Price Index Number and Its Application in Fish Price Assessment

5

PRICE INDEX NUMBER AND ITS APPLICATION IN FISH PRICE ASSESSMENT

Shyam S. Salim and Athira N. R.

Definition

Index Numbers:

Index numbers are devices for measuring differences in the magnitude of a group of related variables. It is a device to measure change. Changes are measured from time to time or place to place.

E.g. Group of variables at different points of time or location.

Price index number:

A price index number for a commodity or group of commodities is the price of the commodity at a particular time expressed as a percentage.

Practical Utility

Price index numbers are extensively used for a variety of purposes in economics, business management, consumption patterns, personnel and financial matters etc. In the fisheries sector rice index numbers provides an insight on assessing the price behavior and trend in fish production over the years. It is also constructed to track the profitability change in fisheries. To a fishery, index number is applied before and after catch shares are applied which results in analyzing profits improved after implementation of catch shares. They act as economic barometers and measures the changes and behavior of the fishery economy. Index numbers also provide the guidelines for formulating policies and arriving at decisions based on the measured change.

Key words

Simple index number, Laspeyre's Method, Passche's Method, Marshall Edgeworth Method

Software Support

The data can be tabulated in MS-excel. However, it may also be computed in software such as R, SPSS etc.

Data requirement

Quantity of different species fish traded across the different markets over the years of a particular place with its price at the specified period of time. Moreover the prices received for catch, prices paid for inputs, fishery stock biomass and vessel productivity over the years are also required for constructing price index numbers at different levels.

Methodology:

The methodology adopted for the arriving at the price index number of a particular commodity (eg. fish) across the different periods involves the following steps.

- 1. Definition of the purpose and scope.
- 2. Selection of species of fish to be included

Methodological Tools for Socioeconomic and Policy Analysis in Marine Fisheries

- 3. Collection of prices of fish
- 4. Selection of the base period
- 5. Choice of average to be used
- 6. Selection of suitable weights

Simple index number:

$$I_t = \frac{P_t}{P_o} \times 100$$
, where

 I_{t} = Simple index

- P_{t} = Price in period t
- $P_0 =$ Price in the base period

(i) Laspeyre's Method:

$$\begin{split} I_t &= \frac{\sum_{i=1}^n P_{it} \, Q_{it}}{\sum_{i=1}^n P_{io} Q_{io}} \times 100 \text{ or } \frac{\sum \left(\frac{P_{it}}{P_{io}}\right) P_{io} Q_{io}}{\sum P_{io} Q_{io}} \times 100 \\ I_t &= Aggregative \text{ price index for period t} \\ P_{it} P_{io} &= Prices \text{ of } i^{th} \text{fish species in } t^{th} \text{ base period.} \\ Q_{io} &= Quantity \text{ of } i^{th} \text{fish species in base period.} \end{split}$$

(ii) Passche's Method:

$$\begin{split} I_{t=\frac{\sum P_{it}Q_{i0}}{\sum P_{it}Q_{it}}} \times 100 & \frac{\sum \left(\frac{P_{it}}{P_{i0}}\right)P_{it}Q_{i0}}{\sum P_{i0}Q_{i0}}, \\ I_{t} & = & \text{Aggregative price index for period t} \\ P_{it}P_{io} & = & \text{Prices of } i^{\text{th}} \text{ fish species in } t^{\text{th}} \text{ on the base period} \\ Q_{it} & = & \text{Quantity of } i^{\text{th}} \text{fish species in } i^{\text{th}} \text{ period.} \end{split}$$

(iii) Marshall, Edgeworth Method:

$$I_{t} = \left\{ \frac{\sum_{i=1}^{n} P_{it}(Q_{it} + Q_{i0})}{\sum_{i=1}^{n} P_{i0}(Q_{it} + Q_{i0})} \times 100 \right\}$$

 I_t = Aggregative price index for period t

 $P_{it}P_{io}$ = Prices of ith fish species in tth on the base period

 Q_{it} = Quantity of ithfish species in ith period.

(vi) Fisher's Method:

Fisher Index Number =

 $\sqrt{\text{Laspeyre's index for year t} \times \text{Passche's index for year t}}$

Worked out example

Given below are the tables representing the landing centre price from 2010 to 2015 and the quantity of production of the different species during the years 2010 and 2015 of the different selected varieties of fish species in Kerala. The calculation of the different index numbers with 2010 as the base year and their inferences are given below.

Price Index Number and Its Application in Fish Price Assessment

Sl.No		2010	2011	2012	2013	2014	2015			
		Landing Centre Price (LCP)								
1.	Sharks	107	275	280	360	420	380			
2.	Rays	46	55	60	85	90	135			
3.	Oil Sardine	34	18	19	28	45	65			
4.	Lizard fishes	24	52	60	140	195	290			
5.	Threadfin Breams	33	40	45	130	115	145			
6.	Croakers	50	55	60	65	85	155			
7.	Ribbon Fish	39	65	70	102	135	170			
8	Mackerels	52	54	55	80	95	120			
9.	Billfishes	40	85	90	180	230	410			
10.	Penaeid prawns	320	85	110	196	220	295			

Table1.Landing Centre Prices (LCP) of different species of fish in Kerala.

Table2. Total production of the selected varieties of fish in Kerala during 2010-11 and 2015-16

Quantity									
Sl.No	Species	2010-11	2015-16						
1.	Sharks	2014	3481						
2.	Rays	926	2891						
3.	Oil Sardine	259341	68431						
4.	Lizard fishes	7658	12395						
5.	Threadfin Breams	33421	42253						
6.	Croakers	4090	4432						
7.	Ribbon Fish	9674	12253						
8	Mackerels	68494	70079						
9.	Billfishes	2339	5314						
10.	Penaeid prawns	35624	38006						

Solution:

I. Computation of landing centre price index of the selected species

The domestic price behavior can be understood with the help of index numbers. The simple index numbers for the landing centre prices were constructed to compare the price across the years and are indicated in the given table 3. The landing centre price indices were worked out for the selected varieties for the years 2011, 2012,2013,2014,2015 with 2010 as the base year (year 2010 = 100). It has been found that during the period from 2011 to 2015, sharks (83.48 per cent), oil sardine (61.18 per cent) and penaeid prawns (72.19 per cent) recorded the highest increase in prices at landing centre level.

_		2011	2012	2013	2014	2015				
Sl. No.	Species	LCP Index numbers								
1.	Sharks	157.01	161.68	136.45	192.52	155.14				
2.	Rays	119.57	130.43	174.78	175.65	183.48				
3.	Oil Sardine	102.94	155.88	182.35	132.35	161.18				
4.	Lizard fishes	216.67	150.00	183.33	112.50	108.33				
5.	Threadfin Breams	121.21	136.36	193.94	148.48	139.39				
6.	Croakers	110.00	120.00	130.00	170.00	109.40				
7.	Ribbon Fish	166.67	179.49	161.54	146.15	135.90				
8	Mackerels	103.85	105.77	153.85	182.69	130.77				
9.	Billfishes	112.50	125.00	150.00	175.00	125.00				
10.	Penaeid prawns	126.56	134.38	161.25	168.75	172.19				

Table 3: Index numbers of landing centre prices of selected varieties of fish in Kerala

2. Computation of different index numbers

The different index numbers such as Laspeyre's index, Passche's index, Marshall Edgeworth and fisher index have been calculated using the quantity and price of the different selected fish species. The calculations and the intermediate steps have been indicated in the following table 4.

Laspeyre's index = $\frac{46779013}{25999087} \times 100$ = 179.92 Passche's index = $\frac{40451120}{21242137} \times 100$ = 190.42 Marshall Edgeworth index = $\frac{87230133}{47241224} \times 100$ = 184.64 Fisher Index = $\sqrt{179.92} \times 190.42$ = 185.10

Generally index numbers are constructed based on the data available for calculation. Different index numbers differ based on the dataset used. Among all the index numbers constructed it can be inferred that fisher index number is the best index number because it includes both current and past year's quantity as the base of price index where Laspeyre's index use base period quantity and Passche's index use the current period quantity as the base of the price index.

Table 4. Calculation of different price index numbers

Marshall Edgeworth Price relative of 2015- 16 weighted by 2010-11 value		2088170	515264	21305192	5815282	10972723	1318387	3727608	16628815	3137752	21720940	87230133
Marshall Edgeworth Value of production 2010 -11 at prices	2015-16	2088170	515263.5	21305192	5815282	10972723	1318387	3727608	16628815	3137752	21720940	
Marshall Edgewort) Value of production 2010 -11 at prices	2010-11	587985	175571	11144254	481265	2497240	426111	855157	7205820	306122	23561698	47241224
he'sPrice relative L5-16 weighted by 010-11 value	05 Jo	1322850	390254	4448027	3594462	6126678	685664	2083028	8409535	2178762	11211860	40451121
Value of 2010 -11 ices	2015-16	1322850	390254	4448027	3594462	6126678	685664.4	2083028	8409535	2178762	11211860	
Passche's Value of production 2010 -11 at prices	2010-11	372487	132975	2326660	297473	1394347	221611	477871	3644132	212562	12162018	21242137
Laspeyre's Price relative of 2015-16 weighted by 2010-11 value		765320	125010	16857165	2220820	4846045	632723	1644580	8219280	958990	10509080	46779013
re's Value of Jion 2010 -11 Prices	2015-16	765320	125010	16857165	2220820	4846045	632723	1644580	8219280	958990	10509080	
Laspeyre's Value of production 2010 -11 at prices	2010-11	215498	42596	8817594	183792	1102893	204500	377286	3561688	93560	11399680	25999087
Production in 2015-16		3481	2891	68431	12395	42253	4432	12253	70079	5314	38006	
Production in base Pt-0102 boirid		2014	926	259341	7658	33421	4090	9674	68494	2339	35624	
	2015- 16	380	135	65	290	145	154.7	170	120	410	295	Total
Price	2010- 11	107	46	34	24	33	50	39	52	40	320	L
Species		Sharks	Rays	Oil Sardine	Lizard fishes	Threadfin Breams	Croakers	Ribbon Fish	Mackerels	Billfishes	Penaeid prawns	

Price Index Number and Its Application in Fish Price Assessment

Methodological Tools for Socioeconomic and Policy Analysis in Marine Fisheries

Suggested readings

- Deaton A (2010) Price Indexes, Inequality, and the Measurement of World Poverty. American Economic Review 100: 5–34.
- Diewert WE (2008) Index Numbers. In: Durlauf SN, Bulmer LE, editors. The New Palgrave: A Dictionary of Economics 2ed. London: MacMillan. pp. 1–38 Tveterås S, Asche F (2008) International Fish Trade and Exchange Rates: An Application to the Trade of Salmon and Fishmeal. Applied Economics 40: 1745–1756
- Food and Agricultural Organization of the United Nations (2011) FAO Food Outlook: Global Market Analysis. Rome: Food and Agricultural Organization of the United Nations
- Goldberg PK, Knetter MM (1997) Goods Prices and Exchange Rates: What Have We Learnt? Journal of Economic Literature 35: 1243–1272
- Shyam, S Salim and Biradar, R S (2001) Fisheries Economics and Marketing. Manual. Central Institute of Fisheries Education, Mumbai