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Noncooperative Model Predictive Control for Affine-Quadratic Games
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Nash strategies are a natural solution concept in noncooperative game theory because of their ‘stable’ nature: If the other
players stick to the Nash strategy it is never beneficial for one player to unilaterally change his or her strategy. In this sense,
Nash strategies are the only reliable strategies.

The idea to perform and analyze Model Predictive Control (MPC) based on Nash strategies instead of optimal control
sequences is appealing because it allows for a systematic handling of noncooperative games, which are played in a receding
horizon manner. In this paper we extend existence and uniqueness results on Nash equilibria for affine-quadratic games. For
this class of games we moreover state sufficient conditions that guarantee trajectory convergence of the MPC closed loop.
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1 Setting and Preliminary Result

In this paper we are considering dynamic s-player games, s ∈ N, in discrete time with affine dynamics

x(k + 1, x0) = f(x(k, x0), u(k)) = Ax(k, x0) +

s∑
i=1

Biui(k) + c, or briefly x+ = Ax+

s∑
i=1

Biui + c, (1)

in whichA ∈ Rn×n andBi ∈ Rn×mi . The state x ∈ Rn and controls ui ∈ Rmi are unconstrained. Each player i ∈ {1, . . . , s}
can influence the common system dynamics (1) through his or her input ui and acts according to the stage costs

`i(x, ui) =
1

2

[
(x− x∗i )TQi(x− x∗i ) + uTi Riui

]
(2)

for positive semidefiniteQi (Qi � 0), positive definiteRi (Ri � 0), and a desired state x∗i ∈ Rn. The definiteness assumptions
can be weakened. If this affine-quadratic game is played over N ∈ N time stages, each player aims to minimize the cost
functional JN

i : Rn × (Rm1)N × · · · × (Rms)N → R defined by JN
i (x,u) =

∑N−1
k=0 `i(x

u(k, x), ui(k)) along the solution
xu(·, x) to (1) for initial value x. Note that the cost functional JN

i of player i does not only depend on ui ∈ (Rmi)N but also
on the control sequences of the other players that enter indirectly through the system dynamics.

Definition 1.1 (Nash Equilibrium) A control sequence ue,N ∈ (Rm1)N × · · · × (Rms)N is said to be a Nash equilibrium
(NE) of length N for initial value x ∈ Rn if for all i ∈ {1, . . . , s} and all ui ∈ (Rmi)N it holds
JN
i (x,ue,N

1 , . . . ,ue,N
i , . . . ,ue,N

s ) ≤ JN
i (x,ue,N

1 , . . . ,ui, . . . ,u
e,N
s ).

A NE is a control strategy with the property that it is never beneficial for one player to unilaterally deviate from this strategy.
This does not imply that there is no strategy which improves all players’ objective function simultaneously. Even though many
papers such as [1–4] focus on affine- or linear-quadratic dynamic games, it seems that the case of ‘true’ conflict is typically not
dealt with in the literature. This means that all x∗i in (2) are assumed to be identical in these references. In order to calculate
NEs for our setting we perform the coordinate transformations yi := x − x∗i for all i ∈ {1, . . . , s}. This way we obtain the
augmented system

y+ =

y
+
1
...
y+s

 =

Ay1 +
∑s

i=1Biui + c+ (A− Id)x∗1
...

Ays +
∑s

i=1Biui + c+ (A− Id)x∗s

 =: Āy +

s∑
i=1

B̄iui + c̄

and stage costs `i(x, ui) = 1
2

[
yTi Qiyi + uTi Riui

]
=: 1

2

[
yT Q̄iy + uTi Riui

]
=: ¯̀

i(y, ui). It can easily be seen that any
NE to the transformed game is a NE to the original game. By means of the transformation we can proceed similarly to
e.g. [1, Thm. 6.2] to calculate NEs for our game:

Theorem 1.2 (NEs for Affine-Quadratic Games with ‘True’ Conflict) Consider the s-player game defined by (1) and (2)
with horizon N ∈ N. Consider the backward matrix iterations

Λk = Id+

s∑
i=1

B̄iR
−1
i B̄T

i M
k+1
i , Mk

i = Q̄i + ĀTMk+1
i (Λk)−1Ā, MN

i = 0 (3)
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2 Dynamics and Control

for k = N − 1, . . . , 0. If all Λk are invertible, then for each initial value x ∈ Rn there exists a unique NE ue,N to the
transformed (and thus also to the original) game.

The proof is similar to the proof of [1, Thm. 6.2] and omitted here. We note that there exist explicit formulas for the NE as
well as for the corresponding trajectory.

2 Main Result and Example

We propose the following noncooperative MPC algorithm. For more details on MPC we refer to [5].
Algorithm 2.1 (Noncooperative MPC) At each time instant n ∈ N0 and for fixed horizon N ∈ N:

1. Set x := x(n) and calculate a Nash equilibrium ue,N of length N for initial value x for the s-player game.

2. For each player i ∈ {1, . . . , s} define the MPC-feedback µN
i (x) := ue,Ni (0) and apply it to the system, i.e. x(n + 1) =

f(x, µN (x)).

Theorem 2.2 (Convergence of MPC trajectories) Consider the affine-quadratic s-player game given by the dynamics (1)
and stage costs (2) and a horizon N ∈ N. Assume that all Λk, k = 0, . . . , N − 1, in (3) are invertible and ‖Ā(Λ0)−1‖ ≤ 1.
Assume moreover that all eigenvalues λ of (Λ0)−1Ā fulfill either |λ| < 1, or λ = 1 and λ is semisimple/nondefective1. Then
for each x0 ∈ Rn the MPC closed-loop trajectory of Algorithm 2.1 converges.

Sketch of the Proof. The matrix iterations in (3) only depend on the data of the game but not on the current time or state.
Thus, they are identical in each iteration of Algorithm 2.1. This is why an explicit formula for the MPC closed-loop trajectory
can easily be given. The condition ‖Ā(Λ0)−1‖ ≤ 1 and the conditions on the eigenvalues of (Λ0)−1Ā are sufficient conditions
for the closed-loop trajectory to converge. The limit can explicitely be calculated.

Example 2.3 We consider a simple model of the room temperature x ∈ R, controlled by two persons. The dynamics
are given by (1) with A = 0.8, B1 = B2 = 1 and c = 0. For the stage costs (2) we use the values Qi = 1, R1 = 2,
R2 = 1, x∗1 = 23, x∗2 = 17, i.e. both persons have different desired temperatures. We execute Algorithm 2.1 with N = 5.
For these parameters the assumptions of Theorem 2.2 are satisfied. Figure 1 illustrates the convergence of the MPC closed-
loop trajectories. We note that we also observe convergence if the conditions in Theorem 2.2 are not satisfied, which is our
motivation to investigate less restrictive conditions in future research.
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Fig. 1 Closed-loop trajectories of Algorithm 2.1 for N = 5 and different initial
values (black) and the theoretically calculated limit (red).

All the statements in this paper and the corresponding proofs can be found in [6].
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1 This means that the eigenvalue is a root of multiplicity one in the minimal polynomial.
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