, particularly, when the adsorbed chiral species of same ‘handedness’

aggregate along a direction aligning off the high symmetry axes of the underlying

substrate, thus the symmetry planes of that surface are broken. Molecules of the

opposite ‘handedness’ align along the mirror direction. In this case, two reflectional

domains possessing local organisational chirality are formed with an equal

probability, making the overall surface structures achiral. Each of the resulting chiral

organisations is referred to as a homo-chiral domain, implying it is composed of

molecules of a single chirality. In contrast, if both the vectors of the unit cell are

aligned consistently with the symmetry axes of the substrates, hetero-chiral domains

consisting of both enantiomers in equal amounts could exist.
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The formation of chiral domains arising from the chiral organisations of individual

chiral motifs is well-illustrated by the adsorption of amino acid bases and DNA bases

on copper substrates. Most amino acids are inherently chiral molecules that adopt

chiral adsorption geometries dictated by the strong substrate-adsorbate interactions,

originating from the strong coordination of the -NH2 group and deprotonated

carboxylic group with the substrate atoms [38, 55-58]. The resulting chiral

supramolecular assemblies are largely mediated by the intermolecular directional

hydrogen bonds and the steric interactions. DNA bases are a class of prochiral

molecules characterized by the heterocyclic structures that contain more than one

electronegative nitrogen atom and electropositive CH group, which can participate in

the formation of double hydrogen bonding. This type of intermolecular interaction is

highly selective and directional; it plays a crucial role in directing and stabilizing the

chiral organisations of adsorbed species [22-35].

However, since surface chirality is due only to removal of the mirror plane

symmetry of the surface in the presence of a chiral adsorbate, the substrate electronic

structure is not necessarily strongly perturbed. In other words, the chiral behaviour

occurring to the underlying substrate electronic structure may be weak, likely because

the molecule-substrate interaction is still not strong enough to cause significant

change in the substrate electronic structure [67]. Therefore, the resultant surface is

only bestowed with chirality physically rather than electronically.

1.3 Molecular Adsorption at Surfaces

Each unique superstructure appearing on the surface is in fact a macroscopic

reflection of the various processes occurring at the atomistic scale. Figure 1.6

schematically illustrates the varied molecular behaviours occurring on a targeted

surface [68]. As thermally vaporized molecules impinge on a given surface, under

contamination free conditions, as in an ultra-high vacuum chamber, they may stick on

a specific site by means of chemisorption or physisorption, depending on the strength

of the interaction between adsorbates and substrate atoms. However, they can also

undergo desorption, leaving the surface very soon after interaction; accordingly, there
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is no adsorption eventually observed in this case. As for the molecules staying on the

surface after impinging, some of them may diffuse across the surface seeking the most

thermodynamically favorable states. Under the optimum condition, two or more of

them can meet and stick together as dimers or nucleate in a specific way over large

areas on the surface, leading to the observation of various supramolecular self-

assembled structures.

Fig. 1.6: Schematic representation of molecular behaviours upon impinging on the surface of interest
(adapted from chapter 1 of Ref. 68).

In the adsorption process occurring at a surface, the primary mechanism

underlying any molecular (also atomic) ordering is the migration of the adsorbed

species, involving random hopping processes, on an atomistic scale [68, 69].

Theoretically, many factors can influence the degree of the ordering and assembly of

the molecules, including the molecular sticking coefficient, the relative strength of

various intermolecular and molecule-substrate interactions and the molecular

diffusion rate. In experiments, the organization of the adsorbates at metal surfaces can

be controlled through an appropriate choice of substrate geometry and optimization of

the external experimental parameters, e.g. the temperature and the deposition flux

rate.
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1.3.1 Molecular sticking coefficient [69]

From a molecular kinetic point of view, the molecular adsorption rate is

remarkably influenced by the molecular sticking coefficient, S, which is simply the

probability of the particle sticking to the surface after impingement. It is described as

the ratio between the number of the particles sticking on the surface per unit per time

and that of those impinging, as given in the equation:

z

R
S s

surfacewith themoleculeofimpingingofratethe

surfaceon themoleculeofstickingofratethe
(1.1)

According to the Hertz-Knudsen equation, the molecule collision rate (z) with the

surface is given as:

 2

1

2 kTm

P
z


 (1.2)

Where, P - Pressure (Pa)

T - Temperature (K)

m - Mass of the impinging species (kg)

k - Boltzmann’s constant (1.38 × 10-23 J K-1)

R - Gas constant (8.31 J mol-1 K-1)

In ideal circumstances, if we assume that each adsorbed molecule occupies a single

surface site, the coverage of surface is defined as:

S

ads

N

N


sitesadsorptionsubstrateofnumberTotal

adsorbatebyoccupiedsitessurfaceofNumber
 (1.3)

Consequently, at a given pressure (P) and temperature (T), the sticking coefficient S

is in a linear relationship with the surface coverage, as indicated in the equation:

P

)1(RmkT2
S s


 (1.4)

Where Rs=Ns/t, t is the unit time.

As seen from the above equation, at a certain pressure and temperature the sticking

coefficient is significantly affected by the surface coverage. As θ varies from 1.0 to 0,
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where 1.0 indicates saturation coverage, the sticking coefficient S is in nearly linear

relationship with the surface coverage.

Since the adsorption process always involves bond breaking and forming

instantaneously, studies of the magnitude and variation of heat evolved as a function

of coverage may reveal valuable information concerning the type of bonds between

the substrate and the adsorbate, as well as the lateral interaction between adsorbates.

Generally, the adsorption is favourable when the variation of free energy of the

system is negative; in other words, adsorption is usually also accompanied by an

entropy decrease, as the translational freedom of the gas molecule is reduced due to

the adsorption equation. Hence, the variation of free energy (G) of the system has to

be negative:

STHG  (1.5)

Where,G - Variation of free energy (kJ mol-1)

H - Variation of enthalpy (kJ mol-1)

T - Temperature (K)

S - Variation of entropy (kJ mol-1 K-1)

According to the magnitude of their enthalpies of adsorption, the bonding between

the substrate and adsorbate are classified into two types, physisorption and

chemisorption.

1.3.2 Physisorption and chemisorption [69]

Physisorption is a long range but weak van der Waals-type interaction, hence,

electron exchange between the substrate and adsorbate is usually negligible. This

weak bonding is characterized by low adsorption energy -ΔH0
physisorption< 35 kJ mol-1,

and tends to be a reversible process. In contrast, chemisorptions is a strong interaction

and easily distinguished from physisorption because of the magnitude of ΔH0

(ΔH0
chemisorption >35 kJ mol-1). Depending on the nature of the electron exchange

between adsorbate and substrate, the bonding can be discussed in terms of covalent,
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ionic, and metallic bonds; and spectroscopic methods can be used to explore the

nature of bonding involved in the adsorption. Surface coverage can cause the enthalpy

of chemisorption to change dramatically as consequence of large intermolecular

lateral interactions.

1.3.3 Molecular diffusion at surfaces

One crucial factor accounting for the appearance and the ultimate degree of order

of the self-assembled structures is molecular diffusion since self-assembly is

described as the spontaneous association of a supramolecular architecture from its

constituents [70, 71], involving the free transport of the adsorbed species on the

surface. Molecular diffusion is quantified by the mean square distance traveled per

unit time i.e. diffusivity D, and is thermally activated obeying an Arrhenius type law.

The ratio, D/F, between diffusivity D and the molecular deposition rate F, determines

the average distance that an adsorbate has to travel before meeting another adsorbate.

If D/F is small, the high deposition rate and limited diffusivity can cause the adsorbed

species to be trapped in a kinetically limited state, leading to the formation of

metastable self-organised structures, probably limited on the size of ordered region.

On the other hand, if D/F is large, the adsorbed species are able to diffuse more freely

on the surface and have more time to reach a minimum of energy configuration,

resulting in the self-assembly of the thermodynamically favored, equilibrium

structures [72, 73]. The difference between the self-assembly and self-

organisationally limited structures is illustrated in Figure 1.7.



Chapter I Introduction

- 19 -

Fig. 1.7: Schematic illustration of the difference between self-organisation and self-assembly (adapted
69). The growth process is determined by the ration between diffusion rate D and deposition flux F.
D/F. High flux F and low diffusivity D lead to the formation of kinetic limited state self-organisation
structures. On the other hand, when the flux F is low and diffusivity is high, self-assembly structures
are formed when the thermodynamic equilibrium state is reached (adapted from Ref. 73).

Molecular diffusion on surfaces can be controlled by variation of external

parameters, e.g. substrate temperature and deposition flux rate. Increasing substrate

temperature can provide the molecules with sufficient kinetic energy to overcome the

diffusion barrier on the surface [73]. The magnitude of this energy, however, should

not exceed the binding energy of the molecules on the surface to avoid molecular

desorption. Additionally, to ensure the formation of a stable ordered structure, the

intermolecular interaction energy should be only slightly larger than the kinetic

energy; otherwise, irreversible molecular nucleation would occur if this local

interaction were too strong, while adsorbates would not be able to reach the global

equilibrium structures.

As well as the surface molecular diffusion, the order and arrangement of adsorbed

species on the surface are an outcome of the delicate balance between the

intermolecular interactions and molecule-substrate interactions. The molecule-

substrate interactions involve metal-ligand σ bonds and π bonds, etc. Figure 1.8,

metal-ligand σ bond interactions are common for the adsorption of alkanethiols on 

Au(111) surfaces [74], involving a covalent sulphur-gold bond, and the carboxylic



Chapter I Introduction

- 20 -

acids on copper surfaces [45, 75-77], where the strong coordination of the functional

groups with the substrate atoms leads to the generation of chemisorbed species in both

cases following adsorbate deprotonation. The diffusion barrier for chemisorption

becomes very large, and the molecular assemblies, particularly formed at low

coverage, on the surface are governed by this type of molecule-substrate interactions.

Metal-molecule π interaction is a mere delocalized interaction and often occurs 

between the aromatic rings of the adsorbates and the substrate atoms. It is relatively

weak and affected by the nature of the substrate atoms and the substitutents on the

ring [78]. In smaller molecules, this interaction may give rise to a physisorbed

species, this is often also linked to a low diffusion barrier. The resulting molecular

assembly on the surface is the result of the interplay between directional

intermolecular interactions and substrate-molecule interactions. As the surface

coverage increases, lateral intermolecular interactions may start to gain influence over

the molecule-substrate interactions, resulting in the creation of well-defined molecular

structures.

Fig. 1.8: Schematic illustration of the molecule-molecule (green) and molecule-substrate (purple)
interactions that govern the formation of adlayer structures. The intermolecular interactions, including
H-bond, π - π and van del Waals force may direct and stabilize the supramolecular assemblies. The 
molecule-substrate interactions e.g. metal-ligand σ bond, and molecule-metal π interactions are 
common for molecules containing carboxylate and thiol groups etc. and aromatic rings.
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Among the basic types of intermolecular interactions considered for the molecular

self-assembly, hydrogen bonds are the most important due to their high molecular

selectivity and well-defined orientation. They are non-covalent attractive interactions

occuring between an electronegative atom, e.g. N, O, and a hydrogen atom that is

covalently bonded to another electronegative atom. The π-π stacking interactions have 

some similarity with the van de Waals interactions; they are less selective and

comparatively weak in nature, but multiple weak couplings can result in a very stable

network. This is the case for ordered networks formed by deposition of organic

molecules containing aromatic rings [36] and long alkane chains [79, 80] onto

surfaces. Some other intermolecular interactions include dipole-dipole and substrate-

mediated interactions. Table I gives an overview of these interactions in terms of

interaction strength, typical bonding length and nature.

Table 1: Classification of the typical intermolecular interactions with associated interaction
energies, bonding length and nature

Interaction type Strength Bonding length Nature

Hydrogen bonding 0.1 - 0.5 eV 2 - 3.5 Å
Selective,

directional

Van der Waals 0.02 - 0.1 eV 5 - 10 Å Nonselective

Dipole-dipole 0.1 - 0.5 eV 2 - 3 Å Directional

Electrostatic 0.1 - 3 eV Up to several nm Non-selective

Metal mediated 0.1 - 1eV Up to 70 Å Oscillatory

The bonding energy, distance and nature can be very different depending on the interactions
types. These can be utilized to for controlling molecular self-assembly [12, 73].

The adsorption of organic molecules is a complex process when studied at the

molecular level. The design of ordered surface structures needs such parameters as the

molecular mobility, the lateral interactions between the adsorbates and their bonding

to the surface atomic lattices to be well tailored, all of which depend on the detailed
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chemical nature of the adsorbates, substrate geometry and atomic environment [81-

84]. Thus, these can be exploited to control the interplay of the lateral interactions and

molecule-substrate interactions, with the aim to steer the supramolecular organization

towards the desired structures. In addition, external experimental parameters, e.g.

temperature and flux need to be controlled properly in order to satisfy the kinetic and

thermodynamic requirements. However, in practice the complexity of the

investigation into adsorbed system is further increased by some uncertain factors; for

example, for thin films prepared from solution, solvent effects have to be taken into

consideration.

1.4 Single Crystal Surface [68]

1.4.1 Miller indices

A single crystal metal surface is typically taken as the best candidate in Surface

Science for studying molecular behaviour at the molecular level, because it can

provide a well-defined surface to ensure reproducible experiments carried out at

atomic scale. Most metallic crystal structures that have been widely examined are

cubic, belonging to one of three kinds of lattices: the face centred cubic (FCC), body

centred cubic (BCC) and the hexagonal close packed (HCP), Figure 1.10. In principle,

flat crystal planes can be obtained by cutting a single crystal along any arbitrary

direction, the given plane is conventionally denoted by using three integer numbers

(x, y, z), so called Miller indices.
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Fig. 1.10: A representation of FCC, BCC and HCP crystal structures.

In crystallography, the Miller index of a given plane can be determined in this way:

first we decide the intercepts of the plane cutting the x, y, z-axes in multiples of the

unit cell dimension, then calculate the reciprocals of these intercepts, and the resultant

reciprocals are the Miller indices corresponding to the crystal plane. However, only

the so-called low index surfaces, which mean the Miller index involves small integer,

frequently only zero and one, are commonly studied due to thermodynamic reasons

(minimisation of surface potential energy). Figure 1.11 identifies the low index crystal

planes for an FCC crystal lattice structure using Miller index and sphere models with

unit cell.

Each low index surface exhibits a unique surface geometry and surface atom

coordination, therefore, giving rise to substantial differences in the surface reactivity

and surface properties concerning catalytic activity and electronic properties. As

shown in Figure 1.11b, taking the three low index copper surfaces for example, the

surface energy decreases in the order of Cu(110) > Cu(100) > Cu(111), which reflects

the increasing coordination of atoms in the given surface.

FCC BCC HCP
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Fig. 1.11: Identification of the low-index crystal planes for an FCC crystal lattice using Miller indices.
a) (100), (110) and (111) faces cut from a crystal b) Sphere model representation of the surfaces with
the unit cell in red color (generated using the applet Surface Explorer [85]).

FCC(100) and FCC(111) are considered as smooth relatively dense surfaces with

exposure of equivalent atoms only in the top layer, while for FCC(110), both the first

and second atoms are exposed giving rise to an atomically rougher and more

anisotropic surface. As far as the surface geometry and adsorption site of the low

index faces are concerned, the FCC(110) surface has lowest symmetry of two fold

rotation but exhibits three different ‘high symmetry’ adsorption sites, which are top

site, short and long bridge site. This particular geometry of the FCC(110) surface

makes it more commonly investigated by giving rise to a small number of rotational

and reflectional domains besides a choice of adsorption sites.

Commercially purchased single crystals, manufactured through mechanical cutting

and electrochemical polishing processes, can not be used directly for deposition.

Cleaning procedures have to be carried out in order to get rid of the contamination

sticking to the surface, and the unwanted impurities accumulated in the crystal bulk.

Experimentally, different methods can be used to achieve a well-defined surface,

depending on the properties of the substrate under investigation. A detailed

description of these methods is given in Chapter II.
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1.4.2 Surface defects

No matter which method is applied, it is impossible to obtain an ideal surface

consisting of merely single flat layer atoms without any imperfection. Practically,

various defects are unavoidably present on the surface. The Terrace-Step-Link (TSK)

model of a surface shown in Figure 1.12, gives a clear illustration of the surface

defects. The terrace is composed of flat layer atoms; large and atomically flat terraces

are crucial because the majority of the surface reactions undergoing occurs on them.

The step is located between two layers of atoms; it is approximately one or two

atomic height separating terraces apart. The step itself may contain kinks defect

orienting in different directions, mirror related kinks would give rise to a chiral

surface. The existence of adatoms and missing atoms (vacancies) on each terrace are

fairly common defects found on surfaces [86].

Fig. 1.12: The Terrace-Step-Kink shows the various defects existing on the solid surfaces [86].

Defects are able to cause noticeable effects on the surface reactivity since atoms in

these sites are less strongly bound to the surface and accordingly show high activity

during the adsorption. They are ordinarily referred as active sites with low surface

barrier in favour of preferential molecular adsorption. However, it is generally

considered that well-defined surfaces achieved experimentally contain a small ratio of

defects and have atomically flat terraces of about 100 nm which would actually be

good enough for providing us with reproducible substrates for experiments [68, 86].
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1.5 Nucleobases and Amino Acids

1.5.1 Nucleobases

Nucleobases are the basic blocks in composing the double helix structures of DNA

and RNA. The main ones are adenine, cytosine, thymine, guanine and uracil,

abbreviated as A, C, T, G, and U, Figure 1.13a, respectively [87]. A, C, G. and T are

called DNA bases because they are only found in DNA; while A, C. G and U are

RNA bases in which uracil replaces thymine. Among the five bases, adenine and

guanine belong to purines consisting of two hetrocyclic rings; the others are

pyrimidines that are class of molecules composed of a single ring. One typical

character of these bases is the tautomerism, arising from the shifting of one or two

protons between different nitrogen atoms. In the two strands DNA structures, each

type of base on one strand always connects with just one type of base on the other

strand by double hydrogen bonds, forming base pairs, i.e. A-T and C-G pairs.

However, mispairing may occur when one base is connected with a tautomeric form

of the other bases, this is suspected to play an important role in spontaneous mutation

in DNA replication [88].

Fig. 1.13: a) General structures of nucleic acid bases. b) The atom numbering of adenine and two
preferential tautomeric structures of adenine.
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Adsorption of nucleobases on surfaces has been well studied in recent years

because it has been hypothesized that self-assembly of nucleic acid bases on inorganic

surfaces may have had a role in the emergence of terrestrial life [11, 89]. In particular,

more attention has been paid to adenine adsorbed on various substrates [22-35]

because the molecule plays an essential role in the DNA replication in all known

living systems [90]. Interaction of adenine molecules with metals may be influenced

by such characters as the tautomerism, acidity and hydrogen bonds. Adenine can exist

in twelve tautomers of which two energetically preferred tautomeric forms are: N9H

and N7H, Figure 1.13b, arising from the migration of an H atom between the N9 and

the N7 atoms. Generalized gradient approximation of density functional theory (DFT)

calculations predicts that the N9H tautomer is 8.0 kcal mol-1 lower in energy than the

N7H tautomer [91]. In gas phase, only the N9H tautomer is suggested by available

experimental data [92-95]; mixture of both tautomers can exist in solvents [96, 97].

As for the acidity of gas phase adenine, it is revealed by calculations that the site N9

is about 19.0 kcal mol-1 more acidic than the amino site [98]. In addition to pairing

with thymine in DNA structures, adenine also has strong ability to form various

double hydrogen bonded pairs between themselves. The relatively strong

intermolecular interactions play an important role in the formation of ordered

molecular assemblies on surfaces.

1.5.2 Amino acids

Amino acids are the basic building blocks of proteins. The general molecular

formula of an α-amino acid is expressed as H2NCHRCOOH; its chemical structure is

shown in Figure 1.14a. The central carbon atom, usually referred as the α-carbon, is 

linked to three functional groups in addition to an H atom: an amino group, a

carboxylic group, and the third group, R, which acts as side chain varying for size and

composition and is responsible for giving each amino acid its specific properties. All

amino acids with an exception are inherently chiral molecules in which the α-carbon, 

called chiral center, is linked with four different groups. The one exception is glycine

[99], the simplest amino acid, where R=H, making it achiral in the gas phase. An

amino acid can display different ionized structures: the neutral ionic amino acid,

namely zwitterion, existing in solid and at isoelectric point in solution, the anionic
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form in basic pH value due to deprotonation of the carboxylate group, and the cationic

form resulted from the protonation of the amino group in acidic solution, Figure

1.14b. Each of the three forms can be interconverted by changing the solution pH

value. Anionic amino acids were also found upon metal surfaces because of strong

coordination of the oxygen atoms of the carboxylic group with the substrate atoms

[38, 45, 55-58].

Amino acids are essential for the human body and play an important function in

metabolism [100]. Due to their importance in biochemistry, they have found wide

applications in the food technology as flavour enhancers [92] and the synthesis of

drugs and cosmetics [101]. In addition, amino acids can be used as chiral starting

materials in the enantioselective synthesis [102] in the pharmaceutical industry. The

development of amino acid based biomaterials is other research area of interest.

Depending on the amino acid composition and any further chemical modification, the

chemical and mechanical properties of these materials can be tailored for wide

applications [103].

Fig. 1.14: a) General structure of an α-amino acid consisting of three functional groups: an amino 
group, an carboxylate group, and a side chain R in addition to a H atom. b) Three different forms of
ionized amino acid, the interconversion of them can be realized by mediating the solution pH value.

b)

a)
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CHAPTER II

Experimental

2.1 Introduction

The aim of this chapter is to give a general overview on an Ultra-high Vacuum

(UHV) system, a brief introduction of the experimental setup and some concepts

underlying the techniques used in the experiments described in the thesis.

2.1.1 The system

Most of the UHV-STM experiments presented in this thesis were carried out on the

Omicron VT-UHV system schematically shown in Figure 2.1. The system is divided

into three parts: a preparation chamber, an STM measurement chamber and an

infrared measurement chamber. The chambers are separated from each other by UHV

gate-valves; samples can be easily transferred between chambers by a long horizontal

magnetic transfer arm.

The preparation chamber is equipped with a mass spectrometer, an ion sputter gun

and gas inlets, as well as LEED optics. Sample and tip can be exchanged in and out of

the UHV system via a load lock attached to the preparation chamber without losing

UHV conditions. Molecular deposition is carried out in either the preparation chamber

or the infrared chamber via home-built evaporators that are separated from the

chambers by gate valves. Samples can be moved in the three spatial directions

through the manipulators to facilitate molecular deposition and sample transferring

between the chambers.

The infrared chamber is coupled to a research grade Nicolet 760 Fourier Transform

mid-IR spectrometer within the 800 - 4000 cm-1 range, which enables us to collect the

vibrational spectra of the adsorbed species on the surfaces. KBr windows give access

for the IR beam to the sample at a grazing incidence. A load lock, sputter gun and gas

inlet are also installed in this chamber. Most molecular depositions during the

experiments were carried out in this chamber so that RAIR spectra of the studied

species could be collected before the sample was transferred to the STM chamber for

measurement.
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Fig. 2.1: Schematic of the VT-STM system used in our experiment.

The STM chamber is designed to permit only STM data acquisition. All three

chambers are pumped with turbo pumps, sublimation pumps and ionization pumps

working in combination; the pressure is measured by series of gauges such as

ionization gauge and pirani gauges.

2.2 The Ultra-High Vacuum (UHV) System

The main reasons why an UHV system is necessary for surface science studies are:

firstly, it provides an environment free of contamination so that reliable surface

experiments can be carried out at an atomically clean surface over a given period of

time. Secondly, it allows the use of the many surface sensitive techniques based on
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electron scattering without the interference from gas phase scattering. Under UHV

conditions, the mean free path for electrons, ions and photons is significantly

increased; hence, the electrons emitted from surfaces being able to reach the analyser

are maximized [1].

The behaviour of gas molecules under low pressure is explained in terms of

molecular kinetic theory, so called the collision theory. Under the given gas pressure

P, the number density of gas particle n is described by the equation:

kT/Pn  (molecules m-3) (2.1)

Where: k - Boltzmann constant (1.38 × 10-23 JK-1),

T - Absolute temperature (K),

P - Pressure (Pa)

A gas molecule is considered as a particle with a specific mass and velocity; it

always keeps moving irregularly and colliding with the surrounding particles, as well

as with the walls of the container. We define the average numbers of collision per

second between particles as the collision rate Z,

)mkT2(

P
Z


 (molecules m-2s-1) (2.2)

and the mean free path of gas phase molecule λ is given by equation

P414.1/kT   (2.3)

Where: m - Molecular mass (kg)

             σ - Collision cross section (m2)

As a result, under ultra-high vacuum condition with the pressure below 10-9 mbar,

the collision rate of background gas particles with the surface is decreased greatly,

hence the time for the surface to be completely covered by the residual gas can be of

the order of hours; this provides sufficient time to allow typical surface experiments

to be undertaken. In addition, the mean free path of the electrons and ions is

considerably increased under this pressure, up to the order of meters. So, the

interactions of the electrons with the surrounding residual gas can be considerably

reduced, which is required by these spectroscopic techniques based on electron

scattering to achieve a maximum efficiency because the loss of electrons emitted from

surface encounter, before reaching the analyser, becomes as few as possible.
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2.2.1 Achieving and maintaining the UHV

To achieve ultra-high vacuum conditions, system baking at temperature of about

120 ºC should be performed; this is a necessary first step to remove the adsorbed

water and some other gases adsorbed on the internal walls of the chamber. The baking

can take from several hours to even days depending on how poor the vacuum

conditions were at the time of the experiment. Then degassing is operated before the

system is allowed to cool down; it includes all the components like filaments,

manipulators, and other equipment operating in the chamber. After degassing, the

pressure of the vacuum chamber can reach to 10-8 mbar at least. Further pumping the

system with varied kinds of pumps allows the background pressure to reduce below

10-10 mbar.

Vacuum pumps

The ultra-high vacuum system needs different pumps working together to achieve

and maintain low pressure. The rotary vane pump acts as a backing pump and can

achieve a rough pressure of 10-2 mbar. The turbomolecular pump works as the main

pump and allows the vacuum to reach 10-9 mbar. Both pumps can start pumping from

atmospheric pressure by physically removing the gas out of the chamber. The

sublimation pump and ion pump belong to sorption pumps and are mainly used to

maintain ultra-high vacuum by getting rid of the residual gas particles through

trapping them in the walls of the chamber, either titanium coated surface or cathode.

A combination of both of them allows pressure between 10-11 mbar and 10-12 mbar to

be achieved.

Vacuum pressure measurement

The pressure is measured with two types of gauges in this UHV system. Pirani

gauges are frequently used for monitoring the pressure above the rotary pump and

work as a backing stage pressure indicator for the high vacuum pump. Pressure

measurement by the Pirani gauge is sensitive to the nature of surrounding gas, and

calibrated for nitrogen or air. The accuracy of a Pirani gauge is affected by its location

in the chamber and therefore subject to some degree of systematic error. Ionisation
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gauges are used in the high and ultra-high vacuum region. The pressure range

measured by the ion gauge is down to 10-11 to 10-12 mbar. The ion gauge calibration is

sensitive to the construction geometry and chemical composition of gas being

measured.

Noise isolation

Vibration isolation has been a great concern in the process of designing a UHV

system in order to obtain high quality STM images. Generally, two categories of noise

have to be well isolated. Mechanical noise, arising from the external building

vibration as well as acoustic waves in the range 1 to 100 Hz, can be effectively

eliminated by hanging the STM scanner with spiral springs and suspending the whole

system away from ground. Electrical noise is introduced by electromagnetic waves,

and can be minimized by accurately grounding the system. Moreover, in order to

achieve maximum stability during STM measurement, mechanical pumps and non-

essential electrical devices are usually switched off.

2.2.2 Sample and STM tip preparation

2.2.2.1 Sample preparation

The Cu(110) surface

The copper single crystal has a face centred cubic structure with a lattice constant of

a = 3.61 Å. In our experiments, the Cu(110) surface is chosen for several reasons: first,

the {110} surface is relatively anisotropic with both the outermost and second layer

atoms exposed; the corrugated surface is expected to limit the molecular diffusion at

room temperature at least in one direction. Second, it is a low symmetry surface

comprising varied adsorption sites, including on-top, two-fold hollow, short and long

bridge sites. Moreover, the Cu(110) falls into the P2mm space group and limited

numbers of rotational and reflectional domains might form in case of molecular

adsorption. Figure 2.2a shows the clean Cu(110) surface, characterized by flat terraces

larger than 100 Å, giving rise to a sharp (1 × 1) LEED pattern, b; the inset shows an

atomic resolution image collected by scanning at 70 K.
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Fig. 2.2: a) STM image of the clean Cu(110) surface showing large flat terrace of larger than 100 Å
(1.1 nA, -0.84 V, 151 × 151 nm2), the inset shows atomic resolution by scanning at 70 K (1.3 nA, 0.27
V, 21 × 21 Å2, Createc LT-STM). b) A sharp (1 × 1) LEED pattern of the clean Cu(110) surface
recorded at 90 eV.

A Cu(110) single crystal substrate is typically cleaned by several cycles of argon ion

bombardment following a relatively longer time annealing in UHV system. Within

this method, the rough and unclean surface is sputtered with argon ion to remove the

contamination, then, is annealed at a high temperature, in our case usually 500 ºC, to

speed up diffusion and rearrangement of the atoms in order to create a flat surface in a

short period of time. Commonly, a clean surface produced with this method is

characterized by atomically flat terraces of at least 100 Å.

Sample mounting

We use a standard stainless steel sample plate provided by Omicron, shown

schematically in Figure 2.3. A square shapes sample of 1.0 cm2 is mounted on the flat

sample plate of approx. 1.0 mm thick using spot welded metal clips. This avoids noise

arising from sample vibrations. The eyehole at the top of sample place is designed for

sample transfer with a wobble stick.
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Fig. 2.3: Sample plate and sample mounting typically used in our STM experiment.

Evaporator

The evaporator used for molecular deposition is home built, schematically shown in

Figure 2.4. Its design consists of a glass tube connected to a heating wire and a type K

thermocouple used to measure the deposition temperature. The thin glass tube is used

to contain the organic compounds of interest; chemical degassing by heating the tube

to a temperature about 30 K lower than the deposition temperature is performed

before deposition in order to remove the adsorbed gases.

Fig. 2.4: Schematic illustration of the evaporator used in the experiments for thermal deposition.
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Thin film preparation

In our experiments, we generally use thermal evaporation to deposit the molecules

of interest onto a copper substrate via a home-built evaporator in UHV. In the thermal

evaporation deposition, the chemical is vaporized by resistive heating [2]. This

method commonly requires a UHV environment so that the adsorbate reaches the

surface without interference of gaseous contamination. Thermal evaporation

deposition is widely applicable in depositing small molecules with high vapour

pressure. Molecules heated with higher vaporisation temperature might undergo

decomposition during the heating process. With this method, surface coverage can be

well controlled by appropriately adjusting the deposition temperature and the

exposure time; moreover, side effects arising from solvents can also be effectively

avoided.

2.2.2.2 STM tip preparation

In STM a very sharp tip, terminated with a single atom, is crucial in producing an

atomic resolution image. A good tip is expected to have a small aspect ratio to reduce

the mechanical vibration and to be capable of producing reliable and reproducible

images. Two tip-forming approaches were adopted to make STM tips in most of the

experiments.

The mechanical cutting is a straightforward procedure, widely employed in

preparing tips used for STM in air due to its simplicity and convenience. Pt-Ir wire of

0.25 mm in diameter is the common material used in this method. A generally sharp

tip can be yielded easily by cutting the wire held by a tweezers at an angle of 45º

using a cutter or scissors. However, with this approach the quality of the tip can not be

guaranteed [3].

Electrochemical etching is an effective procedure to produce a rather sharp tip, and

consequently widely used to yield a tip used in STM applications in UHV. A tungsten

wire, usually 0.40 mm in diameter is also a popular choice because tungsten is hard

and very easily oxidized in the air but can resist for a long time in a clean

environment such as the UHV chamber.

The experimental setup of the electrochemical etching is simple, shown in Figure

2.5a. It included a steel loop working as cathode, a tungsten wire and a tip holder
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which is put tightly at the end of the tungsten wire, a DC voltage supply, and an

electrolyte commonly NaOH or KOH solution with a concentration of 2M. During the

process of electrochemical etching, the tungsten wire connected to the anode was

placed vertically in the loop centre and held tightly by screws to ensure the tip to be

produced having a proper length. Before the etching current was applied, the steel

loop along with the wire was immersed into the electrolyte gently to form a uniform

thin film inside the loop so that a closed circuit was built. The observable

phenomenon when the etching starts was the appearance of gaseous bubbles around

the loop and the solution particularly around the tungsten wire turned from clear to

turbid. Shown in Figure 2.5b is a macro scale image of an ideal etched STM tip.

Fig. 2.5: a) Schematic illustration of the electrochemical experimental setup, b) Macro scale image of
an ideal etched STM tip.

The general reaction is described as following [4]:

Anode:   eOHWOOHW 648 2
2
4 ,

Cathode: 2366 HeH  

Total reaction: 2
2
42 322 HWOOHOHW  

At the anode, the tungsten wire undergoes an oxidation reaction producing water

soluble tungsten anions. This is accompanied by the production of gaseous hydrogen

at the cathode. When the etching process is nearly finished, the tungsten wire will

break by force of gravity and leave two tips where the wire breaks. Usually we only

take the one held by the tip holder and wash it thoroughly using distilled water.



Chapter II Experimental

43

Newly prepared tips need further cleaning after being transferred into the STM

chamber, because the surface is inevitably covered with some contaminants, which

cannot be easily removed by rinsing with water. In practice, we commonly apply high

bias voltage pulse of up to -7.0 eV for several times so that the contaminants can be

removed leaving a clean and new sharp tip apex exposed. However, this approach is

applicable only if the tip transferred to the chamber is already sharp.

Although many tip preparation methods have been introduced, generally it is taken as

a tricky art more than a science to produce an ideal tip. Various factors might affect

the quality of the yielded tip, such as the etching cut-off time, the applied voltage, the

length of the tip exposed below the loop plane, the concentration of the electrolyte, etc.

Hence, several tips are made as a bakcup and each of them is exposed to the optical

microscope so that its sharpness can be checked. Then, the sharpest one is chosen for

transferring to the STM chamber. Usually a sharp tip is characterised by a smooth

surface with a very sharp end in the centre.

2.3 Scanning Tunneling Microscopy (STM)

STM has been considered as a powerful technique in surface analysis since it was

first demonstrated by Binnig & Rohrer in 1982 [5, 6]. The reasons why the STM is so

widely used in surface science come from two considerations. First, STM provides a

straightforward view of the surface structure at an atomic scale with a lateral

resolution of 1.0 Å and vertical resolution of 0.1 Å, provided that a sharp probe tip

and extremely clean surface are available. Second, STM measurement can be

performed under various conditions ranging from in air and various other liquid or gas

environments to UHV conditions.

STM is a technique based on the principle of quantum tunneling, as schematically

shown in Figure 2.6. According to the theory, when an atomically sharp tip

approaches a conducting surface at a distance of a few Ångstroms, the overlap of the

electronic wave functions of the electrons existing near the Fermi level (E
f
) of these

materials can tunnel across the narrow “barrier” between the tip and surface upon

applying a potential of a few Volts. To record the image, the tip is moved laterally
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across the surface with the aid of piezoelectric elements in the x, y directions, while

the vertical movement is manipulated via a Z piezoelectric. In the constant current

mode, where the tunneling current is kept constant, the tip and surface distance must

be adjusted frequently using a feedback loop. Eventually a three dimensional mapping

Z(x, y) of the surface is obtained since the vertical position Z of the tip is measured as

a function of the lateral position (x, y). However, the obtained STM image does not

simply reflect the topographic surface, but also the electronic structure of the surface;

the tunneling current is actually function of the local density of states near the Fermi

level of both the tip and the sample.

Fig. 2.6: Schematic illustration of the principle of STM.

2.3.1. Principle of electron tunneling

As schematically illustrated in Figure 2.7, electrons possess ‘particle and wave

duality’. As the tip is brought within the proximity of a planar surface and a small bias

potential is applied, the overlap of the electronic wave functions of tip and surface

leads electrons to penetrate into the vacuum gap between these two materials. This
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gives rise to the so-called electron tunneling. The magnitude of the tunneling current I

is the measure of the overlap of the two wavefunction, the current decays

exponentially with the barrier width d, as given by

kd
tI 2exp (2.4)

where k is related to the local work function by:


m2
k 

where m is the electron mass (9.11 × 10-31 kg), ħ is the reduced Planck’s constant

(1.05 × 10-34 J·s), and Φ is the average work function of tip and sample (eV). The

tunneling current is very sensitive to sample-tip distance. A decrease in the sample-tip

separation of 1.0 Å will increase the current by an order of magnitude. A vertical

resolution of 0.1 Å is achieved if a single atom terminated tip is available.

Fig. 2.7: a) Schematic representation of the energy levels of the tip and sample at large distance when
no bias is applied. b) Schematic of the energy level diagram illustrating the overlap of the tip and
sample wave functions in the tunnel region when a bias voltage V is applied, and the electrons tunnel
from tip to sample. d is the barrier width, Ef

T/S is the Fermi level of tip and sample respectively, while
ΦT/S are the wave function of the tip and sample respectively.

The electron tunneling direction is dependent on whether the surface is negatively or

positively charged. A positively charged sample enables the electron to tunnel from

tip to sample, thus the unfilled electronic state of the sample near the Fermi level is

imaged. A negatively charged sample leads the electrons to flow in the opposite way

and the resultant image reflects the filled electronic state of the sample.
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2.3.2 Scanning modes

STM can be operated in two modes as shown in Figure 2.8: the constant current is

the most common mode used to yield the 3D topographic image. In this mode, the tip

position is adjusted continuously through a feedback loop to maintain a constant tip

surface tunneling current when a constant bias is applied. The variation in vertical tip

position, as the tip is scanned over the surface, represents the constant charge density

contour of the surface. Changing the applied bias enables the contour of different

charge density to be mapped. An alternative mode is the constant height mode, in

which the tip height is maintained constant while scanning over the surface, hence

current variation across the surface is imaged. We commonly use the former mode

because it is ideal for rough surface area scanning, and a tip-surface crash can be

effectively avoided. However, the drawback with this mode is that frequent alteration

of the tip-surface distance will increase data acquisition time and limit the scan speed.

Fig. 2.8: Two scanning modes of STM: (a) constant current mode, (b) constant height mode.

STM reveals useful information concerning the electronic structure of the sample

and the contrast shown in the STM image is directly related to the electron charge

density profile of the studied surface. Therefore, if a series of bias dependent images

are collected, the electronic charge density changes as a function of energy can be
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investigated in detail. In constant current mode, this is achieved by simultaneously

collecting images at various biases from positive to negative over the same scanning

area; as a result, the interpretation of these voltage-dependent images reveals

information concerning the empty and filled electronic states of the surface in great

detail.

2.4 Low Energy Electron Diffraction (LEED)

The first LEED experiment was preformed by Davisson and Germer [7] in the late

1920’s to observe the diffraction of electrons by nickel foil. However, the wide

application of LEED in surface analysis did not start until the early 1960’s. By then

the development in UHV technology made it possible to monitor the directions and

intensities of the diffracted electron beam. Furthermore, with the introduction of the

post acceleration detection method, the scattered electrons were accelerated to high

energy to produce a clear and visible diffraction pattern on a fluorescent screen.

Generally, the LEED is used in two ways:

1. Qualitatively, revealing useful information about the 2D periodicity and the

size of the surface unit cell through analysis of the recorded spots position.

2. Quantitatively, determining the atomic position, bond lengths and angles by

comparing the I - V curves, which refer to the intensities of the diffracted

beams as a function of the incident electron beam energy, with theoretical

curves.

2.4.1 Basic principle of LEED

LEED is based on the elastic scattering of low energy electrons incident normally

onto a crystal surface [8]. Electrons in the energy range of 20 - 200 eV are excellent

probes of surface structure because their inelastic mean free paths are between 5 - 20

Å, and can travel only a few atomic layers into the surface. According to the de

Broglie hypothesis, electrons exhibit wave like behaviour and their wavelength is

given by:
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2mE

h
λ  (2.5)

Where: m - Electron mass (9.11 × 10-31 kg),

h - Planck constant (6.62 × 10-34 J·s), 

E - Energy (eV),

λ - Wavelength (Å)

The dependence of λ on E can be obtained by

)(

150

VeE


(2.6)

Hence, for an electron beam with energy of 20 - 200 eV, the wavelength λ turns out

to be 2.7 – 0.87 Å, which is of the same order of magnitude as the interatomic spacing

of the atoms on the surface, making it ideal for a diffraction effect. The short mean

free path of electrons means that only the topmost few atomic layers of a solid surface

can be penetrated by the electron beam; as a consequence, contribution from the

deeper atoms to the electron diffraction decreases progressively within this energy

range and can be neglected in practice, which makes LEED a surface sensitive

technique.

Electron backscattering in LEED can be explained by introducing a simplest 1D

model. As illustrated in Figure 2.9, in which an electron beam impinges

perpendicularly to a one-dimensional chain of atoms with interatomic separation of a.

If we consider the backscattering of electrons from two adjacent atoms at a well

defined angle θ with respect to the surface normal, then the radiation has to travel a

path difference Δd to reach the detector. According to Bragg’s law, for constructive

interference to occur when the scattered beams eventually meet and interfere at the

detector, this path difference must be equal to an integral number of wavelengths,

which is expressed as:
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Fig. 2.9: Electron scattering on 1D atom arrays with separation of a, Δd is the path difference the

scattering beam travels before reaching detector.

Δd = a sin θ = n λ (2. 6)

Where: λ – electron wavelength, and is constant for a given incident electron energy,

n - integer (.., -1, 0, 1, 2, .. ), and is known the order of diffraction

Rearranging the above equation yields,

a

n
 sin (2.7)

Hence, the following information is derived:

1. sin θ is proportional to the 1/a, thus as the inter-atomic distance gets bigger,

the diffraction angle becomes smaller, which leads to narrowly spaced

scattered beams.

2. sin θ is proportional to
E

1 , so the diffraction angle decreases as the energy

of the incident electrons increases, which results in more diffraction spots

observable.
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3. The resultant diffraction pattern is centrally symmetric since the diffraction

has the same probability for n = 1 and n = -1.

Currently, the application of LEED focuses on the analysis of the spot positions to

obtain information about symmetry and size of the adsorbate unit cell. The surface

ordering and the size of the ordered array can influence the sharpness of the

diffraction spots. However, a LEED pattern provides no information concerning the

adsorption site of an atom, such as its bonding length and angle with respect to the

surrounding surface atoms. Alternatively, information is revealed in the variation of

diffracted beam intensities as function of the electron beam energy, known as I(V)

curve. The disadvantage of this method is that there is no direct route to obtain surface

geometries and an iterative process has to be adopted to find the best fit between

experimental spectra and those of proposed structures, hence the application in

practical work has been further restricted.

2.4.2 Experimental setup

LEED apparatus consists of three parts, as illustrated in Figure 2.10, an electron gun,

a hemispherical concentric grids system and a fluorescent screen. The electron gun is

composed of a negative potential cathode filament, usually a LaB6 crystal, for

generating a monochromatic electron beam to strike the sample. A series of grids are

built to reject the inelastically scattered electrons from reaching the screen while

accelerating the elastically scattered electrons in order for them to reach the screen.

As a result, a pattern consisting of bright spots on a dark background is produced. The

resultant LEED pattern is recorded typically by a CCD camera placed in front of the

viewing window.
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Fig. 2.10: Schematic representation of LEED apparatus setup

In our experiment, LEED was frequently used to check the surface geometry after

argon sputtering and annealing, and monitor the superstructure changes occurring in

the process of increasing adsorbate coverage and annealing. Generally, the appearance

of sharp, bright spots is taken as evidence of a clean well-ordered surface good for

deposition, while the appearance of the extra spots indicates the formation of new

ordered superstructures upon changing the experimental parameters, such as

annealing temperature and coverage. Since LEED is sensitive to an area of about 100

Å2, a poorly ordered superstructure in small domains may not lead to any observable

changes in the LEED pattern.

The LEED apparatus in this work is an Omicron Spectra LEED, which is installed

in the preparation chamber allowing for collecting LEED pattern via a CCD camera.
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2.5 Reflection Absorption Infrared Spectroscopy (RAIRS) [9]

RAIRS is a powerful surface specific tool for studying molecular orientation in the

adsorbed layer formed at metal surfaces by utilising infrared beam to excite vibrations

of molecules and atoms bonded to the surface during a single reflection near grazing

angle with the surface. Incidence and reflection of IR beam in RAIRS is illustrated

schematically in Figure 2.12, where the Ep refers to the parallel component of incident

IR light electric field and Es to the perpendicular component with respect to the plane

of incidence. At the point where light contacts with the surface, the net amplitude of

Ep component, oriented perpendicular to the surface plane, is twice of that of the

incident light. Thus, it reaches to a maximum at high incident angle. The Es

component is effectively cancelled and the net amplitude is zero because the reflected

beam undergoes an 180˚ phase-shift with respect to the incident beam. This means 

only the vibrations having a component of dynamic dipole moment perpendicular to

the surface plane can be excited and observed in the RAIRS spectra. Generally, the

sensitivity of RAIRS is strongly influenced by the following factors: the intensity of

parallel component of incident IR beam, the incidence angle, usually at a grazing

angle, together with the molecule with a large transition dipole moment arranged

along the surface normal [9,10].

Fig. 2.12: Schematic illustration of parallel Ep and perpendicular component Es of the IR beam electric

field in RAIRS experiment [9, 10].
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2.5.1 Surface dipole selection rule

In surface vibrational spectroscopy, the surface dipole selection rule is commonly

applied to identify the peaks observed in the vibrational spectra. According to this rule,

only molecular vibration modes having components of their dynamic dipole moments

oriented perpendicular to the surface display observable peaks in the resultant spectra.

This phenomenon is explained schematically in Figure 2.11. When molecules are

adsorbed onto a metal surface, an image dipole moment will be induced on the

surface due to the existence of metal conduction electrons. A perpendicular aligned

dipole can induce an image dipole aligning in the same direction, consequently the

resulting overall dipole amplitude is reinforced and gives rise to a measurable dipole.

While a dipole aligned parallel with respect to surface plane induces an image dipole

with opposite polarity, which leads to the cancellation of the overall dipole moment,

yielding unobservable vibrational frequencies [10].

Fig. 2.11: Schematic representation of the two extremes of dipole orientation with respect to the

surface plane and the corresponding orientation of image dipoles.

This surface selection rule is widely applied to determine the nature of the

adsorption bond as well as the molecular orientation by evaluating the peak position

and frequency intensity as a function of surface coverage and annealing temperature.
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2.5.2 UHV-RAIRS experimental setup

A typical experimental layout for the UHV-RAIRS experiment is presented in

Figure 2.13, the infrared radiation generated from the FT-IR spectrometer impinges

on the sample at a grazing angle. After reflecting from the sample surface, the

reflected beam is focused onto a MCT detector. Experimentally, dry nitrogen is used

to purge the path of the IR beam in order to minimize the interference from gas phase

water/CO2 absorption; liquid nitrogen is used to cool the MCT detector. In RAIRS,

with the use of a Fourier Transform IR spectrometer, the signal-noise ratio at any

point in the spectrum as well as data acquisition speed is significantly increased.

Fig. 2.13: Schematic diagram of the UHV-RAIRS experimental configuration, the grazing incident
angle is about 86° [10, 11].

Due to the better resolution at which the spectra can be acquired, RAIRS is widely

employed in the study of thin molecular films deposited onto metal surfaces; it can

provide information concerning the intrinsic vibrations of the adsorbed species in a

range of 800 - 4000cm-1. Thus, it helps us to infer the nature of the bonding at the
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surface and to identify the molecular orientation of the adsorbed molecules. In RAIRS,

the peak FWHM is determined entirely by the heterogeneity of the surface and the

nature of the surface-molecule interaction; the relative peak intensity grows

approximately linearly with increasing coverage providing that no molecular

reorientation occurs. However, the drawback with this technique is that the frequency

below 800 cm-1, which is commonly associated with the adsorbate-substrate bond

vibrations, is generally unobservable.

2.6 DFT Calculation

For a better understanding of the orientation, the chemical binding of the adsorbed

species and the driving forces for the observed superstructures, the experimental

results obtained by vibrational spectroscopy and STM are supplemented by theoretical

calculations. With reference to the calculated data concerning the molecular orbital,

local electron density and the vibration frequency of the given molecular

configuration under investigation, it is possible to construct the most likely adsorption

model and compare it with the STM image.

Theoretical investigations aim to find the system ground state energy and the

corresponding molecular geometry, vibrational spectrum, as well as other properties,

such as dipole moment, electron potential, etc. Two ab-initio approaches are used to

treat the many-electron system, one is called Hartree-Fock (HF) method and the other

is Density Functional Theory (DFT) [12].

For the calculations of the vibrational frequencies, the ground state energy and the

corresponding molecular geometry and orbitals, the Gaussian 03 software package

has been used [13]. Here the DFT approach and the B3LYP (Becke, three-parameter,

Lee-Yang-Paar) [14, 15] functionals are chosen to optimize the isolated molecular

species of interest. Vibrational frequencies of isolated adenine and phenylglycine

molecules were calculated using the 6-31G basis set with the addition of a diffuse

function. The calculated results in combination with solid state KBr spectra were used

to provide a reference for the RAIR spectra of adsorbed species. Thus, they enable a

good interpretation of molecular orientations and binding natures in the self-
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assembled structures. Also, the stabilization energy of selected adenine dimers, as

well as the trimers, was calculated using the 6-31G basis set, which is believed to

yield good results for hydrogen bonding. With reference to the molecular properties

such as the molecular orbitals, bonding lengths and molecular optimized geometries,

provided by the calculation, some reasonable structural models have been suggested

and were proven to give a good explanation for the features observed in STM images.

For visualization of the results obtained with Gaussian 03, Gaussview was used [13].

2.7 Experimental Setup

All room temperature experiments described in this section were performed in the

Omicron VT-UHV system described in the Chapter II. A clean Cu(110) crystal

surface was obtained by cycles of argon sputtering (typically 800 V, 1.5 × 10-5 mbar,

20 μA) followed by annealing at 800 K; it was assessed by the appearance of a sharp 

(1 × 1) LEED pattern with low dispersed background intensity. The low temperature

STM measurements were carried out on a SPS-Createc LT-STM.

The RAIRS measurements were carried out on a research grade Nicolet 760 Fourier

Transform Mid-IR spectrometer within the 800 - 4000 cm-1 range. All spectra were

recorded with a liquid nitrogen-cooled, narrow-band MCT detector and collected with

spectra resolution of 4 cm-1; each spectrum consists of 1024 scans. Reprocessing

against a clean surface background and standard water subtraction were performed in

order to reduce the signals arising from water vapour in the light path. A continuous

flow of a dry nitrogen purge was required during the whole operation in order to

minimize the background signal arising from the H2O, CO2 in the spectrometer, light

paths and the detector chamber.

LEED patterns were recorded via a CCD camera and a frame grabber card (Falcon

PCI3) installed on a computer. The room temperature STM data was recorded in

constant current mode via the Scala pro.5.0 program and processed using the WSxM

program [14]. The lattice of the real space unit cell is described conveniently in Wood

notation (x × y), where each integer represents one of the real space unit cell lattice

vectors. Conventionally, the first integer, x, refers to the <110> direction of the

copper surface, in unit of the interatomic spacing 2.55 Å, and the second integer, y,

refers to the <100> direction with unit of 3.61 Å.
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The adenine (Aldrich, 99% purity) crystalline solid was deposited onto the Cu(110)

surfaces by thermal evaporation. The compound was contained in a glass tube

mounted on a feedthrough that is separated from the main chamber via a gate valve,

and was pumped and degassed overnight at 370 K prior to deposition. The deposition

temperature was maintained constant during deposition, and well controlled via a

thermocouple sensor to ensure reproducibility. The background pressure in the

chamber was typically below 1 × 10-10 mbar and rose to 1 × 10-9 mbar during the

depositions.

The racemic mixture of phenylglycine (Aldrich 99 % purity) was dosed onto the

Cu(110) surface via a home-built evaporator separated from the chamber by a gate

valve. Before evaporation, the phenylglycine was out-gassed overnight at 310 K and

heated to 320 K, before exposing to the copper single crystal. The pressure increased

from 1 × 10-10 mbar to 1 × 10-9 mbar during evaporation. The coverage was controlled

by the exposure time.

All theoretical calculations were performed using the Gaussian 03 software

package [12] with 6-31G basis set using the hybrid density functional theory (DFT)

with the non-local, Becke’s three parameter functional (B3LYP) [15, 16] to describe

the exchange and correlation energy. The structure of an isolated phenylglycine

molecule in anionic and zwitterionic form was fully geometrically optimized and

followed by a calculation of the vibrational frequencies.
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CHAPTER III

Adsorption of Adenine on Cu(110) Surfaces

3.1 Introduction

3.1.1 Adsorption of adenine on surfaces

The adsorption of adenine molecules on solid surfaces has been the subject of a

number of experimental and theoretical studies in the past years. The ability of

adenine to self-assemble into one- or two-dimensional nano-scale structures upon

deposition onto various surfaces, stabilised by inter-molecular hydrogen bonds, makes

it a model system for the investigation of the bonding nature between DNA base

molecules and metal surfaces, and two-dimensional chiral assemblies [1]. The

understanding of the self-assembly mechanism of bioactive molecules on surfaces is

not only fundamentally important in the preparation of bioactive surfaces [2-4], but

also provides insight into the origins of life [5-8] and homo-chirality in nature [9].

We generally focus on three aspects when examining the adsorption behaviour of

adenine at a well-defined metal surface: the molecular orientation, the bonding nature

of the adsorbate and the driving forces accounting for the formation of various

ordered layers. The particular molecular arrangement in the self-assembled structures

depends on the surface that the molecules are deposited onto, the deposition rate and

the temperature [10]. In ultra-high vacuum conditions, adenine molecules form one-

dimensional chains on the Cu(110) [1, 9] and (111) [10-14] surfaces, and two-

dimensional hexagonal networks on Cu(111) [15] and Au(111) [16, 17] surfaces

similar to those observed previously on other surfaces, such as molybdenite [5], and

graphite [18, 19]. Double-chain structures coexisting with hexagonal networks have

also been revealed on the Cu(111) surface [15] upon depositing at a low deposition

rate. A phase transition from one type of honeycomb monolayer structure composed

of parallel arranged hexagons to a new phase of super-structures in which the

hexagonal units are tilted with respect to each other, upon annealing the Au(111)

sample from 150 K to 370 K was reported recently [16, 17]. The former molecular

network is consistent with that reported on the Ag-terminated Si(111) [20] surface. In

most cases, adenine was suggested to adsorb with its molecular ring lying flat (or
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slightly tilted) at a considerable distance from the surface [1, 12, 18]. The lateral

intermolecular double hydrogen bonds, dominating over the molecule-substrate

interactions are the primary driving force for the formation of various overlayer

structures.

Among these studies, adsorption of adenine on Cu(110) surfaces concerning the

molecular orientation and nature of bonding have attracted extensive research

interests. Infrared spectroscopic investigation on the molecular adsorption geometry

of adenine on the Cu(110) surface has been reported by McNutt et al. [21]. A

substantially tilted molecular orientation was suggested in which the molecule bonds

with the substrate via the N9 and N3 atoms, Figure 3.1, while leaving the two

hydrogen atoms of the amino group at an equivalent distance from the surface. This

conclusion is reached based on the detailed analysis of the intensity variation in the

peak associated with the NH2 scissor vibration, along with the in-plane ring stretch

modes, as a function of coverage and temperature. Phase transition of the adlayer

from heterogeneity to well ordered was also predicted from the subtle shifts of the

NH2 scissoring and stretching vibrations due to the formation of one type of

dominating H-bonds upon annealing. In the final ordered molecular assemblies, the

existence of bent hydrogen bonds, arising from a compromise between the strong

molecule-substrate interactions and weak intermolecular lateral hydrogen bonds are

suggested; this weak lateral interaction accounts for the 2-D molecular organisation.

In conflict with the upright standing geometry, a flat-lying or only slightly tilted

adsorption geometry has been suggested by several other research groups using a

combination of several surface sensitive techniques. Chen et al. studied the adsorption

of adenine on Cu(110) surface after annealing at 430 K by STM, LEED, and

HREELS [1], and came to the conclusion that in chiral related molecular chains, both

the purine and NH2 planes are aligned almost parallel to the surface while the C-NH2

bond is tilted away from the plane. The binding occurs exclusively between the amino

group nitrogen atom and the copper atom; a clear re-hybridization of N atom in the

NH2 groups from sp2 to sp3 was also confirmed by DFT calculations, predicting a Cu-

N length of 2.2 Å.

Based on the same assumption made by Chen et al. [1], a detailed analysis of the

bonding between the amino group and Cu(110) by means of first principles

calculation was carried out by Preuss et al. [22]. The computational results show that
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the molecule binds via the N atom of the amino group with the substrate and the

molecular plane is slightly tilted; the amino group is bent by 17.7° and the purine ring

by 26.4° with respect to the surface plane, giving the amino group nitrogen atoms sp3

hybridized character. The Cu-N distance is 2.32 Å; this is consistent with the bond

length calculated by Chen et al. [1] and in other organometallic complexes. The

strong adsorbate-substrate interaction leads to a slight structural change in the amino

group and to local charge transfer; the electrostatic interaction arising from the mutual

polarization between the substrate and the adsorbate is responsible for the bonding.

Furthermore, this group also examined the mechanism of adenine adsorption and

dimer chain formation of adenine deposited on the Cu(110) surface from the aspects

of bonding, geometry, and energy. A three-step reaction pathway for the formation of

molecular network is proposed; it consists of the dimer formation, the registry of the

pair to the substrate, and the connection of neighbouring pairs via hydrogen bonds. In

this process, the hydrogen bonds are, on one side, responsible for the connection of

two isolated molecules to form the dimer, on the other side, link together these dimers

giving rise to the one dimensional chains.

A similar parallel molecular orientation is also indicated by the vibrational

spectroscopic investigation on the adsorption of adenine on Cu(110) by Yamada et al.

[23] using IRAS, and the surface coverage is quantitatively determined using the

carbon Auger signal. At coverage less than one monolayer, the flat-lying molecular

orientation is suggested and is determined from the absence of the vibrational

frequencies associated with the NH2 scissor mode and the in-plane ring vibrations. As

the coverage increases to over 1.0 ML, the observation of a prominent peak, assigned

to the NH2 scissoring vibration, along with these in-plane modes shows a strong

evidence for the appearance of strongly tilted adsorbates. Hence, it is concluded that

the molecular orientation changed as the coverage increased.

Calculation of the adsorption of a single adenine molecule on Cu(110) surface was

carried out by Rauls et al. [24]. Two different configurations were studied in terms of

adsorption geometries, binding energy, strain and dispersion interactions, as well as

electrostatic effects, shown in Figure 3.1. In one orientation, the molecules bind only

via the amino group, resulting in the purine ring being slightly further tilted to 26°; in

the other one, the molecule interacts via two nitrogen atoms, namely the amino N

atom and N7 atom, with the substrate, giving rise to a more planar adsorption
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configuration on the surface with a tilting angle of 15°. The more planar adsorption

configuration favours stronger covalent molecule-substrate interactions and local

charge transfer, hence, it is a more energetically favourable adsorption configuration

for adenine deposited on the Cu(110) surfaces.

Fig. 3.1: Atom numbering of adenine (on the top), and the induced charge density for adenine on the

Cu(110) surface in orientation 1 and 2. Orientation 1 bonds via only the amino group nitrogen atom;

orientation 2 interacts via both the amino N atom and N7 imino atom, giving rise to more planar

adsorption configuration. Along the molecule-substrate, blue and red regions denote the electron

accumulation and depletion [24].

Very recently Feyer et al. [25] conducted a spectroscopic investigation of

adenine/Cu(110) using angular Near-edge X-ray Fine Structure (NEXAFS), X-ray

Photoelectron Spectroscopy (XPS) and DFT calculations, they revealed a coverage

dependent molecular reorientation after examining the relaxed geometry of adenine at

different coverage on Cu(110) surfaces. At coverage ≤ 0.167 ML, the molecule 
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prefers to lie flat on the surface with a small tilting angle of 28° with respect to the

surface; the binding takes place through the N7 imino atoms and to a lesser extent,

through the NH2 amino group. As coverage is increased to between 0.2 - 0.33 ML, the

molecules undergo orientation changes, and the molecular plane is oriented at a steep

angle greater than 55° with respect to the surface. Finally, the tilting angle of the

adenine plane to the surface increases to 89.75° when the coverage reaches to 0.33

ML i.e. saturation coverage. At high coverage, the molecule binds with the substrate

via the N1 imino atom and partially via the amino group. The molecular re-orientation

and bonding nature is confirmed by the changes in the angular dependent Near-edge

X-ray Absorption Fine Structure (NEXAFS) spectra and the chemical shift associated

with the N1s core-level XPS spectrum. In this study, the conclusion concerning the

almost parallel molecular adsorption geometry is in good agreement with the study of

Furukawa et al. [26] by NEXAFS and XPS at low coverage, while the tilted geometry

is consistent with the vibrational spectroscopy data of McNutt et al. [21].

Among these studies, vibrational studies reported very different intensities for the

same frequency, the NH2 scissor vibration, giving rise to conflicting conclusions for

the molecular orientation, either almost flat-lying or up-right, because of a failure to

determine the coverage. Theoretical calculations, along with NEXAFS and XPS

results, agree well with the STM observations on the almost flat-lying orientation of

adenine at low coverage. However, there is still not a consensus on the nature of

bonding of adenine to copper, particularly concerning the bonding strength, the

bonding sites of adenine, which to some extent, depends on the accuracy of different

computational methods and the starting model for the calculations.

In this work, we will present detailed STM investigations of the effect of

experimental parameters, e.g. substrate annealing temperature, surface coverage and

deposition rate, on super-structures formed by adenine upon deposition onto the Cu

(110) surface; some new superstructures will be described in this chapter.

Additionally, low temperature (70 K) STM examination of the adenine dimer chains

and monomers as a function of bias voltage has also been carried out.

For all the adenine molecular networks on the Cu(110) surface presented in this

thesis, we construct the corresponding adenine molecular structural models in the

following way. Firstly, because of the high ability of adenine to form double

hydrogen bonding pairs, all the possible adenine pairs are considered, including the
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ones that are not energetically favourable in the gas phase, but that might become

favourable building blocks in the presence of a substrate. Secondly, we select as the

most probable pairs those exhibiting apparent similarity in shapes and dimensions

with the molecular features imaged via STM. Finally, we construct some gas-phase

structural models that resemble the observed networks by properly connecting these

possible pairs together via hydrogen bonds, and then select the ones having high

stabilization energies and lattice parameters that match well with the experimental

results.

Despite the great success that scanning tunnelling microscopy has achieved as a

powerful tool to identify molecular networks on surfaces, it is not easy to obtain

atomic resolution of the molecular assemblies involving small planar organic

molecules, particularly DNA bases, due to the small corrugation of the local density

of states at the Fermi level [17]. In addition, since the corrugation height mapped by

STM is merely a direct reflection of the electronic structure of the tunnelling state, it

is not a measure of the real geometrical height of the adsorbed species. Hence, other

methods have to be employed in combination with STM in order to study the super-

structures in detail.

In our experiments, high sensitivity RAIRS was used as a useful tool for the

identification of the bonding and chemical nature of the adsorbates with respect to the

surfaces, and monitoring the evolution of the molecular orientation as a function of

the experimental parameters, like surface coverage and annealing temperature. In

addition, LEED was used to follow the degree of ordering of the adlayer structures

and the corresponding changes in the surface periodicity upon annealing. Finally,

theoretical calculations using DFT methods are adopted as complementary methods

enabling us to construct possible structural models that match well with the observed

features mapped via STM, thus, helping to provide models to interpret the

experimental results.

3.1.2 Adenine molecule

DFT calculations show that in the gas phase, the adenine molecule, a DNA base, is

an almost planar molecule consisting of five and six membered ring with an amino

group –NH2 connected to it via a sp3 hybridization; this results in the two hydrogen
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atoms slightly tilted out of the plane at a shallow angle of 14° according to our DFT

calculation. Displayed in Figure 3.2 is the configuration of a single molecule in top

view, denoted as A; Ā is its enantiomeric motif, obtained by reflecting A in mirror

plane perpendicular to the page. Because of the nearly planar configuration, the

adenine molecule is considered as prochiral and belongs to a Cs point group. Two

mirror-related adsorbed species, resulting from the two modes of adsorption by either

face-up or face down [1], can be generated upon adsorption on surfaces.

Fig. 3.2: Adenine molecule in configuration A, Ā is obtained by reflecting A in a mirror plane
perpendicular to the page. The six possible adenine pairs of nearest N and H atoms, referred as bonding
site, that can participate in the formation of two adjacent hydrogen bonds between the two molecules
are indicated [27]; the approximate dimension of an adenine molecule is also indicated, it is about 6.4
Å in length and 5.1 Å in width.

Adenine is capable of forming hydrogen bonded pairs arising from the existence

of the N atoms and CH or NH groups; generally, a stable molecular dimer is

characterised by at least one pair of double hydrogen bonds [28, 29]. Based on this

principle, six pairs of adenine hydrogen bonding sites are identified in the adenine
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molecule [10, 27], as described in Figure 3.2. Each bonding site refers to the

neighbouring hydrogen bond donor, CH or NH groups, and acceptors, N atoms, and is

capable of connecting with the site from another molecule in the formation of double

hydrogen bonds. Hence, a total of 21 adenine dimers can be obtained; nine pairs are

hetero-chiral, AĀ, where one of the molecules should be flipped to facilitate the

formation of double hydrogen bonds between two corresponding sites, and twelve are

homo-chiral, i.e. AA or ĀĀ. The corresponding double hydrogen bond connected

dimer is denoted as AnAm or AnĀm, where n, m refers to the hydrogen bonding sites

involved. The chirality of each adenine dimer is determined by considering the

individual chirality of the two molecules composing the dimer. Among these dimers,

six AnAn possess C2 symmetry where double hydrogen bonding forms between the

same binding sites, and the large dipole moment is cancelled in these cases [1]. As a

result, stable centro-symmetric pairs are usually adopted as the most common pairs in

the construction of gas-phase overlayer networks.

Here, we present the relaxed geometries of the six centro-symmetric adenine pairs,

in order of stability from high to low, Figure 3.3. All the relaxed pairs exhibit very

near-planar geometries; the dimer, denoted as A5A5, has the highest stabilization

energy, it is connected with other less energetically favourable dimers in the

construction of adenine dimer chains observed on the Cu(110) surface [1]. Here, the

structure of each pair is optimized using DFT methods with the B3LYP functional

and the 6-31G basis set. It is assumed that the B3LYP functional gives a better

description of the system containing hydrogen bond [30].
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Fig. 3.3: Six centro-symmetric adenine pairs and the corresponding stabilization energies are given.
Each molecule of the pair denotes the same hydrogen binding sites. The structures are optimized using
DFT methods B3LYP functional with 6-31G basis sets. The adenine pair is denoted as AnAm, where n
and m indicate explicitly the hydrogen bonding sites of the two molecules engaged in each pair.

There have been different calculation results reported concerning the stabilization

energies of the six centro-symmetric pairs, which might be due to the different

functions used in the geometric optimization. However, all pairs are in the same

energetic order and show the same almost planar geometries [1, 27]. The stabilization

energies of all 21 gas-phase adenine pairs have been calculated by Kelly, et al. using

the PBE and the B3LYP GGA functionals [27], the corresponding relaxed geometries

are presented. According to their results, the Estab, which is defined as the total energy

of the relaxed dimer minus the total energy of the individual monomers relaxed

separately for all the dimers, is in the range of -0.03 eV to -0.86 eV [10]; the
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deformation energies are small, indicating that the atomic relaxation in each dimer is

not significant, hence, it can be neglected to give a good approximation during

adsorption. Dimers involving the electronegative nitrogen atoms are expected to be

more energetically favourable than those including the less electronegative carbon

atoms. In addition, the strength of the hydrogen bonds can be approximately evaluated

by considering the corresponding hydrogen bond length and the angle between the

two molecules. Stable dimers are supposed to have shorter hydrogen bond lengths and

an angle of nearly 180º [10].

As we come to build up the structural models for the observed STM structure,

several factors must be taken into consideration. Firstly, the geometry of the adenine

pair chosen should match well the molecular features imaged in STM. Secondly, the

relative stability of each adenine pair involved in the suggested building blocks has to

be accounted for. This can be evaluated theoretically by the corresponding

stabilization energy, referred as Estab [31]; hence, a stable dimer always has negative

stabilization energy. Lastly, in order to satisfy all the necessary links between the

molecules comprising the networks with the presence of the substrate, both the

favourable and less favourable pairs need to be considered [16].

3.2 Results and Discussions

3.2.1 High coverage Adenine/Cu (110)

RAIRS investigations on the molecular orientation and intermolecular interactions

of adenine on the Cu(110) surfaces have been previously reported by Raval, et al.

[21]; they derived an upright standing molecular orientation at sub-monolayer

coverage by examining the intensity variations associated with the NH2 scissor

vibration. However, this conclusion is controversial with other relevant studies

because RAIRS fails to detect the coverage quantitatively. Here we present our RAIR

spectra and related STM studies of the adenine adsorbed on the Cu(110) surface.
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3.2.1.1 RAIRS studies

Figure 3.4 shows a comparison between the experimental spectrum of the solid

adenine and the calculated frequencies of a single molecule derived by DFT

calculations. The experimental IR spectrum is dominated by a series of low to

medium intensity bands in the range of 800 - 1700 cm-1, associated with the molecular

in-plane skeleton stretches and ring C-H and N-H twist vibrational modes. The

vibrational frequencies found at 1675 and 1604 cm-1 are attributed to the -NH2

scissoring mode; this is the most intense vibration in the IR spectrum. The

preservation of this band with high intensity for adsorbed adenine molecule provides

information for the identification of the molecular bonding nature and orientation.

Most vibrational frequencies below 800 cm-1 are unobservable in the KBr spectrum;

these vibrations are assigned to the ring C-H and N-H out-of plane vibrational modes.

The assignments of the experimental vibrational frequencies for the solid adenine,

those obtained by theoretical calculations on the free adenine and those of the

adsorbed species are listed in Table 1. Most of the calculated vibrational frequencies

for the isolated adenine molecule are in good agreement with those experimentally

observed.

Fig. 3.4: Transmission IR spectrum of KBr solid adenine (red) and the calculated vibration frequencies
of the isolated adenine molecule using DFT (black).
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Table 1. Comparison of the experimental frequencies of characteristic vibrational modes of
adsorbed adenine and adenine in gas phase with calculated frequencies of adenine using DFT
calculations

Adenine/Cu (110) Adenine

(KBr)

Theory DFT(B3LYP)/6-31G(d)

υ (cm-1) υ (cm-1) υ (cm-1) Assignments

 3293 3551 νasym NH2

 3115 3435 ν sym NH2

 2986 3029 ν C8H, ν C2H 

1653 1675 1645 δNH2, νC6N10, νC5C6 

1648 1604 1610 δNH2, νC4C5 

1456 1422 1487 νN1C6,νN7C8, νC6N10, νC2N3, 

βC8H, βN9H, βC2H, βN10H 

1363 1365 1407 νN1C2, νC5N7,  βC2H βN9H 

1334 1346 νC2N3, νC5C6, νC5N7, νN1C2, β 

C2H

1295 1311 1311 νN1C2, νN7C8, βC8H, βN9H 

 1253 1247 βC2H, βC8H, βNH2 rock, νC4N9, 

νC6N10, νC5N7, δ N3C4C5sym

1118, 1027 1131, 1075 νC8N9, β C8H, βN9H 

937 940 βr 

 910 898 βR  

 848 812 γC8H 

Description of the symbols: ν-stretch, δ-scissor, β-bend, γ-wag, βr-five memebered ring 
deformations, βR-six membered ring deformations. Abbreviations: sym - symmetric,
asym - asymmetric.

Figure 3.5 a-d shows the spectra of adenine adsorbed on Cu(110) as a function of

increasing coverage. As the coverage increases at room temperature, a number of

subtle variations are identified in the spectra. At low coverage, the spectra are

dominated by a single broad band at around 1634 cm-1, which is assigned to the in-

plane scissoring mode of the -NH2 vibration. The observation of this band with high
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intensity indicates the -NH2 group is not lying parallel to the surface, according to the

surface dipole selection rule. There is no observation of other peaks associated with

this group; the NH2 stretching vibrations are anticipated at around 3551 cm-1 and 3435

cm-1, respectively; they are the asymmetric and symmetric NH2 stretching vibrations,

respectively. At higher coverage, a number of relatively low intensity bands are found

at 1456, 1363, and 1295 cm-1; they are attributed to ring in-plane vibrational modes.

The observation of these vibrations in the RAIRS provides evidence that the

molecular plane is tilted away from the surface plane in this phase. However, it is

impossible to quantitatively determine the molecular orientation because most of the

out-plane vibration modes lie below 800 cm-1 which is out of the detector range.

There are no obvious changes occuring to the spectra when increasing the coverage

gradually up to saturation coverage, except that the continuous growth in the intensity

of the band associated with the -NH2 scissoring mode. Additionally, the overall

pattern of the band remains similar, indicating that the molecular bonding and

orientation remain unchanged.
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Fig. 3.5: RAIRS spectra of adenine adlayer on the Cu (110) surface showing the evolution of the
vibrations as a function of the coverage at room temperature, (a) 0.2 L; (b) 0.5 L; (c) 0.6 L (d) 0.9 L;
blue-shift of the frequency of the –NH2 scissor mode is marked by dash line at 1646 cm-1

However, some variations, associated with the characteristic vibrational frequencies

and their relative intensity, in particular NH2 scissoring vibrations, were revealed

when examining the high coverage spectra in more detail. The noticeable changes are

considered as the result of the formation of hydrogen bonds among adsorbed

molecules at the higher coverage. The formation of hydrogen bond leads the

vibrations, especially those associated with the N-H or C-H stretch modes, to shift

towards low frequency and become broad; this trend is also accompanied by an

increase in intensity. Moreover, the deformation of the N-H vibration tends to shift

towards higher frequency but show no substantial intensity change or band

broadening [21]. This is consistent with the trend of the vibration related with the –

NH2 scissoring which is shifted to 1653 cm-1 in the high coverage spectrum, Figure
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3.5d. This blue shift provides evidence of the aggregation of the monomers to form

dimers and multimers in the adenine adlayer.

The RAIR spectra shown in Figure 3.6 were obtained upon subsequently annealing

a saturation coverage deposited at room temperature to 330, 380 and 420 K. The

general pattern of the most characteristic bands of the adsorbed species remains

largely similar upon annealing; this indicates that there are no changes in the

molecular orientation occuring during this process. The exception is that the

vibrations found at 1153, 1291, 1376, 1446 cm-1, arising from the ring in-plane stretch

vibrational modes, show a significant sharpening. This phenomenon is particularly

evident with the band found at 1653 cm-1, associated with the -NH2 scissoring

vibrational mode. The broad band, seen at room temperature, is replaced by a fairly

sharp and intense narrow one after annealing to 380 K. This behaviour displayed by

the -NH2 scissor mode is attributed to the disordered adsorbed layer is converted into

a more ordered self-assembled adlayer, in which one type of hydrogen bonds become

the predominant interactions, leading to the formation of more ordered structures. A

sudden drop in the intensity of this vibrational mode upon further annealing to 420 K,

indicates that desorption of the ad-layer might have occured. High desorption

temperature also suggests strong bonding between adenine molecules and copper

atoms.



Chapter III Adenine/Cu(110) Surfaces

74

Fig. 3.6: RAIR spectra of adenine adlayer on the Cu(110) surface showing the effect of annealing; the
red dash line indicates the position of the -NH2 scissoring mode, showing an obvious sharpening and
red shift upon annealing as a result of the formation of more ordered layer. (a) 1.0 L; (b) 1.1 L.

Adenine is taken as an essentially planar molecule even though both the amino

hydrogen atoms are aligned slightly out of the molecular plane at a dihedral angle

between 11 and 22º [32]. Thus, we can suggest that the existence of intense -NH2

scissoring vibration, along with most of the in-plane vibrations observed in all the

spectra, might indicate that the molecular plane is more likely to be tilted rather than

oriented parallel to surface plane. This conclusion is in disagreement with the

conclusions derived from previous STM studies carried out at other metal surfaces,

such as the Au(111) [16, 17], Cu(111) [10-15], Cu(110) [1]. However, our RAIRS

investigation agrees well with the results published by Raval et al. [21]. In their study,

adenine was proposed to interact with the copper atoms via the imino nitrogen atoms

of the rings. In this adsorption geometry, the molecular plane is highly tilted away
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from the surface plane; the two amino hydrogen atoms are placed at equidistance

from the surface, making some in-plane vibrations dipole active including the NH2

scissoring mode. Considering the molecular orientation and binding nature suggested

by STM at the Cu(110) surface, the discrepancy is believed to be caused by the fact

that the absolute coverage is not identified certainly in the RAIRS. The observation of

the -NH2 scissoring vibrational mode could result from multilayer adsorption or the

highest monolayer coverage. At the higher coverage, the adenine molecular plane is

forced to tilt up due to the steric repulsion between the molecular rings; this can make

the –NH2 RAIRS dipole active.

3.2.1.2 STM and LEED studies

As aforementioned, the observation of the intense -NH2 scissor vibration in the

RAIR spectra, upon depositing adenine onto the Cu(110) surface, might result from

the multilayer or high dense monolayer adsorption. Here we present experimental

evidence showing higher coverage adsorption obtained via STM and LEED.

Shown in Figure 3.7 are STM images of the adenine multilayer adsorption upon

annealing the sample to 440 K; several different superstructures have been observed.

In Figure 3.7a, the bright chain features on the top layer are clearly distinguishable

from those on the underlying layer that appear as slightly darker features. Within the

top layer, short arrays of bright spots are identified; they mainly grow along two

directions, but neither of them aligns along the high symmetry directions of the

substrate, as indicated by the blue solid arrows. Similar chain features, indicated by

dash arrows, are also observed in the underlying layer. The growth directions of these

short chains in both layers are the same, but it seems that the adenine molecular

arrangements on the underlying layer have little influence over the inter-molecular

interactions on the top layer. This is indicated by the fact that the dark adenine chains

growing along one direction are surrounded by the arrays of bright protrusions

aligning along the other direction. The measured dimensions of these features, in

terms of chain width ( 8.0 Å), and the separations of adjacent rows (16.1 Å), together

with the growth directions with respect to the high symmetry directions of the

Cu(110) substrate, are found to match well with those of chiral-related adenine chains
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reported by Chen et al. [1]. Hence, it is believed that adenine molecules are arranged

in the same way as that in those dimer chains.

As the coverage is further increased, ordered single adenine chains growing along

the <110> direction of the substrate are formed. The length of the chains is slightly

longer (>100 Å) than that of adenine dimer chains, as shown in Figure 3.7b, c, d. The

corresponding LEED patterns showed a clear (1 × 2) periodicity for the self-

assembled structures shown in c and d. Conventionally, the first number refers to the

<110> direction of the copper substrate, in unit of the inter-atomic spacing of 2.55 Å,

and the second refers to the <001> direction in the unit of 3.61 Å. Thus, the size of the

unit cell is approximately 18.41 Å2, which is much smaller than the dimension of a

single adenine flat lying on the substrate, for which the maximum size is about 32.64

Å2. This finding may further suggest that the observation of the intense peak of the -

NH2 scissoring in RAIR spectra is resulted from a multilayer or dense monolayer

adsorption in which the molecular plane of adenine is tilted away from the surface,

where the standing up molecular rings give rise to a smaller “footprint” on the surface.
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Fig. 3.7: STM images of adenine adsorbed on Cu(110) at higher coverage showing the evolution of the
superstructures with increasing coverage upon annealing the sample to 440 K. a) adenine chains
growing along the (1, 2) and (-1, 2) directions of the substrate, the top layer and under layer chains are
indicated with solid and dash line respectively. (0.21 nA, -1.07 V, 70 × 70 nm2) b) and c) ordered
adenine rows aligning along the <110> direction, (0.44 nA, -1.39 V, 42 × 42 nm2, 0.9 nA, -0.52 V, 41
× 41 nm2); d) large adenine domains along the <110> direction (1.01 nA, 0.70 V, 52 × 52 nm2).

In Figure 3.8, LEED patterns of adenine high coverage adsorption on Cu(110)

surfaces, recorded at 32 eV (a) and 128 eV (b), respectively, are presented along with

the corresponding STM images. The first order spots of the clean copper substrate are

indicated with circles and the one in the middle refers to the position of the (0, 0)

beam. In Figure 3.8a, half order spots are clearly seen and both lattice vectors of the

overlayer structures are aligned along the high symmetry directions of the substrate,

so the real space unit cell of the overlayer structures is described as (1 × 2). The
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vector along the <100> direction is 7.22 Å, which is slightly larger than the maximum

length of a single adenine molecule, 6.4 Å. From the corresponding STM images,

Figure 3.8c, we can see that adenine molecules arrange themselves in a close packed

way with their long dimension parallel to each other in the rows; each of the narrow

features might correspond to a single adenine molecule having its long dimension

aligning along the <001> direction. This high coverage adlayer structure is well

ordered along the <110> direction; the average width of each chain measured from

the line profile is 13.6 ± 0.3 Å, and the average distance between neighbouring chains

is approximately 17.5 ± 0.3 Å. These values seem to disagree with the periodicity

determined from the corresponding LEED pattern; they are more likely to result in a

(1 × 4) pattern. The surface corresponding to Figure 3.7d and 3.8d, has similar but

faint (1 × 2) LEED pattern; the measured width of each row is about 10.0 ± 0.3 Å, and

the separation of neighbouring rows is about 16.0 ± 0.3 Å. The unit cell along the

<110> direction is composed of two narrow features of slightly different contrast; the

short length of the narrow feature lying in the middle of the chain is only 3.3 ± 0.2 Å

and the longer length is about 6.8 ± 0.2 Å. The short dimension of the feature is

narrower than the width of a flat-lying individual adenine, ca. 5.3 Å, hence, adenine is

more likely to orient with its aromatic ring tilted away from the surface plane in order

to reduce the space the adsorbed adenine takes up at multilayer coverage. It is still

difficult to explain why these structures give rise to a (1 × 2) pattern; this does not

agree with the physical dimension of the corresponding features measured on the

topographic STM images.
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Fig. 3.8: The (1 × 2) LEED patterns of adenine on Cu(110) surface in dense monolayer recorded at 32
eV and 128 eV. High symmetry directions and the first order substrate spots are indicated. On the right
side are the magnified STM images of the overlayer features shown in Figure 3.7c (15 × 8 nm2) and d
(8 × 5 nm2), respectively.

3.2.1.3 Discussions

Based on the analysis of these features observed in our STM images, we can see

that adenine undergoes orientation changes upon increasing the coverage from sub-

monolayer to much higher coverages (e.g. dense monolayer or multilayer). It is

suggested that, in this process, adenine molecules adopt a flat lying orientation in the

sub-monolayer regime; at increased coverage, adenine molecules are forced to tilt up

and propagate in a parallel fashion along one direction as a result of the weaker lateral

hydrogen bonding and π-π stacking interaction of the aromatic rings. The coverage 

difference is the main reason for the formation of different two-dimensional

architectures.

From the STM investigation of the adlayer structures at high coverage, we can see

that the preservation of intense -NH2 scissoring vibrations in the RAIR spectra is an
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indication of high coverage adsorption. In the high coverage structures, the molecular

plane of the adenine molecule is forced to tilt with respect to the surface, making the

dipole moment of the -NH2 scissoring mode strongly active in the spectra. Moreover,

the sudden drop in the intensity of the scissoring mode of the amino group cannot be

taken as convincing evidence of molecular desorption; the changes in molecular

orientation from standing up to flat-lying can also make the frequencies related with

the in-plane and -NH2 scissoring vibrations disappear.

3.2.2 Effect of annealing on Adenine/Cu(110)

Previous research suggested that the formation of ordered adenine dimer chains on

the Cu (110) surface is a coverage driven process; strong attractive intermolecular

interactions, along the (±1, 2) directions, between the adsorbed species are responsible

for the formation of ordered domains at high coverage upon annealing to 430 K [1].

Here I present STM investigations of the evolution of the overlayer superstructures as

a function of the annealing temperature. A surface coverage of 75% of saturation

(0.75 ML) (Figure 3.9a, b) was achieved by controlling the exposure time. Here, the

saturation coverage refers to the surface that is fully covered by a monolayer of

adsorbates. The actual coverage is directly measured by counting the number of

individual molecular features on the corresponding STM images.

3.2.2.1 STM studies

A series of STM images of adenine deposited on Cu(110) surfaces, representing an

overview of the evolution of varied superstructures as a function of the annealing

temperature, are shown in Figure 3.9. At room temperature, Figure 3.9a, adenine

molecules aggregate into small islands and short molecular arrays on the copper

terraces. Within the overlayer island structures, molecules connect with their

surrounding counterparts in a disordered manner. The molecular features within the

short arrays show different contrast with respect to the substrate and islands of

molecules; these depressed features are considered to be a result of molecular etching
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during adsorption. It is a direct evidence of the strong adsorbate-substrate interaction

occuring even at room temperature, originating from the strong interaction of the

nitrogen atom of the amino group with the copper atoms [33].

Fig 3.9: STM images of adenine adsorbed on Cu (110) surfaces showing the evolution of the
superstructures as a function of the annealing temperature. a) Room temperature (0.314 nA, -1.2 V, 60
× 60 nm2), b) annealing to 420 K (0.76 nA, -0.97 V, 66 × 66 nm2); c) annealing to 450 K (1.321 nA, -
0.80 V, 90 × 90 nm2); d) annealing to 480 K (0.51 nA, -1.15 V, 44 × 44 nm2).

Relatively ordered superstructures appeared on the surface after annealing to 420 K,

Figure 3.9b. A significant aggregation of the adsorbates occurs at the step edges; this

is linked to adsorbate induced surface etching. In this new phase, the step edges of the

substrate are decorated with adsorbed molecules organising along the <110> direction.

On the terraces, upon annealing, a large population of adenine molecules self-
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assemble into ordered arrays of circular shaped spots with some randomly distributed

molecules in the surrounding areas. This molecular network seems more likely to

form close to the step edges and each small domain is separated from its neighbouring

one by some bright line-shape features which are an extension of an upper terrace.

These line features are aligned along the <110> direction and are observed frequently

when the adenine pre-covered surface is annealed to 420 K.

The well-defined step edges and molecular arrays were substituted by randomly

distributed short chains when the annealing temperature was raised to 450 K, Figure

3.9c. In this process, adenine molecules are suggested to undergo diffusion over the

surface; as a result, they are likely to self-assemble into ordered short chains covering

more evenly the overall surface. The surface features shown in Figure 3.9c are

determined as an initial ordered phase; this is followed by the formation of more

ordered and longer adenine chains aligning along (±1, 2) directions, after the surface

was annealed to higher temperature (490 K). The so-formed adenine chains, Figure

3.9d, have higher thermal stability. STM images revealed that molecular desorption

occurred only as the annealing temperature was raised to 520 K. This high desorption

temperature provides evidence of the strong interaction existing between adenine

molecules and the copper atoms.

It is found that the annealing temperature is the main factor accounting for the

ordering of the various molecular arrangements. High annealing temperature is

required to overcome the energy barrier for molecular self-assembly to occur.

However, annealing for long time at a constant temperature did not lead to the growth

of longer adenine rows. This means that this adsorption system is thermodynamically

but not kinetically limited.

Shown in Figure 3.10 is an STM image of the surface annealed to 420 K in which

molecularly decorated step edges and molecular arrays are clearly identified. The step

edges are characterized by straight molecular chains aligning along the <110>

direction of the substrate. The appearance of well-defined step edges is considered as

the result of the surface faceting induced by the presence of the adsorbates. Surface

faceting is a phenomenon taking place on surfaces with high anisotropic surface free

energies [32, 33]. In this process, the initial clean surface breaks up into a number of

adjacent steps in regular arrangements as a consequence of mass transportation that

involves diffusion of both substrate atoms and adsorbates. Therefore, surface faceting
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usually requires high temperature annealing to overcome the diffusion barrier and to

provide sufficient mass transportation. In our case, formation of well-defined step

edges induced by adenine adsorption is a thermally mediated process; the preferential

alignment of the resultant step edges along the <110> direction suggests relatively

strong attractive intermolecular interactions, largely due to the double hydrogen bond,

mediated by the substrate atoms along this direction. It is suggested that the diffusion

energy barrier for the adsorbate is much higher than that of the substrate atoms;

annealing the surface to higher temperature leads to higher molecular diffusion across

the overall surface, eventually new overlayer structures of high stability are achieved.

Fig. 3.10: STM image of adenine adlayer structures at the Cu (110) surface, obtained upon annealing to
420 K (0.76 nA, -0.97 V, 28 × 28 nm2). a) Adsorbate induced surface reconstruction and small areas of
molecular arrays near step edges. b) Line profile of the molecular arrays along the <110> direction in
selected area. c) Close-up image of the molecular features identified in molecular arrays, indicated with
T is the elongated and tilted molecular feature, and P is the circular shaped feature, they appear in pairs
(0.14 nA, 0.97 V, 7.0 × 2.5 nm2).

Within the molecular arrays, according to the line profile shown in Figure 3.10b, the

average distance between two neighbouring bright spots along the <110> direction is

10.0 ± 0.3 Å; the average width of the bright circular feature is about 7.0 ± 0.3 Å; this

is quite close to the size of the long dimension of the isolated adenine molecule. For a

single adenine, the approximate dimension is about 5.1 Å in width and 6.4 Å in length.

In addition, the distance between neighbouring chains is 8.0 ± 0.3 Å; this value
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suggests that molecules align with their short axis parallel to the <100> direction.

Hence, we may assume that each of the bright circular shape features accounts for a

single adenine adsorbed species. The large molecular footprint suggests that the

adenine is flat lying on the surface. The longer intermolecular distance, about 10 Å

along the <110> direction, rules out the formation of hydrogen bonds along this

direction.

Furthermore, if we take a close look at these bright features, two different molecular

orientations are identified; they are labelled as feature T and P in Figure 3.10c.

Feature T is in a slightly elongated shape with its long dimension tilted away from the

<110> direction by a small angle. Feature P presents a circular shape and is positioned

often paired with the elongated feature T. However, no clear periodicity could be

identified within these molecular arrays; this might be because these adenine pairs are

still arranged in a relatively disordered and random manner. The phase of small

molecular arrays is considered as a kinetically limited state, and might result from the

high coverage and deposition rate, leading to a large population of molecules trapped

in specific sites. Further annealing the preparation to high temperatures led to the

transition of this self-organised phase to a new well-ordered adlayer structure,

showing high thermodynamic stability.

3.2.2.2 Discussions

Based on the above analysis, we proposed the structural models for the two

different features, T and P, as shown in Figure 3.11; two adenine molecules of

opposite chirality are connected by one type of double hydrogen bond. The

corresponding dimer TP is denoted as A2Ā1, meaning that the hydrogen bond site 1 of

one adenine, referring to feature P, is connected to the hydrogen bond site 2 of the

other adenine molecule, feature T. The longer dimension of the adenine molecule that

gives rise to the elongated feature T is slightly rotated with respect to the <110>

direction of the substrate, in order to facilitate the formation of a double hydrogen

bond. The adenine molecule accounting for the observed feature P participates in the

hydrogen bond with site 1; in this case, no molecular rotation is required, P is aligned

with its long axis along <110> azimuth. Since the two molecules in each dimer have
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opposite chirality, we denote the dimer as heterochiral. However, the resultant dimer

is chiral because it is not an AnĀn dimer, A2Ā1 has no mirror plane and hence, is

chiral; its mirror image is Ā2A1. Furthermore, this dimer is also energetically

favourable as determined from its stabilization energy of -0.54 eV [27].

Fig. 3.11: STM image showing adenine arrays superimposed with suggested structural dimer models
(0.14 nA, 0.97 V, 7.0 × 2.5 nm2). T and P refer to the different observed features. Molecular

arrangement of TP (A2Ā1) is related with PT by 2-fold rotation, while TP and TP (Ā2A1) dimers are
enantiomeric image of each other. The double hydrogen bond between T and P is denoted as A2Ā1,
referring to the hydrogen-bonding site 2 from one molecule is connected with site 1 of its mirror
counterpart.

Hence, with the suggested dimer as the basic building unit, we are able to account

for the observed molecular arrays by simply manipulating the dimers via rotational

and reflectional symmetry operations. The building block is referred as TP (A2Ā1) for

convenience of description; the unit PT is obtained by rotating the TP by 180º, which

matches well with the experimental finding that both dimer features have equal

chance to be found in the paired rows. The unit TP (Ā2A1), obtained by reflecting the

unit TP along a mirror plane, can explain properly the disagreement in alignments of

the paired spots on either side of the dash line, Figure 3.11. All suggested structural

units fit well with the features mapped in the STM image. The intermolecular distance

in the dimer is about 8.0 Å, and the maximum length of adenine is nearly 6.4 Å

according to distance measured from the full geometrically optimized structures of the

adenine pair. The theoretical parameters are in good agreement with the measured
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ones. The long distance between neighbouring spots in each row does not favour the

formation of hydrogen bonds in adjacent molecules.

In summary, the ordering of the adenine adlayer structures evolves as a function of

the annealing temperature. The evolution is believed to be a thermally mediated

process in which the annealing temperature, rather than the annealing time, is the

main factor accounting for the transformation of less ordered structures to the well

ordered and thermally stable adlayers. Structural models consisting of adenine dimers

related by reflectional and rotational operations have been suggested to explain the

dynamically limited structures obtained at 420 K. The observation of this metastable

phase is believed to be caused by the high coverage obtained with a relatively high

deposition rate.

3.2.3 Effect of substrate temperature on adenine self-organization

Different overlayer structures have been observed by depositing adenine onto the

Cu (110) surface at room temperature upon annealing at elevated temperature. It was

found that the annealing temperature played a major role in the formation of ordered

and thermodynamically stable overlayer structures. However, increasing the annealing

temperature and the annealing time did not lead to any obvious growth in the domain

size and the length of the adenine chains. Here adenine was evaporated onto the Cu

(110) surfaces kept above 370 K and then the sample was annealed to the temperature

at which we were able to produce the ordered overlayer chiral chains structures. The

effect of the substrate temperature on the domain size and structural properties is

investigated using STM.
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3.2.3.1 STM studies

STM images of adenine on the Cu (110) surface deposited at substrate temperature

maintained at 400 K, 450 K, and 490 K, respectively, are shown in Figure 3.12, the

usual annealing temperatures at which we expected to observe these relatively ordered

overlayer structures. Although there is a large population of disordered molecules

found at the surface maintained at 450 K, Figure 3.12b, the growth in the length of the

adenine chains is more apparent compared to the surface deposited at 400 K, Figure

3.12a. The formation of longer chains is considered as an outcome of increasing

coverage and temperature. The similar chiral related chains have been observed by

Chen et al. on the Cu(110) upon annealing the sample at 430 K, they are mirror

related and align along the (1, 2) and (-1, 2) directions of the substrate [1].

Two distinct isolated domains, domain I and II, composed of ordered adenine rows

were observed when adenine was deposited onto the substrate kept at 490 K, as

shown in Figure 3.12c; this image was obtained by rotating the fast scanning direction

by an angle of 60° anti-clockwise in the attempt to achieve a better resolution. The

size of domain I is much larger than that of domain II; they are separated by largely

rough surface areas. On the domain boundaries, some disordered molecules were

found; there is no molecular adsorption identified in the surrounding areas. The

discrepancy in the aligning directions of the substrate high symmetry axis in these

images is due to the slight sample rotation with respect to the fast scanning direction

in different experiments.

Since adsorption of prochiral molecules on surfaces usually produce chiral

adsorbed species of opposite chirality in an equal amount, and there is segregation of

the two enantiomers, they will form mirror related domains with none of the unit

vectors of the formed structures aligning along the high symmetry direction of the

substrate. Hence, the two domains, Figure 3.12c, are identified as reflection related;

each domain consists of adenine molecules of single chirality. In this case, the angle

between the chain growing directions in the two domains is about 70º, as indicated

with green arrows; the <110> axis of the substrate, indicated with yellow arrow, is

aligned along the bisector of the domains, orienting 55º with respect to each domain.
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Fig. 3.12: STM images of adenine deposited onto the substrate maintained at different temperatures. a)
400 K (0.17 nA, -1.20 V, 77 × 77 nm2), b) 450 K (0.12 nA, -1.20 V, 42 × 42 nm2), c) 490 K (0.61 nA,
-1.20 V, 65 × 47 nm2), this image is obtained by rotating the fast scanning direction by an angle of 60º
anti-clockwise.

A high resolution STM image of the overlayer structures in domain I is presented in

Figure 3.13. The unit cell vectors are marked with arrows; the average angle between

the two unit cell vectors is 70 ± 2º. In the unit cell, only one type feature is identified,

which appears of elliptical shape. The features are arranged with their longer axis

parallel to the unit cell short vector b. The dimension of the feature is about 4.4 Å in
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width and 7.2 Å in length; this size approximately matches the ‘footprint’ of a single

flat lying or slightly tilted adenine molecule. Hence, we assign each of the elongated

features observed in the domain to a single adsorbed species. In addition, the size of

the unit cell in domain I is a = 6.4 ± 0.3 Å, b =11.2 ± 0.3 Å. Both vectors of each unit

cell are not aligned along the high symmetry directions of the substrate and the C2

symmetry is assigned to the unit cell; this finding is consistent with the observation of

two mirror related domains. The rhombic shape unit cell and periodicities of the

overlayer structures are also confirmed by the 2D Fourier transform spectrum of the

corresponding STM image, shown in Figure 3.13b, where the reciprocal unit cell is

marked. The relatively strong intensity of the patterns indicates a high overlayer

ordering.

Fig. 3.13: STM images of the overlayer structures in the domain I and its corresponding 2D-FFT
spectrum. a) Constant current STM image of the assembled structures in the domains, the overlayer
unit cell vectors are marked, the angle α is about 70° (0.68 nA, -1.1 V, 77 × 77 Å2). b)The
corresponding 2D FFT spectra of the raw data, exhibiting the periodicity of the overlayer structures.

3.2.3.2 Discussions

Based on the above analysis, we proposed structural models of the molecular

features observed in the STM image. For the sample prepared at room temperature
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upon annealing to 430 K, adenine molecules were suggested to interact relatively

strongly with the Cu(110) surface through the mutual polarization and Coulomb

interaction, originating from the nitrogen atom of the amino group and the copper

atoms [33]. Generally, adenine is considered to physisorb on most of the surfaces,

such as Cu(111) [10-14] and Au(111) [16, 17], previously studied. However, in this

case, we assume that increasing the substrate temperature provides adenine molecules

with sufficient activation energy to overcome the chemisorption barrier, leading to the

formation of chemisorbed species. The resulting ordered molecular arrays are not only

governed by the intermolecular H-bond interactions, but also by the strong substrate-

adsorbate binding induced by the chemisorption [34].

The coordination sites for adenine in the copper (II) complex have been well studied

using the X-ray methods. It was revealed that adenine might bind with the metal ions

via one or two of the four basic nitrogen atoms, N(1), N(3), N(7), N(9), as indicated in

Figure 3.1. For example, in complexes of Cu(Ade)(GlyGly)(H2O) [35], and cis-

[Cu(Ade)2Br2]∙Br2 [36], [Cu(AdenineH)2Cl2]
2+ [37], adenine is coordinated with the

copper ions by the N(9) site. In the bridging bidentate complexes:

[Cu2(Ade)4∙(H2O)]2]∙(ClO4)4∙H2O [38], Cu2(Ade)4Cl4∙3H2O [39], Cu(Ade-)2∙(H2O)4

[40], and Cu3(AdeH+)2Cl8∙4H2) [36], both the N(3) and N(9), due to the

tautomerization of the imidazole hydrogen atom between the N(7) and N(9) atoms,

bind with the copper ions. The coordination of adenine to copper through the N(7)

atom has also been reported in the complexes of [Cu(acac)2(Adenine) [41], and the N-

substitute iminodiacetato-copper (II) chelates [42]. In addition, XPS studies of the

bonding of adenine on Cu(110) surfaces has revealed that at low coverage adenine

interacts via the imino N7 atom and to a less extent via the NH2 group [25] with the

copper atoms. Here, we suggest that the chemisorbed adenine species are coordinated

with the copper atoms through the imino N(7) atom with contribution from the

interaction between the nitrogen atom of the amino group and the copper substrate [1,

33], upon depositing the adenine onto the substrate kept at 490 K. This binding nature

enables the hydrogen atoms attached to the N(9) and the N(3) atoms to be available

for the formation of a double hydrogen bond with another molecule, resulting in the

formation of the most stable dimer A5A5.

Therefore, in the proposed structural model, adenine species are arranged to

facilitate the binding of the N(7) atoms and the interaction of the nitrogen atom of the
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amino group with the copper atoms. Figure 3.14 shows the electron density map of

the ordered structure in the domain I superimposed with the suggested structural

model. Along the adenine row growth direction, the chains are developed with

alternation of different hydrogen bonded adenine pairs, denoted as A5A5 and A2A2.

Both pairs are composed of adenine molecules of the same chirality, thus, the

resulting adenine rows are homochiral. In the model, constrained by the hydrogen

bond, the periodicity along the adenine rows, according to the DFT geometry

optimization using 6-31G basis set, is 12.29 Å, thus the adjacent intermolecular

distance is about 6.14 Å; this is consistent with the vector a determined from the unit

cell of the adlayer structures in the two domains. In each row, adjacent molecules are

stabilized by intermolecular hydrogen bonds that direct the growth direction of the

adenine rows; the suggested molecular orientations fit well with the protrusions

observed in the image. Additionally, because of the relatively larger inter-row

separation, the interaction of molecules in adjacent rows via H-bond is excluded.

Hence, the periodicity along the vector b is more likely to arise from the strong

substrate-adsorbate interactions. Given the suggested model, the imino N(7) atoms are

oriented outside the chains, which might favour the coordination of the N atoms with

the copper atoms; this binding, along with the amino N-Cu interactions, accounts for

the ordering along this direction. The vector b is about 11.6 Å; this distance is

approximately equal to the four copper units cells along the <110> direction, which

also makes the N-Cu interaction favorable.
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Fig. 3.14: The electron density map of the corresponding STM image of the domain I superimposed
with the proposed structural model (50 × 50 Å2). Along the adenine rows growth direction, double
hydrogen connected adenine pairs, denoted as A5A5, A2A2, are arranged alternately. Each adenine
molecule binds with the copper substrate via the amino N and imino N(7) atoms. The geometry of the
gas phase structural model (one unit cell) is optimized with DFT methods, using the 6-31G basis set.
The electron density map is obtained using the SPIP program.

Furthermore, according to the stabilization energies of the dimers composed of the

chains, both are good candidates for the construction of energetically favorable

structures. The stabilization energy of the dimer A5A5 is about -1.02 eV; it is the most

stable pair, and is the basic unit employed to constitute the structural models for most

of the observed adenine adlayer structures. The dimer A2A2 has stabilization energy

of -0.72 eV; it is slightly less stable than the dimer A5A5. Both dimers have the

nitrogen atoms participating in the formation of hydrogen bonds, therefore, the

suggested gas-phase models are considered as energetically favorable in the

construction of a model that fits well with the features observed in the STM images.
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To further prove the suggested model, we consider the registry of the model on the

Cu(110) lattice. The geometry of the adenine trimer unit that is formed by connecting

three molecules together via the hydrogen bonding site 5 and 2 is optimized using

DFT methods with the B3LYP functional and the 6-31G basis set. As shown in Figure

3.15, within the suggested molecular alignments, the adsorption of the adenine

molecules breaks the mirror plane symmetry of the free adenine molecules; as a result,

two mirror related domains are induced with each of them consisting of adsorbed

species of the same chirality. The growth direction of each adenine row is closely

related to its chirality; molecules of opposite chiralities are arranged in an angle of

55° with respect to the <110> direction of the copper substrate; this is consistent with

the experimental results mentioned before. In the suggested registry, both the amine

N(7) atoms and the nitrogen atoms of the amino groups are placed close to the top-site,

thus, the molecular orientations in the suggested models facilitate the binding of the

N(7) atoms and the interactions of the nitrogen atoms of the amino group with the

copper substrate. With the suggested model, each chiral row is aligned 55° with

respect to the <110> direction of the substrate and the distance between neighbouring

chains is about 10.8 Å, in agreement with the experimental values measured from the

STM image.

Fig. 3.15: The proposed registry of the adenine dimer chains on the Cu(110) mesh. Domain I and II
have opposite chirality and are related by the mirror aligning along the <110> direction of the substrate.
In the suggested model, all the amino N atoms and the imino N(7) atoms are placed closely to the on-
top sites, in favour of the N-Cu interaction.
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3.2.4 Effect of deposition rate on adenine adlayer structures

Adenine was observed to form ordered one-dimensional chains and two-

dimensional hexagonal networks on the Cu(111) at 70 K using scanning tunnelling

microscopy [13]; the behaviour of adenine is however strongly influenced by the

deposition rate and the coverage. At low coverage and low deposition rate, adenine

molecules have sufficient time to diffuse across the surface; this favours the formation

of ordered hexagonal structures and one-dimensional parallel chains. However, at

high coverage and high deposition rate, molecular aggregation occurs, leading to the

formation of only disordered one-dimensional chains. The dependence of the self-

assembled structures on the deposition rate and coverage provides evidence that the

dynamic process also plays an important role in the formation of various

superstructures [13].

Here, we present our investigation of the effect of deposition rate on the adenine

overlayer structures on the Cu(110) surface at high coverage upon annealing. In

comparison with the Cu(111) surface, which has lower electron density corrugation

[43], allowing easier molecular diffusion at low temperature, the Cu(110) surface

tends to anchor the molecular assembly because of the strong interaction between

adenine and the copper atoms [1]. Hence, a different self-assembly mechanism is

expected upon depositing adenine onto the Cu(110) surfaces at low deposition rate to

achieve a high coverage, θ ≈ 0.70 ML. In this experiment, the deposition rate is about 

half that, which was adopted to obtain the surface covered merely with one-

dimensional adenine chiral chains aligning along the (±1, 2) directions [1]. The

deposition rate is evaluated approximately by the deposition time it takes to obtain a

similar coverage; the monolayer coverage refers to the surface fully covered by a

monolayer of adsorbates.

3.2.4.1 STM studies

Shown in Figure 3.16 are the STM images of the surface obtained at medium

coverage with lower deposition rate, displaying the effect of annealing temperature on

the molecular ordering on the Cu(110) surfaces. At room temperature, adenine

molecules aggregate to form large heterogeneous islands on the flat terrace areas.
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Within the islands, the molecules appear as bright circular features and arrange

themselves in disordered manner. On the island boundaries and along the step edges,

some depressions are found; this is likely to be caused by adsorbate induced surface

etching. After annealing the surface to 430 K, ordered double chains consisting of

circular shaped spots aligned along the <110> direction were observed. In addition, a

large number of disordered molecules were found distributed across the terraces and

appear as dark features. This phase is considered as a kinetically limited state and was

replaced with highly ordered, new adlayer structures after the sample was annealed to

490 K, Figure 3.16c, resulting from the high degree of molecular diffusion.

As shown in Figure 3.16c, three types of chain structures are distinguished and are

considered as a thermally stable phase. Type I is the adenine chiral related rows

commonly observed on the surface that was prepared at a normal deposition rate upon

annealing to 490 K. These structures are well ordered and consist of ordered dimer

rows aligning along (±1, 2) directions [1]. Both the new structures, II and III, were

observed for the first time, and were uniquely formed at Cu(110) surfaces prepared at

a deposition rate which is half the normal rate. These new chains grow along one of

the high symmetry directions of the substrate, the <110> azimuth, and mainly align

adjacent to each other. The new adlayer structures usually display apparently bright

contrast with respect to the rest of the surface, and particularly in comparison with the

chiral chains.
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STM images of adenine adlayer structures on the Cu(110) at high coverage
after annealing at different temperatures. a) At room temperature (0.18 nA,

0 K (0.10 nA, -1.2 V, 94 × 94 nm2); c) and d) Annealing to
, 0.19 nA, -1.14 V, 21 × 21 nm2).
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along (±1, 2) directions. This may suggest that hydrogen bonds accounting for the

growth of these chains are stronger than those governing the chiral chains. However,

this structure is not well ordered and uniform with the rungs of the ladder occasionally

missing, as indicated by the selected rectangular area in Figure 3.16d.

The type III structures are bright linear chains aligning adjacent in parallel to the

ladder chains, type II, along the <110> azimuth, as indicated by the dash lines in

Figure 3.16c. Within this structure, individual features comprising of the chains are

not so easily distinguished in the STM image. The apparent width of this molecular

chain is 7.0 ± 0.3 Å, which is close to the long dimension of a free adenine molecule;

it suggests that adenine may orient with its short dimension aligning along the <110>

direction. The chain width is approximately 2.0 Å wider than the parallel molecular

rows consisting of the ladder chains; this indicates that the molecular orientation with

respect to the substrate in this chain is different from that in the parallel chains of the

ladder structure. In this case, adenine molecules are believed to arrange neighbouring

to each other with the long dimension aligning along the <110> direction.

The appearance of the linear chains and the ladder structure have some similarities,

considering the chains width and lateral dimension of each individual feature

comprising the chain, with the hexagonal structures and parallel chains observed on

the Cu(111) surface, when adenine was deposited at low deposition rate and low

coverage [13]. In that work, since the interaction between the adenine and the

substrate is weak at room temperature, the low deposition rate provides molecules

with enough time to diffuse freely across the surface; this favours the formation of

self-assembled hexagonal networks and other chain structures, mediated via the

strong attractive intermolecular hydrogen bonds. In our cases, due to the relatively

strong adsorbate-substrate interaction, high temperature annealing is required to

provide sufficient energy to overcome the diffusion barrier. This leads to the

formation of a variety of different overlayer structures, e.g. the kinetically limited

parallel chains upon annealing to 430 K; the thermally stable chain structures upon

annealing to 490 K. In addition, it is also believed that the formation of ladder chains

and linear chains along the <110> direction might be influenced by the large

molecular aggregation on the terraces observed at room temperature. Hence, both the

deposition rate and the annealing temperature, as well as the coverage, are important

factors influencing the self-organization of adenine depositing onto Cu(110) surfaces.
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Topographic line profiles of the adenine adlayer structures are presented in Figure

A and B demonstrate the height difference between the ladder

, the copper substrate and the adenine chiral chains, I. The bright

has an apparent height of 1.6 Å with respect to the copper surface

distance is in reasonable agreement with the calculation of weakly bound π

lying flat on metal surfaces [44, 13, 16], while the apparent height difference between

chain and the copper surface is about 0.8 Å. The small height difference
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corresponding to the line profiles I, II and III, in Figure 3.18b. This distance is nearly

equal to four copper unit cells along the <110> direction, suggesting that this ladder

chain is commensurate with the substrate. It is also slightly larger than the longest

inter-molecular distance, ca. 7.0 Å, between two double H-bond connected adenine

molecules, which indicates the two neighbouring molecules along the <110> direction

might not be connected by H-bonds. The periodicity of structure B along the <110>

direction is 9.0 ± 0.3 Å, indicated by the line profile Figure 3.19b IV, which is ca. 1.0

Å smaller than the corresponding measured distance in structure A. A close

examination of these two structures A and B reveals that molecular arrangements in

the parallel rows of the ladder are fairly similar to each other, except that the tilted

alignment of the features in the rung position. However, the little discrepancy in the

periodicities may arise from the alterations in the molecular orientation, making the

features in the structure B more closely packed than those in structure A. Even

though both structures A and B coexist along the same ladder chain, the A is

considered more favourable structures than B, which is evident from the bigger areas

they are observed.



Fig. 3.18: a) STM image of adenine
1.14 V, 11 × 11 nm2). b) The corresponding
two different molecular arrangements are marked with A and B
associated with the three parallel
structure B, demonstrating the periodicities along the rows.
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STM image of adenine ladder chain structure, II, with molecular resolution
he corresponding line profiles of each adenine rows along the chain

two different molecular arrangements are marked with A and B. I, II, III are topographic line profiles
parallel adenine rows in structure A, and IV is the line profile

demonstrating the periodicities along the rows.
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with molecular resolution (0.15 nA, -
along the chain. The

are topographic line profiles
line profile of the row in
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Now we take a close look at the more favourable structure A. In the wider ladder

structure A, Figure 3.19, three types of features are recognized and indicated with α, β, 

γ respectively. α are β are ‘T’ shape units; they are identified as 2-fold rotation related 

trimers, which is indicated by the tilt angle of the middle feature with respect to its

two neighbouring molecules lying on the shoulder. This is clearly evident from the

corresponding electron density maps of the two T shape units, α and β, inset in Figure 

3.19. Feature γ commonly appears in pair with α or β, and is separated with its 

neighbouring molecules by dark gaps. The width of the T shape trimer along the

<100> direction is 9.0 ± 0.5 Å; it is nearly twice the minimum dimension of adenine,

indicating the adjacent molecules might have their long axis aligned close to the

<110> direction. The elongated feature γ displays as an individual separated feature; 

however, it is unlikely that an isolated adenine molecule occurs, i.e. unconnected to

other molecules, due to its strong ability to form double hydrogen bonding with the

neighbouring molecules. Thus, we suggest that the slighter dark narrow gap

separating the trimer from the elongated γ feature is associated with the different 

molecular orientation with respect to its neighbouring molecules, e.g. the rotation of

its long axis; this might give rise to its unique appearance in comparison with its

surrounding trimers.

Extension of this ladder chain can be achieved via repeating the T shaped units

side-by-side, or face to face, along the chain growth direction, as schematically

illustrated with solid and dash line circles in Figure 3.19b, then the γ species are 

placed between the adjacent rungs on the edges, as indicated by the yellow dotted line

circles. Due to the random arrangements of these units, the ladder chains can end up

with different defects, such as the missing of rungs in the middle or the γ features on 

the edges.



Fig. 3.19: a) Magnified STM image of the ladder
are the electron density maps of
feature, indicating a different molecular orientation.
chains via randomly repeating the suggested units
each elongated circles represent
circles in blue respectively, and γ is illustrated with dotted line circle i

3.2.4.2 Discussions

In order to gain a further

particular the ladder chain

the geometries of which

experimentally. As discussed above, the ladder chains can be formed by arranging

these trimer features, α and β, and the elongated feature γ, in different ways

we shall start with constructing reasonable trimer structural models, then repeat these

units, along the chain growth direction

ladder structures. Since Kelly,

possible adenine pairs and the corresponding stabilization

methods [27], the stabilization energy of gas

approximately estimated as a sum of the stabilization energy of each is

consisting the model. Here, we take

consideration, then select the most suitable dimers the geometries of which reproduce

the features observed experimentally and have high stabilization energy
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Magnified STM image of the ladder structure A (0.19 nA, -1.14 V, 5.4
are the electron density maps of the T shaped units α and β, which are C2 related. γ is the isolated 

different molecular orientation. b)Schematic illustration of the formation of ladder
ng the suggested units α, β and γ along the chain growth direction, in which

represents one adenine molecule, α and β are indicated with solid and dash line 
circles in blue respectively, and γ is illustrated with dotted line circle in yellow.

further insight into these observed overlayer

particular the ladder chains II, we shall propose gas phase adenine structural models

of which resemble the structural dimensions and features observed

As discussed above, the ladder chains can be formed by arranging

these trimer features, α and β, and the elongated feature γ, in different ways

we shall start with constructing reasonable trimer structural models, then repeat these

units, along the chain growth direction, the <110> axis, to reproduce the observed

Kelly, et al. have calculated the optimized geometries of 2

possible adenine pairs and the corresponding stabilization energies

the stabilization energy of gas-phase structural models can be

approximately estimated as a sum of the stabilization energy of each is

model. Here, we take the geometries of all adenine pairs into

consideration, then select the most suitable dimers the geometries of which reproduce

the features observed experimentally and have high stabilization energy
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, 5.4 × 5.4 nm2
), insets

related. γ is the isolated 
illustration of the formation of ladder

ong the chain growth direction, in which
α and β are indicated with solid and dash line 

observed overlayer structures, in

ase adenine structural models

eatures observed

As discussed above, the ladder chains can be formed by arranging

these trimer features, α and β, and the elongated feature γ, in different ways. Hence,

we shall start with constructing reasonable trimer structural models, then repeat these

to reproduce the observed

optimized geometries of 21

energies using DFT

phase structural models can be

approximately estimated as a sum of the stabilization energy of each isolated dimer

geometries of all adenine pairs into

consideration, then select the most suitable dimers the geometries of which reproduce

the features observed experimentally and have high stabilization energy. When
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reasonable adenine pairs are selected, we can connect these pairs with another

molecule to construct the trimer units, α and β, as well as the four-molecule units that 

can be built up by connecting the trimer with the fourth molecule that accounts for the

elongated feature γ. In this work, the geometries of these constructed units were 

optimized by means of DFT methods with the B3LYP functional using the 6-31G

basis; the associated intermolecular distances in the trimer along the chain growth

direction and the approximate width of the four-molecule units are then compared to

the experimentally measured parameters.

We have mentioned in the introduction section (chapter 3.1.2) that there is a total of

21 hydrogen bonded adenine pairs; each of them displays a distinct configuration.

From these, the two H-bonded dimers, A5A5, and A3A3, as shown in Figure 3.20a,

have been selected, to build the trimer units. Both are energetically favourable pairs

where the N atoms are involved in hydrogen bonds [27]. The stabilization energies of

them are -1.02 eV and -0.16 eV, respectively, according to our DFT calculations; this

makes them good candidates in the construction of the trimer model and account for

the observed C2 related trimer features, α and β.  

In the suggested trimer model, indicated on the right side of Figure 3.20a, the

middle molecule is connected with its two adjacent molecules on the shoulder by H-

bond sites 5 and 3, such that the upper pair corresponds to a A3A3 dimer and the lower

pair to a A5A5. Each individual molecule is oriented with its longest axis tilted slightly

away from the chain growth direction, but this orientation seems to be in good

agreement with our experimental findings in which the short dimension of each

elongated feature along the <100> direction is close to the short dimension of a free

adenine molecule. This model is composed of adenine molecules of the same

chirality; hence, it is a homochiral structure. The intermolecular distance, measured

from the optimized geometry of the trimer, between the two molecules, upper and

lower of Figure 3.20a, is 10.16 Å; resembles closely the value measured from STM

images, which is about 10.1 ± 0.3 Å. In addition, this model and its C2 related

counterpart also fit well with the observed trimer features α and β, making them 

suitable models for the trimer units of the ladder chains.

Now we can start building the four-molecule units by adding the fourth molecule to

the suggested trimer model. As shown in Figure 3.20b, when the structure of the

trimer is set, there are only two possible orientations for the fourth molecule, γ, 
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according to the requirement of STM results that the long axis of the feature γ is 

aligned nearly along the <110> direction. In the first case A, the fourth molecule is

connected with the H-bond site 1 of the molecule lying in the middle of the trimer by

site 5, the resultant dimer is denoted as A1A5. In order to facilitate the H-bonding

interaction, the long axis of this molecule is rotated slightly with respect to the others,

which makes its long axis align nearly parallel to the chain growth direction, the

<110> direction. However, in the second case, the H-bond site 1 of the fourth

molecule, γ, can also form a double H-bond with the same molecule in the trimer by 

site 1, the corresponding double H-bond linked pair is referred as A1A1. This

generates a similar four-molecule unit, referred to as unit B. In this model, the long

axis of each molecule involved in the formation of double H-bonds is oriented almost

in parallel, which results in a parallel feature γ. The approximate calculated width of 

the unit A is 15.1 Å; it is about 0.7 Å wider than that of the unit B, which is 14.4 Å.

These values, including the small width difference between them, are consistent with

the corresponding experimental values.

The stabilization energies of the dimers, A1A5 and A1A1, are -0.66 eV and -0.47 eV

[27], respectively. Both are anticipated to yield energetically favourable structures

upon adsorption on Cu(110) surfaces. However, the slightly higher stabilization

energy of the dimer A1A5 seems to suggest that the four-molecule unit A is a preferred

model for the wide ladder chain A. The slight rotation of the long axis of the fourth

molecule in unit A with respect to that of its neighbouring molecules might give rise

to the isolated feature γ observed in the wider ladder chain A. While the less 

energetically favourable unit B consisting of dimer A1A1 is likely to account for the

narrow ladder chain B. The parallel orientation of the molecules in this unit B might

give rise to the elongated features aligning on both sides of the cross-linking rungs of

similar appearance. In both structural models, the fourth molecule has the same

chirality as the molecules composing of the trimers, therefore, these proposed four-

molecule units are homochiral.



Fig. 3.20: a) Selected H-bonded adenine pairs,
constructed with the selected pairs
The intermolecular distance along the chain growth direction is 10.16 Å
molecule units, A and B, built up
feature γ. The unit A is about 15.1 Å in width and is formed by connecting the trimer with the fourth
molecules by H-bond sites 1 and 5
slightly rotated with respect to that of other molecules
the fourth molecule is connected with the trimer by site 1
molecules involved are aligned in parallel.

Figure 3.21 shows the magnified STM

with the proposed structural models of α and β, and the four

The proposed four-molecule units fit well with

ladder chain structures, particular
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bonded adenine pairs, A5A5 and A3A3, and the trimer structural model
tructed with the selected pairs the geometry of which resembles closely that of the trimer
intermolecular distance along the chain growth direction is 10.16 Å. b) The two possible four

molecule units, A and B, built up by connecting the trimer with the fourth molecule
. The unit A is about 15.1 Å in width and is formed by connecting the trimer with the fourth

bond sites 1 and 5, denoted as A1A5, in which the long axis of the
slightly rotated with respect to that of other molecules. The unit B is about 14.4 Å

rth molecule is connected with the trimer by site 1, indicated as A1A1; all the long ax
molecules involved are aligned in parallel.

shows the magnified STM image of the ladder chains II superimposed

with the proposed structural models of α and β, and the four-molecular units A and B.

molecule units fit well with the associated features observed in the

der chain structures, particularly for the unit B for which both the width and
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the trimer structural model,
that of the trimer, α or β. 

. b) The two possible four-
accounting for the

. The unit A is about 15.1 Å in width and is formed by connecting the trimer with the fourth
long axis of the fourth molecule is

Å in width, in which
all the long axes of the

image of the ladder chains II superimposed

molecular units A and B.

the associated features observed in the

which both the width and
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intermolecular distance are in good agreement with the observed features. In the

model A, the slight rotation of the long axis of the fourth molecule with respect to that

of its neighbouring molecules might give rise to the isolated feature γ observed in the 

wider ladder chains. The width of the suggested unit A is calculated to be 15.4 Å; it is

about 1.0 Å narrower than the corresponding measured value, ca. 16.3 Å, however,

this small difference might be induced by structural relaxation upon adsorption due to

the strong substrate-adsorbate interaction. It is suggested that the presence of the

substrate can result in an increase in the intermolecular distance with respect to the

values in the gas-phase model by up to ~0.5 Å [22]. Arranging either the trimer α or β 

side by side along the chain growth direction can give rise to short comb chain

structures, missing the γ features in the ladder chains, with reproducible periodicities. 

However, when the trimers α and β are arranged face to face, there is no hydrogen 

bond that can be formed between the molecules lying in the rung positions. So this

arrangement might be mediated mainly by the strong interaction between the copper

atoms and the adsorbates.

It is also found that the suggested homochiral trimer models, α and β, can only fit 

with the observed ladder-chains, while their counterparts of opposite chirality do not

fit the structure at all. The main discrepancy of the suggested models of opposite

chirality with the observed feature is related to the orientation of the elongated feature

lying in the rung position of the ladder, as indicated in Figure 3.21. Since the trimers,

α and β, are C2 related, and ladder chains of opposite chirality co-exist, also, they

must be aligned along the high symmetry <110> direction. However, it is difficult to

distinguish the opposite chiral ladder chains from the large area STM image because

molecules of either chirality in the rung position were observed to appear as circular

features and arranged in parallel, although, in fact, the rung of opposite chirality must

slope in the mirror direction. Additionally, the orientation of the fourth molecule in

the structural model B is different; it has the same experimental parameters, e.g.

periodicity and dimension of each elongated feature, with the model A. However, the

different appearance of the narrow chains B with that of A might be caused by the

slightly more closely packed molecules mediated by the substrate-adsorbate

interactions, or due to the tilting of the molecular ring away from the surface, which

gives rise to smaller molecular footprint on the surface.



Fig. 3.21: Magnified STM image of the ladder chains superimposed with the suggested structural
models α and β. as well as the units A and B (13 
trimer models are also presented, the orientation of the molecule in the
not fit with the corresponding features.

Repeating each four-molecule units, A and B, along the <110> direction of the

substrate can give rise to the ladder chains observed. These structures are

observed on the Cu(110) surface, it is

rate and coverage. Extending these units in 2D will give rise to a number of hexagon

networks, similar to those

Si(111) [20] surfaces. The smooth potential energy surface of these substrates

the formation of 2D periodical structures as result of

assembly. However, in our case, the strong interaction between the nitrogen atoms of

the amino group and the copper atoms may increase the diffusion barrier, which

inhibits the formation of long range ordered structures. In addition, the rectangula
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Magnified STM image of the ladder chains superimposed with the suggested structural
models α and β. as well as the units A and B (13 × 10 nm2, 0.15 nA, -1.0 V). Opposite homochiral
trimer models are also presented, the orientation of the molecule in the rung position of the ladder does

features.

molecule units, A and B, along the <110> direction of the

substrate can give rise to the ladder chains observed. These structures are

ved on the Cu(110) surface, it is suggested they are influenced by the deposition

rate and coverage. Extending these units in 2D will give rise to a number of hexagon

networks, similar to those observed on the Au(111) [16, 17] and Ag

[20] surfaces. The smooth potential energy surface of these substrates

the formation of 2D periodical structures as result of less constrained molecul

assembly. However, in our case, the strong interaction between the nitrogen atoms of

the amino group and the copper atoms may increase the diffusion barrier, which

hibits the formation of long range ordered structures. In addition, the rectangula
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Magnified STM image of the ladder chains superimposed with the suggested structural
1.0 V). Opposite homochiral

rung position of the ladder does

molecule units, A and B, along the <110> direction of the

substrate can give rise to the ladder chains observed. These structures are merely

influenced by the deposition

rate and coverage. Extending these units in 2D will give rise to a number of hexagonal

(111) [16, 17] and Ag-terminated

[20] surfaces. The smooth potential energy surface of these substrates favours

less constrained molecular self-

assembly. However, in our case, the strong interaction between the nitrogen atoms of

the amino group and the copper atoms may increase the diffusion barrier, which

hibits the formation of long range ordered structures. In addition, the rectangular
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lattice of the Cu(110) substrate might have a significant impact on the way the

adsorbed species organize. As a result, only short range ordered one-dimensional

chains are observed on the surfaces. In all the networks reported previously, the

centro-symmetric A5A5 unit, commonly used in the construction of most gas-phase

networks, is connected in combination with other less energetically favourable

adenine pairs, leading to the formation of various self-assembled structures observed

experimentally.

One dimensional adenine linear chains showing similar width have been observed

previously on the Cu(111) surface [13], and the corresponding gas-phase structural

model has been suggested, as illustrated in Figure 3.22 C1. In this model, the dimers,

A5A5, are connected to the neighbouring dimer by H-bond site 1, and the

corresponding link is denoted as A1A1. This leads to the formation of one-dimensional

chains having a width of 6.5 Å. The short dimension of the molecules is aligned

almost in parallel along the chain growth direction, which is in agreement with our

STM observation that the width of the chain is nearly equal to the long dimension of

the free adenine molecule. However, in addition to this model, there is also the other

possibility that the dimer A5A5 can connect with another dimer via the site 2, yielding

adenine chains having a similar dimension of 6.3 Å, as illustrated in Figure 3.22 C2.

In this chain, the short dimension of the adenine molecules is only slightly rotated

away from the chains growth direction. This model is also considered as a possible

candidate for the one-dimensional chains observed by us for adenine on Cu(110). The

stabilization energy for the pair A1A1 is -0.72 eV, while that for the pair A2A2 is -0.62

eV; both are likely to give rise to energetically favourable gas-phase structural models,

making it difficult to select one model over another.



Fig. 3.22: One-dimensional chains constructed by connecting dimer
double H-bonds. a) 1D chain formed by connecting two adjacent dimer
corresponding dimer is denoted as
connecting dimers via site 2,
approximately.

To further establish the validity

ladder chains, II and the 1D chains, III, we shall take the registry sites of adenine

molecules on the Cu(110) mesh

on the Cu(110) surface suggested tha

the N atom of the amino group, and

on the preferential on-top positions

units suggested for the ladder chain A

direction is 10.16 Å, both the amino N atoms

Chapter III Adenine/Cu(110) Surfaces

109

dimensional chains constructed by connecting dimers A5A5 by two other types of
formed by connecting two adjacent dimers, A5A5, via H

corresponding dimer is denoted as A1A1, and is evaluated to be 6.5 Å in width. b) 1D chain
connecting dimers via site 2, the resultant dimer is referred as A2A2 having a

establish the validity of the proposed gas-phase structural models for

ladder chains, II and the 1D chains, III, we shall take the registry sites of adenine

molecules on the Cu(110) mesh into consideration. Previous studies of

on the Cu(110) surface suggested that adenine prefers to interact with the substrate via

atom of the amino group, and all the amino nitrogen atoms are accommodated

top positions [1]. As shown in Figure 3.23, for

ladder chain A and B, since the periodicity along the <110>

direction is 10.16 Å, both the amino N atoms can be placed perfectly at the on
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by two other types of
via H-bond site 1, the

b) 1D chain formed by
having a width of 6.3 Å

phase structural models for

ladder chains, II and the 1D chains, III, we shall take the registry sites of adenine

Previous studies of chiral chains

with the substrate via

all the amino nitrogen atoms are accommodated

for four-molecule

and B, since the periodicity along the <110>

fectly at the on-top
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positions; this also leaves the rest of the amino N atoms allocating closely to the on-

top positions. Consequently, the N-Cu interaction is significantly facilitated for the

suggested molecular orientation, which makes them very reasonable models for the

observed structures. As for the one dimensional chains, in the model C1, when the

amino N atoms of the first dimer A5A5 are accommodated at the on-top sites, those of

the second dimer are more likely to be placed on the short bridge site, arising from the

requirement of the corresponding double hydrogen bond length in the A1A1 dimer.

However, in the model C2, all the amino N atoms of the molecules are accommodated

close to the on-top sites. Hence, considering the requirement of the adsorption site, we

tend to prefer C2 as the more suitable model that accounts for the observed one-

dimensional linear chains. Furthermore, the relative orientation of dimer A5A5 with

respect to the substrate lattice in the model C2 is similar to that in the ladder chains.

Thus, by slight re-orientation of the long axis of each dimer, A5A5, in the chain,

clockwise, accompanied by the breaking of H-bonds in dimer A1A1 and the formation

of new H-bonds as A3A3, we are able to obtain the comb like structure that can be

produced by arranging the trimer units in a side by side manner.

Based on the analysis of the registry of adenine molecules in the proposed models

on the Cu(110) mesh, it is quite likely that the adsorbate-substrate interaction plays an

important role in anchoring the orientation of the stable dimer A5A5. This initial

orientation might govern the specific direction along which the second dimer will

interact with it via a double hydrogen bond. Accordingly, the orientation of the dimer

with respect to the substrate, along with the directional double H-bonds, determines

the growth direction of the chains. From the STM images, the chiral related chains

along the (1, 2) direction are the most dominant overlayer structures, while the other

two types of structures, in particular the ladder chains, have some defects, arising

from a missing molecule in the rung position or the fourth molecule, γ, appearing 

linked to the trimers. This might imply the N atoms of the amino groups of some

adenine molecules in the new chains are not perfectly located at the on-top sites like

these in the chiral related chains; as a result, these new adlayer structures might be

less favourable structures which could be formed only at a low deposition rate.

For the ladder chains, arranging the four-molecule models along the <110>

direction via either face to face by C2 rotation or shoulder to shoulder, as

schematically indicated by circles, Figure 3.23A, can yield long chains commensurate



with the substrate. However, when the trimers α and β

way, as shown on the top of Figure

position where the fourth molecule γ is supposed to be placed might interact with the 

middle molecule in α by a single H

might occur to facilitate the formation o

formation of ladder chains via arranging these molecular units along one of the

symmetry direction of the substrate, rather than two dimensional hexagonal networks,

suggests that the copper-adenine interactions on the

the Cu(111) surface. This strong interact

molecular assemblies upon annealing, thus, leading to the formation of various chain

structures.

Fig. 3.23: The proposed registry of
C1, C2, on the Cu(110) mesh.
the <110> direction and all the
and C2 are energetically favourable structural models for the linear chains. In C1, only the amino N
atoms of the first dimer A5A5 are placed at the on
bridge sites. In C2, all the amino N atoms are accommodated closely to on
probable model for the linear chains.
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However, when the trimers α and β are arranged in a face to face

as shown on the top of Figure 3.23A, it seems that the molecule lying on the

position where the fourth molecule γ is supposed to be placed might interact with the 

by a single H-bond. Moreover, slight molecular reorientation

facilitate the formation of less favourable double H

formation of ladder chains via arranging these molecular units along one of the

symmetry direction of the substrate, rather than two dimensional hexagonal networks,

adenine interactions on the Cu(110) are much stronger than

the Cu(111) surface. This strong interaction, mediated by the H-bond, can govern the

molecular assemblies upon annealing, thus, leading to the formation of various chain

registry of the ladder chains, A and B, and the one-dimensional linear chains
Structural models A and B are commensurate with the substrate along

the <110> direction and all the amino N atoms are accommodated at or close to on-
and C2 are energetically favourable structural models for the linear chains. In C1, only the amino N

are placed at the on-top sites while these of the other
all the amino N atoms are accommodated closely to on-top sites, making it more

model for the linear chains.

Chapter III Adenine/Cu(110) Surfaces

are arranged in a face to face

the molecule lying on the

position where the fourth molecule γ is supposed to be placed might interact with the 

slight molecular reorientation

f less favourable double H-bonds. The

formation of ladder chains via arranging these molecular units along one of the

symmetry direction of the substrate, rather than two dimensional hexagonal networks,

much stronger than

, can govern the

molecular assemblies upon annealing, thus, leading to the formation of various chain

dimensional linear chains
Structural models A and B are commensurate with the substrate along

-top sites. Both C1
and C2 are energetically favourable structural models for the linear chains. In C1, only the amino N

top sites while these of the other are close to short-
top sites, making it more



Chapter III Adenine/Cu(110) Surfaces

112

Now we consider all the structures, the chiral chains along the (±1, 2) directions,

the ladder chains, II, and the one-dimensional linear chains, III, aligning along the

<110> direction together, in the attempt to find out the possible formation mechanism

of these overlayer structures. Schematically illustrated in Figure 3.24, is the possible

molecular self-assembly mechanism we presented for the different overlayer

structures obtained at a low deposition rate and high coverage. Upon depositing

adenine onto the Cu(110) substrate at room temperature to high coverage (0.70 ML),

adenine molecules aggregate into small molecular islands in which molecules interact

with each other via various double hydrogen bonds in a disordered manner. Upon

annealing to relatively low temperature, 430 K, significant molecular diffusion occurs,

which leads to the formation of ordered double chains and disordered small molecular

clusters that are formed by connecting molecules in the surrounding areas via various

double H-bonds. Since the diffusion barrier for the molecular clusters is higher than

that for the individual adsorbate, further annealing the sample to 490 K is required to

enable these clusters to diffuse freely across the surface in the attempt to meet each

other. This is accompanied by the re-orientation of the molecules of the double chains.

However, at high coverage, it is believed that adenine molecules are more likely to

form the most stable dimer A5A5 first upon annealing. When this dimer is formed,

there are only four H-bond sites, 1, 2, 3, and 6, available for further connection via H-

bonds. Due to limited free space left for molecular diffusion, the other molecules can

approach the dimer A5A5 in different ways. Thus, when two dimers of the same

chirality are connected via the H-bond 6, the chiral chain along the (±1, 2) is formed.

Meanwhile, the dimers can also connect with each other via site 2 or 1, which can

give rise to the one-dimensional chains. Finally, the connection of dimers A5A5 via

the H-bond site 3 would result in these ladder chains.

Along the chain growth direction, since the strength of the double H-bonds, which

is estimated approximately according to the stabilization energy of the corresponding

dimer, decreases in the order of A1A1>A2A2>A6A6≥A3A3, thus, the connection of

dimers, A5A5, by site 1 or 2 is expected to lead to formation of longer chains. This is

true for the dimer chains along the (±1, 2) directions in which the double H-bonds

governing the chain growth direction are weaker, thus the length of these chains is

shorter than that of the others. While for the ladder chains, the weak H-bond between
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dimer A3A3, might account for the observation of these trimers units, or short chains

formed by arranging these trimer side by side.

In addition to the intermolecular hydrogen bonds, the substrate-adsorbate

interaction also plays a very important role in the molecular organization, particularly

upon increasing the annealing temperature. As shown in the Figure 3.23 and 3.24, the

growth of each chain along a specific direction is determined by the orientation of the

dimer, A5A5, with respect to the substrate high symmetry directions. In other words,

the adenine dimer, A5A5, forming the chiral chains along the (1, 2) direction is

oriented differently from those forming the one-dimensional linear chains and the

ladder chains along the <110> direction. Therefore, it is suggested that the substrate-

adsorbate interactions may direct the orientation of the stable dimer A5A5, i.e. the

registry of the molecules with the substrate. Then the second type of double-hydrogen

bonding determines the growth direction of the chains, mediated by the subtle

substrate-adsorbate interactions. The different orientations of the dimer A5A5 with

respect to the substrate are believed to be associated with the aggregation of

molecules upon deposition at room temperature. The relatively disordered molecular

islands obtained by dosing adenine at low deposition rate might favour the formation

of the stable dimer A5A5 upon annealing; connection of these dimers which may have

different registries on the substrate along different directions, leads to the formation of

the various observed adlayer chain structures.



Fig. 3.24: Suggested formation mechanism of
chains II, and the 1D linear chains
deposition rate. Adenine molecules
Adenine chiral chains formed by connecting the dimer
as A6A6. b) Formation of 1D linear chain
wider ladder chains formed by connecting the dimer by site 3, then the middle molecule is connected to
the site 5 of another molecule by third H

3.2.5 Very low coverage adsorption

Previous STM studies of the

focused on the medium to high coverage

intermolecular hydrogen bond

account for the well ordered

adsorbate-substrate interaction might become the dominant driving force

formation of the ordered structures

Chapter III Adenine/Cu(110) Surfaces

114

uggested formation mechanism of the chiral chains along the (±1, 2) directions,
linear chains, III, along the <110> directions at the Cu(110)

molecules diffuse to form the most stable dimer, A5A5, upon annealing. a
Adenine chiral chains formed by connecting the dimers by one of the available H-bond site 6,

b) Formation of 1D linear chain via connecting the dimers by site 2, indicated as
wider ladder chains formed by connecting the dimer by site 3, then the middle molecule is connected to

olecule by third H-bond site 1, denoted as A5A1.

Very low coverage adsorption onto the Cu(110) surfaces

Previous STM studies of the adsorption of adenine on Cu(110) surfaces [1]

medium to high coverage regime at which it is believed that

intermolecular hydrogen bonds, more than the adsorbate-substrate interaction

well ordered self-assembled structures. However, at low coverage the

substrate interaction might become the dominant driving force

structures experimentally observed. Hence, investigation into
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the chiral chains along the (±1, 2) directions, the ladder
Cu(110) surfaces at low

upon annealing. a)
bond site 6, indicated

the dimers by site 2, indicated as A2A2. c) The
wider ladder chains formed by connecting the dimer by site 3, then the middle molecule is connected to

on Cu(110) surfaces [1] mainly

it is believed that the lateral

substrate interactions,

However, at low coverage the

substrate interaction might become the dominant driving force directing the

investigation into
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the molecular behaviour at low coverage might help us to understand the formation

mechanism of ordered adenine superstructures obtained at high coverage.

3.2.5.1 STM studies of very low coverage at 440 K

Very low coverage STM images of ordered adenine overlayer domains were

obtained after dosing a small amount of molecules onto the Cu(110) surface and

annealing to 440 K. As shown in Figure 3.25a, in addition to the short adenine dimer

chains, consisting of two or four dimers, some elliptical and triangular features were

also observed. These features look quite like adenine dimer and trimer units from their

appearance in comparison with the dimer chains; they were replaced with short and

well-ordered dimer rows upon annealing the sample to 490 K, the common

temperature we are able to obtain the ordered adenine chiral chains. This finding

suggests the existence of strong adenine-copper interactions at low coverage, thus,

high temperature annealing is required to overcome the activation energy barrier for

molecular diffusion to occur, in particular for the dimers and trimers, this leads to the

formation of well-ordered chains.

Close-up STM images of some selected elliptical features, D1 and D2, and

triangular features, T1 and T2, are shown in Figure 3.25c, along with a cross-sectional

line profile of the dimer, indicated with arrows. Feature D1 and D2 have great

similarities in terms of the appearance and cross-sectional dimension. Both of them

are composed of two centro-symmetric depressed lobes separated by a small

protrusion. The lateral dimension of this elliptical feature is 12.1 ± 0.4 Å in length

along the long axis, indicated with arrows, and 7.2 ± 0.4 Å in width. These parameters

resemble closely to the corresponding dimensions of adenine dimer, A5A5, which is

11.3 Å in length and 6.4 Å in width, Figure 3.25b. This dimer is centro-symmetric and

is the most stable adenine pair; it is usually considered as the basic unit in the

construction of gas-phase adenine chains. Hence, we tend to assign these elliptical

features as adenine homochiral dimers.

In addition to the similarities mentioned above, the long axis of these elliptical

dimer features, D1 and D2, are oriented clearly in two different directions with

respect to the <110> direction of the substrate, Figure 3.25b. The angle between the
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long axis of feature and the <110> azimuth is approximately 50°; this indicates that

these features are mirror related along the high symmetry directions of the substrate;

each feature is homochiral and has C2 symmetry. This finding reveals the tendency of

adenine molecules to form stable chiral dimers at the initial stage of the formation of

dimer chains upon annealing. However, it is still impossible to assign the orientation

of the individual molecule with respect to the substrate lattice due to the poor STM

resolution of the internal molecular feature. From the images, we can only suggest

that each depression in the elliptical feature is associated with the aromatic ring of

adenine, while the protrusion in the middle might refer to the double H-bond.

Now we take a close look at these triangular features, T1 and T2, Figure 3.25c, in

which four features oriented differently are distinguished. The width of these features,

indicated by the arrows, is very close to that of D1 and D2, 11.8 ± 0.4 Å; however, it

is 15.5 ± 0.4 Å along the direction perpendicular to the arrows. This wider dimension

suggests that another molecule must be connected to the dimer, A5A5, by a double

hydrogen bond; this leads to the formation of adenine trimers. According to the

appearance of these triangular trimer features and their orientations with respect to the

substrate, the two trimers in T1 and T3, respectively, are considered mirror related;

while the two trimers in T1 are related to those in T2 by the C2 rotational operation.

Therefore, the observation of the four different adenine trimers seems to disagree with

the previously suggested formation mechanism of ordered adenine chains at the

Cu(110) surfaces. Rather than connections of adenine stable dimers to form the longer

chains, driven by annealing, individual adenine is more likely to connect with its

neighbouring counterpart forming the stable dimer first at low coverage upon

annealing to 440 K. When one stable dimer is formed, its motion on the surface is

restricted due to the relatively strong interactions between adenine and copper atoms;

as a result, another molecule of the same chirality can approach this dimer in two

directions, giving rise to the variety of trimers we observed at this stage. Therefore, at

low coverage, the substrate-adsorbate interaction plays an important role in the

molecular assemblies.



Fig. 3.25: a) STM image of ordered adenine arrays obtained
V, 39 × 39 nm2); Indicated D1, D2, and T1, T2 are the elliptical and triangular features. b) Size of the

optimized dimer A5A5 using DFT method with B3LYP function
STM images of the D1, D2, and T1, T2 features
features in D1; the orientations of the long axis these features are indicated with arrows.

3.2.5.2 Discussions

In reference to the structural models suggested for

[1], here, we suggest the most p

adenine dimers and trimers observed at low coverage

Figure 3.26, upon annealing

molecule of the same chirality by H

stable centro-symmetric homochiral

adsorbed dimer species is formed, it
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ordered adenine arrays obtained upon annealing to 440 K
; Indicated D1, D2, and T1, T2 are the elliptical and triangular features. b) Size of the

using DFT method with B3LYP functional and 6-31G basis set; c) Close
STM images of the D1, D2, and T1, T2 features; d) The line profiles of the long axis of the elliptical

; the orientations of the long axis these features are indicated with arrows.

structural models suggested for the ordered adenine dimer chain

suggest the most probable formation mechanism for the formation of

adenine dimers and trimers observed at low coverage. As schematically illustrated

pon annealing, one adenine interacts with another

irality by H-bonds, which leads to the formation of

homochiral dimers, A5A5 and Ā5Ā5. When an individual

adsorbed dimer species is formed, its diffusion across the large free surface existing at
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40 K (1.17 nA, -0.64
; Indicated D1, D2, and T1, T2 are the elliptical and triangular features. b) Size of the

31G basis set; c) Close-up
the long axis of the elliptical

; the orientations of the long axis these features are indicated with arrows.

the ordered adenine dimer chains

formation mechanism for the formation of the

. As schematically illustrated in

with another neighbouring

the formation of the most

. When an individual

diffusion across the large free surface existing at



low coverage is restricted as a result of the stronger interaction between adenine and

copper atoms and the increasing in size of

adsorbate of the same chirali

approach the homochiral dimer

connect with them via the

trimers, denoted as A5A5

yields an equal amount of enantiomers,

dimer, Ā5Ā5, with another adsorbate of

another pair of trimers,

reflectional images of each

molecular arrays at low coverage upon annealing to 440 K.

Fig. 3.26: Schematic illustration of the

Ā5Ā5, and trimers formed by connecting

bond 6; A represents an individual adenine molecule.

Ā5Ā5, are formed at first, then each dimer is connected to another molecule of
and Ā, in two directions, giving rise to two C
trimers are constructed including their mirror refl
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low coverage is restricted as a result of the stronger interaction between adenine and

and the increasing in size of the diffusing species [45]. Thus, the single

of the same chirality which can diffuse more easily at this stage is likely to

dimers in either of two possible directions, in

the H-bond site 6. This gives rise to the C2

and A6A6. Since adsorption of prochiral molecules always

yields an equal amount of enantiomers, the connection of the opposite homochiral

with another adsorbate of the same chirality leads to the formation of

i.e. Ā5Ā5 and Ā6Ā6. Each pair of C2 related trimers are

each other. Thus, we are able to observe the various small

molecular arrays at low coverage upon annealing to 440 K.

Schematic illustration of the proposed formation mechanism for adenine dimers

and trimers formed by connecting the dimer with another pair of the same chirality by

represents an individual adenine molecule. On the left, two homochiral dimers,

, are formed at first, then each dimer is connected to another molecule of the
, in two directions, giving rise to two C2 rotational related trimers on the right; thus totally, four

trimers are constructed including their mirror reflectional enantiomers.
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low coverage is restricted as a result of the stronger interaction between adenine and

Thus, the single

at this stage is likely to

in the attempt to

2 rotation related

prochiral molecules always

opposite homochiral

leads to the formation of

related trimers are

observe the various small

adenine dimers, A5A5 and

same chirality by the H-

On the left, two homochiral dimers, A5A5 and

the same chirality, A
rotational related trimers on the right; thus totally, four
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In this experiment, the observation of dimers and trimers at low coverage is more

likely to suggest a different formation mechanism for the ordered adenine chains from

that proposed by the theoretical calculations. The calculated results for the adenine

adsorbed on the Cu(110) substrate suggest a three-step formation mechanism that

involves the formation of dimers, A5A5 and Ā5Ā5, then the registry of the dimer on

the substrate, and the connection of these dimers to yield the ordered chains [22]. This

mechanism is in agreement with that suggested for the various superstructures of

adenine adsorbed on other low corrugation surfaces, e.g. Cu(111) [10-15], Au(111)

[16, 17]. However, our finding indicates the formation of short adenine chains at low

coverage upon annealing to 490 K results from the diffusion and connection of these

dimer and trimer units, driven by the high temperature annealing.

The mechanism at low coverage is described in this way. Firstly, upon annealing,

adenine molecules were able to overcome the diffusion barrier and formed dimers

having high stabilization energy. Secondly, rather than connecting the adenine pairs

of the same chirality via the second type of hydrogen bond, A6A6, all the surrounding

single adsorbates of the same chirality have equal possibility to interact with the

dimer, thus, different trimers were formed. Lastly, after further annealing, these small

molecular clusters diffused again, which led to the formation of short ordered chains

stabilized via both the intermolecular H-bonds and the substrate-adsorbate

interactions. This phenomenon suggests not only the formation of adenine chains is

mainly a thermally driven process, but also the important role that the substrate-

adsorbate interaction plays in the adenine self-assembly on the Cu(110) substrate.

However, the suggested formation mechanism might be only true for low coverage

because it is still unclear why we did not observe other trimers since the third

molecule might also approach the dimer, A5A5, in other different directions, which

might lead to the formation of various trimers oriented differently.

3.2.6 Contrast variations of adenine overlayer structures

The intramolecular contrast of adsorbates in topographic STM images reflects the

density of states near the Fermi energy [46]; it can be influenced by several other

factors: the tip-surface separation, the tip apex structure and the applied bias voltage.
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For example, changes of the distance between the tip and the surface can generally

alter the force between them; a strong force can even result in deformations and

displacement of the adsorbate, as a result, it strongly affects the STM contrast [47-49].

The influence of the tip apex structure on the internal contrast of adsorbates is more

likely unintentional and less controllable. Random modification of tip apex structures,

due to atomic diffusion at the tip apex or atomic or adsorbates transfer to the tip, can

result in sudden changes in the appearance and amplitude of the corrugation images of

the adsorbates [50].

In most experiments, since STM measurements are carried out at low bias range

and the tip apex structure is well characterized, experimental observations of

variations in the contrast of adsorbates are mostly presented by changing the applied

bias voltage. Bias-dependent images have been reported for many studies of

molecular adsorbates on highly oriented pyrolytic graphite (HOPG) [51-55] and other

surfaces [56-60]. The contrast changes of the imaged patterns reflect the variations of

electronic structures of the MOs of the adsorbate, the tunnelling process could involve

a resonance of several MOs of the adsorbates with the Fermi level of the tip and

surface. It is suggested that the molecular orbitals of the adsorbates at energy levels

away from the Fermi level can even participate in the electron tunnelling via tails of

resonance or orbital mixing [51, 52, 59, 60].

In this section, we present the experimental observations of contrast variations in

the STM images of adenine dimer chains at room temperature and 70 K. The

dependence of the image contrast of the adlayer structures and isolated adsorbates on

the tip-sample bias voltage has also been studied; several tunnelling mechanisms,

which might account for the observed contrast variations of adenine molecules

adsorbed on Cu (110) surfaces are suggested.

3.2.6.1 Contrast changes at room temperature

Shown in Figure 3.27 are the STM images of ordered adenine chiral chains along

the (1, 2) and (-1, 2) directions obtained after annealing the sample at 490 K. These

chains are in good agreement with the previous experimental findings revealed by

Chen et al. [1] except that they show better intramolecular contrast of the individual



features. As seen from the

row along the (-1, 2) direction seem to be more clearly resolved than th

(1, 2) direction. Since

maintained constant during scanning, we attribute the internal contrast difference in

both chains to the effect of different scanning direction with respect to the molecular

orientations rather than to the

molecular resolution of both chains, the tip has to be rotated at an angle with respect

to the scanning direction.

In Figure 3.27b, a sudden change in

corresponds to the variations in the electronic conductivity of the tunnelling junction.

We suggest that this phenomenon is due to the variation of the tip condition during

scanning; for example, an adenine molecule

can modify the contrast of the same features within the same image. With an adenine

adsorbed on the W tip, the tunnelling junction will become Cu

rather than Cu-adenine-W. In this new junction, a higher resistance could be

responsible for the depressed molecular features in the image [1]. Hence, we should

emphasize that this depression is due to an electronic effect rather than a height effect.

Fig. 3.27: STM images of adenine dimer chains with different contrast at medium coverage (0.20 n
0.96 V, 33 × 33 nm2, 0.20 nA,
direction is different from that along (
molecular rows with respect to the substrate indicate
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seen from the image, Figure 3.27a, individual elongated

1, 2) direction seem to be more clearly resolved than th

Since the tip apex structure and tip-sample bias voltage are

maintained constant during scanning, we attribute the internal contrast difference in

both chains to the effect of different scanning direction with respect to the molecular

to the asymmetry of tip structures. In order to achieve

both chains, the tip has to be rotated at an angle with respect

sudden change in the contrast of the adsorbates

onds to the variations in the electronic conductivity of the tunnelling junction.

phenomenon is due to the variation of the tip condition during

an adenine molecule can be adsorbed on the STM tip,

y the contrast of the same features within the same image. With an adenine

adsorbed on the W tip, the tunnelling junction will become Cu-adenine

W. In this new junction, a higher resistance could be

essed molecular features in the image [1]. Hence, we should

emphasize that this depression is due to an electronic effect rather than a height effect.

images of adenine dimer chains with different contrast at medium coverage (0.20 n
, 0.20 nA, -0.86 V, 33 × 33 nm2). a) The contrast of the chains along the (1, 2)

direction is different from that along (-1, 2) direction. b) The sudden change in the contrast of
rows with respect to the substrate indicates a variation in the tunnelling junction.
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elongated features of the

1, 2) direction seem to be more clearly resolved than those along the

sample bias voltage are

maintained constant during scanning, we attribute the internal contrast difference in

both chains to the effect of different scanning direction with respect to the molecular

In order to achieve

both chains, the tip has to be rotated at an angle with respect

of the adsorbates is observed, it

onds to the variations in the electronic conductivity of the tunnelling junction.

phenomenon is due to the variation of the tip condition during

can be adsorbed on the STM tip, which

y the contrast of the same features within the same image. With an adenine

adenine-adenine-W

W. In this new junction, a higher resistance could be

essed molecular features in the image [1]. Hence, we should

emphasize that this depression is due to an electronic effect rather than a height effect.

images of adenine dimer chains with different contrast at medium coverage (0.20 nA, -
a) The contrast of the chains along the (1, 2)

in the contrast of the
unnelling junction.
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A molecular resolution STM image of the dimer chains aligning along (1, 2) and (-

1, 2) directions is shown in Figure 3.28; the slight contrast difference of the imaged

molecular features between the two chains is identified. The chains along the (1, 2)

direction formed by two parallel rows of circular shape spots arranged side by side,

while the molecular features appear of elongated shape in the chains along the (-1, 2)

direction. Even though the observation of contrast difference between the adsorbate

features, the periodicities of the unit cell in both chains are very close. The unit cell is

about 7.5 Å in length and has C2 symmetry. Since the coexisting molecular chains are

mirror related and each is homochiral, the observation of slight contrast discrepancy

of the adsorbate features could result from a scanning drift or the effect of the fast

scanning direction with respect to the specific molecular orientation in both domains.

Note that the contrast difference of the individual molecular features forming the

mirror related chains is not distinguished in STM when scanning across surface areas

of over 400 Å; only arrays of bright and elongated features are observed in both

chains.

Corresponding structural models, denoted A5A5, A6A6 and Ā5Ā5, Ā6Ā6, are

presented in Figure 3.28, following the structural model suggested by Chen et al. [1].

In the superimposed model, the dimer, A5A5 or Ā5Ā5, is connected with dimers of the

same chirality by the second type H-bond site 6 along the chain growth direction.

Along each chain, only molecules of the same chirality are included and the chain

growth direction is strictly related to the specific molecular chirality. The molecular

planes are oriented nearly parallel to the surface and all the amino nitrogen atoms are

allocated at preferential on-top sites.



Fig. 3.28: Molecular resolution
proposed structural models and
14 nm2). Each adenine row is composed of adenine dimers of
along the chain growth direction
substrate at on-top sites.

3.2.6.2 Intermolecular contrast variations at 70 K

Shown in Figure 3.29

(1, 2) direction obtained

superimposed with the suggested structural model

direction. Clearly observed

identified upon changing the magnitude and polarity of the bias voltage. Worth

notice, in this LT-STM, the tip is grounded, hence, changes in the electron density of

the unfilled state of the adsorbates are mapped upon scanni

contrast variations of the observed features might reflect the corresponding electronic

structure of the adsorbates. At positive bias voltage

the chain is characterised by arrays of small bumps surrounded by depressed

elongated features and stripes, Figure

tip-sample bias is reduced

Some rhombic shaped features, interspaced

four distinct sub-molecular features are resolved in

images obtained at -1.416 V and
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Molecular resolution STM image of ordered adenine chains at medium coverage and the
proposed structural models and registry of adsorbates on the Cu(110) mesh [1] (0.65 nA,

Each adenine row is composed of adenine dimers of same chirality, A5A5 or
along the chain growth direction by the H-bond site 6; all the amino N atoms bind

Intermolecular contrast variations at 70 K

are the STM images of an adenine chain aligning along the

obtained at 70 K; the magnified STM image at the bottom is

the suggested structural model for the chain along the (1, 2)

observed from the images, two types of image contrast are

upon changing the magnitude and polarity of the bias voltage. Worth

STM, the tip is grounded, hence, changes in the electron density of

adsorbates are mapped upon scanning at positive bias, and

contrast variations of the observed features might reflect the corresponding electronic

adsorbates. At positive bias voltages between 1.416 V and 0.492 V,

the chain is characterised by arrays of small bumps surrounded by depressed

elongated features and stripes, Figure 3.29a and b. A contrast change occurs when the

to 0.19 V, seen from the STM image shown in Figure

ome rhombic shaped features, interspaced between the adjacent bumps, are found

molecular features are resolved in the chain now. At negative bias,

1.416 V and -0.19 V show great similarity with these obtained at
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(0.65 nA, -1.12 V, 14 ×

or Ā5Ā5, connecting
bind with the copper

adenine chain aligning along the

at the bottom is

for the chain along the (1, 2)

ypes of image contrast are

upon changing the magnitude and polarity of the bias voltage. Worthy of

STM, the tip is grounded, hence, changes in the electron density of

ng at positive bias, and

contrast variations of the observed features might reflect the corresponding electronic

between 1.416 V and 0.492 V,

the chain is characterised by arrays of small bumps surrounded by depressed

contrast change occurs when the

own in Figure 3.29c.

the adjacent bumps, are found;

chain now. At negative bias,

hese obtained at



equivalent positive bias. T

changing the magnitude of

However, changing the polarity of

contrast, as shown in Figure

structural model for the adenine dimer chains along the (1, 2) direction

the two molecules in the dimer

in parallel. At room temperature

adsorbates at positive tip bias

orbitals of the adsorbates to the tip,

70 K, high resolution images are obtained at

Fig. 3.29: STM images of adenine
different bias voltages. In the circles, isolated adsorbate
(e) are indicated. At bottom, g) is
model and the isolated feature with a single adenine molecule.
is different with those composing
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equivalent positive bias. The changes of feature contrast are induced

changing the magnitude of the applied tip-sample bias rather than the polarity

changing the polarity of the bias voltage at 0.49 V can also a

contrast, as shown in Figure 3.29b and e. In the image at the bottom,

structural model for the adenine dimer chains along the (1, 2) direction

the two molecules in the dimer A5A5 fit well with the two elongated fe

At room temperature STM experiment, the sample is grounded

adsorbates at positive tip bias, which corresponds to the tunnelling from

orbitals of the adsorbates to the tip, are generally unstable and short liv

images are obtained at negative polarity.

: STM images of adenine chain aligning along the (1, 2) direction obtaine
. In the circles, isolated adsorbate species in lamella shape (b) and

, g) is the magnified adenine chain superimposed with the
the isolated feature with a single adenine molecule. The orientation of the isolated mole

composing of the chain. Images are processed using SPIP 5.08.

Chapter III Adenine/Cu(110) Surfaces

he changes of feature contrast are induced, therefore, by

rather than the polarity.

affect the image

. In the image at the bottom, the proposed

structural model for the adenine dimer chains along the (1, 2) direction is presented,

two elongated feature arranged

STM experiment, the sample is grounded, images of

which corresponds to the tunnelling from the HOMO

are generally unstable and short lived, however, at

obtained at 70 K and
species in lamella shape (b) and peanut shape

superimposed with the chiral structural
The orientation of the isolated molecule

Images are processed using SPIP 5.08.
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Similar contrast changes are also observed for the isolated adsorbates, as indicated

by the circles in Figure 3.29. Features observed in the neighbouring areas of the

ordered chain also exhibit two types of contrast. One looks like a lamella and is

imaged at 0.492 V; the other is characterized by two lobes in a peanut shape; it is

clearly resolved at a voltage range from -0.190 V to -1.416 V. The isolated species

show similar bias-dependent behaviour with the contrast of adsorbates in the chains.

In comparison with the features resolved in the ordered chains, the isolated adsorbate

pattern resembles none of the sub-molecular features that presented in the chains in

terms of the internal appearance and the orientation of its long dimension with respect

to the substrate. The difference in the internal contrast of an adsorbate molecule might

arise from the fact that the interference effect between adsorbates is enhanced in the

chains; the final image contrast more likely results from the interference of several

electron tunnel paths [56].

The short cross-section of the isolated species is 3.0 ± 0.3 Å, the long axis aligned

nearly along the <100> direction is 6.6 ± 0.3 Å; thus, it is assigned to a single

adsorbed adenine molecule. The orientation of its long dimension with respect to the

substrate lattice can be estimated by analyzing the STM image at -0.492 V, where the

substrate lattice is weakly observed. The elongated feature only occupies two unit

cells of the lattice, identified clearly from the magnified STM image shown at the

bottom of Figure 3.29. At 70 K, the molecular mobility is limited, which enables the

single diffusing molecules to be imaged. The observation of the individually adsorbed

species and the accumulated molecular clusters coexisting with the ordered adenine

rows, upon annealing to 470 K, also indicates a high diffusion barrier for a single

adenine molecule adsorbed on the Cu(110) surface.

As far as the adenine rows growing along the (-1, 2) direction is concerned, Figure

3.30, similar contrast variations are observed when the bias voltage is changed at

0.492 V from positive to negative. However, the internal contrast of the adsorbates is

different from the molecular structure along the (1, 2) direction; this chain is

characterized by two bright spots aligning in parallel. The inter-spots distance along

the chains growth direction is 7.5 ± 0.2Å and the chain width is about 9.5 ± 0.2 Å;

both are consistent with the corresponding values of its mirror chains in Figure 3.29.

Furthermore, these clearly distinguishable spots aligned in parallel imaged at 70 K

resemble closely the individual features composed of the chains resolved at room
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temperature, Figure 3.28, however, these chains are aligned along the (1, 2) direction.

The merely common aspect of these chains in the two images at different temperature

is that both of them, regardless of the chirality, are oriented almost in parallel with the

scanning direction. This is also true for the chains along the (1, 2) direction scanned at

70 K and the opposite chiral chain along the (-1, 2) direction resolved at room

temperature; where both of them are composed of elongated features arranged side by

side and are imaged at a certain angle with respect to the fast scanning direction.

Hence, we tend to attribute the contrast difference of the imaged patterns in the mirror

related chains to the effect of the molecular orientation with respect to the fast

scanning direction. It has been suggested that the electric field, generated by the

potential difference between the tip and sample, can interact with the cyclic hydrogen

bond between adjacent adenine molecules in an angle dependent fashion. Zundel et al.

[60, 61] have suggested that the proton polarization within the π-electron stabilized 

cyclic hydrogen bonds is highly anisotropic, and the induced in-plane dipole moment

scanned across the hydrogen bond in both chains is different with respect to the

scanning direction; this might account for the contrast difference observed in this

experiment.

In the magnified image shown at the bottom of Figure 3.30, the structural model

composed of adenine dimers of opposite chirality, Ā5Ā5 and Ā6Ā6, and a single

adenine molecule, Ā, are superimposed onto the observed circular features. In the

chain, only one molecule of each dimer, Ā5Ā5, can fit with the protrusion, while the

other accounts for the depression between the less bright circular protrusions along

the chain. A single adenine molecule of the same chirality fits well with the observed

isolated feature; however, it shows a different orientation from those molecules

forming the chains. The discrepancy between the isolated adsorbate and the

adsorbates in the chains implies molecular re-orientation is required upon forming the

chains in order to facilitate the formation of H-bonds and favour the substrate-

adsorbate interaction. It is believed that both the interactions work in combination to

yield chains growing along a specific direction.



Fig. 3.30: High resolution STM images of adenine rows
70 K. In the magnified image e)
of the same chirality are superimposed, demonstrating the different orientations between the adenine
molecules composed of the chains and the isolate

3.2.6.3 Contrast variations of single adsorbed species

In order to understand further the contrast changes of the observed patterns in the

ordered chains, a series of

function of the applied bias voltage at 70 K. In Figure

types of contrast are presented at positive bias,

states of the LUMOs of the

may reflect the electronic structures of HOMOs, Figure 3.

shown in Figure 3.31a can be

resembles the bright spot features
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High resolution STM images of adenine rows aligning along the (-1, 2) direction
e) at the bottom, the proposed structural model [1] and isolated adsorbate

same chirality are superimposed, demonstrating the different orientations between the adenine
molecules composed of the chains and the isolated adsorbate. Images are processed using SPIP 5.08.

Contrast variations of single adsorbed species

In order to understand further the contrast changes of the observed patterns in the

of STM images of adenine monomers were

bias voltage at 70 K. In Figure 3.31a and b, two characteristic

types of contrast are presented at positive bias, corresponding to the electron

the adsorbate. A third type is observed at negative bias, which

electronic structures of HOMOs, Figure 3.31c and d

can be imaged at a bias range from 2.276 V to 0.978 V

the bright spot features forming the chains obtained at room temperature
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. Images are processed using SPIP 5.08.

In order to understand further the contrast changes of the observed patterns in the

ere acquired as a

two characteristic

to the electron density

third type is observed at negative bias, which

and d. The contrast

bias range from 2.276 V to 0.978 V; it

chains obtained at room temperature.



On reducing the bias further, only the second type

this suggests that changes in electron channels might occur due to the bias variation.

The molecular contrast obtained at negative

consists of two elongated protrusions arranged with their long dimensions in parallel

it seems not to be bias-dependent since its appearance does not change upon changing

the tip-sample bias from

observed for the first time for adenine adsorbed on the Cu(110) surfaces

Fig. 3.31: Three types of contrast features
magnitude and polarity of the tip
adenine and the Fermi level of
configuration of adenine, four frontier orbitals, HOMO,

Shown on the right side

and LUMOs of the adenine molecule

substrate. The selected contras

different tip-sample bias

frontier orbitals of the free

the listed contours seems

indicates that the HOMO (

substrate (-4.48 eV) by 1.57

vacuum level, it is about 3.86

Chapter III Adenine/Cu(110) Surfaces

128

reducing the bias further, only the second type of contrast, in S-shape, is obtained

this suggests that changes in electron channels might occur due to the bias variation.

The molecular contrast obtained at negative bias, shown in Figure 3.

consists of two elongated protrusions arranged with their long dimensions in parallel

dependent since its appearance does not change upon changing

sample bias from -2.267 V to -0.275 V. Both the latter two contrast

observed for the first time for adenine adsorbed on the Cu(110) surfaces

Three types of contrast features of the single adsorbed species, obtained by changing the
magnitude and polarity of the tip-sample bias, are presented. On the right are the energy diagram of

the Fermi level of the Cu(110) substrate, and selected molecular orbitals of optimized
frontier orbitals, HOMO, HOMO-1, LUMO and LUMO

on the right side in Figure 3.31 is the energy level diagram of the HOMO

adenine molecule relative to the Fermi level of

he selected contrast patterns of the single adsorbed species

sample bias voltages are compared to the electronic contour

free adenine molecule optimized using DFT. However,

to resemble the observed adsorbate contrast.

indicates that the HOMO (-6.05 eV) is lower than the Fermi level of Cu(110)

1.57 eV; while the LUMO is situated at -0.62

is about 3.86 eV above than the Fermi level of the substrate.
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shape, is obtained;

this suggests that changes in electron channels might occur due to the bias variation.

bias, shown in Figure 3.31c and d,

consists of two elongated protrusions arranged with their long dimensions in parallel;

dependent since its appearance does not change upon changing

0.275 V. Both the latter two contrasts are

observed for the first time for adenine adsorbed on the Cu(110) surfaces.

obtained by changing the
the energy diagram of

molecular orbitals of optimized
MO and LUMO+1 are shown.

the energy level diagram of the HOMOs

the Fermi level of the Cu(110)

t patterns of the single adsorbed species acquired at

ared to the electronic contour of the

. However, none of

adsorbate contrast. The diagram

V) is lower than the Fermi level of Cu(110)

0.62 eV below the

than the Fermi level of the substrate. Hence,
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the HOMO is closer to the Fermi level and the energy gap between them might be

overcome by changing the bias-voltage. The energy difference between the adjacent

HOMO and HOMO-1 is less than 0.8 eV and that for the first two unoccupied MOs is

0.54 eV, so the energy gap between the two immediate orbitals seems to be big

enough for the STM to probe them individually. This might account for the

observations of several contrast features of the adsorbate as the bias voltage is

changed.

The observation shows more than one contrast for adenine monomers as a function

of the tip-sample bias voltage, yet the poor correlation of the image with the shape of

the molecular orbitals suggests that electron tunnelling might occur through a

resonance tunnelling mechanism. In this process, orbitals lying in far energy away

from the Fermi level might make a significant contribution to the electron tunnelling

via resonance, thus, a number of orbitals rather than only the HOMO or LUMO of the

adsorbate needs to be considered in order to describe the contrast variation accurately.

The strength of the contribution of orbitals to the tunnel current is affected not only by

the energy separation from the Fermi level, but also by the strength of the electron

coupling of the molecular orbital with the surface and with the tip; both factors can

influence the image contrast [59, 60, 62]. The interaction of the tip with orbitals

having fewer nodal planes perpendicular to the surface is favourable, therefore, the

contributions of the orbital to the tunnelling is stronger even though they may be

located away from the Fermi level.

In the case of adenine adsorption on the Cu(110) surface, the mutual polarization

results in charge redistribution in the molecular plane, this might modify the

alignment of frontier orbital energies and broaden the discrete molecule levels into

resonances [56]. Previous studies have proposed the resonant tunnelling as the

dominant tunnelling mechanism for a number of systems [63, 64]. One example is the

adsorption of DNA on gold surfaces [65] where the strong interaction between the

electronic energy levels of the adsorbate and those of the substrate may mediate the

electron tunnelling between tip and surface.
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3.3 Conclusions

In this chapter, the effect of experimental parameters, e.g. surface coverage,

annealing temperature, and substrate temperature, on the adenine self-assembled

structures on Cu(110) surfaces has been studied in details using STM and RAIRS. At

high dense monolayer coverage, adenine tends to form ordered 2D chains aligning

along the <110> direction. Within the adlayer structures, the adenine molecule is

suggested to have its molecular plane tilted towards the surface normal. This

molecular orientation also accounts for the observation of the -NH2 scissoring

vibration in the RAIR spectra.

At high coverage, the ordering of adenine adlayer structures is strongly influenced

by the annealing temperature; this is considered as the main driving force responsible

for the significant molecular diffusion occuring on the surface. At room temperature,

adenine molecules aggregate to form disordered islands on the terraces. Upon

annealing to 440 K, relatively ordered chains grow along the <110> direction are

formed; this phase is only kinetically stable and was replaced by well ordered dimer

chains after the sample was annealed to 490 K. The evolution of several adlayer

structures, increasing in order as a function of the annealing temperature suggests that

the diffusion barrier of adenine on the Cu(110) surface is relatively high.

New phase of chiral related domains were observed after depositing adenine onto

the substrate maintained at 490 K. Within the domains, adenine molecules are

believed to be chemisorbed on the surfaces and bind with the copper atoms via the

ring imino N(7) atoms, along with partial contribution from the interactions between

the amino N atoms and copper atoms. Hence, it is suggested that the strong adsorbate-

substrate interaction and the directional intermolecular double hydrogen bond are

responsible for the formation of 2D chirally related molecular arrays. In the proposed

structural models, two types of hydrogen bonded pairs, referred as A5A5 and A2A2,

are involved; the corresponding molecular orientations in the models are not only in

favour of the formation of the most stable adenine pair, A5A5, but also facilitate the

interaction of amino N7 atoms with the underlying substrate atoms.

At a low deposition rate, new adlayer structures were formed when the adenine

molecules were deposited on Cu(110) surfaces upon annealing to 490 K. Alongside

the chirally related dimer chains reported previously [1], ladder chains and one-
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dimensional linear chains growing along the <110> high symmetry direction of the

substrate were revealed in the experiment. After detailed analysis of the STM images

of these new structures, we presented the gas-phase homo-chiral structure models

composed of three types of H-bonded dimers for the ladder chains; the corresponding

pairs are denoted as A5A5 and A3A3, and A1A5 or A1A1. The one-dimensional chain is

suggested to consist of the dimers A5A5 that are connected by the H-bond site 1 along

the chain growth direction. For all the structural models, the amino N atom is

allocated to either the on-top site or close to the on-top site in order to facilitate the N-

Cu interaction. The inter-molecular H-bonds and strong-substrate interactions are the

driving forces for the formation of various structures.

At very low coverage, chirally related adenine dimers and trimers were observed on

the Cu(110) surface upon annealing to 440 K. The coexistence of both dimers and

trimer species suggests a new formation mechanism for the adenine chains. At low

coverage, adenine molecules prefer to form the stable dimer, A5A5, upon low

temperature annealing. When the dimer is formed, its diffusion across the free surface

is restricted due to the increase in the diffusion barrier. Hence, rather than the

connection of the dimers, other single molecules of the same chirality can diffuse to

interact with each dimer in two directions via the third type of H-bond, site 6; this

leads to the formation of the different trimers observed on the surface. After further

annealing to higher temperature, these small molecular clusters diffuse again to form

the ordered chain structures.

STM investigations of the intramolecular contrast of the adenine adsorbate in the

ordered chains and monomers at room temperature and 70 K have been conducted. It

revealed that both the relative orientation of each chiral chain with respect to the fast

scanning direction and the magnitude and polarity of the tip-sample bias voltage could

influence the contrast appearance of the adsorbates. At both room temperature and 70

K, adenine chiral chains oriented almost along the fast scanning direction, regardless

of the respective chirality, are characterized by two bright circular spots arranged side

by side, while the chiral chains aligned at a certain angle with respect to the fast

scanning direction are composed of two elongated features oriented in parallel.

Different submolecular contrasts of the adsorbates in the chains were also observed

upon changing the magnitude and polarity of the applied bias. Comparison of the

contrast of the single adsorbate with the shape of molecular HOMOs and LUMOs
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implies that the tunnelling of adenine on Cu(110) surfaces occurs via a resonance

mechanism, arising from the coupling of the molecular orbitals with the tip and

sample Fermi levels.
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CHAPTER IV

(R, S)-phenylglycine on Cu(110) Surfaces

4.1 (R, S)-phenylglycine

   Phenylglycine is an aromatic amino acid in which one of the α-carbon hydrogen 

atoms of glycine, NH2CH2COOH, is replaced with a phenyl ring, making it an

inherently chiral molecule. Like all the other amino acids, phenylglycine can take on

various chemical structures. In the solid state, it is a white polycrystalline solid and

exists in zwitterionic form, NH3
+CHPhCOO-. In solution, it has forms ranging from

cationic through zwitterionic to anionic as the acidity of the solution decreases [1].

Different forms of phenylglycine salts, e.g. NH2CHPhCOOK [2], are expected in

solution containing metal ions. Non-ionic forms can only be obtained in gas phase or

matrix conditions [3].

In Figure 4.1, the structural configurations of the (S)- and (R)-phenylglycine in the

gas phase and the conversions of phenylglycine species in different forms are shown.

The inter-conversion between different phenylglycine species can be achieved via

changing the pH value of the solution. Non-ionic phenylglycine consists of three

functional groups, the phenyl ring, amino group and carboxylic group; each of them is

capable of giving rise to a series of characteristic peaks in the infrared spectra, which is

of great help in the determination of its bonding geometry and molecular orientation at

metal surfaces.
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Fig. 4.1: The structure of (R)- and (S)-enantiomers of phenylglycine molecule, and the conversions of
phenylglycine species between different forms.

Interactions of amino acids, especially glycine [4-6], alanine [7-10], the simple

amino acids, on metal surfaces have been studied extensively using scanning tunnelling

microscopy (STM), infrared spectroscopic methods and other surface sensitive

techniques [4-10]. So far, a large number of different ordered enantiomeric overlayer

structures have been reported upon adsorption of amino acids on copper substrates.

These structures are the result of relatively strong adsorbate-substrate interactions and

extensive intermolecular hydrogen bonding, originating from the hydrogen atoms of

the amino group and the oxygen atoms of the carboxylate group. The chiral nature of

amino acids and the existence of multi-functional groups, with each being capable of

coordinating with the copper atoms in a strong manner, upon adsorption can not only

bestow unique chirality to a surface, but also provide the possibility to tailor the surface
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properties. Therefore, a good knowledge of the behaviour of amino acids at metal

surfaces is of great significance in the preparation of biosensor and biocompatible

materials [11] and heterogeneous catalysis for enantioselective reactions [12].

Phenylglycine is an appropriate model for studying the aromatic ring-interaction and

cation-π (aromatic) interactions widely present in biological systems [2]. Additionally, 

the intrinsic chiral nature of phenylglycine makes it capable of forming chirally

separated domains, when a racemic mixture of (R)- and (S)-phenylglycine is deposited

onto the Cu(110) surface. LEED analysis suggests phase separation of the two

enantiomers on the Cu(110) surface is mediated by the strong substrate-adsorbate

interactions, the steric limitations arising from the aromatic rings and the requirements

of the unique configurations possessed by the (S)- and (R)-enantiomers of

phenylglycine [13]. Spectroscopic studies of the bonding of (R)-phenylglycine on

Cu(110), using impact scattering EELS [14], indicate an almost on-top adsorption for

both the oxygen and nitrogen atoms with the phenyl ring plane tilted close to the

surface normal, Figure 4.2 a. This geometry was derived from a saturation coverage

followed by annealing to 450 K. Additionally, investigation of the interaction of

phenylglycine with colloidal silver in solution, using Raman Spectroscopy and Surface

Enhanced Raman Spectroscopy (SERS), has revealed a slightly different adsorption

geometry. In this case, the anionic phenylglycine coordinates with the metal atoms via

both its amino and carboxylic functional groups, but with the carboxylate binding

through a single oxygen atom in a unidentate manner, and with its phenyl ring being

oriented nearly perpendicular to the surface [1], Figure 4.2 b.
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Fig. 4.2: a) Proposed structural model of (R)-phenylglycine anion adsorbed on the Cu(110) surface [14],
b) Proposed adsorption geometry of α-phenylglycine anion adsorbed on colloidal silver [1].  

Here we present RAIR spectra of (R, S)-phenylglycine vacuum deposited on

Cu(110) surfaces as a function of coverage, with the aim of studying the chemical state

and bonding manner which phenylglycine adopts when it bonds to metal surfaces at

room temperature. Vibrational studies of amino acids on metal surfaces are quite

complex, given that the interaction can take place through one or two functional groups

or even through the additional functional group in its α-position, e.g. the aromatic ring

of phenylglycine. RAIRS is particularly suitable for studying this adsorption system

because of its strong ability in distinguishing different functional groups. By applying

the surface selection rule, it can help us to confirm the molecular orientation with

respect to the surface, previously suggested by EELS [14]. According to this rule, only

the vibration having a significant component of its dipole moment perpendicular to the

surface contributes to the observed vibrations.
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4.2 Results and Discussions

In order to interpret the RAIR spectra of phenylglycine adsorbed on the Cu(110)

surface and determine the bonding nature of the adsorbed species to the substrate, it is

helpful to consider the vibrational assignments of the phenylglycine in various

structures. Each form can be distinguished via the examination of the characteristic

bands associated with the main functional groups present in the respective species. The

main difference is expected to correspond to these vibrations arising from the carbonyl

(C=O) and -NH2 group in non-ionic form in comparison with the carboxylate (-COO-)

and -NH3
+ groups in the ionized form.

4.2.1 KBr spectrum and DFT calculations of phenylglycine ionic species

Table 1 lists the proposed assignments of the characteristic vibrational frequencies of

the solid-state phenylglycine spectrum with comparison to the DFT calculations of the

anionic and zwitterionic forms. The vibrational assignments were done based on the

experimental IR spectra of potassium (R, S)-phenylglycinate [2], Table 1. Note that

unambiguous assignments of the vibrational modes to localized functional groups are

very difficult due to the extensive intermixing of the vibrational modes below 1600

cm-1. These modes mainly arise from deformation vibrations of in plane C-H modes

and C-C stretching which arise from the aromatic ring and the chiral C atom,

superimposed with deformation vibrations associated with -NH2 or -NH3
+. However,

the asymmetric (-1600 cm-1) and symmetric (-1400 cm-1) carboxylate stretches of the

carboxylate functionality, -COO-, should be clearly distinguishable from the carbonyl

(C=O) stretch (1720 cm-1) of the acid group, -COOH. Thus, a detailed analysis of the

changes in vibrational modes associated with carboxyl and amino group will enable us

to estimate the bonding nature of phenylglycine with metal atoms, accordingly, its

molecular orientation with respect to the surface plane.
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Table1. Comparison of the experimental frequencies (cm-1) of the characteristic bands of
phenylglycine with those calculated for phenylglycine anion, and sodium phenylglycinate
using GAUSSIAN 03 DFT method and the B3LYP functional with the 6-31G*(d) basis set

Assignment Experimental spectra Calculated spectra
Corrected as n/p = 1.0087-0.0000167*p
[15]

NH3
+CHPhCOO-

(solid KBr)

NH2CHPhCOOK

[2]

NH2CHPhCOO- NH3
+CHPhCOONa

(Calculated) (Intensity)

ω CH(out-if 

ring),

νC*-CO2

737(m), 694(s) 892(w),

838(s)

845(33)

827(176)

756(48),

710(36)

ω NH2, νC*N 917(m),844(w) 911(s) 948(176) 891(42)

ρt CH(out- ring) 984(vw), 930(w) 971(12), 959(7) 944(10),913(28)

ρtNH2, ρrCH,

C*H bending,

1267(w)

1201(m)

1127(w)

1327(m),

1254(w),

1197(w)

1304(60),

1280(60),

1155(55)

1365(29),

1272(20),

1199(20)

νsOCO-, ρtNH2 1350(m) 1355(s) 1321(212) 1375(213)

defsNH3
+ 1400(s) 1439(336)

νringC=C, ρr CH,

C*H bending

1513(vs),

1449(m)

1495(m),1452(m) 1505(12),

1371(11)

1475(10)

νringC=C, δNH2 1553(m) 1540(s) 1613(70) 1620 (1), 1606(1.9)

δNH2 or

defasNH3
+

1579(m) 1621(199), 1662(30),

1625(22)

δNH2, νasym OCO- 1612(s) 1608(vs) 1686(299), 1676(317)

νNH+ 2935(w) 2941(300)

νC*H 2988(w) 2954(vw) 2923(42) 3006(4)

νringCH 3067(w) 3063(w) 3050(36),

3039(68)

3073(8), 3036(5)

νsNH2 3302(vw) 3247(61) 3287(65)

νasNH2 3378(m) 3351(6) 3350(76)

Description of the symbols: ν-stretching, ρr-rocking, ρt-twisting, ω-wagging, δ-scissoring, 
def-deformation. Abbreviations: s-symmetric, as-asymmetric, Very strong-vs, Strong-s, Very
weak-vw, Weak-w, Medium-m.



Chapter IV (R, S)-phenylglycine/Cu(110) Surfaces

142

A comparison between the experimental infrared spectrum of solid-state phenylglycine

and the vibrational frequencies of zwitterionic phenylglycine obtained from theoretical

calculation is given in Figure 4.3a and b. From the spectra we can see a slight

downward shift associated with the carboxylate group vibrations in the Infrared

spectrum of solid phenylglycine in comparison with these obtained from the theoretical

calculation of zwitterionic form. In the high frequencies region, we tend to assign the

broad band found at 2935 cm-1 with medium intensity to the NH stretching vibrations of

the ionized NH3
+ instead of the C*-H stretching mode, even though they tend to appear

in a similar region, around 3000 cm-1. According to the theoretical spectrum, the N-H

stretching appears to be a very strong band in the lower frequency region in comparison

with the weak peak attributed to the ring C-H stretching, which is found at 3067 cm-1 in

the experimental spectrum. Besides, the apparent broadening and downward shift

associated with the N-H stretching also indicates the presence of extensive

intermolecular hydrogen bonding in the phenylglycine crystalline.
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Fig. 4.3: The comparison of the theoretical IR spectrum of sodium phenylglycinate, NH3
+CHPhCOONa,

calculated using DFT method a), and the experimental IR spectrum of crystalline phenylglycine b).
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In the frequency region below 1700 cm-1, several high to medium intensity bands are

observed. The band at 1612 cm-1 with high intensity is assigned to the asymmetric

stretching of the OCO- group, superimposed with the NH2 scissoring mode or more

exactly the NH3
+ asymmetric deformation mode. The neighbouring vibration, found at

1400 cm-1, is accordingly assigned to the symmetric deformation of the NH3
+ group,

based on the assignments of the phenylglycine in zwitterionic form. It is difficult to

assign the vibrations associated with the -NH2 group and ionized NH3
+ due to the

similar region where the vibrations usually appear. The observation of a strong peak at

1350 cm-1, originating mainly from a symmetric OCO- stretch with partial contribution

from a NH2 twisting or a NH3
+ deformation vibrational mode, is considered as strong

evidence of the existence of COO-, carboxylate group, rather than the carboxyl acid

uniquely belonging to the non-ionic amino acids. There is a large amount of

intermixing between the vibrational modes related to the NH2 twisting or the NH3
+

asymmetric deformation, the phenyl ring C-H in-plane and the C*-H bending modes,

including partial contributions from the C*-N stretching mode. These frequencies are

relatively weak and are supposed to be observed between 1400 cm-1 and 1100 cm-1,

according to the calculated IR vibrational frequencies. Here we assign the peak

appearing around 1267 cm-1, 1201 cm-1 and 1127 cm-1 to the in-plane C-H twisting

intermixing with the vibrations related to C*-H bending and C-C*-C stretching modes.

The medium intense vibration at 917 cm-1 is assigned to the NH3
+ wagging mode

including the contribution of the ionized amino group and the C*-N stretching. There is

a band at around 694 cm-1 with high intensity which is mainly associated with the

phenyl ring C-H out-of plane wagging, with a contribution from the C*-CO2 stretching

along with the OCO- wagging modes; the out-of-plane vibrational modes are

accounting for the low intensity bands observed in the neighbouring region. The

observation of vibrations associated with the asymmetric and symmetric stretch of the

carboxylic group provides convincing evidence of the existence of phenylglycine in

ionic form.

Due to the limitation of the infrared detector and beam splitter, vibrations below 600

cm-1 are not detected. The assignments of most of the vibrations are in good agreement

with the results of the experimental infrared spectra corresponding to the ionic

phenylglycine. Distinguishing between the phenylglycine anion and zwitterion merely

from the infrared spectra is not experimentally applicable due to the fact that the -NH2

and NH3
+ vibrations appear in a similar region; in addition, the considerable
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intermixing with the phenyl ring skeletal deformations also complicates the spectrum.

From the corresponding theoretical calculation results, two characteristic vibrations of

high intensity, associated with NH3
+ stretching and deformations, are expected to be

observed at 2941 cm-1 and 1439 cm-1. From the experimental spectra, we can see that

the frequency associated with the carboxylate group tends to shift downward ca. 25-50

cm-1 in comparison to the calculated frequencies for the isolated phenylglycine species,

as result of the massive intermolecular hydrogen bonding involved in the solid phase.

4.2.2 RAIR spectra of (R, S)-phenylglycine/Cu(110)

Infrared spectroscopy is taken as a useful method to determine the way in which the

carboxylate ions bond to a metal atom or atoms by examining the vibrational

frequencies related with the carboxylate group [16, 17]. It is demonstrated that the

oxygen atoms of the carboxylate group can usually coordinate with the metal surface in

one of the following ways, Figure 4.4 [4]:

The unidentate mode I where only one oxygen atom binds to the metal with the other

directing away from surface; the bidentate II where both oxygen atoms bind to a single

metal atom, and the bridging III where two oxygen atoms bind to two neighbouring

metal atoms at equidistance. In the first case, the coordination of the oxygen atom with

the metal in a unidentate manner causes the asymmetric stretching of the carboxylate

group to shift towards higher frequency while the symmetric stretching move to lower

frequency [18, 19], appearing in the range of 1400 - 1620 cm-1. As a result, a large

separation between them, i.e. Δν(OCO) = νas - νs, is anticipated in the spectra. Previous

studies of vibrational spectra of the metal (Cu, Zn) amino acids compounds [19], such

as glycine [20], α-alanine [21], show that this separation is about 220 cm-1 [19]. The

wavenumber difference becomes smaller for the bidentate coordinated carboxylate

complexes; it amounts to about 180 cm-1 in the copper acetate complex [19], and is

about 140 cm-1 in the spectra of alkaline carboxylate salts [1]. The last binding mode is

rarely discussed in the adsorption systems; however, the separation between the

asymmetric and symmetric vibrations of the carboxylate group is found too close to be

that for the free carboxylate ion. Therefore, by comparing the wavenumber difference

of the asymmetric and symmetric stretching vibrations of the carboxylate ion for the
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metal complex with that for the adsorbed anion, we are able to estimate approximately

the binding mode in the adsorption systems.

Fig. 4.4: The three binding modes that the carboxylate group coordinates to the metal atoms: I: the
unidentate, II: the bidendate, III: the bridge sites

The rules mentioned above can only be used as rough guide in determining the

molecular binding geometry of amino acids on the metal surfaces. In the RAIR spectra,

a more general way to determine the molecular orientation and binding nature is by

applying the dipole selection rule. Here, the dipole moments of the most characteristic

vibrations of anionic phenylglycine are schematically illustrated in Figure 4.5. The

dynamic dipole moments of the symmetric (Z) and asymmetric stretches (X) of the

carboxylate group are orthogonal to each other, thus the surface selection rule can be

applied to determine the orientation of the O···O axis of the carboxylate group with 

respect to the surface, through the comparison of the relative intensity of both

vibrational modes. In the bidentate and bridge adsorption geometry where the O···O 

axis of the OCO- plane is oriented parallel to surface, thus, only the symmetric

stretching mode of the carboxylate group is dipole active. The intensity of this

symmetric vibration decreases as the plane of the carboxylate group is tilted away from

the surface normal. Both the symmetric and asymmetric stretching vibrations become

observable as the carboxylate group changes to coordinate with the substrate atoms in

way. In this case, the intensity of the asymmetric frequency increases as the tilt angle of

the O··O axis of the carboxylate group with respect to the surface rises. The transition 
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of these adsorption phases can be easily determined from an apparent increase in

intensity of the OCO- asymmetric stretching vibration, which is commonly observed at

around 1600 cm-1; while only small intensity changes are observed for the symmetric

vibration when the oxygen atoms of the carboxylate group are aligned at an

inequivalent distance from the surface.

Fig. 4.5: Schematic illustration of the principal localized vibrations and the local dipole moments
associated with the -NH2 and -COO- functional group of phenylglycine anion.

A similar method can also be applied to determine the orientation of the amino group

with respect to the surface through the investigation of the intensity associated with the

-NH2 scissoring mode, appearing in the range of 1500 cm-1, and the wagging mode at ca.

1000 cm-1, which have dipole moments (Z, Y) perpendicular to each other. Upon

adsorption onto the surface, the scissoring mode is only observable in the IR spectra if

the plane of the amino group is oriented perpendicular to the surface, which gives rise

to a perpendicular dipole moment while leaves the dipole moment of the wagging mode

aligning parallel to the surface. Otherwise, both vibrational modes might be observed

when the plane of the amino group is aligned at a specific angle with respect to the
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surface; in this case, components of both dipole moments of the scissoring and wagging

modes can contribute to the IR frequencies.

Additionally, the binding nature of the amino group with the substrate can be

predicted by a detailed examination of the phenyl ring in-plane and out-of-plane

vibrational modes, as well as the vibrational frequency shifts related to the amino group.

On the one hand, the nearly standing up orientation of a phenyl ring with respect to the

surface requires the plane of the -NH2 group being aligned perpendicular to the surface

as a result of rigid molecular geometry; this can give rise to an enhancement of the

intensity of the -NH2 scissor vibration. On the other hand, the binding of the nitrogen

atom of the amino group to metal atoms can produce a downward shift in frequency due

to a large charge transfer from the metal to ligand, which can soften the N-H and C*-N

bonds [20].

The series of RAIR spectra shown in Figure 4.6 represent the evolution of the

characteristic vibrational modes of adsorbed phenylglycine with increasing exposure

time at 300 K. With increasing exposure, the saturation coverage was achieved when

the intensities of all these observed frequencies stopped growing. The adsorption

geometry of (R)-phenylglycine on Cu(110) at saturation coverage after annealing at

450 K has been studied in details using low impact scattering of EELS [14]. This

revealed that phenylglycine adopts an on-top adsorption of both oxygen atoms and

nitrogen atom.
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Fig. 4.6: RAIRS spectra of phenylglycine on Cu(110) surface representing evolution of the vibrational
modes with increasing coverage. The overall spectra are divided into two regions: I) the lower
frequencies region, namely finger print region, and II) the C-H region appearing around 3000 cm-1.
Coverage: (a) 0.2 L; (b) 0.4 L; (c) 0.6 L; (d) 0.8 L; (e) 1.0 L.
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The proposed assignments of the infrared frequencies observed at room temperature

for the low coverage, medium and saturation coverage of phenylglycine are listed in

Table 2, with reference to the suggested assignments from the SER spectra of

phenylglycine adsorbed on silver colloid particles at pH7 [1]. The observation of the

vibrations related to the carboxylate stretching rather than carboxylic stretch provides

strong evidence that phenylglycine adsorbs on the Cu(110) surface in an ionic form;

this finding is in good agreement with that revealed for other amino acid molecules,

such as glycine [4-6] and alanine [7-10]; upon adsorption on metal substrates at

sub-monolayer coverage.

Table 2. Proposed assignments of characteristic vibrations of (R, S)-phenylglycine adsorbed on
clean Cu(110) surface at 300K, in comparison with SERS data of phenylglycine adsorbed on
colloid silver surface [1]

Assignment Low

coverage

Medium

coverage

Saturation

coverage

SERS

ν ring CH - 2962 2962 3066

ν C*H 2911 2927 2927 2928 

ν C=O(COOH) - - 1717 - 

νas OCO- - 1653 1652 1640

δNH2, νC=C - 1636 1636 1614

νC=C, νringCH,

C*H in-plane bending

1452 1452,1507,

1541

1452,1507,

1541

1454, 1580

νs OCO-, ρNH2 1416 1418 1418 1408

νring CH, C*H bending - 1271,1315 1315 1253, 1209

ωNH2 1075 1075 1083 -

Description of the symbols: ν-stretching, ω-wagging, δ-scissoring, ρ-twisting, s-symmetric, 
as-asymmetric
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At low coverage, Figure 4.6II a, only one low intensity broad band appeared at

around 2911 cm-1 in the high frequency region, which is mainly assigned to the C*-H

stretching mode. Bands at higher frequency assignable to N-H or O-H stretching are not

observed, indicating the deprotonation of the -COOH group. This frequency is shifted

downward by about 11 cm-1 with reference to the calculated frequency of

phenylglycine in anionic form. This shift can be accounted by charge transfer during

the chemisorption; a similar effect have been observed with the adsorption of glycine

on Cu(110), where the downshift associated with CH2 stretching is ca. 11 cm-1[4]. The

observation of the C*-H stretching mode suggests that this group is directed away from

surface to generate a component of the dipole moment perpendicular to surface. The

broad appearance of this feature may be attributed to the overlapping in-plane C-H and

C*-H stretching modes, in this case, the phenyl ring must be tilted slightly to generate a

weak dipole moment component along the surface normal.

In the low frequency region, Figure 4.6I a, the frequency at 1416 cm-1 is assigned to the

symmetric vibration of a carboxylate functionality; the neighbouring weak band at

1452 cm-1 is interpreted as a contribution from the ring skeletal C=C stretch modes and

C*-H bending. The absence of an intense C=O stretch vibration at 1720 cm-1 and the

bands associated with O-H stretching indicates the adsorbed species exists as -COO-,

carboxylate group, rather than the –COOH, acid group. Furthermore, the absence of the

asymmetric stretching mode of the OCO- group around 1600 cm-1 suggests that the

O∙∙∙O axis of the carboxylic group is parallel to the surface with both the carboxylate 

oxygen atoms placed equidistantly from the metal substrate, seen from the dipole

moments related to the OCO-stretching modes in Figure 4.5. The weak intensity of the

band associated to the symmetric O-C-O- stretching indicates that the plane of the

carboxylate group must be tilted slightly away from the surface normal so that only a

significant component of the dipole moment associated with this vibration is aligned

perpendicular to the surface. This proposed adsorption geometry is consistent with the

observations of the weak frequencies associated with the phenyl ring in-plane

vibrational modes; the tilting of the carboxylate plane with respect to the surface

normal leads to an adsorption configuration in which the plane of the phenyl ring is

aligned tilted slightly away from surface.
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This suggested geometry is very similar to that adopted by carboxylic acid molecules,

such as formate and acetate, exposed to copper and other metals [22-26]. The plane of

the carboxylic group of these adsorbed species is perpendicular to the surface with the

oxygen atoms binding on-top of adjacent copper atoms along the close packed direction,

the <110> direction in the case of Cu(110) surface. In this process, the acid proton

leaves as H2 or transfers to convert -NH2 to -NH3
+. The former suggestion of anionic

adsorbed species, is more popular, considering the adsorption of amino acids onto the

copper crystal. It is quite difficult to determine the nature of the -NH2 group by means

of IR alone, however, XPS data of (S)-alanine adsorbed on Cu(110) surfaces at room

temperature, at the monolayer coverage, has confirmed the existence of neutral amino

group [9]. The observation of frequencies associated with ring in-plane skeleton

deformations, coupled with the C*-H bending modes, indicates that the phenyl ring has

to be tilted up slightly from the surface in order to produce a small dipole activity for

the in-plane vibration modes.

Another weak low frequency peak is found around 1075 cm-1; it is associated with

the -NH2 wagging vibrations and includes partial contribution from the C*-COO

bending and the out of plane CH bending modes. In the suggested model, the nearly

perpendicular orientation of the OCO- plane with respect to the surface indicates the

ring C-H in-plane bending modes and the -NH2 scissoring vibrations will be weak since

the dynamic dipole moments of these vibrations is nearly parallel to surface plane. This

is also true for the C*-N stretching mode. On the other hand, given the orientation we

suggested, the -NH2 wagging and C*-C bending vibration are expected to be observed

because their dipole moment components are more aligned along the surface normal,

although the C*-C bending mode is not intrinsically intense. It is difficult to assign this

band unambiguously because of the large intermixing of these C-H bending modes

with C*-N and C-C* stretches.

The adsorption geometry of the adsorbed species is proposed based on the above

analysis of the observable frequencies at low coverage. As shown in Figure 4.7,

phenylglycine is adsorbed in anionic form and binds with the copper atoms via the two

oxygen atoms of the carboxylate group along the <110> direction. The plane of the

OCO- group is inclined towards the surface; this leads to the phenyl ring being oriented

at a shallow angle from the surface plane; this molecular orientation can account for the

observations of the weak frequencies arising from the in-plane vibrational modes.
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Fig. 4.7: Proposed orientation and bonding nature for phenylglycinate species on the Cu(110) surface at
low coverage, where phenylglycine anion binds with the Cu atoms via both the oxygen atoms of the
carboxylate group, whilst the phenyl ring is nearly parallel to the surface. The geometry of phenylglycine
anion is optimized via DFT, the B3YLP function with the 6-31G*(d) basis set.

As the coverage continues to increase, Figure 4.6I b and c, some new peaks are

observed and they are accompanied by an evident increase in the intensity of the

frequencies already present. The most noticeable changes are the dramatic growth in

the intensity of the band related to the OCO- symmetric stretch mode. Increasing

exposure leads to the symmetric (OCO-) stretch mode becoming the dominant peak in

the spectra as expected. On the other hand, a new type of adsorbed species is introduced;

this is evident from the observation of a new band found at 1653 cm-1, which can be

easily attributed to the OCO- asymmetric stretch mode of the carboxylate group. These

observations indicate that the two oxygen atoms of the carboxylate group are placed at

inequivalent distance to the copper atoms; therefore, the axis of O∙∙∙O of the 

carboxylate group is tilted away from the surface plane. This geometry allows both
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asymmetric and symmetric dipole moments of the OCO- stretching vibrations to

become active.

The wavenumber difference for the asymmetric and symmetric vibrations of OCO-,

Δν(OCO
-
) = νas - νs amounts to 237 cm-1, this value is very close to 232 cm-1 obtained

from SERS of phenylglycine adsorbed on colloidal silver [1]. Additionally, it is also

corresponds approximately to the separation measured from the spectra of glycine [4]

and (R)-alanine [7] adsorbed in a unidentate manner on the Cu(110) surface. Such a

value suggests that the coordination of the carboxylate group to the metal is unidentate

with one oxygen atom tilted away from the surface to adopt a pseudoester structure

R-C(=O)-O-M [27] .

This change in molecular orientation is evident with the observations of some new

weak bands found at 1315 cm-1 and 1217 cm-1. These are mainly attributed to the

intermixing of the C-H in-plane rocking mode with scissoring modes and C*-H

bending vibrations, following the assignments in the anionic form. These are

essentially weak vibrational modes according to the theoretical frequency calculation

of both anionic and zwitterionic phenylglycine, as is indicated by the slow intensity

growth of this mode upon increasing coverage. The vibrations associated with the

amino group also change in this process. The intensity of the -NH2 wagging mode, at

1075 cm-1, remains dipole active and becomes stronger, exhibiting a similar intensity to

the in-plane ring vibrations, upon increasing exposure. In addition, the -NH2 scissoring

vibration, superimposed with the ring C=C stretching modes, is now allowed, and it is

shown by the observation of the characteristic vibrations in the region of 1450 -1640

cm-1. Based on this analysis, we can suggest that the plane of the -NH2 group is now

largely perpendicular to the surface, giving rise to a significant component of the dipole

moment along the surface normal. The conclusion drawn from the investigation of the

vibrations arising from the -NH2 scissoring and wagging modes provides further

evidence for the orientation changes of the phenyl ring, which is directed close to the

surface normal upon increasing exposure.

In the high frequency region, Figure 4.6II b and c, the broad band found at 2911 cm-1 at

low coverage, exhibits considerable broadening and upward shifting, ca 16 cm-1, upon

further deposition, and is also accompanied by evident growth in its intensity. Finally,

two low intense bands are observed as shoulders to this band, found at 2927 cm-1 with

relatively high intensity. The higher frequency band at 2962 cm-1 displaying weakest

intensity is attributed to the ring in-plane CH stretch mode; even though each CH
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stretch vibration is weak, in combination they may give rise to enhanced intensity in the

spectra. The bands, found at 2927 cm-1, are assigned to the C*-H stretch modes; this is

an intrinsically weak mode and further changes in the molecular orientation leads to its

dipole moment being directed further towards the surface normal, thus enhancing its

dipole activity. The lowest frequency band, found at 2858 cm-1, is too low to be

assigned to the CH vibrations; it might be caused by the combination of some other low

frequencies below 1500 cm-1.

It is suggested that further adsorption leads to significant changes in the binding

nature of the adsorbed phenylglycine species. This is revealed by the observation of the

asymmetric stretch mode of the carboxylate group and the -NH2 scissor mode, the

evident enhancements in the intensity of these bands associated with phenyl ring

in-plane modes. The proposed adsorption geometry in this phase is shown in Figure 4.8,

in which the phenylglycinate anion binds to the copper atoms via the nitrogen atom of

the amino group and only one oxygen atom of the carboxylate group, whilst the phenyl

ring is placed nearly perpendicular to the surface.

Fig. 4.8: Proposed orientation and bonding nature for phenylglycinate species adsorbed on the Cu(110)
surface at medium coverage. Phenylglycine adsorbs in anionic form with the carboxylate group
coordinated with the copper atoms in side-way and the nitrogen atom of the amino group placed at the
on-top site.
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Unlike the behaviour of glycine adsorbed on the Cu(110) surface which results in

only the formation of monolayer coverage on a substrate kept at room temperature,

multilayer coverage may be obtained by dosing the molecules onto the surface kept

below 290 K [4]. However, in our case with phenylglycine, Figure 4.6I d and e, the

saturation coverage ends with the appearance of a vibrational band found around 1717

cm-1, which is related with the C=O stretch mode, a characteristic vibration of the

carboxylic group from the non-ionic form of phenylglycine. There is no significant

change in the general pattern of these bands already existing upon increasing the

coverage successively, with the exception of a continuous increase of their intensities.

The saturation coverage is reached when the intensities associated with the vibrations

of the anionic adsorbed species stop growing. Further exposure of the surface to

phenylglycine only lead to an increase in the intensity of the C=O stretching band.

The observation of the characteristic frequency of the C=O stretch mode can only

suggest the presence of the carboxylic group in this phase; this means the phenylglycine

molecule stays at the surface as a neutral molecule. However, it does not necessarily

indicate the formation of multilayer adsorption in which phenylglycine is expected to

exist in zwitterionic form as it is preferred in solid phase; this will give rise to some

vibrations attributed to NH3
+, especially the NH stretching mode, which is supposed to

contribute with a strong peak at around 1500 cm-1. Additionally, there is no evidence of

large intermolecular hydrogen bonding interactions, which are expected to be observed

in the region around 3000 cm-1, showing a large band broadening.

The creation of two differently oriented phenylglycine species on Cu(110) surfaces is

apparently influenced by the exposure time. At the low coverage, the anionic

phenylglycine species is only coordinated with the oxygen atoms of the carboxylate

group with its phenyl ring tilting towards the surface; this is facilitated by the

availability of large free surface space. As the coverage is increased, the steric repulsion

arising from the crowding in the adlayer would force the phenyl ring to be directed

away from the surface. This new adsorption geometry favours interaction of the

nitrogen lone pair with the surface and can reduce the footprint of the adsorbed species.

The third binding geometry was revealed after annealing the surface to 450 K [13]. A

detailed investigation using impact scattering in EELS reveals that phenylglycine is

bonded to the surface in an anionic form via the two oxygen atoms of the carboxylic

group and the nitrogen atoms, with its molecular ring aligning nearly parallel with the

surface normal. Hence, we can predict that annealing to 450 K might cause desorption
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of non-ionic phenylglycine, the adsorbed species remaining on the surface to rearrange

and yield ordered superstructures.

4.3 Conclusions

In summary, detailed investigation of the behaviour of (S, R)-phenylglycine

adsorption on Cu(110) surfaces has been carried out using reflection absorption

infrared spectroscopy (RAIRS) at room temperature. It is revealed that both the

coverage and the annealing temperature can influence the molecular orientation on the

surface. At low coverage, phenylglycine is bonded via both the oxygen atoms at

equidistance along the <110> direction of the Cu(110) substrate. At higher coverage, a

new type of adsorption geometry is suggested in which the nitrogen atom of the amino

group and only one of the oxygen atoms of the carboxylate group are participating in

binding with the substrate. This binding nature is consistent with these suggested for

glycine [4] and alanine [7], upon adsorption on the Cu(110) surfaces under vacuum

conditions. Finally, annealing the high coverage surface leads to new molecular

orientations, based on the adsorption model proposed by previous work [14].
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CHAPTER V

Adsorption of (R, S)-phenylglycine and Adenine on the

p(2 × 1) O/Cu(110) Surfaces

5.1 Introduction

Interactions of (R, S)-phenylglycine molecules with the Cu(110) substrate have

been studied in details using EELS and LEED methods [1, 2]. It was revealed that at

saturation coverage, phenylglycine could form ordered enantiomerically separated

domains displaying 







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periodicities, respectively, upon annealing

at 450 K. The adsorbed species bind with the copper atoms via both the oxygen atoms

of the carboxylate group and the nitrogen atom of the amino group, whilst the phenyl

ring is directed nearly along the surface normal. In our studies using RAIRS, it is

suggested that the adsorption geometry of phenylglycine evolves as a function of the

exposure time. At low coverage, phenylglycine is more likely to interact with the

substrate directly through its carboxylate group. At this coverage, the phenyl ring is,

however, oriented nearly parallel to the surface plane. This adsorption geometry will

generate a large footprint and facilitate the π-metal interactions through the aromatic 

ring. Hence, we may expect to see a new phase of overlayer structures upon low

exposure time.

It has been reported that each enantiomer of phenylglycine exhibited unique

preference to decorate adenine chains of specific chirality upon co-deposition on a

Cu(110) surface pre-covered with ordered mirror-related adenine dimer chains [3].

This enantiomeric self-recognition achieved at molecular level can be well understood

in terms of hydrogen bonds, substrate locking and Coulomb repulsion [4, 5].

Here we present STM results from the adsorption of well-defined mixture of (R, S)-

phenylglycine onto the Cu(110) surface pre-covered with oxygen, in the attempt to

understand the interactions between the amino acid molecule with the oxygen copper

complex and the effect of the presence of the oxygen on the overlayer structures

formed by phenylglycine at room temperature.

Chemisorption of oxygen on a Cu(110) surface is known to result in a characteristic

(2 × 1) periodic structure at room temperature. In this process, dissociated oxygen
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atoms interact with copper atoms to form Cu-O added rows, oriented along the <100>

direction of the substrate. The O-O spacing within the row is 3.61 Å, while the

spacing between neighbouring rows amounts to 5.2 Å [6]. Shown in Figure 5.1a are

the double Cu-O rows appearing as chains of bright circular protrusions. The

termination sites of the added Cu-O rows usually show high reactivity at low

temperature. These sites are capable of inducing oxidation reactions in the presence of

H2O [7], hydrocarbons [8]; oxydehydrogenation of ammonia has been reported on

Cu(110) and Cu(111) surfaces [9-11], leading to the formation of chemisorbed imide

species. At room temperature, deposition of pyridine on a Cu(110) surface pre-

adsorbed with oxygen shows an increase in the inter-row spacing from 5.1 to 7.7 Å

[12]. Evidence of direct N-O interaction was confirmed by XPS data; STM images

showed that a molecular ring is oriented perpendicular to the surface to facilitate the

formation of pyridine-oxygen complex.

Fig. 5.1: a) STM image of the ordered oxygen rows formed on the Cu(110) surface (0.92 V, 0.90 nA,
6.9 × 4.6 nm2). b) Schematic illustration of the p(2 × 1) added oxygen rows on the Cu(110) surface,
red ball represents the oxygen atoms, they adsorb on the short bridge site of the reconstructed (2 × 1)
copper substrate.

It is interesting to study the interaction of small bio-active molecules like adenine

and phenylglycine molecules with the oxygen rows on Cu(110) surfaces, since both

contain an amino group which could be oxidized by oxygen, leading to the formation

of N-O bonds; it may also form hydrogen bonds with the adsorbed oxygen atoms

when interacting in a weaker manner. In addition, different interaction mechanisms
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are expected because in the adsorption of adenine on the Cu(110) surface, the strong

intermolecular hydrogen bonds are the main driving force accounting for the

formation of ordered overlayer structures, while the strong adsorbate-substrate

interaction, mediated by intermolecular hydrogen bonding is responsible for the

networks observed for phenylglycine adsorbed on Cu(110) surfaces.

5.2 Experimental

The experiments were carried out in a UHV system equipped with a rear view

LEED and quadrupole mass spectrometer. Clean Cu(110) surfaces were obtained by

repeated Ar+ sputtering and annealing (800 K) cycles. The cleanliness of the surface

was assessed and confirmed by the appearance of large areas of flat terraces. The

racemic mixture of phenylglycine was placed in the glass tube of the home-built

evaporator, attached to the chamber via a gate valve. Oxygen was introduced to the

chamber via a leak valve on the gas line.

5.3 Results and discussions

5.3.1 (S, R)-phenylglycine on p(2 × 1)O/Cu(110) surfaces

An STM image of O-Cu rows decorated with phenylglycine molecules and a small

area of phenylglycine molecular islands is given in Figure 5.2. This image was

obtained after dosing a small amount of the racemic mixture of phenylglycine onto

the Cu(110) surface per-covered with a small amount of oxygen at room temperature.

The oxygen (2 × 1) periodic rows, appearing as depressed stripes along the <100>

direction of the substrate, are easily distinguished from the bright protrusions which

are recognized as molecular features of phenylglycine. The distinct difference in the

contrast between these features is believed to be due to the apparent height difference

and electron conductance between the phenylglycine molecules and the oxygen atoms.

Within the oxygen rows, the inter-atomic distance and the spacing between

neighbouring rows remain unchanged, this might indicate that phenylglycine

molecules do not interact with oxygen atoms in a very strong manner. The majority of
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the phenylglycine molecules show preference to grow along the oxygen rows while

only a very small number of molecules forms patches in the neighbouring area. The

tendency for arranging themselves close to the oxygen rows suggests that the presence

of adsorbed oxygen can influence the arrangement of phenylglycine molecules on the

Cu(110) surface. Inter-molecular interactions between oxygen atoms in the rows and

attached phenylglycine molecules, along with the contribution from the substrate-

adsorbate interactions arising from the coordination of phenylglycine to the copper

atoms through its functionalities, are suggested to account for the ordered structures

observed in the STM images.

Fig. 5.2: Molecular domains and phenylglycine decorated added Cu-O rows at a low coverage (0.13
nA, -1.15 V, 73 × 58 nm2). Selected area, a), indicates the coexistence of small phenylglycine patches
with oxygen rows.

Shown in Figure 5.3a is a magnified image of the selected area in Figure 5.2a),

showing the small phenylglycine molecular domain. Within the domain, a centred

nearly rectangular unit cell is identified, which has the vector a oriented ca. 10º away

from the <110> direction and the vector b aligned along the <100> direction of the

Cu(110) substrate; a C2 symmetry is assigned to the unit cell. The cross-sectional
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dimension of the circular spot is measured to be approximately 7.0 Å; this size is

close to the lateral dimension of an isolated phenylglycine anion, 5.5 Å, Figure 5.3b,

the geometry of which is optimized using DFT methods and B3LYP functional with

6-31G*(d) basis set. The value suggests that the phenyl ring may be oriented nearly

flat lying on the surface, which gives rise to a larger footprint than that of the standing

up orientation. This finding is consistent with the suggested adsorption geometry for

phenylglycine at low coverage, according to the RAIRS results. In analogy with

glycine [13-15] and alanine [16-19], the simple amino acids, the adsorbed species are

considered to exist in anionic form with the deprotonated hydrogen atoms leaving

from the surface as H2 following recombination. Additionally, the adsorbed molecules

bind with the copper atoms via both oxygen atoms of the carboxylate group along the

<110> direction; this leaves one of the hydrogen atoms of the amino group pointing

upwards, while the other is pointing towards the surface plane to facilitate the

formation of a hydrogen bond with the oxygen atoms of the carboxylate group of

neighbouring molecules. It is difficult to distinguish the respective chirality of each

phenylglycine molecule merely from the molecular appearance observed from the

STM images, because both enantiomers would yield the same projection size for flat-

lying adsorption geometry.

a

b

<
1
0
0
>

a

b

<
1
0
0
>

a) b)

Fig. 5.3: a) Magnified STM image of
the small molecular island on the
Cu(110) surface (23 x 23 nm2, 0.13
nA, -1.15 V). b) Molecular footprint
of flat-lying phenylglycine anion,
optimized using DFT methods and
B3LYP functional with 6-31G*(d)
basis set.
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Within the unit cell, the intermolecular separation along the vector a is

approximately 11.2 ± 0.3 Å and b is equal to 15.7 ± 0.3 Å, the size of unit cell is

approximately 19 times larger than the unit mesh of the underlying Cu(110) substrate.

The distances between the centred molecule and the adjacent ones along the two

diagonals of the unit cell are about 8.1 ± 0.3 Å and 10.6 ± 0.3 Å. These inter-

molecular distances are too large to give rise to favourable inter-adsorbate interactions

originating from the hydrogen bonding. Therefore, the small area of ordered structure

is an outcome of the delicate balance between the strong substrate-adsorbate

interactions, due to the coordination of oxygen atoms of the carboxylate group with

copper atoms, and the π-metal interaction arising from the flat-lying phenyl rings and 

copper substrate.

According to the measured values of the unit cell vectors, this overlayer structure is

incommensurate with the substrate lattice. However, given the proposed adsorption

geometry suggested at low coverage, the bonding requirement, demanded by the

carboxylate group, is anticipated to result in a commensurate structure. Therefore, this

discrepancy, especially with the vector aligning along the <110> direction, may imply

either different adsorption sites for the carboxylate group, or possible rearrangement

of the outermost copper atoms to make the local bonding of molecules to equivalent

sites. Similar findings have been revealed regarding the adsorption of phenylglycine

on a Cu(110) surface at saturation coverage upon annealing at 450 K [1, 2]. In the

study, reconstruction in the outermost Cu layer may produce an overlayer structure

with 20 atoms so that each O and N atom of the adsorbate is coordinated to a separate

Cu atom. Here, we are more likely to believe that the rearrangement of copper atoms

may occur in order to make all the oxygen atoms of the carboxylate group coordinate

on preferential on-top sites along the <110> direction.

Based on the above analysis, we derived the structural model for the observed

overlayer structures shown in Figure 5.4. In the proposed structural model, at the

corners of the unit cell, all oxygen atoms of the carboxylate group are placed at the

on-top sites, which are in favour of the binding between oxygen atoms and copper

atoms. The calculated distance of the a vector is 10.8 Å, and of the b vector is 14.4 Å,

both values are 1-2 Å shorter than the corresponding measured values, but are

considered reasonable within the experimental error. The unit cell has an angle of ca.

115º, in good agreement with that of the measured angle. In addition, the distance
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between the centred molecule that has to be accommodated closely to the on-top site,

and its adjacent ones, d1 and d2, are 10.6 Å and 7.3 Å, both are also in good

agreement with the associated measured separations. As determined from the

molecular arrangements, no intermolecular hydrogen bonding is expected in the

adsorbed layer due to the slightly larger intermolecular distance. Strong adsorbate-

substrate interaction and the partial π-metal interactions arising from the phenyl rings 

with metal surface are considered instead as the driving force behind the observed

ordered structures. According to the proposed molecular arrangements on the

substrate, where the centred molecule is assumed to have opposite chirality, two glide

planes along the <110> direction are identified, which relate the molecules of

opposite chirality together via the translational and reflectional operations. In this

suggested model, all the intermolecular distances are calculated approximately in

terms of the unit cell lattice of the Cu(110) substrate.

Fig. 5.4: Proposed structural model and molecular registry for the small molecular islands formed by
(R, S)-phenylglycine molecules on the Cu(110) surface at low coverage; a and b are the unit cell
vectors, d1 and d2 are the intermolecular distance along the diagonals.



Chapter V (R, S)-phenylglycine and Adenine on p(2x1)O/Cu(110) Surfaces

167

In this proposed structural model, all oxygen atoms of the carboxylate group in the

unit cell are placed on the preferential on-top sites, except that of the centred molecule

that is accommodated closely to an on-top site in order to generate a perfect centred

unit cell. However, it is believed that in the actual adsorption process, slight

rearrangement of the substrate atoms may occur so that the bonding requirement of

the oxygen atoms of the carboxylate group to the copper atoms are satisfied; this

might also account for the incommensurate overlayer structures observed in STM. At

low coverage, the substrate-adsorbate interactions, originating from the binding of

oxygen atoms of the carboxylate with the copper, and the π-metal interactions, are 

main driving force accounting for the formation of the small ordered molecular

islands. This is different from the overlayer structures observed at saturation coverage,

which are considered to be an outcome of the compromise between the strong

adsorbate-substrate bindings required by the carboxylate group and N atoms, and the

intermolecular hydrogen bonds [1, 2]. Additionally, it is difficult to assign the

chirality of centred molecule merely from the STM. However, as far as the suggested

structural model is concerned, molecules of either chirality can give rise to the same

molecular arrangements on the surface.

5.3.2 (R, S)-phenylglycine decorated added Cu-O rows

Shown in Figure 5.5a, is the close-up STM image of the added Cu-O rows that are

decorated by randomly distributed phenylglycine molecules appearing as circular

protrusions. As seen from the image, phenylglycine shows a strong preference to

grow at both ends of the oxygen rows, while alongside these rows they are more

likely to exist in pairs. There are no apparent variations in the inter-row distance of

the Cu-O rows as determined from the image. Therefore, we assume that

phenylglycine molecules are connected with the Cu-O rows mainly through hydrogen

bonds formed between one of the hydrogen atoms of the amino group and the oxygen

atoms forming the rows. The relative chirality corresponding to each protrusion

cannot be determined because of the low resolution of the STM images. Considering

the suggested flat-lying adsorption geometry, both enantiomers are expected to give

rise to the same projection on the surface plane.
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In the Figure 5.5b, structural model for the phenylglycine molecules decorating the

oxygen rows is proposed. The orientation of each enantiomer is restricted by not only

the binding requirements of two oxygen atoms of the carboxylate group with the

copper substrate along the <110> direction, but also by the hydrogen bonds forming

between the hydrogen atoms of the amino group and the oxygen atoms in the Cu-O

added rows. DFT geometry optimization shows that H···O distance is ca. 2.1 Å in

anionic phenylglycine; this might give rise to a less favourable N-HO interaction in

the overlayer. However, since the adsorption of oxygen on Cu(110) surfaces leads to

the formation of (2 × 1) oxygen island on the top layer, the surrounding surface where

the phenylglycine is adsorbed is not reconstructed; it is mono-atomic, ca. 1.28 Å

lower than the topmost layer of added Cu-O rows [20]. As a result, this may facilitate

the hydrogen bond interactions between the hydrogen atoms of the amino group and

the oxygen atoms existing in the middle of the added Cu-O rows or at the ends of

them. Also due to the enhanced activity of these terminal oxygen atoms,

phenylglycine molecules are more likely to appear at both ends of the oxygen chains.

It is believed that there is not a rule governing the specific chirality of each

phenylglycine molecule attached to the rows; the hydrogen bonding can be formed

between the oxygen atom and the phenylglycine molecules of either chirality

randomly.
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5.3.3 Adenine co-adsorbed on p(2 × 1)O/Cu(110) surfaces

Adenine molecules display different behaviour after being co-deposited onto the

Cu(110) surface pre-covered with oxygen. The presence of small amounts of oxygen,

forming Cu (110)-O (2 × 1) domains aligned along one of the <100> high symmetry

b)

Fig. 5.5: a) STM image of phenylglycine
decorated added Cu-O rows (0.18 nA, -0.84 V,
13.2 × 13.2 nm2), phenylglycine molecules
appear in pairs along the oxygen rows, but as
individual feature at both ends. b) Proposed
arrangement of phenylglycine molecules
decorating the Cu-O rows, handedness (R, S) of
phenylglycine molecule is placed randomly
along the added oxygen rows that are indicated
with red balls.

<
100>

<
100>

a
)
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direction of the substrate, seemed not to affect the formation of adenine chains, except

that adenine molecules show a strong tendency to decorate the ends of the O-Cu

chains. As shown in the STM image, Figure 5.6a and b, differently from the isolated

phenylglycine molecules found alongside the oxygen rows, the protrusion features,

much bigger than a single adenine adsorbed species in size, correspond to short

adenine dimer chains and dimer or trimers, as a consequence of the strong ability of

adenine to form a variety of intermolecular double hydrogen bonds. The inset image

in Figure 5.6b shows the adenine dimer chains at a high resolution. Previous studies

suggest that the stronger intermolecular interaction, arising from double H-bonds, and

the relatively weak adsorbate-substrate interaction between the amino group and

copper atoms are responsible for the formation of ordered chain features [3]. In these

adenine chiral chains, even though the –NH2 group is available to connect with the

oxygen rows by forming N-H∙∙∙O hydrogen bond. The strength of this bond is not 

sufficient, in comparison with the double intermolecular double hydrogen bonds, to

influence the self-assembly of adenine on Cu(110) surfaces. This results in the

formation of dominant ordered molecular dimer chains after annealing at 470 K.

Fig. 5.6: Adsorption of adenine onto the Cu(110) surface pre-covered with added O-Cu rows. a) Co-
existence of chiral related short dimer chains and ordered long oxygen rows appearing as depressed

features (-1.34 V, 0.70 nA, 38 × 38 nm2). b) Image of oxygen rows decorated with adenine clusters on

both ends. (0.92 V, 0.90 nA, 18 × 18 nm2), inset image shows the adenine chiral chains at molecular

resolution (-1.12 V, 0.45 nA, 14 × 14 nm2).
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5.4 Conclusions

In summary, phenylglycine molecules adsorb in anionic form on the p(2 × 1) O-

Cu(110) surface, they bind with the substrate via both the oxygen atoms of the

carboxylate group at low coverage; this leaves the phenyl ring lying nearly parallel to

the surface. This conclusion is consistent with the experimental findings revealed

using RAIR spectra. The observed ordered molecular arrays result from the strong

substrate-adsorbate interactions, originating from the binding of the oxygen atoms of

the carboxylate functionality with the copper atoms, as well as the ring-metal

interactions. The longer intermolecular distance rules out the existence of

intermolecular hydrogen bonds which are commonly found in molecular networks

formed by amino acid molecules [1, 2]. The nearly flat-lying phenyl ring, suggested

for the molecular adsorption geometry at low coverage, is in favour of the π-metal 

interactions which contribute to the stabilization of short- range molecular networks.

Co-deposition of (R, S)-phenylglycine and adenine onto the Cu(110) surfaces pre-

covered with oxygen, revealed that, at low coverage, phenylglycine tends to interact

with oxygen rows as individual motif through the hydrogen bonding formed between

amino groups and oxygen atoms. In comparison, adenine showed strong preference to

form short dimer chains at the ends of the oxygen rows due to its stronger ability to

form intermolecular double hydrogen bonds. The apparent difference in their

behaviours upon co-deposition with oxygen is due to their unique interaction

mechanisms responsible for the formation of each of the ordered overlayer structure.
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CHAPTER VI

Conclusions and Outlook

6.1 Conclusions

The aim of this thesis has been to investigate the adsorption behaviours of adenine

and (R, S)-phenylglycine molecules, in terms of molecular orientation, substrate-

adsorbate and intermolecular interactions, on Cu(110) surfaces. The samples were

prepared by depositing molecules onto the Cu(110) surface via vacuum chemical

vapour deposition under various experimental conditions in order to understand the

effect of experimental parameters, e.g. surface coverage, annealing temperature,

deposition rate, and pre-adsorption of oxygen, on the molecular self-organization on

the surfaces. The adlayer structures were characterized by STM and RAIRS in

combination with other surface sensitive techniques and DFT calculations; some gas-

phase structural models are proposed. The following are the main conclusions drawn

from the experimental results:

In Chapter III, it is found that the adsorption behaviour of adenine on Cu(110)

surfaces is strongly influenced by the corresponding experimental parameters.

1. In a dense monolayer, adenine molecules formed ordered 2D chain structures

aligning along the <110> direction. The small unit cell dimension suggested by

the corresponding LEED patterns implies adenine is oriented with its planar ring

tilted significantly toward the surface normal; the orientation is consistent with

the observation of strong NH2 scissor vibrations in the RAIR spectra.

2. Upon increasing the annealing temperature, adenine overlayer structures evolve

from disordered molecular islands at room temperature to longer chains aligning

along the <110> direction, coexisting with disordered molecular clusters. Well

ordered chiral related chains formed after the annealing temperature was

increased to 490 K. In this process, significant molecular diffusion induced by

annealing gives rise to the various self-organized structures which are stabilized

by the intermolecular interaction. In all these phases, adenine is suggested to lie

flat on the surface.
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3. Depositing adenine onto the substrate maintained at 490 K resulted in new

ordered mirror reflection domains. In the chiral domains, chemisorbed species

were suggested to bind with the copper substrate mainly via the ring imino N(7)

atoms with partial contribution from the amino N atoms and copper interaction.

The intermolecular H-bonds formed between dimers, A5A5 and A2A2, or Ā5Ā5

and Ā2Ā2, are suggested to be responsible for the growth of longer chains, while

the relatively strong substrate-adsorbate interactions account for the formation of

large domains. The binding nature of adenine with copper favours a flat lying

molecular orientation.

4. Upon dosing adenine at low deposition rate and high coverage ca. 0.70 ML,

ordered adlayer structures composed of new ladder chains and 1D linear chains

along the <110> direction, in addition to the chiral chains long the (±1, 2)

directions, were observed. The formation of the new chain structures is suggested

to be related to the significant molecular aggregation arising from the low

deposition rate. Driven by annealing, adenine molecules have the preference to

form the stable dimers, A5A5 or Ā5Ā5; then these dimers have equal possibility to

connect with each other via one of the four available H-bonding sites, 1, 2, 3 and

6, giving rise to the co-existence of various structures. The initial registry of the

dimer on the Cu(110) substrate, along with the directional intermolecular H-

bonds, is suggested to govern the growth direction of the chains. From the

proposed gas-phase models, molecules are suggested to adsorb in flat-lying or

slightly up-tilted orientation, and all the N atoms of the amino groups are placed

at on-top sites or closely to on-top site, in order to facilitate the N-Cu interaction.

5. At very low coverage upon annealing to 440 K, a number of adenine dimers and

trimers oriented in different directions, as well as short chiral chains composed of

two or four pairs, were obtained. The co-existence of mirror related dimers and

trimers that are related via either mirror reflection along the high symmetry

directions of the substrate or C2 rotation symmetry, revealed that the formation of

chiral chains along the (±1, 2) direction starts with the formation of a dimer, to

which a single diffusing adsorbate of the same chirality connects via the second

type of double H-bond, 6. Longer chains formed upon further diffusion of these

small molecular units driven by annealing to 490 K.
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6. The intramolecular contrast variations of adenine adsorbates in the chiral chains

along the (±1, 2) directions can be influenced by such factors as the adsorption of

adsorbate onto the tip apex during scanning, the different orientation of the chains

with respect to the tip scanning direction, in particular changing the magnitude

and polarity of the tip-sample bias. At room temperature and 70 K, STM images

show that the chiral chains aligning closely along the fast scanning direction are

characterized by bright spot features arranged in parallel, while the chains,

regardless of the chirality, growing at a certain angle with respect to the fast

scanning direction consist of elongated features. Low temperature STM images

also revealed that the adsorbates composed of the chains display different

contrast in comparison to the isolated adsorbate because of the extensive

intermolecular interactions. Proposed structural models for these adsorbates

suggest that the long dimension of the isolated adsorbate is aligned almost along

the <100> direction, which is different to the ones in the chains. Hence,

molecular re-orientation is required upon re-organization of these isolated

adsorbates to form the chains. Comparison of the adenine frontier molecular

orbitals with the bias-dependent images of a single adenine adsorbate suggests

that tunneling of adenine adsorbed on the Cu(110) surface occurs via a resonance

mechanism arising from the coupling of the molecular orbitals with the tip and

sample Fermi levels.

In chapter IV, detailed investigation of the adsorption behavior of (R, S)-

phenylglycine on the Cu(110) surface using RAIRS suggests that the molecular

orientation changes as a function of the surface coverage. At low coverage,

phenylglycine is suggested to bind with the copper atoms via both the oxygen atoms

of the carboxylate group at equidistance along the <110> direction of the Cu(110)

substrate; this leaves the phenyl ring lying nearly flat on the surface. Upon increasing

coverage, due to the limited free surface space, a new upright adsorption geometry is

suggested. In this phase, phenylglycine is coordinated with the substrate via the amino

N atom and one of the oxygen atoms of the carboxylate, whilst leaving its phenyl ring

standing up. This binding nature is analogous with these suggested for other amino

acids adsorbed on Cu(110) surfaces at high coverage. At saturation coverage, the

observation of C=O vibrations in the RAIR spectra indicates the appearance of intact

phenylglycine molecules on the surfaces.
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In chapter V, depositions of a small amount of (R, S)-phenylglycine and adenine onto

the p(2 × 1) O-Cu(110) surfaces were studied using STM. Some phenylglycine

molecules form ordered molecular arrays and others prefer to decorate the added

oxygen rows. Within the molecular arrays, phenylglycine is suggested to orient with

the phenyl ring lying flat at the surface, which is in agreement with the experimental

findings revealed by RAIRS at low coverage. The relatively large inter-molecular

separation between adjacent adsorbates rules out the formation of intermolecular H-

bonds. However, the aromatic ring-metal interactions, in addition to the strong

substrate-adsorbate interactions originating from the binding of the oxygen atoms of

the carboxylate functionality with the copper atoms, might account for the ordering of

the adlayer structures. Additionally, formation of oxygen-rows decorated by

individual adsorbed phenylglycine molecules indicates the formation of H-bonds

between amino groups of the phenylglycine molecules and the oxygen atoms.

Comparison is made with analogous structures observed for adenine molecules co-

deposited onto oxygen pre-covered Cu(110) surfaces. Different from phenylglycine,

adenine forms short chiral chains observed at the ends of the oxygen rows. This

suggests intermolecular H-bonds, rather than substrate-adsorbate interactions, are

responsible for the formation of the corresponding ordered self-assembled structures.

6.2 Outlook

Future research based on the work presented in this thesis would be the co-

deposition of (R, S)-phenylglycine or other amino acids, e.g. glycine or alanine, with

the adenine dimers and trimers at very low coverage, with the aim to investigate the

chiral interaction at molecular level. It is believed these adsorption experiments

carried out at a low coverage will be helpful not only in determining the associated

molecular orientation on the Cu(110) surfaces, but also in understanding the

preferential chiral interactions of other amino acids with the chemisorbed adenine

species.
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6.3 Papers under preparation

1. Self-assembly of adenine on Cu(110) surfaces at low deposition rate

2. Contrast variations of adenine chains and monomers on Cu(110) surfaces


