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Abstract

We introduce a new measure of bivariate jointness to assess the degree of inclusion
dependency between pairs of explanatory variables in Bayesian Model Averaging
analysis. Building on the discussion concerning appropriate statistics to assess covariate
inclusion dependency in this context, a set of desirable properties for bivariate jointness
measures is proposed. We show that none of the proposed measures so far meets all
these criteria and an alternative measure is presented which fulfils all of them. Our
measure corresponds to a regularised version of the Yule’s Q association coefficient,
obtained by combining the original measure with a Jeffreys prior to avoid problems in
the case of zero counts. We provide an empirical illustration using cross-country data
on economic growth and its determinants.
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1. Introduction

Bayesian Model Averaging (henceforth BMA, see Hoeting et al., 1999) has become a

standard econometric tool to carry out inference in the presence of model uncertainty. In

economics, a large body of literature has used BMA to assess the robustness of empirical

determinants of economic growth differences across countries (see for example Fernández

et al., 2001a; Brock and Durlauf, 2001; Sala-i-Martin et al., 2004; Moral-Benito, 2012; Eicher

et al., 2012; Moral-Benito, 2016). In such applications, the importance of a specific variable

is routinely measured by its posterior inclusion probability (PIP). The PIP is defined as the

sum of the posterior probabilities of the model specifications which contain that particular

variable. Following an early discussion of Bayesian measures of variable importance (Leamer,

1978; Mitchell and Beauchamp, 1988), PIPs have become a standard tool for interpreting

results in econometric applications of BMA. While they provide valuable insight into the

overall importance of single variables, they rely only on marginal posterior distributions

and neglect the interdependence of inclusion and exclusion of variables. Using PIPs it is for

example not possible to conclude if the importance of the variable is evenly spread across

all potential model specifications or it is specific to a certain combination of explanatory

variables (see Crespo Cuaresma et al., 2016).

To gain insights into the interdependence of the inclusion of sets of different variables,

several existing studies focus on investigating the joint posterior inclusion of pairs of

variables. This joint bivariate inclusion probabilities allow to infer whether two variables

are complements, i.e., tend to be included together in models with high posterior probability,

or substitutes, i.e., tend to exclude the inclusion of the other. To analyse the joint posterior

inclusion probabilities, bivariate jointness measures within the BMA framework were

proposed first in the working paper by Doppelhofer and Weeks (2005), which was published

in a slightly different version as Doppelhofer and Weeks (2009a). In addition Ley and Steel

(2007), Strachan (2009) as well as Ley and Steel (2009a) propose alternative measures. Ley
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and Steel (2007) list a set of properties which should be fulfilled by jointness measures and

show that these properties are not fulfilled by the statistics put forward in Doppelhofer and

Weeks (2009a). Strachan (2009) shows that the interpretability of the jointness measure

proposed by Doppelhofer and Weeks (2009a) may be limited in contexts where one or both

of the analysed variables have a negligible PIP and offers yet another measure in order to

tackle this shortcoming. In their reply to these criticisms, Doppelhofer and Weeks (2009b)

propose a further desirable property which requires that any jointness measure should test

the dependence over the joint posterior distribution of the variables considered and show

that this property is not fulfilled by the measures proposed by Ley and Steel (2007) and

Strachan (2009).

In addition to these contributions on bivariate jointness indicators for analysing BMA

output, different association measures between sets of variables have also been proposed in

the machine learning literature on association rules (see, e.g., Tan et al., 2004; Hahsler

et al., 2005; Glass, 2013, 2014). Association rules aim at finding “interesting” patterns in

large binary databases which allow to infer the presence of a certain set of variables given

that a different set of variables is also present. Due to the large number of possible rules,

interestingness measures have been developed for rules which allow to restrict attention to

rules with high values for these interestingness measures and certain properties have been

proposed in this stream of literature in order to select adequate interestingness measures.

In this paper we present a rigorous analysis of the properties of bivariate jointness

measures in BMA, combining the insights from these two strands of literature: the

literature on jointness indicators based on post-processing of BMA output and the machine

learning literature on interestingness measures for association rules. This leads us to

propose a set of properties a bivariate jointness measure for BMA analysis should fulfil.

Since none of the previously proposed statistics meets all these criteria, a suitable new

bivariate jointness measure is presented. This new measure is a regularised version of

the well known Yule’s Q association coefficient and is derived based on an augmented
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contingency table of variable inclusion which allows us to avoid the problems that arise

due to zero counts. More specifically, we combine the multinomial distribution underlying

the bivariate contingency table with a Dirichlet prior. As the Dirichlet distribution is

conjugate to the multinomial distribution, the posterior distribution of the parameters is

again a Dirichlet distribution. The parameters correspond to the augmented (posterior)

contingency table. Our proposed modified Yule’s Q measure is obtained from the posterior

inclusion contingency table for pairs of variables and corresponds to the Yule’s Q measure

for this table. It thus includes a small correction factor such that the measure fulfils all

desired properties of a bivariate jointness measure in BMA post-processing analysis.

The remainder of this paper is organised as follows. Section 2 describes the modelling

setting in which BMA applications tend to be carried out in econometric research, as

well as the bivariate measures for post-processing BMA output that have been proposed

hitherto in the econometric literature. Section 3 discusses a set of desirable properties

for bivariate jointness measures in BMA analysis and assesses the extent to which the

existing measures fulfil them. These results lead us to propose a new bivariate jointness

measure which meets all the proposed criteria. Section 4 presents an empirical application

of our measure for the cross-country dataset of economic growth and its determinants from

Fernández et al. (2001a). Section 5 concludes.

2. Bayesian Model Averaging and Jointness Analysis

BMA methods are routinely used to obtain posterior distributions for the quantities of

interest in a linear regression setting while accounting for specification uncertainty with

respect to covariate inclusion. The linear regression models entertained in BMA are usually

assumed to be of the form

y|α, βj , σ ∼ N(α1 +Xjβj , σ
2I), (1)
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where y is an n× 1 vector containing the observations of the dependent variable, 1 a

vector of ones of the same length and the n× kj matrix Xj is composed of the observations

of kj variables out of a total set of K potential covariates. Considering the K × 1 vector

β containing the parameters associated to each of the K potential covariates, model

uncertainty can be explicitly addressed by basing inference of the parameters of interest on

the posterior distribution given by

p(α, β, σ|y) =
2K∑

j=1
p(α, β, σ|y,Mj)p(Mj |y), (2)

where Mj denotes a specific model out of the possible 2K model specifications where a

subset of the K variables is included. Each specification-specific posterior distribution

p(α, β, σ|y,Mj) is weighted by its corresponding posterior model probability, p(Mj |y).

Posterior model probabilities are proportional to the marginal likelihood of the specification

multiplied with the prior model probability,

p(Mj |y) ∝ p(y|Mj)p(Mj). (3)

It is standard in BMA applications to use improper non-informative priors for α and σ,

i.e., p(α) ∝ 1 and p(σ) ∝ σ−1. A common choice for the prior of the slope coefficients βj is

Zellner’s g–prior (Zellner, 1986),

p(βj |Mj , σ) ∼ N
(

0, σ2
( 1
g0
X ′jXj

)−1
)
. (4)

The prior variance-covariance matrix of the vector of parameters associated to the covariates

considered has thus the structure of the variance-covariance matrix of the ordinary least

squares estimator and is scaled by the parameter g0. Several approaches to select a specific

value of g0 have been proposed (see, e.g., Foster and George, 1994; Fernández et al., 2001b).

To allow for more flexibility, hyper-priors on g0 have also been put forward in the literature
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by Liang et al. (2008); Feldkircher and Zeugner (2009); Ley and Steel (2012).

For the prior model probabilities, a straightforward approach is to use a flat prior over

all possible specifications, so that p(Mj) = 2−K for all j. Given that this prior implies a

preference for models of size around K/2, Ley and Steel (2009b) argue for a beta-binomial

prior on covariate inclusion. This setting is able to achieve a very flexible prior structure

over the model size and induces an uninformative distribution on the number of included

covariates.

Since analysing all 2K models that can be obtained by combining covariates is often

computationally infeasible, the relevant parts of the model space can be explored via

Markov Chain Monte Carlo Model Composition (MC3) methods (Madigan and York, 1995)

in order to approximate the relevant posterior distributions.

The output of the MC3 procedure allows to investigate the posterior distributions

for inclusion as well as other quantities of interest. In particular, the joint posterior

distribution of covariate inclusion constitutes the basis to create measures of jointness.

Following Doppelhofer and Weeks (2009a), let model specifications be represented by

binary vectors of covariate inclusion profiles (as defined by the inclusion variables γk,

k = 1, . . . ,K), so that

p(Mj |y) = p(γ1 = c1, γ2 = c2, . . . , γK = cK |y) , (5)

where ck ∈ {0, 1} is the binary variable representing the inclusion or exclusion of covariate

k in the model Mj . A posterior estimate for the jointness of two variables, p(γi, γj |y), i 6= j

can be derived from the contingency table containing the MCMC frequency counts of

joint inclusion, joint exclusion and the inclusion of one variable while excluding the other

variable. In particular, for two arbitrary variables A,B of the K potential variables in the

regression model, the inclusion profiles ΓA and ΓB (which are vectors of length equal to

the number of MCMC iterations, N) allow to construct a contingency table of the form
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given in Table 1.1

[Table 1 about here.]

Given these inclusion profiles, the posterior probability of variables A and B appearing

jointly across models
(
p(A∩B|y) ≡ p(AB|y)

)
can be estimated from the MCMC draws by

a/N . The posterior probabilities of each variable appearing alone in a model
(
p(A∩B|y) ≡

p(AB|y) and p(A ∩ B|y) ≡ p(AB|y)
)
can be estimated by b/N and c/N , respectively.

Finally, the posterior probability that the true model does not contain any of the two

variables
(
p(AB|y)

)
can be obtained by d/N .

The bivariate jointness measures of interest are functions J(a, b, c, d) that return a single

value which allows to characterise the association between the pair of variables in terms of

joint posterior inclusion. The values of the function should allow to distinguish between

pairs of variables which are complements, occur independently or are substitutes in terms of

their joint inclusion. Variables are considered complements if the inclusion of one variable

implies that the other variable also tends to be included, while for substitutes the inclusion

of one variable tends to imply the exclusion of the other covariate. For each jointness

measure, the existence of a clearly defined threshold which allows to distinguish between

complements and substitutes and which indicates when variables occur independently

would be a desirable property.

So far, five different measures of jointness have been proposed in the econometric

literature to post-process BMA output. These measures differ in the way they incorporate

the different marginal and joint inclusion probabilities. The earliest jointness measure in

the BMA context can be attributed to Doppelhofer and Weeks (2005), who propose to use

J̃DW1(A,B) = ln
(

p(AB|y)
p(A|y)p(B|y)

)
, (6)

1We assume that the output used to determine the jointness measures is obtained using MCMC methods.
If the model space is tractable and all 2K models can be estimated, the contingency table would be
created using the actual posterior probabilities covered by models which include or exclude the respective
variables and the jointness measures are not estimated, but are determined exactly.
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which is estimated from the contingency table by

JDW1 = ln
(

aN

(a+ b)(a+ c)

)
. (7)

This measure corresponds to the log of the joint inclusion in relation to the product of

the individual inclusion probabilities of the variables. Ley and Steel (2007) criticise this

jointness indicator based on the fact that the measure may be misleading for variables

with extremely high or low PIPs and that values of the measure can hardly be compared

across different pairs of variables.

In a later study, Doppelhofer and Weeks (2009a) propose a cross-product ratio of inclusion

probabilities as an alternative measure of jointness,

J̃DW2(A,B) = ln
(
p(AB|y)p(AB|y)
p(AB|y)p(AB|y)

)
, (8)

which is estimated by

JDW2 = ln
(
ad

bc

)
. (9)

In their comment to this contribution, Ley and Steel (2009a) also question this approach,

since JDW2 is not defined in cases where a variable has a PIP of zero or one. Instead, they

propose two alternative measures (Ley and Steel, 2007),

J̃LS1(A,B) = p(AB|y)
p(A|y) + p(B|y)− p(AB|y) , J̃LS2(A,B) = p(AB|y)

p(AB|y) + p(AB|y)
, (10)

which are computed using the contingency table as

JLS1 = a

a+ b+ c
, JLS2 = a

c+ b
. (11)

While JLS1 relates the joint inclusion to the probability of including either one of the two

variables, JLS2 uses the probability of including either one but not both variables as a
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normalising factor.

Strachan (2009) proposes to ignore the joint exclusion and to concentrate on relevant

variables in terms of PIP. This is accomplished by adapting JDW2 in such a way that the

joint exclusion is omitted and that the marginal probabilities of both variables are included,

J̃St(A,B) = p(A|y)p(B|y) ln
(

p(AB|y)
p(AB|y)p(AB|y)

)
, (12)

that is,

JSt = a+ b

N

a+ c

N
ln
(
aN

bc

)
. (13)

The treatment of p(AB|y), or equivalently its estimate d/N , has been controversially

discussed and no unanimous preference for either taking it into account or ignoring it

was established. This exclusion margin indicates the extent to which both variables tend

to not be included in specifications. While Doppelhofer and Weeks (2009b) stress the

importance of this aspect in their discussion, the jointness measures proposed by Ley

and Steel (2009a) and Strachan (2009) do not take the exclusion margin into account to

determine the inclusion dependency of a pair of variables.

In addition to the aforementioned measures proposed in the BMA literature, a parallel

literature on data mining proposes alternative measures of association that are similar

in nature. Recent surveys in this field collect as many as 40 different measures and try

to provide a structural overview of the alternative indicators available (see for example

Geng and Hamilton, 2006; Tan et al., 2004; Glass, 2013; Crespo Cuaresma et al., 2015).2

Some of these measures resemble the ones proposed in the BMA jointness literature. The

jointness measure in Doppelhofer and Weeks (2005) is equivalent to the so-called Log-Ratio

or equivalently, the log of the Interest (Lift) measure (Geng and Hamilton, 2006). Ley and

Steel (2007)’s JLS1 is identical to the Jaccard index and their JLS2 measure is an adjustment

thereof. A similar measure to Strachan (2009)’s JSt has been introduced in this strand of

2A detailed overview of interestingness measures can be found in Appendix B.
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literature as Two-Way Support (Geng and Hamilton, 2006). Finally, a modification of the

statistic proposed by Doppelhofer and Weeks (2009a) is known as the Odds-Ratio in the

field of data mining (Tew et al., 2014).

Other prominent measures in the association rule literature include support, which is

simply defined as the joint inclusion probability of A and B, i.e., p(AB), confidence, defined

as conf (A,B) = p(AB)
p(B) or Yule’s Q, defined as

J̃YQ(A,B) = p(AB)p(AB)− p(AB)p(AB)
p(AB)p(AB) + p(AB)p(AB)

, (14)

which is estimated from the contingency table by

JYQ = ad− bc
ad+ bc

. (15)

In fact, JYQ is a mapping of Doppelhofer and Weeks (2009a)’s JDW2 to the [−1, 1] interval.

3. On the Properties of Jointness Measures for BMA Analysis

3.1. Desirable Properties for Jointness Measures

For BMA applications, Ley and Steel (2007) propose four properties that BMA jointness

measures should fulfil. A jointness measure should be interpretable, in the sense that

it has a “clear intuitive meaning” and is well calibrated against a clearly defined scale.

Furthermore, the property of extreme jointness implies that a measure should reach its

maximum when both variables always appear together in the specifications considered.

A measure should always be defined (definition) whenever at least one of the variables

is included with positive probability. In the data mining literature on association rules

(see Wu et al., 2010; Glass, 2014), other characteristics that are expected to be fulfilled

by interestingness measures in association rules analysis are put forward. We merge and

extend the properties proposed in both strands of literature in order to assess the suitability
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of existing jointness measures and derive an appropriate measure for jointness analysis in

BMA.

The properties that the existing literature discusses in the BMA context partly correspond

to those which are used to measure interestingness of association rules. The adequacy of a

measure clearly depends on the properties that are required for a particular application.

For example, while machine learning problems are often concerned with positive association,

BMA results may additionally need to reflect negative association in order to be able to

identify variables which are substitutes. Furthermore, some consideration needs to be

given to the question whether two variables in a model are considered exchangeable, so

that measures associated with if A then B (A→ B) lead to the same result as measures

associated with B → A. Based on the insights from the BMA and machine learning

discussions, we select several properties which can be considered crucially relevant for BMA

jointness analysis.

P1. Definition: This property follows from Ley and Steel (2007). A jointness measure

should be defined whenever one of the variables is included with positive probability.

Obviously this property is fulfilled by the measures proposed by Ley and Steel (2007)

but not by the measures proposed by Strachan (2009) or Doppelhofer and Weeks (2009a).

Yule’s Q does not fulfil the definition property either.

P2. Monotonicity, boundedness and maximality: For interpretability, the range of an

association measure is required to be bounded on [−1, 1]. In addition, the measure should

be monotonically increasing in a and d between the two extreme cases (see Glass, 2013).

The jointness measure should be maximal if and only if b = c = 0 and minimal if and only

if a = d = 0 (Glass, 2014). This property is related to extreme jointness, the property

introduced by Ley and Steel (2007) in the BMA literature. However, in contrast to

their definition, the property proposed here ensures that a measure reaches an extreme
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value when both variables always appear together or are jointly excluded. The explicit

consideration of joint exclusion d is the decisive difference between Ley and Steel (2007)

and Glass (2014).

P3. Limiting behaviour: This property has not been discussed in the BMA literature

hitherto. For any finite values b, c ≥ 0 and a ∨ d → ∞ the jointness measure should

converge to its maximum. Analogously, for given finite values a, d ≥ 0 and b ∨ c→∞ the

jointness measure should converge to its minimum.

P4. Bayesian confirmation: This property is proposed in Glass (2013). A jointness

measure J fulfils the property of a Bayesian confirmation measure if it holds that

J > 0 ⇐⇒ p(A|B) > p(A),

J = 0 ⇐⇒ p(A|B) = p(A),

J < 0 ⇐⇒ p(A|B) < p(A).

Bayesian confirmation requires that the jointness measure equals zero if and only if the

inclusion of variable A and the inclusion of variable B are statistically independent events.

Complements are characterised by a positive jointness measure and a negative value of

the jointness indicator means that A is less likely to be included as a covariate in a

regression model where B is already included than expected from its marginal distribution

(and vice-versa). The measure is thus anchored at zero, which corresponds to statistical

independence of the inclusion of the two covariates. For the case of jointness measures

discussed in the BMA literature, this property is fulfilled only for the measures JDW1 and

JDW2. This property is closely related to the property of monotonicity (P2) and to non

null-invariance (P5).
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P5. Non null-invariance: The non null-invariance property is extensively discussed in

Glass (2013). Measures that are null-invariant ignore “null transactions”, i.e., specifications

where A and B are jointly excluded. When estimated from the contingency table, this

implies that they do not depend on d. Whether null-invariance is a desirable property for an

association measure depends on the nature of the empirical application under scrutiny. For

the case of jointness measures in BMA analysis, different views concerning the desirability

of null-invariance have been voiced in the literature. Doppelhofer and Weeks (2009b)

criticise null-invariance, since “[...] jointness can manifest itself in both the inclusion and

exclusion margin of the joint posterior distribution”. In contrast, Strachan (2009) and Ley

and Steel (2009a) stress the effect of models with low posterior probability, which might

be spuriously assessed as “interesting” by non null-invariant measures where the common

exclusion probability is respected.

However, non null-invariance seems to be a crucial assumption for bivariate jointness

measures. Tables 3a and 3e present two exemplary contingency tables where the inclusion

of covariates A and B are statistically independent events. For Table 3a JLS2 returns a

different value than for Table 3e. As a consequence, for null-invariant measures, as those

proposed by Ley and Steel (2007), there exists no uniquely defined threshold which allows

for a categorisation into substitutes and complements in terms of inclusion. Moreover in

the case of null-invariance this threshold depends on the marginal inclusion probabilities of

the individual covariates, p(A) and p(B).

P6. Commutative symmetry: Measures that have a different value associated with

A → B than with B → A are asymmetric. Since for BMA output analysis, jointness

measures aim at measuring the degree of joint appearance of two explanatory variables

in a model (or lack thereof) a posteriori, a suitable measure should be symmetric with

regard to the ordering of variables. The symmetric assertion that certain pairs of covariates

are “substitutes” or “complements” thus requires commutativity. All jointness measures

13
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proposed in the BMA literature fulfil this requirement. However, this property is discussed

heavily in the data mining literature. While Tan et al. (2004)3 and Wu et al. (2007)

argue in favour of such an adjustment, Glass (2013) strictly opposes this property. In

the context of BMA, where only the joint inclusion or exclusion of variables is of interest,

commutativity appears to be a desirable property.4

P7. Hypothesis symmetry: Glass (2013) proposes hypothesis symmetry as a desirable

property for association measures. Hypothesis symmetry states that J̃(A,B) = −J̃(A,B).

In the context of BMA if A and B are complements to some degree, then A and B

should be substitutes to the same degree, a property which facilitates the interpretation

of a jointness measure. Together with the desired property of commutative symmetry,

hypothesis symmetry also implies that J(A,B) = −J(A,B), a property which is called

evidence symmetry in the association literature (see Glass, 2013).

[Table 2 about here.]

3.2. An Illustration of the Properties of Jointness Measures

[Table 3 about here.]

The measures proposed in the BMA literature as well as Yule’s Q measure do not fulfil all

criteria suggested to be desirable for jointness measures. This leads to unfavourable results

under certain specifications which are illustrated by making use of exemplary two-way

contingency tables. We analyse the contingency tables given in Tables 3a–3f, which are

assumed to contain the joint covariate inclusion/exclusion events recorded during the

MCMC analysis in BMA, using the measures JDW1, JDW2, JLS1, JLS2, JSt and JYQ.

3Tan et al. (2004) suggest to symmetrise any measure by using max(p(A|B, y), p(B|A, y)).
4Note that in the context of market-basket analysis, which is a typical area of application for association

rules, whether A implies B or vice versa might be of interest and therefore commutativity might not be
desirable.
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Table 3a displays an independent relationship between two variables A and B, while

Table 3b is an example for strong positive jointness. As expected, for Table 3a, JDW2

as well as JYQ equal zero, indicating independence of the considered variables, while the

measures proposed by Ley and Steel (2007) and Strachan (2009) return values above zero.

For Table 3b, JDW1 delivers a value practically equal to zero, while JDW2 is ln(0) = −∞,

indicating a strong negative jointness between the inclusion of A and B. The results of

both measures are thus misleading, as they indicate either no jointness or a counterintuitive

value of the measure. The measures proposed by Ley and Steel (2007) capture the jointness

correctly and both measures tend to reach their maxima for Table 3b. The same is true for

the measure proposed by Strachan (2009). JYQ, however, delivers a misleading negative

value in this example.

Table 3c exchanges the inclusion and exclusion of variables compared to Table 3b.

While JYQ and JDW2 provide the same jointness measure values for Tables 3b and 3c,

the measures proposed by Ley and Steel (2007) equal zero. Note that, replacing the zero

(a = 0) entry in Table 3c with, for example, 10, as illustrated in Table 3d changes the

results dramatically for JDW1, JDW2 and JYQ. Now, all three measures return a strong

degree of positive jointness between A and B. On the other hand, according to JLS1 and

JLS2 the same degree of jointness can be observed in Tables 3a and 3d. The different

treatment of null-invariance is the essential property leading to these differences in results

between Tables 3a and 3d. Furthermore for Table 3d JSt takes a value close to zero because

the marginal probabilities are small for this table.

Further examples are given in Tables 3e and 3f. Compared to Table 3a, Table 3e displays

a two-way table for independent events of inclusion of covariates A and B, where the

inclusion probability of B is larger than that of its counterpart. As desired, the measures

proposed by Doppelhofer and Weeks (2009a) as well as the Yule’s Q measure are equal to

zero for both Tables 3a and 3e, but the measures proposed by Ley and Steel (2007) differ

for Tables 3a and 3e. This makes comparison of JLS1 and JLS2 across different marginal
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distributions quite difficult. For the former table JLS2 for example, returns a value of 1
2

while for the latter example it returns 2
3 . Finally, Table 3f illustrates a contingency table

where one variable is always included. Along the lines of Ley and Steel (2007) a jointness

measure should be defined in such a case. The measures JDW2 and JYQ are not defined,

but the measures proposed by Ley and Steel (2007), JDW1 and JSt are.

3.3. The Modified Yule’s Q, JYQM

In order to overcome the problems illustrated by the existing jointness measures in the

BMA literature, we propose a new measure which is a simple modification of Yule’s Q,

the modified Yule’s Q (henceforth JYQM). Essentially, JYQM is a regularised version of

JYQ, where zero entries in the contingency table are avoided by augmenting the table with

virtual counts as illustrated in Table 4.

The observed contingency table can be interpreted as representing the counts

(a, b, c, d) for realisations from a multinomial distribution with parameter vector π =
(
p(AB), p(AB), p(AB), p(AB)

)
. Table 4 can then be interpreted as the posterior mode

estimates for data from the multinomial distribution combined with a Dirichlet prior

on π. The Dirichlet distribution with parameter α is the conjugate prior for the

multinomial and the resulting posterior distribution follows a Dirichlet distribution

D(α1 + a, α2 + b, α3 + c, α4 + d). Put differently, if we base the bivariate jointness analysis

on the result of a multinomial model in combination with a conjugate Dirichlet prior

distribution we end up with a “posterior” contingency table such as the one illustrated in

Table 4.

[Table 4 about here.]

Several choices of αk for k ∈ {1, . . . , 4} might be appealing. These can be interpreted

as virtual counts for the table entries before observing the actual realisations of a, b, c, d.

Setting αk = 1 for all k corresponds to using a uniform prior with prior sample size equal

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to 4. For our modified Yule’s Q, JYQM, we propose to use the Jeffreys prior (Jeffreys, 1946)

which equals αk = 1
2 for all k. Gill (2014) argues that the Jeffreys prior has the main

advantage that it is obtained from a mechanical procedure which results almost always in an

uninformative prior. In fact in case of 2× 2 tables the Jeffreys prior corresponds to adding

two observations with all cells of the table being equally likely to occur. In addition Firth

(1993) shows that the Jeffreys prior can be used to reduce the bias of maximum likelihood

estimates in exponential family models. In the context of latent class analysis Galindo Garre

and Vermunt (2006) also empirically indicate the general good performance of Bayesian

posterior mode estimates resulting from the Jeffreys prior compared to maximum likelihood

estimates. Except for a correction factor in the denominator to guarantee maximality

(see Section 3.1), JYQM corresponds to the Yule’s Q measure estimated on the augmented

contingency table and has the form

JYQM =
(a+ 1

2)(d+ 1
2)− (b+ 1

2)(c+ 1
2)

(a+ 1
2)(d+ 1

2) + (b+ 1
2)(c+ 1

2)− 1
2
, (16)

where the last term in the denominator denotes the correction factor.

Usually, when N = a+ b+ c+ d is large, as is the case in BMA applications, and there

are no zeros in the contingency tables, the effect of Jeffreys prior vanishes. The prior effect

only becomes relevant when (a) N is very small, which is usually not the case for BMA

applications or (b) if zeros are present in the contingency table. The influence of N on the

measure values using either JYQ or the modified versions with Jeffreys prior (YQMJ with

αk = 1
2) or a uniform prior (YQMU with αk = 1) is shown in Figure 1 for five different

tables. These tables correspond to the cases of complete positive or complete negative

association, no association and half-positive or half-negative association with balanced

success probabilities for the two events A and A or B and B. JYQ gives the same values

for each case, which center around ±1, 0 and ±0.5, regardless of N . The modified versions

return the same measure values as JYQ in case of complete or no association, and converge
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to the values returned by JYQ rather quickly if the association is only partly positive or

negative. The stronger regularisation induced by the uniform compared to the Jeffreys

prior is visible by these measure values being relatively shrunk towards zero.

If zeros are present in the contingency table, the virtual counts added by the modified

versions correspond to a correction for continuity to avoid pathological results as illustrated

in Tables 3b, 3c and 3f. The results obtained for JYQ, as well as the modified versions

using either Jeffreys or a uniform prior for the six tables in Table 3, are given in Figure 1

on the right. The three measures give the same results for the non-pathological cases in

Tables 3a, 3d and 3e. For the pathological cases, the unmodified version gives completely

different and misleading results or is not defined, while the same values are obtained for

the modified versions regardless of the correction factor added.

[Figure 1 about here.]

4. Jointness of Economic Growth Determinants Revisited

We illustrate the use of the modified Yule’s Q measure as a jointness indicator and assess

the differences observed when compared to the ordinary Yule’s Q measure on the BMA

results when analysing the dataset on the determinants of differences in economic growth

across countries used in Fernández et al. (2001a).

The dataset provided by Fernández et al. (2001a), which is partly based on the data

collection by Sala-i Martin (1997), contains information of GDP per capita growth and

41 potential explanatory variables for 72 countries. The variables included in the dataset

are summarised in Table 5. With GDP per capita growth as a dependent variable, we

apply BMA to the dataset employing a hyper-g prior over the parameters associated to the

covariates, as proposed by Liang et al. (2008) and a beta-binomial prior for the inclusion of

covariates in order to create the prior over the individual specifications, in line with Ley and

Steel (2009b). The MCMC procedure is carried out with the R package BMS (Zeugner
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and Feldkircher, 2015) using 5 million iterations with one million burn-in runs.5 The

jointness measures given by JYQ and JYQM are computed based on the inclusion/exclusion

patterns for all 820 pairs of variables in the models sampled using MCMC.

[Table 5 about here.]

Figure 2 presents histograms for both the values obtained for JYQ and JYQM over all

variable pairs. The colour of the bars indicates the degree to which the pairs are evaluated

as substitutes or complements in terms of joint inclusion, with the threshold between

substitutes and complements indicated in white. A higher number of extreme jointness

values are observed in JYQM as compared to the standard Yule’s Q measure. This is mainly

driven by the fact that Yule’s Q is not defined if one of the variables in the pair is always

or never included in the models sampled by the MCMC procedure. The modified measure,

JYQM, however, allows to obtain an estimate of the the degree of jointness for these 68

pairs of variables. Out of those 68 pairs of variables for which Yule’s Q is not defined,

20% indicate a strong negative jointness with JYQM values between −1 and −0.8. For

23% of those pairs we observe a JYQM between −0.8 and −0.3 and only 9% are near to

statistically independence with jointness degrees between −0.3 and 0.3. Inspecting the

complements gives similar results: 13% of those 68 pairs have a JYQM between 0.3 and

0.8 and 35% result in jointness values above 0.8. The fact that JYQM fulfils the definition

property appears particularly important in this application, since the variables which are

included in all sampled models (for which JYQ is not defined) correspond to the most

important variables in terms of PIP. For the dataset in Fernández et al. (2001a) these are

the initial GDP per capita (GDP60 ), the fraction of the population of Confucian religion

(Confucian), life expectancy (LifeExp), and the dummy variable for Sub-Saharan countries

(SubSahara).

5The PIP of the individual variables, as well as the mean and standard deviation of the posterior
distribution over the parameters associated to the covariates, are in line with those reported in previous
BMA applications using this dataset. They are available from the authors upon request.
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Figures 3a and 3b present graphically the degree of jointness implied by Yule’s Q and

JYQM using mosaic plots. The pairs of variables are ordered in such a way to minimize

the difference between jointness values of neighbouring elements (Hahsler et al., 2008). To

determine the ordering the results for the Yule’s Q measure are used and the same ordering

is applied to the results for the modified Yule’s Q measure results. This facilitates the

comparison of results between the two mosaic plots. Pairs of variables which correspond to

complements are represented by blue shaded tiles, while substitutes are indicated by red

tiles.

As expected, these graphs depict a strong correspondence between the results of Yule’s Q

and its modified version although some important differences can be discerned. While the

correlation in jointness measured by JYQ and JYQM is over 0.99 for the pairs of variables for

which both indicators deliver measurements, the jointness level measured by JYQM for the

pairs involving the four covariates with undefined JYQ measures tend to be at the extreme

of the distribution (see the difference in histograms in Figure 2). The GDP60 variable

tends to act as a correlate of initial conditions and as such pairs of variables including

this covariate usually present high negative values of JYQM. Relevant exceptions are the

pairs (GDP60, LifeExp), (GDP60, Confucian) or (GDP60, SubSahara), which include

variables with extremely high PIPs and high positive jointness. The strong relationship of

complementary inclusion existing among GDP60, Confucian and LifeExp is in line with

the results presented in Ley and Steel (2007).

[Figure 2 about here.]

[Figure 3 about here.]

5. Conclusion

BMA has often been used in cross-country and panel regressions to account for model

uncertainty and identify robust determinants of differences in economic growth across
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countries. Usually the importance of single covariates in the regression is measured by the

PIP of the corresponding variables. PIPs do not allow to determine whether two covariates

tend to appear together or tend to exclude each other within the set of considered regression

specifications.

To gain insights into interdependencies in covariate inclusion patterns, bivariate jointness

measures have been proposed in the economic literature as suitable tools for post-processing

BMA output. A range of different measures has been put forward, with each of them

fulfilling different properties and criteria suggested to be important. In this paper

these properties are investigated and combined to arrive at an ultimate list of desirable

characteristics of bivariate jointness measures. Since none of the existing measures meet

all requirements, a new measure resulting from a modification of the Yule’s Q measure is

proposed. This modified Yule’s Q can be interpreted as a regularised version given by a

posterior estimate of the observed two-way inclusion contingency table combined with a

non-informative Jeffreys prior.

In addition, we apply the proposed measure to a dataset previously used in the empirical

economic growth literature on jointness measures and compare the results to those obtained

for the original version of Yule’s Q. This empirical illustration allows to assess which

insights can be gained when employing a measure which fulfils all desirable properties of a

jointness measure in a BMA post-processing analysis.

The analysis of bivariate jointness is only the starting point for investigating the

interdependencies across covariate inclusion patterns in BMA analysis. Jointness measures

for larger sets of variables could be of interest and Ley and Steel (2007) point out that

generalisations of bivariate joint measures could be considered in this case, despite the

drawback that results might often be difficult to communicate. An alternative approach to

investigate the interdependence structure of covariate inclusion in BMA has been proposed

in Crespo Cuaresma et al. (2016). Crespo Cuaresma et al. (2016) aim at succinctly and

comprehensibly describing the dependence structure of inclusion across all variables in the
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model space using Dirichlet process clustering.
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B B
∑

A a b (a+ b)
A c d (c+ d)
∑ (a+ c) (b+ d) a+ b+ c+ d = N

Note: A (B) indicates that event A (B) did not occur.

Table 1: General contingency table for two binary variables.
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Property Jointness Measure
JDW1 JLS1 JLS2 JSt JDW2 JYQ JYQM

Definition P1

Monotonicity &
Maximality P2

Limiting
Behaviour P3

Bayesian
Confirmation P4

Non
Null-Invariance P5

Commutative
Symmetry P6

Hypothesis
Symmetry P7

Table 2: Properties of bivariate jointness measures.
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B B

A 10 10
A 10 10

(a)

B B

A 106 10
A 10 0

(b)

B B

A 0 10
A 10 106

(c)
B B

A 10 10
A 10 106

(d)

B B

A 10 5
A 10 5

(e)

B B

A 10 10
A 0 0

(f)

Table 3: Exemplary contingency tables to illustrate properties of jointness measures.
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B B
∑

A a+ α1 b+ α2 (a+ b+ α1 + α2)
A c+ α3 d+ α4 (c+ d+ α3 + α4)
∑ (a+ c+ α1 + α3) (b+ d+ α2 + α4) (a+ b+ c+ d+∑4

k=1 αk)

Table 4: Augmented contingency table for the modified Yule’s Q measure.
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Abbreviation Variable Mean Std. Dev.

1 Abslat Absolute latitude 25.73 17.250
2 Age Age 23.71 37.307
3 Area Area (Scale Effect) 972.92 2051.976
4 BlMktPm Black Market Premium 0.16 0.291
5 Brit British Colony dummy 0.32 0.470
6 Buddha Fraction Buddhist 0.06 0.184
7 Catholic Fraction Catholic 0.42 0.397
8 CivlLib Civil Liberties 3.47 1.712
9 Confucian Fraction Confucian 0.02 0.087
10 EcoOrg Degree of Capitalism 3.54 1.266
11 English Fraction of Pop. Speaking English 0.08 0.239
12 EquipInv Equipment investment 0.04 0.035
13 EthnoL Ethnolinguistic fractionalization 0.37 0.296
14 Foreign Fraction speaking foreign language 0.37 0.422
15 French French Colony dummy 0.12 0.333
16 GDP60 GDP level in 1960 7.49 0.885
17 HighEnroll Higher education enrollment 0.04 0.052
18 Hindu Fraction Hindu 0.02 0.101
19 Jewish Fraction Jewish 0.01 0.097
20 LabForce Size labor force 9305.38 24906.056
21 LatAmerica Latin American dummy 0.28 0.451
22 LifeExp Life expectancy 56.58 11.448
23 Mining Fraction GDP in mining 0.04 0.077
24 Muslim Fraction Muslim 0.15 0.295
25 NequipInv Non-Equipment Investment 0.15 0.055
26 OutwarOr Outward Orientation 0.39 0.491
27 PolRights Political Rights 3.45 1.896
28 Popg Population Growth 0.02 0.010
29 PrExports Primary exports, 1970 0.67 0.299
30 Protestants Fraction Protestant 0.17 0.252
31 PrScEnroll Primary School Enrollment, 1960 0.80 0.246
32 PublEdupct Public Education Share 0.02 0.009
33 RevnCoup Revolutions and coups 0.18 0.238
34 RFEXDist Exchange rate distortions 121.71 41.001
35 RuleofLaw Rule of law 0.55 0.335
36 Spanish Spanish Colony dummy 0.22 0.419
37 stdBMP SD of black-market premium 45.60 95.802
38 SubSahara Sub-Saharan dummy 0.21 0.409
39 WarDummy War dummy 0.40 0.494
40 WorkPop Ratio workers to population −0.95 0.189
41 y = Economic growth GDP per capita growth 0.02 0.018
42 YrsOpen Number of Years open economy 0.44 0.355

Table 5: Variable names and descriptive statistics – Fernández et al. (2001a) dataset.
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Figure 1: Left: Influence of N on JYQ and the modified versions thereof, using either
Jeffreys prior (YQMJ with αk = 1

2) or a uniform prior (YQMU with αk = 1).
Right: Measure values for JYQ and the modified versions using either Jeffreys
(YQMJ) or a uniform (YQMU ) prior, based on the exemplary contingency tables
given in Table 3.
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Figure 2: Histograms of obtained (finite) Yule’s Q and modified Yule’s Q measure values
for all pairs of variables.
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A. Appendix: Properties of Jointness Measures

A.1. Jointness Measure DW1, JDW1

J̃DW1 = ln
(
p(A ∩B)
p(A)p(B)

)

JDW1 = ln
(

a

(a+ b)(a+ c)/N

)

P1. Definition: JDW1 is not defined when a = b = 0, i.e., A is never included, or a = c = 0,

i.e., B is never included.

P2. Monotonicity, boundedness and maximality: JDW1 fails to meet the criterion of

boundedness as it converges to −∞ when b = c and both → ∞ and to +∞ when

d→∞.

P3. Limiting behaviour: JDW1 converges to its maximum for d → ∞. However it

converges to 0 for a → ∞. For b → ∞ the measure converges to ln(a/(a + c))

and analogously to ln(a/(a+ b)) for c→∞.

P4. Bayesian confirmation: It holds that

a(a+ b+ c+ d)
(a+ b)(a+ c) = 1 ⇐⇒ ad− bc = 0

and p(A|B) = p(A) iff ad− bc = 0.

It is straightforward to show that the corresponding inequalities of the Bayesian

confirmation property are similarly fulfilled.

P5. Non null-invariance: Since JDW1 = ln
(

aN
(a+c)(a+b)

)
with N = a + b + c + d, this

measure obviously depends on d, the number of counts of joint exclusion.

P6. Commutative symmetry: This follows directly from the definition of JDW1.
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P7. Hypothesis symmetry: Consider the case where a = 0. Then J(A,B) → −∞.

However, J(Ā, B) = ln((b + c + d)/(c + d)) which only equals ∞ if c = d = 0

with b > 0.
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A.2. Jointness Measure DW2, JDW2

This jointness measure is defined as

J̃DW2 = ln
(
p(A ∩B)p(Ā ∩ B̄)
p(A ∩ B̄)p(Ā ∩B)

)

JDW2 = ln
(
ad

bc

)

P1. Definition: JDW2 is not defined if one of the variables is always or never include, e.g.,

p(A) = 1 and c = d = 0.

P2. Monotonicity, boundedness and maximality: Obviously JDW2 is not bounded,

monotonically increasing in a and d and decreasing in b and c. The maximality

criterion is not met as it is sufficient that only one of the entries equals zero for the

measure to reach an extreme value.

P3. Limiting behaviour: For a→∞ and d = 0, JDW2 is not defined.

P4. Bayesian confirmation: This is obvious because if ad = bc, the measure equals 0. It

is positive if ad > bc and negative if ad < bc.

P5. Non null-invariance: The measure depends on d.

P6. Commutative symmetry: Trivial.

P7. Hypothesis symmetry: It is trivial to show that J(A,B) = −J(Ā, B) = ln
(
ad
bc

)
.
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A.3. Jointness Measure LS1,JLS1

J̃LS1 = p(A ∩B)
p(A ∪B)

JLS1 = a

a+ b+ c

P1. Definition: JLS1 is defined whenever one variable is included with positive probability.

P2. Monotonicity, boundedness and maximality: This measure is bounded on [0, 1] but

fails to meet the minimality condition; i.e., to reach its minimum only when a and d

are zero. This measure is independent of d and reaches its minimum whenever a = 0.

It is constant in d, but meets the monotonicity condition.

P3. Limiting behaviour: For d→∞, JLS1 does not converge to its maximum.

P4. Bayesian confirmation: Given that the range is [0, 1] the Bayesian confirmation

criterion cannot be fulfilled.

P5. Non null-invariance: The measure is independent of d and therefore null-invariant.

P6. Commutative symmetry: By definition.

P7. Hypothesis symmetry: It follows directly from the fact that JLS1 ≥ 0, that J(A,B) =

−J(Ā, B) cannot hold.
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A.4. Jointness Measure LS2, JLS2

J̃LS2 = p(A ∩B)
p(A ∩ B̄) + p(Ā ∩B)

JLS2 = a

b+ c

P1. Definition: JLS2 is defined whenever one variable is included with positive probability.

P2. Monotonicity, boundedness and maximality: JLS2 ∈ [0,∞) and is therefore not

bounded. It is constant in d and thus does not meet the maximality criterion

as the minimum value of 0 is reached if a = 0 regardless of the value of d. The

monotonicity criterion is fulfilled.

P3. Limiting behaviour: For d→∞, JLS2 does not converge to its maximum.

P4. Bayesian confirmation: JLS2 ≥ 0 and thus fails to fulfil the Bayesian confirmation

condition.

P5. Non null-invariance: The measure is independent of d and therefore null-invariant.

P6. Commutative symmetry: Trivial.

P7. Hypothesis symmetry: Since JLS2 ≥ 0, J(A,B) = −J(Ā, B) cannot hold.
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A.5. Jointness Measure St, JSt

J̃St = p(A)p(B) ln
(

p(A ∩B)
p(A ∩ B̄)p(Ā ∩B)

)

JSt = a+ b

N

a+ c

N
ln
(
aN

bc

)
.

P1. Definition: JSt is not defined if p(A) = 0, i.e., a = b = 0, or p(B) = 0, i.e., a = c = 0.

P2. Monotonicity, boundedness and maximality: This jointness measure is not bounded

as for a = 0 and b, c > 0 it takes the value JSt = −∞, while for a > 0 and b = 0

and/or c = 0, JSt = ∞. The measure is monotonically increasing in a, but not

necessarily in d and not necessarily decreasing in b or d.

P3. Limiting behaviour: For d→∞, it is straightforward that JSt → 0.

P4. Bayesian confirmation: In the case of independence, i.e., ad = bc, (aN)/(bc) = N/d

and thus the measure is positive.

P5. Non null-invariance: The measure depends on N = a+ b+ c+ d and thus on d.

P6. Commutative symmetry: Trivial.

P7. Hypothesis symmetry: A simple counterexample can be constructed using a

contingency matrix. Consider the following case, where already relative frequencies

are given in the table below as the measure does not depend on the absolute sum of

the entries:

B B̄
∑

A 0.3 0.4 0.7

Ā 0.1 0.2 0.3

∑ 0.4 0.6 1
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Then J(A,B) = 0.7 ·0.4 ln( 0.3
0.4·0.1) = 0.562, but −J(Ā, B) = 0.3 ·0.4 ln( 0.1

0.2·0.3) = 0.061.
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A.6. Jointness Measure Yule’s Q, JYQ

J̃YQ = p(A ∩B)p(Ā ∩ B̄)− p(A ∩ B̄)p(Ā ∩B)
p(A ∩B)p(Ā ∩ B̄) + p(A ∩ B̄)p(Ā ∩B)

JYQ = ad− bc
ad+ bc

P1. Definition: JYQ is not defined if either of the variables is always or never included,

e.g., for p(A) = 1 and c = d = 0.

P2. Monotonicity, boundedness and maximality: JYQ reaches its extreme value

whenever one of the diagonal/off-diagonal entries is zero. The boundedness criterion

is met by definition. The monotonicity condition is also fulfilled.

P3. Limiting behaviour: For a → ∞ and d = 0, JYQ → −1, instead of converging to 1.

The measure fulfils the limiting behaviour criterion if d > 0.

P4. Bayesian confirmation: Follows directly from the definition of a Bayesian confirmation

measure because p(A|B) = p(A) iff ad− bc = 0.

P5. Non null-invariance: JYQ is a function of d and thus not null-invariant.

P6. Commutative symmetry: Trivial.

P7. Hypothesis symmetry: JYQ(Ā, B) = bc−ad
bc+ad = −JYQ(A,B).
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A.7. Modified Yule’s Q, JYQM

JYQM =
(a+ 1

2)(d+ 1
2)− (b+ 1

2)(c+ 1
2)

(a+ 1
2)(d+ 1

2) + (b+ 1
2)(c+ 1

2)− 1
2
,

P1. Definition: The original Yule’s Q is not defined if either a or d and either b or c are

equal to zero. For the modified Yule’s Q the adjustment ensures definition of the

jointness measure.

P2. Monotonicity, boundedness and maximality: First, we discuss monotonicity: We

prove that for given values b, c, JYQM is monotonically increasing in a and d. Note

that JYQM can be rewritten as

JYQM = x− y
x+ y − 1

2
, (17)

with x = (a+ 1
2)(d+ 1

2) and y = (b+ 1
2)(c+ 1

2).

This gives

JYQM = x− y
x+ y − 1

2
=

x(1− y
x)

x(1 + y
x − 1

2x)
=

1− y
x

1 + y
x − 1

2x
. (18)

The denominator of equation (18) can be rewritten as 1+ y
x − 1

2x = 1+ 1
x(y− 1

2). Note

that y = bc+ 1
2c+ 1

2b+ 1
4 and that (y − 1

2) > 0 whenever b or c is greater than zero,

while for b = c = 0, JYQM = 1. This implies that JYQM is monotonically increasing

in x for b or c greater than zero as the numerator in equation (18) is increasing in x

and the denominator is decreasing in x.

The boundedness as well as maximality conditions are trivially fulfilled. The modified

Yule’s Q takes values in [−1, 1], the minimum value of −1 is attained if a = d = 0

and the maximum value if b = c = 0.

P3. Limiting behaviour: This follows directly from the fact that JYQM can be rewritten
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as
x

x+ y − 1
2
− y

x+ y − 1
2
. (19)

If x → ∞, this expression converges to 1. Analogously JYQM converges to −1 for

y →∞.

P4. Bayesian confirmation: First, we prove the independency property J(A,B) = 0 ⇐⇒

p(A ∩B) = p(A)p(B), i.e.,

(a+ 1
2)

N + 2 =
(a+ 1

2) + (b+ 1
2)

N + 2
(a+ 1

2) + (c+ 1
2)

N + 2 . (20)

Multiplying equation (20) with (N + 2)2 and using that N = a+ b+ c+ d results in

ad+ 1
2a+ 1

2d = bc+ 1
2b+ 1

2c, (21)

which corresponds to JYQM = 0.

Analogously, if p(A ∩B) > p(A)p(B) the left hand side of equation (21) dominates

its right hand side, which implies a strictly positive JYQM.

P5. Non null-invariance: JYQM depends on d.

P6. Commutative symmetry: J(A,B) = J(B,A) follows directly from the definition of

JYQM.

P7. Hypothesis symmetry: Hypothesis symmetry states that J(A,B) = −J(A,B).

Note that

J(A,B) =
(a+ 1

2)(d+ 1
2)− (c+ 1

2)(b+ 1
2)

(a+ 1
2)(d+ 1

2) + (c+ 1
2)(b+ 1

2)− 1
2

= − (b+ 1
2)(c+ 1

2)− (a+ 1
2)(d+ 1

2)
(a+ 1

2)(d+ 1
2) + (c+ 1

2)(b+ 1
2)− 1

2
= −J(Ā, B)
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B. Appendix: Review of Jointness measures

Table 1: Definition of Jointness measures
# Measure Value

1 φ φ-Coefficient p(AB)−p(A)p(B)√
p(A)p(B)p(Ā)p(B̄)

2 AV Added Value p(B|A)− p(B)

3 AC AllConf min(p(B|A), p(A|B))

4 b Carnap p(AB)− p(A)p(B)

5 cf Certainty Factor p(B|A)−p(B)
1−p(B) if p(B|A) > p(B)

6 χ2 Chi-square (χ2) (p(AB)−p(A)p(B))2N

p(A)p(Ā)p(B)p(B̄)

7 κ Coehen’s Kappa (κ) p(B|A)p(A)+p(B̄|Ā)p(Ā)−p(A)p(B)−p(Ā)p(B̄)
1−p(A)p(B)−p(Ā)p(B̄)

8 coh Coherence (p(A|B)−1 + p(B|A)−1 − 1)−1

9 cs Collective Strength ln
[

p(AB)+p(ĀB̄)
p(A)p(B)+p(Ā)p(B̄) ×

1−p(A)p(B)−p(Ā)p(B̄)
1−p(AB)−p(ĀB̄)

]

10 conf Confidence p(B|A)

11 conv Conviction ln
[

p(A)p(B)
p(A,B̄)

]

12 IS Cosine p(AB)√
p(A)p(B)

13 G Gini index p(A)(p(B|A)2 + p(B̄|A)2) + p(Ā)(p(B|Ā)2 + p(B̄|Ā))− p(B)2 − p(B̄)2

14 IR Imbalance Ratio |p(A|B−p(B|A|
P r(A|B)+p(B|A)−p(A|B)p(B|A)

15 I Interest p(AB)
p(A)p(B)

16 J J-Measure p(AB) log p(B|A)
p(B) + p(AB̄) log p(B̄|A)

p(B̄)

17 ζ Jaccard (ζ) p(AB)
p(A)+p(B)−p(AB)

18 k Kemeny-Oppenheim p(A|B)−p(A|B̄)
p(A|B)+p(A|B̄)

19 kl Klosgen
√
p(AB)×max(p(B|A)− p(B), p(A|B)− p(A))

20 kulc Kulczynski (p(A|B) + p(B|A))/2

21 L Laplace N×p(AB)+1
N×p(A)+2

22 l Lift p(B|A)
p(B)

23 ll Log-Likelihood ln
[

p(A|B)
p(A|B̄)

]

24 r Log-Ratio ln
[

p(B|A)
p(B)

]

25 MC MaxConf max(p(B|A), p(A|B))

26 M Mutual Information
p(AB) log p(AB)

p(A)p(B) + p(AB̄) log AB̄
p(A)p(B̄)

+ p(ĀB) log p(ĀB)
p(Ā)p(B) + p(ĀB̄) log p(ĀB̄)

p(Ā)p(B̄)

27 s Normalized Difference p(B|A)− p(B|Ā)

28 α Odds Ratio ln
[

p(AB)p(ĀB̄)
p(A,B̄)p(ĀB)

]

29 ows One-Way Support p(B|A) ln
[

p(AB
p(A)p(B

]

30 PS Piatetsky-Shapiro’s N × (p(AB)− p(A)p(B))
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Table 1: (continued)

# Measure Value

31 rr Relative Risk ln
[

p(B|A)
p(B|Ā)

]

32 sup Support p(AB)

33 tws Two-Way Support p(AB) ln
[

p(AB)
p(A)p(B)

]

34 yq Yule’s Q p(AB)p(ĀB̄)−p(AB̄)p(ĀB)
p(AB)p(ĀB̄)+p(AB̄)p(ĀB)

35 yy Yule’s Y
√

p(AB)p(ĀB̄)−
√

p(AB̄)p(ĀB)√
p(AB)p(ĀB̄)+

√
p(AB̄)p(ĀB)
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