
Agent-based simulation for
software development processes
Tobias Ahlbrecht, Jürgen Dix, Niklas Fiekas, Jens
Grabowski, Verena Herbold, Daniel Honsel, Stephan
Waack and Marlon Welter

IfI Technical Report Series IfI-16-02

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der Technischen Universität Clausthal

https://core.ac.uk/display/158622063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Tobias Ahlbrecht
Contact: tobias.ahlbrecht@tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/

ISSN: 1860-8477

The IfI Review Board

PD. Dr. habil. Nils Bulling (Theoretical Computer Science)
Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Thorsten Grosch (Graphical Data Processing andMultimedia)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
PD. Dr. habil. Wojciech Jamroga (Theoretical Computer Science)
Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr.-Ing. Michael Prilla (Human-Centered Information Systems)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
Dr. Andreas Reinhardt (Embedded Systems)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Informatics and Computer Systems)
Prof. Dr. Christian Siemers (Embedded Systems)

Department of Informatics, Clausthal University of Technology
Julius-Albert-Str. 4, D-38678Clausthal, dix@tu-clausthal.de Institue ofCom-
puter Science, Georg-August-Universität Göttingen
Goldschmidtstrasse 7, D-37077 Göttingen, Germany



Agent-based simulation for
software development processes

Tobias Ahlbrecht1 Jürgen Dix1 Niklas Fiekas1 Jens Grabowski2

Verena Herbold2 Daniel Honsel2 StephanWaack2 MarlonWelter2

Department of Informatics, Clausthal University of Technology
Julius-Albert-Str. 4, D-38678 Clausthal and Institue of Computer Science,

Georg-August-Universität Göttingen
Goldschmidtstrasse 7, 37077 Göttingen, Germany

Abstract

Software development is a costly process and requires serious quality con-
trol on the management level: Managing a project with more than 10
programmers over several years is a highly nontrivial task. We are build-
ing tools for helping the manager to predict the future development of
the project based on certain adjustable parameters.
Themain idea is to view the software process as agent-based simulation in
amultiagent system (MAS). This approach requires to combine three dif-
ferent areas: (1)mining data and patterns fromprojects done in the past,
(2)modeling the software development process in amultiagent environ-
ment (3) running the simulation on a dedicated and scalablemultiagent
platform.
agents, simulation, software/management processes, software evolution,
mining software repositories, conditional random fields

1 Introduction

We introduce and give a bird’s eye view of the SimSe project1 (“Agent-based
simulationmodels in support ofmonitoring thequality of software projects”)
that started in April 2016 and is funded by the Simulationswissenschaftliches
Zentrum (SWZ), a joint institutionof theUniversity ofGöttingen andClausthal
University of Technology. After presenting the overall idea in Subsection 1.1,
we briefly discuss related work (Subsection 1.2) and lay out the structure of
this paper in Subsection 1.3.

1https://www.simzentrum.de/en/research-projects/agent-based-simulation-models-in-
support-of-monitoring-the-quality-of-software-projects/

1



1.1 The very idea

The Project manager of a software project is interested in minimizing the
number of bugs, the overall costs and at the same timemaximizing the qual-
ity of maintenance. In order to do so, she needs answers to the following
questions: (1)Where are error-prone parts of the code? (2) Where are candi-
dates for refactoring (to improve maintenance) in the code? (3) What is the
expected effort (costs) to achieve better results?

This leads to the following rough idea: Simulate alternative evolutions of the
project by modifying certain parameters. The simulations can then be investi-
gated (the quality of the software must be automatically assessed) and used
to find out about suitable settings of the parameters. The resulting feedback
loop is visualized in Figure 1. The problem is of course to (1) choose the right
parameters, and, (2) make the simulation as realistic as possible.

Figure 1: Feedback-cycle for project managers [14].

Where do the parameters come from? Fortunately, there is plenty of data
available from many open source projects: Firefox2, MySQL3, . . . ! A promi-
nent example popular among researches is the tera-Promise repository [18].
How to extract information from this data is considered in Section 2.

How can we simulate the evolution of software with agents? The idea is
quite simple: we view software artifacts as passive agents, and developers (pro-
grammers) as active agents. Active agents generate, extend, correct and refac-
tor software artifacts through commit actions. An illustration is given in Fig-
ure 2.

In our simulationmodel, elaborated in Section3,we are simulating several
important parameters, which are obtained by data mining based on commits

2https://www.mozilla.org/en-US/firefox/
3https://www.mysql.com/

DEPARTMENTOF INFORMATICS 2

https://www.mozilla.org/en-US/firefox/
https://www.mysql.com/


SIMULATING SOFTWARE PROCESSES

Environment

fileCount : Integer

Developer

numberOfCommits : Integer
numberOfFixes : Integer

Bug

dateOfCreation : Real

computeLifespan() : Real

Category

Maintainer CoreDeveloper MajorDeveloper MinorDeveloper

SoftwareEntity

owner : Developer

computeLabelValue() : Real

MajorBug NormalBug MinorBug

createFiles()
updateFiles()
deleteFiles()
bugFix()

dateOfClosing : Real

numberOfChanges : Integer
numberOfAuthors : Integer
couplingDegree : Integer

1* 1 *

*

*

1

*

1

*

0..1

works on

*

Figure 2: Agent-based simulationmodel for software evolution [11].

to the repository (changes of the source code):

1. the effect and costs of refactoring,

2. the (change in the) behavior of developers,

3. communication between developers, and

4. goal-orientedness and improved experience of developers.

1.2 Related work

Only few approaches exist in the area of monitoring software quality with
simulation methods. An agent-based simulation model for software evolu-
tion was presented by Smith and Fernández-Ramil [22]. They can reproduce
different facets of software evolution, e.g., the number of complex entities,
the number of touches, and distinct patterns for system growth, but almost
all of themneed different parameter sets. Themodel we proposed in [11], has
the following differences to this one: First, our model is not grid-based and
agents do not perform a random walk. In our work, all instantiated agents
live in one environment and relationships are represented as graphs. Sec-
ondly, our simulation model requires only parameters for effort and size to
simulate projects that have similar growth trends.

Another interesting study is presented by Spasic andOnggo [23]. Thework
is aimed to support projectmanagers in their planing by simulating possible
future software processes. It is not an entirely new approach to use simula-
tion in this context, but for a long time it was dominated by discrete event

3 Technical Report IfI-16-02



simulation and system dynamics (because agent based simulation is a rela-
tively new technique). The authors use data from a software department in
an industrial context to estimate the simulation parameters. This work dif-
fers from other studies in that a maturity model is given (the capability ma-
turity model integration, CMMI4). During the creation of the agent-based
model the amount of the existing software components and the number of
available developers is considered based on the design and the development
phase. Then, the developers are assigned to certain (multiple) components.
The components switch between different states. Finally, the model is vali-
dated by comparing the empirical project duration of different projects with
the simulated results.

For thepredictionof software quality in general there aremany approaches
in the literature. The approach in [3] is based on different software graphs.
They analyzed their impact on defect-proneness andmaintainability. In par-
ticular, they consider source-code based graphs and developer collaboration
graphs. In our work, we also describe relations between software entities and
between developers. The authors of [3] include more graphs concerning the
structure of the software, e.g., call graphs, whichwe also plan to do. Further-
more, they compute graph metrics and correlations between these metrics
and the overall software quality.

1.3 Structure of the paper

Wehave presented the basic structure of SimSe in Subsection 1.1. In order to
deal with the right parameters describing the evolution of software projects,
we need to determine the right patterns and mine information about the
behavior of programmers based on available information. Thereforeweneed
powerfulmethods from datamining. These will be investigated in Section 2.

Themain part of this paper is Section 3, where we introduce the necessary
software engineering constructs that we model in the simulation. They en-
able us to define the parameters that can be adjusted by the project manager
to simulate various evolutions of the project.

What we also need is a platform where we can run our simulations and,
for each such simulation, we need an assessment of how good the developed
code really is: Section 4 is devoted to these tasks. We conclude with Sec-
tion 5.

2 Parametermining for the simulationmodel

In this section we describe how to extract necessary information from open
source repositories using data mining methods. In [13, 14], we presented

4http://cmmiinstitute.com/

DEPARTMENTOF INFORMATICS 4

http://cmmiinstitute.com/


SIMULATING SOFTWARE PROCESSES

mining methods to obtain parameters for various simulationmodels. These
models cover different aspects of software evolution, such as the growth of a
project, bug introducing rates, or the lifespan of bugs.

With themodel presented in [11] we are able to simulate the quality trend
of software projects. However, the structure of the simulatedChangeCoupling
graph is not close enough to the mined one. Thus, we have to extend the
simulation model (Section 3) which leads to additional mining effort. For
this extensionwe requiremore knowledge about the developer behavior and
certain source-code patterns: Both are described below.

2.1 Specialized developer behavior

To estimate the effort of developers, it is of great importance to understand
their driving factors and the evolutionof theirwork. Since developers are hu-
mans, driving factors and workload depend on several factors: motivation,
interests, dedication to the project, or time constraints. For the simulation
of quality assurance, a deeper understanding of different types of developers
is needed. The team constellation represents a simulation parameter, which
has an impact on the overall project quality. For example, less active contrib-
utors may introduce more bugs.

Developers’ actions are not solely visible in their commit behavior. Given
the whole history of a project, it can be hard to derive a complete picture of
the behavior of developers. Also their role is an important factor for the in-
volvement in the project. For the developer role definition, we distinguish
between core developers, major developers, and minor developers. These
roles are assigned considering their activity over the whole time, e.g., a core
developer performs over 30%, a major developer more than 2%, and mi-
nor developers more than 1% of all commits (according to earlier mining
results).

For deriving a complete picture of the behavior of developers, we look at
the evolution of four metrics describing the contribution: commits, bugfixes,
mailing list posts, and bug comments. In order to do so, we combine the in-
formation from the version control system, the issue tracking systems and
mailing lists. We are using Hidden Markov Models (HMMs) for describing
this evolution in a dynamic way. HMMs are stochastic models flexible for
examining discrete time observations. The set of states in our approach is
S = {S1,S2,S3} = {low,medium, high}. For obs1, . . . , obsn the sequence of
observations as input, a HMMcan be trained describing the occurring obser-
vations. n represents the project duration inmonths.

Figure 3 visualizes the procedure. With the Baum-Welch algorithm [] one
can determine the transition probabilities between the states and the emis-
sion probabilities representing the probability that a certain observation oc-
curs in the current state. This results in a multivariate normal distribution.

5 Technical Report IfI-16-02



=

commits
bugfixes
ML posts
bug comments

input obs1 obs2 obsn…

S1 S2 S3
low medium higha11

a12

transition probabilities

b2(obs2)
b2(obs2)

emission probabilities

Figure 3: HMMs for developer contribution.

With the Viterbi algorithm, one can retrieve the most likely sequence of
states that produced the input observations [20]. We validate this approach
in our recent work [12] using six open source projects with 106 developers.
There we compare individual models and general models for the different
developer types. For all individual HMMs that could be trained, we calcu-
lated the misclassification ratemr indicating howmany times the classified
label deviates from the HMM state label. We achieve mr = 9.8% with indi-
vidual models. Using general models performs about 5% worse, but can be
applied even though the individual calculation is not possible, e.g., because
of a small input space.

Another interesting observation occurring during our studies is the rela-
tion of the amount of developers working in a high state to the release dates
of the project. Figure 4 visualizes this phenomenon. There we observed that
more highly involved developers, i.e., the space between the upper and lower
line decreases, corresponds to the release dates represented as the dashed
lines. This matches our intuition in so far that the developers need to do
more work, especially fixes and communication, before a release. However,
the formalization of this relationship is in an early state of research.

2.2 Source-code change patterns

To recognize different change patterns, commits of open source projects will
be analyzed. We are currently implementing a mining framework that pro-
cesses commits in twomain steps.

First, each commit is preliminary classified according to its size and com-
mit message. Hattori and Lanza [10] figured out that commits can be classi-
fied in four classes concerning size. The proposed size classification is: tiny (1
to 5), small (6 to 25), medium (6 to 125), and large (> 125). One further clas-
sification proposed in [10] is keyword based. For example, the words imple-
ment, add, or new are used if a new featurewas added and thewords bug, issue,
and correct are used for bug fixes. Commits are divided into four classes: for-

DEPARTMENTOF INFORMATICS 6



SIMULATING SOFTWARE PROCESSES

Figure 4: Amount of developers contributing in a low, medium and high
state over the project duration. Dashed lines represent release dates.

ward engineering, re-engineering, corrective engineering, and management. Fur-
thermore, they discovered that tiny commits are commonbug fixes and that
large commits occur regularly and are related to the implementation of new
functionalities. Such a classification helps us tomodel concrete plans for dif-
ferent intentions of developers.

Secondly, code changes of a commit will be analyzed on abstract syntax
tree level: we are using the GumTree [9] framework. It considers source code
as trees and computes differences between them. These trees and differences
can be visualized and exported into several formats. The tool can detect
moved or renamed elements as well as deleted and inserted elements. We
will recognize recurring patterns and catalog them. Even complex activities
like refactorings could be revealed with this approach. With this catalog of
patterns we are able to model more detailed developer plans.

Our aim is to find a large number of patterns with detailed information
about what happens when one of them applies. This includes dependency
changes as well as changes of software metrics like the size or the complex-
ity of classes or methods. To get this information we have to combine this
approach with previous ones.

3 Modeling the software process

As stated in [11], we propose a simulation model of software processes that
predicts the quality trend of software projects. In this section, we briefly
describe this model as well as its limitations and pave the way for improve-
ments.

In themodel depicted in Figure 2we consider software entities and bugs as
passive agents and developers as active ones. The developer’s commit behav-

7 Technical Report IfI-16-02



ior is responsible for the evolutionary process of the software development
under simulation. Therefor, we focus on modeling the create, update, delete,
and bugfix functionality of developers.

Tomodel dependencies between entities we have chosen to use networks.
This provides us with more sophisticated modeling possibilities than the
grid based approach proposed in [22]. The three most important networks
are described below.

• DeveloperEntityNetwork: This network represents the dependencies be-
tween software entities and developers. If a developer creates an entity,
an edge between the developer and the new entity will be created. If
a developer changes an existing entity and an edge between the devel-
oper and the entity already exists, the weight of the edge will be in-
creased, otherwise a new edge will be created. Hence, this network pro-
vides the owner, the number of authors, and the number of changes of
an entity.

• BugEntityNetwork: The environment creates bugs at scheduled points
in time according to the mined bug introducing rate. After a bug is in-
stantiated, an edge between the new bug and the randomly selected
software entity is added to this network. The edge contains also infor-
mation about whether a bug is fixed or not.

• ChangeCouplingNetwork: This network represents dependencies between
software entities that are changed together several times. It serves as in-
put for the automated assessment.

For a simulation run we have to parametrize the model. The required in-
formation is provided by the mining of open source repositories (see Sec-
tion 2). For the concrete model instance described in [11] we used param-
eters of K3b [24], a Linux CD/DVD burning tool. To validate the model we
have mined projects similar in size and duration to K3b and changed only
few parameters of the model like the number of developers and the size. We
were able to give a quality trend of these projects.

For modeling and simulation purposes we used Repast Simphony [19], an
open source framework for agent-based simulation. This tool was well suited
for modeling small to medium projects with about 100 developers and net-
works with up to 2000 nodes. It will not be appropriate for the large number
of agents that we intend to simulate in this project.

The resulting simulation model reveals issues concerning the structure of
the simulated change coupling graph and the bug fix probabilities of devel-
opers. Addressing the first issuewe plan to improve the software entity selec-
tion for commits with the introduction of a more detailed software depen-
dency graph as described in Section 3.1. For the latter issue we plan to add
communication skills to the developers experience model (see Section 3.2).

DEPARTMENTOF INFORMATICS 8



SIMULATING SOFTWARE PROCESSES

3.1 Modeling developer goals and plans

One of the challenges is to model the entity selection of a commit. With-
out knowledge about the intention of the developer, software entities are se-
lected mainly randomly as mentioned in [11]. This results in significant dif-
ferences between a simulated and amined, i.e., real change coupling graph.

To reduce the coincidence, we plan to use the prominent BDI [28] ap-
proach for future simulationmodels. In such amodel, developers formulate
goals based on their beliefs and build plans to reach them. One example,
how the decision process of a developer leads to an action, is depicted in Fig-
ure 5.

Beliefs are the current state of the project, represented as softwaremetrics,
as well as a parameter that can be set by the manager each time the simu-
lation runs. Thus, we can easily compare differently configured simulation
runs with each other. Goals, for example, add new features, fix bugs, im-
prove the maintainability, or reduce the complexity of the project. A devel-
oper agent selects the goal based on its beliefs. From time to time the beliefs
have to be revised.

developer

Belief

Goals

Actions

has

selects

performs

project size (number of files): 1100

maintainability (LOC): 155 

number of developers: 11

ok

ok

can be improved

add feature

fix bug

improve maintainability
...

extract method

move class

pull up method
...

class A

method a

 class A

method a method b

Figure 5: Example for developer’s goals and plans. The developer works on a
method that is hard tomaintain because it has toomany lines of code. To im-
prove maintainability the developer applies the refactoring extract method
that splits the method.

Plans are patterns that should,whenapplied to the software graph, achieve
a goal. They can also be concatenated to reach a goal.

9 Technical Report IfI-16-02



To get a realistic model we need patterns for different source code changes
like refactorings, bug fixes, or additional functionality. The formulation of
them requires preliminary work in terms of mining open source repositories
(described in Section 2.2). Valuable information about one pattern are how
software metrics like the complexity or the lines of code change, howmany
files will be touched and how the touched files are connected.

The change coupling graph is not well suited to apply the above intro-
duced patterns. We need a more detailed software dependency graph. It
should be detailed enough to deal with plans and goals of developers: de-
pendencies of classes, methods, and variables need to be modeled to deal
withmetrics, but more abstract than the concrete syntax-tree of the project.
Its size is expected to be around 10 000 nodes, 200 000 edges for medium sized
projects like K3b which is about 10 times more than the change coupling
graph.

Webelieve that thismodel improves the structure of the simulated change
coupling graph significantly, but it also adds additional requirements on the
simulation platform. Therefore, we are developing our own scalable agent
platform as described in Section 4.1. With this platform we are planning
to simulate large software projects like Eclipse or the Linux kernel and we
shall consider software ecosystems where several software projects exchange
information, resources, and entities. To achieve these goals, the platform
needs to scale up in the number of agents.

3.2 Modeling communication between developers

The experience of a developer, which is an important factor of the probabil-
ity to fix a bug, is closely related to the communication between the devel-
opers. In software projects communication occurs in mailing lists or issue
tracking systems. How exactly this experience is influenced by communica-
tion is described in Section 2.1, where we consider mailing list posts and bug
comments. To model this is a new requirement to the simulation platform.
The platform proposed in Section 4.1 provides cooperation skills which al-
lows us to model interactions between the developers. For modeling, how-
ever, not just the occurrence and the extent of communication activities,
but also the intentions behind are important. It is of special interest for us
how the communication relates to actions which can be retraced later in the
repository. Moreover, the state of developers in communication networks
based on mailing lists and ITS can be an important factor in this analysis.
We are currently working on the analysis of such networks and the impact
on decisions during the project.

Further investigations help us to examine whether the simulated bug fix
rate of the different developer types can be improved with an extended ex-
periencemodel in comparison to the developer behaviormodel presented in

DEPARTMENTOF INFORMATICS 10



SIMULATING SOFTWARE PROCESSES

Section 2.1.

4 Implementation and Assessment

We elaborate in Subsection 4.1 on the simulation platform, in particular on
the ideas to make it scalable, so that bigger projects with hundreds of thou-
sands of agents can be simulated. We also need for each simulation a mea-
sure on how good the developed software is: Subsection 4.2 s devoted for
that task.

4.1 Developing a scalable agent platform

Asmentioned in the introduction, available dedicated simulation platforms
(like Repast Symphony) or general agent languages that offer declarative tools
for suitable modelling (like Jason ([4])) do not scale up in the number of
agents and can therefore not be used for our purposes.

But Jason-like languages do offer interesting tools that facilitate the mod-
elling of the simulation model for software evolution enormously (and are
also reusable). In particular, Jason, as taken off the shelf, is extremely lim-
ited in the number of agents (only a few hundred if communication is used).

World

Agents
Communication

(a) Synchronized versus non-synchronized
objects.

A1 MAP

A2 MAP

A3 MAP

A4 MAP

Reduce

Reduce

X

Y

(b) The idea behindMapReduce.

Figure 6: Idea of MapReduce

In previous work ([2],[6]) we have already worked on a general agent plat-
form,MASeRaTi , to deploy huge numbers of agents in the area of traffic sim-
ulation). Many techniques and design decisions will be reused. Instead of
reimplementing Jason from scratch, we focus on a new approach, based on
MapReduce.

The main idea, illustrated in Figures 6(a) and 6(b), is to distinguish be-
tween synchronized andnon-synchronizedobjects and then to identify parts
of the simulation that are completely independent from each other and can
thus be processed in parallel. Agents that areworking on the samepart of the

11 Technical Report IfI-16-02



world (green and red) or are communicating with each other (yellow, blue)
need to be synchronized among them: groups doing independentworkneed
not.

We believe that our approach is not restricted to Jason, but can be applied
to a whole class of similar agent languages. MapReduce was designed to sim-
plify parallel processing of large datasets. The main algorithm can be exe-
cuted using aMapReduce framework like Spark5, Hadoop6, MR4C7,MapRe-
duce-MPI8 or Disco9, which automatically partition the dataset for parallel
execution on a shared-nothing cluster. While we are still experimenting to
find the most appropriate setting we describe and evaluate an early version
of our proof of concept implementation.

The main step in our approach is to find an efficient translation from Ja-
son toMapReduce: see [1] for a detailed discussion.

Using a particular benchmark, a counting scenario, we compare the per-
formance of our platform running on different Python interpreters (Python
2, Python 3, and PyPy) with the performance of other platforms (Jason and
MASeRaTi ). For this simple benchmark from [7] all compared platforms are
scaling roughly linearly as expected (even 1-10Mio agents should work).

In contrast, Jason can not run the scenario for 50 000 agents, evenwithout
any communication10. We achieve the best performance with PyPy which
uses Just-In-Time compilation and hotspot optimisation (see proportional
speedup as number of agents increases).

Previous approaches were either restricted in the use of agent models [21]
or in the expressibility of the underlying language [26]. Our platform, in
contrast, supports full Jason-style AgentSpeak . UsingMapReduce allows us
to get a linear scale-up in the number of agents.

Strictly speaking, this scalability applies only to the particular benchmark
used. However, we believe that it represents a situation with high through-
put very well which occurs in many simulations.

4.2 Automated Assessment

Traditionally, localmetrics are used to identify flaws in the source code. They
are complementedby further assessment patterns likematurity stages [5], num-
ber of developers, activity levels (e.g. bug-fixes, mailing lists), or project out-
degree [27].

Another possibility to assess a software project is based on graph struc-
tures being inherent in the project (see [25], [17], [16], and [3]). We report

5http://spark.apache.org/
6http://hadoop.apache.org/
7https://github.com/google/mr4c
8http://mapreduce.sandia.gov/
9http://discoproject.org/

10Note that the line for Jason 1.4.2 in Figure 3 ends at 10 000 agents.

DEPARTMENTOF INFORMATICS 12

http://spark.apache.org/
http://hadoop.apache.org/
https://github.com/google/mr4c
http://mapreduce.sandia.gov/
http://discoproject.org/


SIMULATING SOFTWARE PROCESSES

1 10 100 1000 10 000 100 000 1 000 000

101

103

105

Jason 2.0a runs out of memory (> 26 GB RAM) after 10k agents

Number of agents

Ex
ec
u
ti
on

ti
m
e
in

m
s

Jason 2.0a
Python 2.7.9
Python 3.4.2
MASeRaTi (1 thread)
PyPy 2.4.0

Figure 7: Execution times of the counting scenario for increasing numbers of
agents

here a project under development whose graphical structure G = (V,E) is
given by the change coupling graph. For the sake of simplifying notations,
we identify the set of (current) software entities V with the set of its indices
{1, 2, . . . ,m}.

At the current stage of the project (see [11]), the dependencies are given
by change couplings. Thus, the software graph is a change coupling graph.
Every node (software entity) i ∈ V of the simulated change coupling graph
is augmented with a preliminary label problematic represented by xi = −1
or with a preliminary label acceptable represented by xi = +1. This classi-
fication is calculated taking software metrics of entity i and possibly of its
neighbors as input. Note that the label is local in the sense that it does not
depend on the labels of i’s neighbors in the software graph G. In what fol-
lows, let x :=

(
x1,x2, . . . ,xm

)
be that sequence of preliminary labels. This

graph and the preliminary label sequence x serve as input for the automated
assessment.

The automated assessment is aimed at replacing the preliminary assess-
ment labels by final ones denoted by yi = +1 (acceptable) or by yi = −1 (prob-
lematic), where i ∈ V. This is motivated by the fact that the overall judgment
of a software entity is strongly influenced by those entities that are depen-
dent on it. Let y denote the sequence

(
y1, y2, . . . , ym

)
of final labels, which is

the output of the automated assessment.
Taking pattern from the Ising model of statistical mechanics [15], we cre-

ated a conditional random field-basedmodel to determine the final labeling.
In line with the Ising model, we introduced conformity weights hi (i ∈ V)

13 Technical Report IfI-16-02



rewarding that preliminary label and final label of entity i coincide, and a
coupling parameter J rewarding that the final labels of adjacent nodes are
equal. The conditional distribution of the final labeling y given the prelimi-
nary labeling x is given by the following two equations.

p (y |x ) = 1

Z(x)
exp

 m∑
i=1

hiyixi +
∑
{k,l}∈E

Jykyl

 , (1)

Z(x) :=
∑

y′∈BV

exp

 m∑
i=1

hiy
′
ixi +

∑
{k,l}∈E

Jy′ky
′
l

 . (2)

Given the software graph G, the weights hi (i ∈ V) and J , and the prelimi-
nary labeling x, to calculate the final labeling y∗, we make amaximum poste-
rior probability (MAP) prediction: y∗ = argmaxy p (y |x ). Since this problem
is NP-hard, we adopted to this end a Viterbi heuristics devised by Dong et al.
in [8]. In [11] we “semi-automatically” determined the weights hi (i ∈ V) and
J such that

• dependencies between software entities influence the quality of each
other, particularly in a way that a problematic software entity nega-
tively influences those entities that depend on it.

• highly interconnected “communities” are (more or less) homogeneously
labeled, whereas communities only slightly interact.

As far as assessment is concerned, here are the future challenges:

1. Devise an algorithm to determine the weights hi (i ∈ V) and J auto-
matically according to the foregoing principle.

2. Adapt the Viterbi heuristics devised in [8] to very large software graphs.

3. Adapt known sampling algorithms using Markov Chain Monte Carlo
Methods to be able to replace final labels Yi (i ∈ V) by its posterior prob-
abilities P (Yi = acceptable |x ).

4. Check the applicability of the assessment approach by analyzing and
simulating open source projects.

5 Conclusions and outlook

The project reported in this paper is a continuation
of two previous projects (https://simzentrum.de/en/

DEPARTMENTOF INFORMATICS 14

https://simzentrum.de/en/education/softwarequalitaetssicherung-mit-hilfe-von-simulationsverfahren/
https://simzentrum.de/en/education/softwarequalitaetssicherung-mit-hilfe-von-simulationsverfahren/


SIMULATING SOFTWARE PROCESSES

education/softwarequalitaetssicherung-mit-hilfe-von-
simulationsverfahren/ and https://simzentrum.de/en/
research-projects/desim/) and is scheduled for 3 years. We can
therefore build on solid foundations and experiences. In order to make
more precise predictions of the behavior of the developers, we need to
model their plans and intentions. Therefore we have chosen Jason which
provides language constructs for suitable modeling.

Our aim in the future is fourfold: (1)We have to find out which other con-
structs we need for suitablemodeling, (2) how to integrate them in a scalable
simulation platform, (3) how to mine appropriate information from open
source repositories, and (4) develop an overall simulation model (as an ex-
tension of the current one) that takes all these tasks into account.

Acknowledgment

The authors thank the SWZClausthal-Göttingen11 that partially funded our
work (both the former projects “Simulation-basedQualityAssurance for Soft-
ware Systems” and “DeSim”, and the recent project “SimSe”).

References

[1] Tobias Ahlbrecht, Jürgen Dix, and Niklas Fiekas. Scalable multi-agent
simulation based on mapreduce (forthcoming). Technical Report IfI-
16-03, TU Clausthal, 2016.

[2] Tobias Ahlbrecht, Jürgen Dix, Niklas Fiekas, Philipp Kraus, and Jörg P.
Müller. An architecture for scalable simulation of systems of cognitive
agents. International Journal of Agent-Oriented Software Engineering (forth-
coming), 2016.

[3] Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and Michalis
Faloutsos. Graph-based analysis and prediction for software evolution.
In Proceedings of the 34th Intern.Conf. on Softw. Eng. (ICSE). IEEE, 2012.

[4] Rafael H. Bordini, Jomi F. Hübner, and Michael Wooldridge. Program-
ming multi-agent systems in AgentSpeak using Jason. Wiley & Sons, 2007.

[5] Kevin Crowston and Barbara Scozzi. Exploring the strengths and limits
of open source software engineering processes: A research agenda. In
Proceedings of the 2nd ICSEWorkshop on Open Source, 2002.

11https://www.simzentrum.de/en/

15 Technical Report IfI-16-02

https://simzentrum.de/en/education/softwarequalitaetssicherung-mit-hilfe-von-simulationsverfahren/
https://simzentrum.de/en/education/softwarequalitaetssicherung-mit-hilfe-von-simulationsverfahren/
https://simzentrum.de/en/education/softwarequalitaetssicherung-mit-hilfe-von-simulationsverfahren/
https://simzentrum.de/en/research-projects/desim/
https://simzentrum.de/en/research-projects/desim/
https://www.simzentrum.de/en/


[6] Fabiano Dalpiaz, Jürgen Dix, andM. Birna van Riemsdijk, editors. Engi-
neering Multi-Agent Systems - Second International Workshop, EMAS 2014,
Paris, France, May 5-6, 2014, Revised Selected Papers, volume 8758 of Lec-
ture Notes in Computer Science. Springer, 2014.

[7] Álvaro Fernández Díaz, Clara Benac Earle, and Lars-Åke Fredlund. eJa-
son: An implementation of Jason in Erlang. In International Workshop
on Programming Multi-Agent Systems, pages 1–16. Springer, 2012.

[8] Zhijie Dong, Keyu Wang, Truong Khanh Linh Dang, Mehmet Gültas,
Marlon Welter, Torsten Wierschin, Mario Stanke, and Stephan Waack.
Crf-based models of protein surfaces improve protein-protein interac-
tion site predictions. BMC Bioinformatics, 15(1):1–14, 2014.

[9] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Montperrus. Fine-grained and accurate source code differ-
encing. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages 313–324, New York, NY,
USA, 2014. ACM.

[10] LileHattori andMichele Lanza. On thenature of commits. InASEWork-
shops, pages 63–71. IEEE, 2008.

[11] Daniel Honsel, Verena Honsel, Marlon Welter, Jens Grabowski, and
Stephan Waack. Monitoring Software Quality by Means of Simulation
Methods. In 10th International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM), 2016.

[12] Verena Honsel, Steffen Herbold, and Jens Grabowski. Hidden markov
models for the prediction of developer involvement dynamics and
workload. In 12th International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE), 2016.

[13] Verena Honsel, Daniel Honsel, and Jens Grabowski. Software process
simulation based on mining software repositories. In ICDM Workshop,
2014.

[14] Verena Honsel, Daniel Honsel, Steffen Herbold, Jens Grabowski, and
StephanWaack. Mining software dependencynetworks for agent-based
simulation of software evolution. In ASEWorkshop, 2015.

[15] Ernst Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für
Physik A Hadrons and Nuclei, 1925.

[16] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power
laws in software. ACM Trans. Softw. Eng. Methodol., 18(1):2:1–2:26, Oc-
tober 2008.

DEPARTMENTOF INFORMATICS 16



SIMULATING SOFTWARE PROCESSES

[17] Yutao Ma, Keqing He, and Dehui Du. A qualitative method for mea-
suring the structural complexity of software systems based on com-
plex networks. 2013 20th Asia-Pacific Software Engineering Conference
(APSEC), 0:257–263, 2005.

[18] TimMenzies, Mitch Rees-Jones, Rahul Krishna, Carter Pape, and David
Pryor. The tera-promise repository of empirical software engineering
data, 2016.

[19] Michael J. North, Nicholson T. Collier, Jonathan Ozik, Eric R. Tatara,
Charles M. Macal, Mark Bragen, and Pam Sydelko. Complex adaptive
systemsmodelingwith repast simphony.ComplexAdaptive SystemsMod-
eling, 2013.

[20] L. Rabiner. A tutorial on hidden markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989.

[21] Atanas Radenski. UsingMapReduce Streaming for Distributed Life Sim-
ulation on the Cloud. ECAL, 284-291(2013), 2013.

[22] Neil Smith and Juan Fernández Ramil. Agent-based simulation of open
source evolution. In Software Process Improvement and Practice, 2006.

[23] Bojan Spasic and Bhakti S. S. Onggo. Agent-based simulation of the
software development process: a case study at avl. In Oliver Rose and
Adelinde M. Uhrmacher, editors, Winter Simulation Conference, pages
400:1–400:11.WSC, 2012.

[24] Sebastian Trueg. K3b – The CD/DVD Kreator for Linux.
http://www.k3b.org/, 2011.

[25] S. Valverde and R. V. Solé. Hierarchical Small Worlds in Software Archi-
tecture. arXiv: cond-mat/0307278, 2003.

[26] Guozhang Wang, Marcos Antonio Vaz Salles, Benjamin Sowell, Xun
Wang, Tuan Cao, Alan J. Demers, Johannes Gehrke, and Walker M.
White. Behavioral simulations in mapreduce. CoRR, abs/1005.3773,
2010.

[27] Yu Wang. Prediction of success in open source software development. PhD
thesis, Citeseer, 2007.

[28] GerhardWeiss. Multiagent Systems. MIT Press, 2013.

17 Technical Report IfI-16-02


	Introduction
	The very idea
	Related work
	Structure of the paper

	Parameter mining for the simulation model
	Specialized developer behavior
	Source-code change patterns

	Modeling the software process
	Modeling developer goals and plans
	Modeling communication between developers

	Implementation and Assessment
	Developing a scalable agent platform
	Automated Assessment

	Conclusions and outlook

