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C H A P T E R

1. Introduction

Calculus has two parts: differential and integral calculus. Historically, differential calculus
was concerned with finding lines tangent to curves and with calculating extrema (i.e., maxima
and minima) of curves. Integral calculus has its roots in attempting to determine the areas of
regions bounded by curves or in finding the volumes of solids. The two parts of calculus are
closely related: The basic operation of one can be considered the inverse of the other. This
result is known as the fundamental theorem of calculus and goes back to Newton and Leibniz,
who were the first to understand its meaning and to put it to use in solving difficult problems
(Reference 3).

2. Worked out Examples

2.1 ) Differentiation

Differentiation is an aspect of calculus that enables us to determine how one quantity
changes with regard to another. It tells you how quickly (or slowly) a function changes at a
given point. Finding tangents, locating extrema, and calculating areas are basic geometric
problems, and it may be somewhat surprising that their solution led to the development of
methods that are useful in a wide range of scientific fields. The main reason for this historical
development is that the slope of a tangent line at a given point is related to how quickly the
function changes at that point. Knowing how quickly a function changes at a point opens up
the possibility of a dynamic description of biology, such as a description of population growth,
the speed at which a chemical reaction proceeds, the firing rate of neurons, and the speed at
which an invasive species invades a new habitat. For this reason, calculus has been one of the
most powerful tools in the mathematical formulation of scientific concepts (Reference 3).

By working out the following examples, you will be able to develop an appreciation of
the usefulness of calculus across multiple fields.

Example 1: Application of Differentiation (References 1.a and 1.b)

Carlos has taken an initial dose of a prescription medication. The amount of medication, in
milligrams, in Carlos’s bloodstream after t hours is given by the following function:

M(t) = 20 * e(-0.8*t)
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What is the instantaneous rate of change of the remaining amount of medication after 1
hour? In what units is this rate of change measured?

Solution to Example 1

The instantaneous  rate of  change of  M(t) is  given  by  its  derivative,  M’(t). Therefore,
the instantaneous rate of change of the remaining amount of medication after 1 hour is
simply M’(1).

Therefore, we need to find the value of M’(t) at t=1 or

M’(1) M’(t) = -16 * e(-0.8*t)

M’(1) = -16* e(-0.8*1)

M’(1) ~ 7.2

M(t) is the amount of medication that remains in Carlos’s blood stream after ‘t’ hours.
Therefore, the rate of change is measured in milligrams per hour.

In conclusion, the instantaneous rate of change of the remaining amount of medication
after 1 hour is -7.2 milligrams per hour. The rate of change is negative because the amount of
medication is decreasing.

2.2) Integration (References 1.a and 1.b)

Integration is a way of adding slices, summing them to find the whole area of a curve.
Integration can be used to find areas, volumes, central points and many useful things. But it
is easier to start with finding the area under the curve of a function like this:
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What is the area under y = f(x) ?

Slices

We could calculate the function at a few points and add up slices of width ∆∆∆∆∆x like this
(but the answer won’t be very accurate):

We can make ∆∆∆∆∆x a lot smaller and add up many small slices (answer is getting better):
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And as the slices approach zero in width, the answer approaches the true answer.

We now write dx to mean the ∆∆∆∆∆x slices are approaching zero in width.

Example 2: Application of Integration (References 1.a and 1.b)
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Solution to example 2:

2.3) Application of Differential Equations (Reference 2) Example 3: Given:

State variables : N - Amount of nutrient available

P - Phytoplankton

Process of interest - Photosynthetic production of organic matter
d
––– P = vmaxf(N)P
dt
where

N
f(N) = ––––––

kN+N

When N is large

f(N) =1
When N is small
f(N)= N/kn
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Case 1

What would be the growth profile of Phytoplankton in presence of ample nutrients (i.e.,
when N is large)? In such a scenario, keeping the plankton concentration a constant, how
would Nutrient concentration vary with time?

Case 2

Keeping the plankton concentration a constant in presence of limited nutrients (i.e. when
N is small), how will Nutrients change with respect to time?

Solution to Example 3

The nitrogen consumed by the phytoplankton for growth must be lost from the Nutrients
state variable. Therefore,

d
––– P = vmaxf(N)P
dt

vd
––– N = vmaxf(N)P
dt

and

d
––– (P+N) = 0
dt

Because the total inventory of nitrogen is conserved.

Case 1

When nutrient availability is ample, f(N) = 1

dP
––– vmaxP —————————————(1)  After integrating with respect to time, we get
dt

P = A evmaxt—————————————(2)  Growth of P will be exponential

When plankton concentration is kept under ample nutrient conditions,  we have

dN
––– P = vmaxP ————————————(3)   After integration, we get
dt
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N(t) = -vmax*P*t ————————————(4)

N will decrease linearly with time as it is consumed to grow P

Case 2

When nutrient availability is scarce, f(N) = N/Kn

Therefore,

dN vmaxP––– = ––––––––––– N  ——————————————————— (5)
dt kn

On integrating (5) with respect to time, we get

vmaxPN = Ae ––––– ——————————————————— (6)
kn

N will exponentially decay to zero until it is exhausted
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